
Linux Sound Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

ALSA KERNEL API DOCUMENTATION

1.1 The ALSA Driver API

1.1.1 Management of Cards and Devices

Card Management

void snd_device_initialize(struct device * dev, struct snd_card * card)
Initialize struct device for sound devices

Parameters
struct device * dev device to initialize

struct snd_card * card card to assign, optional

int snd_card_new(struct device * parent, int idx, const char * xid, struct mod-
ule * module, int extra_size, struct snd_card ** card_ret)

create and initialize a soundcard structure

Parameters
struct device * parent the parent device object

int idx card index (address) [0 ⋯(SNDRV_CARDS-1)]
const char * xid card identification (ASCII string)

struct module * module top level module for locking

int extra_size allocate this extra size after the main soundcard structure

struct snd_card ** card_ret the pointer to store the created card instance

Creates and initializes a soundcard structure.

The function allocates snd_card instance via kzalloc with the given space for
the driver to use freely. The allocated struct is stored in the given card_ret
pointer.

Return
Zero if successful or a negative error code.

struct snd_card * snd_card_ref(int idx)
Get the card object from the index

Parameters

1

Linux Sound Documentation

int idx the card index

Description
Returns a card object corresponding to the given index or NULL if not found.
Release the object via snd_card_unref().

int snd_card_disconnect(struct snd_card * card)
disconnect all APIs from the file-operations (user space)

Parameters
struct snd_card * card soundcard structure

Disconnects all APIs from the file-operations (user space).

Return
Zero, otherwise a negative error code.

Note
The current implementation replaces all active file->f_op with special

dummy file operations (they do nothing except release).

void snd_card_disconnect_sync(struct snd_card * card)
disconnect card and wait until files get closed

Parameters
struct snd_card * card card object to disconnect

Description
This calls snd_card_disconnect() for disconnecting all belonging components and
waits until all pending files get closed. It assures that all accesses from user-space
finished so that the driver can release its resources gracefully.

int snd_card_free_when_closed(struct snd_card * card)
Disconnect the card, free it later eventually

Parameters
struct snd_card * card soundcard structure

Description
Unlike snd_card_free(), this function doesn’t try to release the card resource im-
mediately, but tries to disconnect at first. When the card is still in use, the function
returns before freeing the resources. The card resources will be freed when the
refcount gets to zero.

int snd_card_free(struct snd_card * card)
frees given soundcard structure

Parameters
struct snd_card * card soundcard structure

Description
This function releases the soundcard structure and the all assigned devices auto-
matically. That is, you don’t have to release the devices by yourself.

2 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

This function waits until the all resources are properly released.

Return
Zero. Frees all associated devices and frees the control interface associated to
given soundcard.

void snd_card_set_id(struct snd_card * card, const char * nid)
set card identification name

Parameters
struct snd_card * card soundcard structure

const char * nid new identification string

This function sets the card identification and checks for name collisions.

int snd_card_add_dev_attr(struct snd_card * card, const struct at-
tribute_group * group)

Append a new sysfs attribute group to card

Parameters
struct snd_card * card card instance

const struct attribute_group * group attribute group to append

int snd_card_register(struct snd_card * card)
register the soundcard

Parameters
struct snd_card * card soundcard structure

This function registers all the devices assigned to the soundcard. Until calling
this, the ALSA control interface is blocked from the external accesses. Thus,
you should call this function at the end of the initialization of the card.

Return
Zero otherwise a negative error code if the registration failed.

int snd_component_add(struct snd_card * card, const char * component)
add a component string

Parameters
struct snd_card * card soundcard structure

const char * component the component id string

This function adds the component id string to the supported list. The compo-
nent can be referred from the alsa-lib.

Return
Zero otherwise a negative error code.

int snd_card_file_add(struct snd_card * card, struct file * file)
add the file to the file list of the card

Parameters
struct snd_card * card soundcard structure

1.1. The ALSA Driver API 3

Linux Sound Documentation

struct file * file file pointer

This function adds the file to the file linked-list of the card. This linked-list is
used to keep tracking the connection state, and to avoid the release of busy
resources by hotplug.

Return
zero or a negative error code.

int snd_card_file_remove(struct snd_card * card, struct file * file)
remove the file from the file list

Parameters
struct snd_card * card soundcard structure

struct file * file file pointer

This function removes the file formerly added to the card
via snd_card_file_add() function. If all files are removed and
snd_card_free_when_closed() was called beforehand, it processes the
pending release of resources.

Return
Zero or a negative error code.

int snd_power_wait(struct snd_card * card, unsigned int power_state)
wait until the power-state is changed.

Parameters
struct snd_card * card soundcard structure

unsigned int power_state expected power state

Waits until the power-state is changed.

Return
Zero if successful, or a negative error code.

Device Components

int snd_device_new(struct snd_card * card, enum snd_device_type type, void
* device_data, const struct snd_device_ops * ops)

create an ALSA device component

Parameters
struct snd_card * card the card instance

enum snd_device_type type the device type, SNDRV_DEV_XXX

void * device_data the data pointer of this device

const struct snd_device_ops * ops the operator table

Description
Creates a new device component for the given data pointer. The device will be
assigned to the card and managed together by the card.

4 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

The data pointer plays a role as the identifier, too, so the pointer address must be
unique and unchanged.

Return
Zero if successful, or a negative error code on failure.

void snd_device_disconnect(struct snd_card * card, void * device_data)
disconnect the device

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to disconnect

Description
Turns the device into the disconnection state, invoking dev_disconnect callback,
if the device was already registered.

Usually called from snd_card_disconnect().

Return
Zero if successful, or a negative error code on failure or if the device not found.

void snd_device_free(struct snd_card * card, void * device_data)
release the device from the card

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to release

Description
Removes the device from the list on the card and invokes the callbacks,
dev_disconnect and dev_free, corresponding to the state. Then release the device.

int snd_device_register(struct snd_card * card, void * device_data)
register the device

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to register

Description
Registers the device which was already created via snd_device_new(). Usually this
is called from snd_card_register(), but it can be called later if any new devices are
created after invocation of snd_card_register().

Return
Zero if successful, or a negative error code on failure or if the device not found.

int snd_device_get_state(struct snd_card * card, void * device_data)
Get the current state of the given device

Parameters

1.1. The ALSA Driver API 5

Linux Sound Documentation

struct snd_card * card the card instance

void * device_data the data pointer to release

Description
Returns the current state of the given device object. For the valid
device, either SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED or
SNDRV_DEV_DISCONNECTED is returned. Or for a non-existing device,
-1 is returned as an error.

Module requests and Device File Entries

void snd_request_card(int card)
try to load the card module

Parameters
int card the card number

Description
Tries to load the module “snd-card-X”for the given card number via re-
quest_module. Returns immediately if already loaded.

void * snd_lookup_minor_data(unsigned int minor, int type)
get user data of a registered device

Parameters
unsigned int minor the minor number

int type device type (SNDRV_DEVICE_TYPE_XXX)

Description
Checks that a minor device with the specified type is registered, and returns its
user data pointer.

This function increments the reference counter of the card instance if an associ-
ated instance with the given minor number and type is found. The caller must call
snd_card_unref() appropriately later.

Return
The user data pointer if the specified device is found. NULL otherwise.

int snd_register_device(int type, struct snd_card * card, int dev, const
struct file_operations * f_ops, void * private_data,
struct device * device)

Register the ALSA device file for the card

Parameters
int type the device type, SNDRV_DEVICE_TYPE_XXX

struct snd_card * card the card instance

int dev the device index

const struct file_operations * f_ops the file operations

6 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

void * private_data user pointer for f_ops->open()

struct device * device the device to register

Description
Registers an ALSA device file for the given card. The operators have to be set in
reg parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_unregister_device(struct device * dev)
unregister the device on the given card

Parameters
struct device * dev the device instance

Description
Unregisters the device file already registered via snd_register_device().

Return
Zero if successful, or a negative error code on failure.

Memory Management Helpers

int copy_to_user_fromio(void __user * dst, const volatile void __iomem
* src, size_t count)

copy data from mmio-space to user-space

Parameters
void __user * dst the destination pointer on user-space

const volatile void __iomem * src the source pointer on mmio

size_t count the data size to copy in bytes

Description
Copies the data from mmio-space to user-space.

Return
Zero if successful, or non-zero on failure.

int copy_from_user_toio(volatile void __iomem * dst, const void __user
* src, size_t count)

copy data from user-space to mmio-space

Parameters
volatile void __iomem * dst the destination pointer on mmio-space

const void __user * src the source pointer on user-space

size_t count the data size to copy in bytes

1.1. The ALSA Driver API 7

Linux Sound Documentation

Description
Copies the data from user-space to mmio-space.

Return
Zero if successful, or non-zero on failure.

void snd_malloc_dev_iram(struct snd_dma_buffer * dmab, size_t size)
allocate memory from on-chip internal ram

Parameters
struct snd_dma_buffer * dmab buffer allocation record to store the allocated

data

size_t size number of bytes to allocate from the iram

Description
This function requires iram phandle provided via of_node

void snd_free_dev_iram(struct snd_dma_buffer * dmab)
free allocated specific memory from on-chip internal ram

Parameters
struct snd_dma_buffer * dmab buffer allocation record to store the allocated

data

int snd_dma_alloc_pages(int type, struct device * device, size_t size, struct
snd_dma_buffer * dmab)

allocate the buffer area according to the given type

Parameters
int type the DMA buffer type

struct device * device the device pointer

size_t size the buffer size to allocate

struct snd_dma_buffer * dmab buffer allocation record to store the allocated
data

Description
Calls the memory-allocator function for the corresponding buffer type.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative
value on error.

int snd_dma_alloc_pages_fallback(int type, struct device * device,
size_t size, struct snd_dma_buffer
* dmab)

allocate the buffer area according to the given type with fallback

Parameters
int type the DMA buffer type

struct device * device the device pointer

8 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

size_t size the buffer size to allocate

struct snd_dma_buffer * dmab buffer allocation record to store the allocated
data

Description
Calls the memory-allocator function for the corresponding buffer type. When no
space is left, this function reduces the size and tries to allocate again. The size
actually allocated is stored in res_size argument.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative
value on error.

void snd_dma_free_pages(struct snd_dma_buffer * dmab)
release the allocated buffer

Parameters
struct snd_dma_buffer * dmab the buffer allocation record to release

Description
Releases the allocated buffer via snd_dma_alloc_pages().

1.1.2 PCM API

PCM Core

const char * snd_pcm_format_name(snd_pcm_format_t format)
Return a name string for the given PCM format

Parameters
snd_pcm_format_t format PCM format

int snd_pcm_new_stream(struct snd_pcm * pcm, int stream,
int substream_count)

create a new PCM stream

Parameters
struct snd_pcm * pcm the pcm instance

int stream the stream direction, SNDRV_PCM_STREAM_XXX

int substream_count the number of substreams

Description
Creates a new stream for the pcm. The corresponding stream on the pcm must
have been empty before calling this, i.e. zero must be given to the argument of
snd_pcm_new().

Return
Zero if successful, or a negative error code on failure.

1.1. The ALSA Driver API 9

Linux Sound Documentation

int snd_pcm_new(struct snd_card * card, const char * id, int device,
int playback_count, int capture_count, struct snd_pcm
** rpcm)

create a new PCM instance

Parameters
struct snd_card * card the card instance

const char * id the id string

int device the device index (zero based)

int playback_count the number of substreams for playback

int capture_count the number of substreams for capture

struct snd_pcm ** rpcm the pointer to store the new pcm instance

Description
Creates a new PCM instance.

The pcm operators have to be set afterwards to the new instance via
snd_pcm_set_ops().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_new_internal(struct snd_card * card, const char
* id, int device, int playback_count,
int capture_count, struct snd_pcm ** rpcm)

create a new internal PCM instance

Parameters
struct snd_card * card the card instance

const char * id the id string

int device the device index (zero based - shared with normal PCMs)

int playback_count the number of substreams for playback

int capture_count the number of substreams for capture

struct snd_pcm ** rpcm the pointer to store the new pcm instance

Description
Creates a new internal PCM instance with no userspace device or procfs entries.
This is used by ASoC Back End PCMs in order to create a PCM that will only
be used internally by kernel drivers. i.e. it cannot be opened by userspace. It
provides existing ASoC components drivers with a substream and access to any
private data.

The pcm operators have to be set afterwards to the new instance via
snd_pcm_set_ops().

Return
Zero if successful, or a negative error code on failure.

10 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int snd_pcm_notify(struct snd_pcm_notify * notify, int nfree)
Add/remove the notify list

Parameters
struct snd_pcm_notify * notify PCM notify list

int nfree 0 = register, 1 = unregister

Description
This adds the given notifier to the global list so that the callback is called for each
registered PCM devices. This exists only for PCM OSS emulation, so far.

void snd_pcm_set_ops(struct snd_pcm * pcm, int direction, const struct
snd_pcm_ops * ops)

set the PCM operators

Parameters
struct snd_pcm * pcm the pcm instance

int direction stream direction, SNDRV_PCM_STREAM_XXX

const struct snd_pcm_ops * ops the operator table

Description
Sets the given PCM operators to the pcm instance.

void snd_pcm_set_sync(struct snd_pcm_substream * substream)
set the PCM sync id

Parameters
struct snd_pcm_substream * substream the pcm substream

Description
Sets the PCM sync identifier for the card.

int snd_interval_refine(struct snd_interval * i, const struct snd_interval
* v)

refine the interval value of configurator

Parameters
struct snd_interval * i the interval value to refine

const struct snd_interval * v the interval value to refer to

Description
Refines the interval value with the reference value. The interval is changed to the
range satisfying both intervals. The interval status (min, max, integer, etc.) are
evaluated.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

void snd_interval_div(const struct snd_interval * a, const struct
snd_interval * b, struct snd_interval * c)

refine the interval value with division

1.1. The ALSA Driver API 11

Linux Sound Documentation

Parameters
const struct snd_interval * a dividend

const struct snd_interval * b divisor

struct snd_interval * c quotient

Description
c = a / b

Returns non-zero if the value is changed, zero if not changed.

void snd_interval_muldivk(const struct snd_interval * a, const struct
snd_interval * b, unsigned int k, struct
snd_interval * c)

refine the interval value

Parameters
const struct snd_interval * a dividend 1

const struct snd_interval * b dividend 2

unsigned int k divisor (as integer)

struct snd_interval * c result

Description
c = a * b / k

Returns non-zero if the value is changed, zero if not changed.

void snd_interval_mulkdiv(const struct snd_interval * a, unsigned
int k, const struct snd_interval * b, struct
snd_interval * c)

refine the interval value

Parameters
const struct snd_interval * a dividend 1

unsigned int k dividend 2 (as integer)

const struct snd_interval * b divisor

struct snd_interval * c result

Description
c = a * k / b

Returns non-zero if the value is changed, zero if not changed.

int snd_interval_ratnum(struct snd_interval * i, unsigned int rats_count,
const struct snd_ratnum * rats, unsigned int
* nump, unsigned int * denp)

refine the interval value

Parameters
struct snd_interval * i interval to refine

unsigned int rats_count number of ratnum_t

12 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

const struct snd_ratnum * rats ratnum_t array

unsigned int * nump pointer to store the resultant numerator

unsigned int * denp pointer to store the resultant denominator

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_ratden(struct snd_interval * i, unsigned int rats_count,
const struct snd_ratden * rats, unsigned int
* nump, unsigned int * denp)

refine the interval value

Parameters
struct snd_interval * i interval to refine

unsigned int rats_count number of struct ratden

const struct snd_ratden * rats struct ratden array

unsigned int * nump pointer to store the resultant numerator

unsigned int * denp pointer to store the resultant denominator

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_list(struct snd_interval * i, unsigned int count, const un-
signed int * list, unsigned int mask)

refine the interval value from the list

Parameters
struct snd_interval * i the interval value to refine

unsigned int count the number of elements in the list

const unsigned int * list the value list

unsigned int mask the bit-mask to evaluate

Description
Refines the interval value from the list. When mask is non-zero, only the elements
corresponding to bit 1 are evaluated.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_ranges(struct snd_interval * i, unsigned int count, const
struct snd_interval * ranges, unsigned int mask)

refine the interval value from the list of ranges

Parameters
struct snd_interval * i the interval value to refine

1.1. The ALSA Driver API 13

Linux Sound Documentation

unsigned int count the number of elements in the list of ranges

const struct snd_interval * ranges the ranges list

unsigned int mask the bit-mask to evaluate

Description
Refines the interval value from the list of ranges. When mask is non-zero, only the
elements corresponding to bit 1 are evaluated.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime, unsigned
int cond, int var, snd_pcm_hw_rule_func_t func,
void * private, int dep, ...)

add the hw-constraint rule

Parameters
struct snd_pcm_runtime * runtime the pcm runtime instance

unsigned int cond condition bits

int var the variable to evaluate

snd_pcm_hw_rule_func_t func the evaluation function

void * private the private data pointer passed to function

int dep the dependent variables

... variable arguments

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var,
u_int32_t mask)

apply the given bitmap mask constraint

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the mask

u_int32_t mask the bitmap mask

Description
Apply the constraint of the given bitmap mask to a 32-bit mask parameter.

Return
Zero if successful, or a negative error code on failure.

14 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var,
u_int64_t mask)

apply the given bitmap mask constraint

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the mask

u_int64_t mask the 64bit bitmap mask

Description
Apply the constraint of the given bitmap mask to a 64-bit mask parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var)

apply an integer constraint to an interval

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the integer constraint

Description
Apply the constraint of integer to an interval parameter.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var, unsigned
int min, unsigned int max)

apply a min/max range constraint to an interval

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the range

unsigned int min the minimal value

unsigned int max the maximal value

Description
Apply the min/max range constraint to an interval parameter.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

1.1. The ALSA Driver API 15

Linux Sound Documentation

int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_list * l)

apply a list of constraints to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the list constraint

const struct snd_pcm_hw_constraint_list * l list

Description
Apply the list of constraints to an interval parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ranges * r)

apply list of range constraints to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the list of range con-
straints

const struct snd_pcm_hw_constraint_ranges * r ranges

Description
Apply the list of range constraints to an interval parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var,
const struct
snd_pcm_hw_constraint_ratnums
* r)

apply ratnums constraint to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the ratnums constraint

16 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

const struct snd_pcm_hw_constraint_ratnums * r struct snd_ratnums cons-
triants

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var,
const struct
snd_pcm_hw_constraint_ratdens
* r)

apply ratdens constraint to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the ratdens constraint

const struct snd_pcm_hw_constraint_ratdens * r struct snd_ratdens cons-
triants

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime, un-
signed int cond, unsigned int width,
unsigned int msbits)

add a hw constraint msbits rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

unsigned int width sample bits width

unsigned int msbits msbits width

Description
This constraint will set the number of most significant bits (msbits) if a sample
format with the specified width has been select. If width is set to 0 the msbits will
be set for any sample format with a width larger than the specified msbits.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var, unsigned
long step)

add a hw constraint step rule

Parameters

1.1. The ALSA Driver API 17

Linux Sound Documentation

struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the step constraint

unsigned long step step size

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var)

add a hw constraint power-of-2 rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the power-of-2 constraint

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime, un-
signed int base_rate)

add a rule to allow disabling hw resampling

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int base_rate the rate at which the hardware does not resample

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)

return params field var value
Parameters
const struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Return
The value for field var if it’s fixed in configuration space defined by params.
-EINVAL otherwise.

int snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,
struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)

refine config space and return minimum value

18 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Description
Inside configuration space defined by params remove from var all values > mini-
mum. Reduce configuration space accordingly.

Return
The minimum, or a negative error code on failure.

int snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,
struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)

refine config space and return maximum value

Parameters
struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Description
Inside configuration space defined by params remove from var all values < max-
imum. Reduce configuration space accordingly.

Return
The maximum, or a negative error code on failure.

int snd_pcm_lib_ioctl(struct snd_pcm_substream * substream, unsigned
int cmd, void * arg)

a generic PCM ioctl callback

Parameters
struct snd_pcm_substream * substream the pcm substream instance

unsigned int cmd ioctl command

void * arg ioctl argument

Description
Processes the generic ioctl commands for PCM. Can be passed as the ioctl callback
for PCM ops.

Return
Zero if successful, or a negative error code on failure.

1.1. The ALSA Driver API 19

Linux Sound Documentation

void snd_pcm_period_elapsed(struct snd_pcm_substream * substream)
update the pcm status for the next period

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
This function is called from the interrupt handler when the PCM has processed
the period size. It will update the current pointer, wake up sleepers, etc.

Even if more than one periods have elapsed since the last call, you have to call this
only once.

int snd_pcm_add_chmap_ctls(struct snd_pcm * pcm, int stream,
const struct snd_pcm_chmap_elem
* chmap, int max_channels, unsigned
long private_value, struct snd_pcm_chmap
** info_ret)

create channel-mapping control elements

Parameters
struct snd_pcm * pcm the assigned PCM instance

int stream stream direction

const struct snd_pcm_chmap_elem * chmap channel map elements (for query)

int max_channels the max number of channels for the stream

unsigned long private_value the value passed to each kcontrol’s private_value
field

struct snd_pcm_chmap ** info_ret store struct snd_pcm_chmap instance if
non-NULL

Description
Create channel-mapping control elements assigned to the given PCM stream(s).

Return
Zero if successful, or a negative error value.

void snd_pcm_stream_lock(struct snd_pcm_substream * substream)
Lock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This locks the PCM stream’s spinlock or mutex depending on the nonatomic flag
of the given substream. This also takes the global link rw lock (or rw sem), too,
for avoiding the race with linked streams.

void snd_pcm_stream_unlock(struct snd_pcm_substream * substream)
Unlock the PCM stream

Parameters

20 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

struct snd_pcm_substream * substream PCM substream

Description
This unlocks the PCM stream that has been locked via snd_pcm_stream_lock().

void snd_pcm_stream_lock_irq(struct snd_pcm_substream * substream)
Lock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This locks the PCM stream like snd_pcm_stream_lock() and disables the local
IRQ (only when nonatomic is false). In nonatomic case, this is identical as
snd_pcm_stream_lock().

void snd_pcm_stream_unlock_irq(struct snd_pcm_substream * substream)
Unlock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This is a counter-part of snd_pcm_stream_lock_irq().

void snd_pcm_stream_unlock_irqrestore(struct snd_pcm_substream
* substream, unsigned
long flags)

Unlock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned long flags irq flags

Description
This is a counter-part of snd_pcm_stream_lock_irqsave().

int snd_pcm_hw_params_choose(struct snd_pcm_substream * pcm, struct
snd_pcm_hw_params * params)

choose a configuration defined by params
Parameters
struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance

Description
Choose one configuration from configuration space defined by params. The con-
figuration chosen is that obtained fixing in this order: first access, first format,
first subformat, min channels, min rate, min period time, max buffer size, min tick
time

Return

1.1. The ALSA Driver API 21

Linux Sound Documentation

Zero if successful, or a negative error code on failure.

int snd_pcm_start(struct snd_pcm_substream * substream)
start all linked streams

Parameters
struct snd_pcm_substream * substream the PCM substream instance

Return
Zero if successful, or a negative error code. The stream lock must be acquired
before calling this function.

int snd_pcm_stop(struct snd_pcm_substream * substream,
snd_pcm_state_t state)

try to stop all running streams in the substream group

Parameters
struct snd_pcm_substream * substream the PCM substream instance

snd_pcm_state_t state PCM state after stopping the stream

Description
The state of each stream is then changed to the given state unconditionally.

Return
Zero if successful, or a negative error code.

int snd_pcm_drain_done(struct snd_pcm_substream * substream)
stop the DMA only when the given stream is playback

Parameters
struct snd_pcm_substream * substream the PCM substream

Description
After stopping, the state is changed to SETUP. Unlike snd_pcm_stop(), this affects
only the given stream.

Return
Zero if succesful, or a negative error code.

int snd_pcm_stop_xrun(struct snd_pcm_substream * substream)
stop the running streams as XRUN

Parameters
struct snd_pcm_substream * substream the PCM substream instance

Description
This stops the given running substream (and all linked substreams) as XRUN. Un-
like snd_pcm_stop(), this function takes the substream lock by itself.

Return
Zero if successful, or a negative error code.

22 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int snd_pcm_suspend_all(struct snd_pcm * pcm)
trigger SUSPEND to all substreams in the given pcm

Parameters
struct snd_pcm * pcm the PCM instance

Description
After this call, all streams are changed to SUSPENDED state.

Return
Zero if successful (or pcm is NULL), or a negative error code.

int snd_pcm_prepare(struct snd_pcm_substream * substream, struct file
* file)

prepare the PCM substream to be triggerable

Parameters
struct snd_pcm_substream * substream the PCM substream instance

struct file * file file to refer f_flags

Return
Zero if successful, or a negative error code.

int snd_pcm_kernel_ioctl(struct snd_pcm_substream * substream, un-
signed int cmd, void * arg)

Execute PCM ioctl in the kernel-space

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int cmd IOCTL cmd

void * arg IOCTL argument

Description
The function is provided primarily for OSS layer and USB gadget drivers, and it
allows only the limited set of ioctls (hw_params, sw_params, prepare, start, drain,
drop, forward).

int snd_pcm_lib_default_mmap(struct snd_pcm_substream * substream,
struct vm_area_struct * area)

Default PCM data mmap function

Parameters
struct snd_pcm_substream * substream PCM substream

struct vm_area_struct * area VMA

Description
This is the default mmap handler for PCM data. When mmap pcm_ops is NULL,
this function is invoked implicitly.

int snd_pcm_lib_mmap_iomem(struct snd_pcm_substream * substream,
struct vm_area_struct * area)

Default PCM data mmap function for I/O mem

1.1. The ALSA Driver API 23

Linux Sound Documentation

Parameters
struct snd_pcm_substream * substream PCM substream

struct vm_area_struct * area VMA

Description
When your hardware uses the iomapped pages as the hardware buffer and wants
to mmap it, pass this function as mmap pcm_ops. Note that this is supposed to
work only on limited architectures.

int snd_pcm_stream_linked(struct snd_pcm_substream * substream)
Check whether the substream is linked with others

Parameters
struct snd_pcm_substream * substream substream to check

Description
Returns true if the given substream is being linked with others.

snd_pcm_stream_lock_irqsave(substream, flags)
Lock the PCM stream

Parameters
substream PCM substream

flags irq flags

Description
This locks the PCM stream like snd_pcm_stream_lock() but with the local
IRQ (only when nonatomic is false). In nonatomic case, this is identical as
snd_pcm_stream_lock().

snd_pcm_group_for_each_entry(s, substream)
iterate over the linked substreams

Parameters
s the iterator

substream the substream

Description
Iterate over the all linked substreams to the given substream. When substream
isn’t linked with any others, this gives returns substream itself once.

int snd_pcm_running(struct snd_pcm_substream * substream)
Check whether the substream is in a running state

Parameters
struct snd_pcm_substream * substream substream to check

Description
Returns true if the given substream is in the state RUNNING, or in the state
DRAINING for playback.

24 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

ssize_t bytes_to_samples(struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from bytes to samples

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t size size in bytes

snd_pcm_sframes_t bytes_to_frames(struct snd_pcm_runtime * runtime,
ssize_t size)

Unit conversion of the size from bytes to frames

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t size size in bytes

ssize_t samples_to_bytes(struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from samples to bytes

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t size size in samples

ssize_t frames_to_bytes(struct snd_pcm_runtime * runtime,
snd_pcm_sframes_t size)

Unit conversion of the size from frames to bytes

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_sframes_t size size in frames

int frame_aligned(struct snd_pcm_runtime * runtime, ssize_t bytes)
Check whether the byte size is aligned to frames

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t bytes size in bytes

size_t snd_pcm_lib_buffer_bytes(struct snd_pcm_substream * substream)
Get the buffer size of the current PCM in bytes

Parameters
struct snd_pcm_substream * substream PCM substream

size_t snd_pcm_lib_period_bytes(struct snd_pcm_substream * substream)
Get the period size of the current PCM in bytes

Parameters
struct snd_pcm_substream * substream PCM substream

snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime
* runtime)

Get the available (writable) space for playback

1.1. The ALSA Driver API 25

Linux Sound Documentation

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

Description
Result is between 0 ⋯(boundary - 1)
snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime

* runtime)
Get the available (readable) space for capture

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

Description
Result is between 0 ⋯(boundary - 1)
snd_pcm_sframes_t snd_pcm_playback_hw_avail(struct snd_pcm_runtime

* runtime)
Get the queued space for playback

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_sframes_t snd_pcm_capture_hw_avail(struct snd_pcm_runtime
* runtime)

Get the free space for capture

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

int snd_pcm_playback_ready(struct snd_pcm_substream * substream)
check whether the playback buffer is available

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether enough free space is available on the playback buffer.

Return
Non-zero if available, or zero if not.

int snd_pcm_capture_ready(struct snd_pcm_substream * substream)
check whether the capture buffer is available

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether enough capture data is available on the capture buffer.

Return
Non-zero if available, or zero if not.

26 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int snd_pcm_playback_data(struct snd_pcm_substream * substream)
check whether any data exists on the playback buffer

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether any data exists on the playback buffer.

Return
Non-zero if any data exists, or zero if not. If stop_threshold is bigger or equal to
boundary, then this function returns always non-zero.

int snd_pcm_playback_empty(struct snd_pcm_substream * substream)
check whether the playback buffer is empty

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether the playback buffer is empty.

Return
Non-zero if empty, or zero if not.

int snd_pcm_capture_empty(struct snd_pcm_substream * substream)
check whether the capture buffer is empty

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether the capture buffer is empty.

Return
Non-zero if empty, or zero if not.

void snd_pcm_trigger_done(struct snd_pcm_substream * substream, struct
snd_pcm_substream * master)

Mark the master substream

Parameters
struct snd_pcm_substream * substream the pcm substream instance

struct snd_pcm_substream * master the linked master substream

Description
When multiple substreams of the same card are linked and the hardware
supports the single-shot operation, the driver calls this in the loop in
snd_pcm_group_for_each_entry() for marking the substream as “done”. Then
most of trigger operations are performed only to the given master substream.

The trigger_master mark is cleared at timestamp updates at the end of trigger
operations.

1.1. The ALSA Driver API 27

Linux Sound Documentation

unsigned int params_channels(const struct snd_pcm_hw_params * p)
Get the number of channels from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_rate(const struct snd_pcm_hw_params * p)
Get the sample rate from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_period_size(const struct snd_pcm_hw_params * p)
Get the period size (in frames) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_periods(const struct snd_pcm_hw_params * p)
Get the number of periods from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_buffer_size(const struct snd_pcm_hw_params * p)
Get the buffer size (in frames) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_buffer_bytes(const struct snd_pcm_hw_params * p)
Get the buffer size (in bytes) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

int snd_pcm_hw_constraint_single(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var, unsigned
int val)

Constrain parameter to a single value

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var The hw_params variable to constrain

unsigned int val The value to constrain to

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_format_cpu_endian(snd_pcm_format_t format)
Check the PCM format is CPU-endian

Parameters

28 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

snd_pcm_format_t format the format to check

Return
1 if the given PCM format is CPU-endian, 0 if opposite, or a negative error code if
endian not specified.

void snd_pcm_set_runtime_buffer(struct snd_pcm_substream * substream,
struct snd_dma_buffer * bufp)

Set the PCM runtime buffer

Parameters
struct snd_pcm_substream * substream PCM substream to set

struct snd_dma_buffer * bufp the buffer information, NULL to clear

Description
Copy the buffer information to runtime->dma_buffer when bufp is non-NULL. Oth-
erwise it clears the current buffer information.

void snd_pcm_gettime(struct snd_pcm_runtime * runtime, struct time-
spec64 * tv)

Fill the timespec64 depending on the timestamp mode

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

struct timespec64 * tv timespec64 to fill

int snd_pcm_lib_alloc_vmalloc_buffer(struct snd_pcm_substream
* substream, size_t size)

allocate virtual DMA buffer

Parameters
struct snd_pcm_substream * substream the substream to allocate the buffer to

size_t size the requested buffer size, in bytes

Description
Allocates the PCM substream buffer using vmalloc(), i.e., the memory is contigu-
ous in kernel virtual space, but not in physical memory. Use this if the buffer is
accessed by kernel code but not by device DMA.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

int snd_pcm_lib_alloc_vmalloc_32_buffer(struct snd_pcm_substream
* substream, size_t size)

allocate 32-bit-addressable buffer

Parameters
struct snd_pcm_substream * substream the substream to allocate the buffer to

size_t size the requested buffer size, in bytes

Description

1.1. The ALSA Driver API 29

Linux Sound Documentation

This function works like snd_pcm_lib_alloc_vmalloc_buffer(), but uses vmal-
loc_32(), i.e., the pages are allocated from 32-bit-addressable memory.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

dma_addr_t snd_pcm_sgbuf_get_addr(struct snd_pcm_substream
* substream, unsigned int ofs)

Get the DMA address at the corresponding offset

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

void * snd_pcm_sgbuf_get_ptr(struct snd_pcm_substream * substream, un-
signed int ofs)

Get the virtual address at the corresponding offset

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

unsigned int snd_pcm_sgbuf_get_chunk_size(struct snd_pcm_substream
* substream, unsigned
int ofs, unsigned int size)

Compute the max size that fits within the contig. page from the given size

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

unsigned int size byte size to examine

void snd_pcm_mmap_data_open(struct vm_area_struct * area)
increase the mmap counter

Parameters
struct vm_area_struct * area VMA

Description
PCM mmap callback should handle this counter properly

void snd_pcm_mmap_data_close(struct vm_area_struct * area)
decrease the mmap counter

Parameters
struct vm_area_struct * area VMA

Description
PCM mmap callback should handle this counter properly

void snd_pcm_limit_isa_dma_size(int dma, size_t * max)
Get the max size fitting with ISA DMA transfer

30 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
int dma DMA number

size_t * max pointer to store the max size

const char * snd_pcm_stream_str(struct snd_pcm_substream * substream)
Get a string naming the direction of a stream

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Return
A string naming the direction of the stream.

struct snd_pcm_substream * snd_pcm_chmap_substream(struct
snd_pcm_chmap
* info, unsigned
int idx)

get the PCM substream assigned to the given chmap info

Parameters
struct snd_pcm_chmap * info chmap information

unsigned int idx the substream number index

u64 pcm_format_to_bits(snd_pcm_format_t pcm_format)
Strong-typed conversion of pcm_format to bitwise

Parameters
snd_pcm_format_t pcm_format PCM format

pcm_for_each_format(f)
helper to iterate for each format type

Parameters
f the iterator variable in snd_pcm_format_t type

PCM Format Helpers

int snd_pcm_format_signed(snd_pcm_format_t format)
Check the PCM format is signed linear

Parameters
snd_pcm_format_t format the format to check

Return
1 if the given PCM format is signed linear, 0 if unsigned linear, and a negative
error code for non-linear formats.

int snd_pcm_format_unsigned(snd_pcm_format_t format)
Check the PCM format is unsigned linear

Parameters
snd_pcm_format_t format the format to check

1.1. The ALSA Driver API 31

Linux Sound Documentation

Return
1 if the given PCM format is unsigned linear, 0 if signed linear, and a negative
error code for non-linear formats.

int snd_pcm_format_linear(snd_pcm_format_t format)
Check the PCM format is linear

Parameters
snd_pcm_format_t format the format to check

Return
1 if the given PCM format is linear, 0 if not.

int snd_pcm_format_little_endian(snd_pcm_format_t format)
Check the PCM format is little-endian

Parameters
snd_pcm_format_t format the format to check

Return
1 if the given PCM format is little-endian, 0 if big-endian, or a negative error code
if endian not specified.

int snd_pcm_format_big_endian(snd_pcm_format_t format)
Check the PCM format is big-endian

Parameters
snd_pcm_format_t format the format to check

Return
1 if the given PCM format is big-endian, 0 if little-endian, or a negative error code
if endian not specified.

int snd_pcm_format_width(snd_pcm_format_t format)
return the bit-width of the format

Parameters
snd_pcm_format_t format the format to check

Return
The bit-width of the format, or a negative error code if unknown format.

int snd_pcm_format_physical_width(snd_pcm_format_t format)
return the physical bit-width of the format

Parameters
snd_pcm_format_t format the format to check

Return
The physical bit-width of the format, or a negative error code if unknown format.

ssize_t snd_pcm_format_size(snd_pcm_format_t format, size_t samples)
return the byte size of samples on the given format

32 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
snd_pcm_format_t format the format to check

size_t samples sampling rate

Return
The byte size of the given samples for the format, or a negative error code if un-
known format.

const unsigned char * snd_pcm_format_silence_64(snd_pcm_format_t format)
return the silent data in 8 bytes array

Parameters
snd_pcm_format_t format the format to check

Return
The format pattern to fill or NULL if error.

int snd_pcm_format_set_silence(snd_pcm_format_t format, void * data,
unsigned int samples)

set the silence data on the buffer

Parameters
snd_pcm_format_t format the PCM format

void * data the buffer pointer

unsigned int samples the number of samples to set silence

Description
Sets the silence data on the buffer for the given samples.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_limit_rates(struct snd_pcm_hardware * hw)
determine rate_min/rate_max fields

Parameters
struct snd_pcm_hardware * hw the pcm hw instance

Description
Determines the rate_min and rate_max fields from the rates bits of the given hw.

Return
Zero if successful.

unsigned int snd_pcm_rate_to_rate_bit(unsigned int rate)
converts sample rate to SNDRV_PCM_RATE_xxx bit

Parameters
unsigned int rate the sample rate to convert

1.1. The ALSA Driver API 33

Linux Sound Documentation

Return
The SNDRV_PCM_RATE_xxx flag that corresponds to the given rate, or
SNDRV_PCM_RATE_KNOT for an unknown rate.

unsigned int snd_pcm_rate_bit_to_rate(unsigned int rate_bit)
converts SNDRV_PCM_RATE_xxx bit to sample rate

Parameters
unsigned int rate_bit the rate bit to convert

Return
The sample rate that corresponds to the given SNDRV_PCM_RATE_xxx flag or 0
for an unknown rate bit.

unsigned int snd_pcm_rate_mask_intersect(unsigned int rates_a, un-
signed int rates_b)

computes the intersection between two rate masks

Parameters
unsigned int rates_a The first rate mask

unsigned int rates_b The second rate mask

Description
This function computes the rates that are supported by both rate masks
passed to the function. It will take care of the special handling of
SNDRV_PCM_RATE_CONTINUOUS and SNDRV_PCM_RATE_KNOT.

Return
A rate mask containing the rates that are supported by both rates_a and rates_b.

unsigned int snd_pcm_rate_range_to_bits(unsigned int rate_min, un-
signed int rate_max)

converts rate range to SNDRV_PCM_RATE_xxx bit

Parameters
unsigned int rate_min the minimum sample rate

unsigned int rate_max the maximum sample rate

Description
This function has an implicit assumption: the rates in the given range have only
the pre-defined rates like 44100 or 16000.

Return
The SNDRV_PCM_RATE_xxx flag that corresponds to the given rate range, or
SNDRV_PCM_RATE_KNOT for an unknown range.

34 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

PCM Memory Management

void snd_pcm_lib_preallocate_free(struct snd_pcm_substream
* substream)

release the preallocated buffer of the specified substream.

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Releases the pre-allocated buffer of the given substream.

void snd_pcm_lib_preallocate_free_for_all(struct snd_pcm * pcm)
release all pre-allocated buffers on the pcm

Parameters
struct snd_pcm * pcm the pcm instance

Description
Releases all the pre-allocated buffers on the given pcm.

void snd_pcm_lib_preallocate_pages(struct snd_pcm_substream
* substream, int type, struct de-
vice * data, size_t size, size_t max)

pre-allocation for the given DMA type

Parameters
struct snd_pcm_substream * substream the pcm substream instance

int type DMA type (SNDRV_DMA_TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation for the given DMA buffer type.

void snd_pcm_lib_preallocate_pages_for_all(struct snd_pcm * pcm,
int type, void * data,
size_t size, size_t max)

pre-allocation for continuous memory type (all substreams)

Parameters
struct snd_pcm * pcm the pcm instance

int type DMA type (SNDRV_DMA_TYPE_*)

void * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

1.1. The ALSA Driver API 35

Linux Sound Documentation

Description
Do pre-allocation to all substreams of the given pcm for the specified DMA type.

void snd_pcm_set_managed_buffer(struct snd_pcm_substream * substream,
int type, struct device * data,
size_t size, size_t max)

set up buffer management for a substream

Parameters
struct snd_pcm_substream * substream the pcm substream instance

int type DMA type (SNDRV_DMA_TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation for the given DMA buffer type, and set the managed buffer allo-
cation mode to the given substream. In this mode, PCM core will allocate a buffer
automatically before PCM hw_params ops call, and release the buffer after PCM
hw_free ops call as well, so that the driver doesn’t need to invoke the allocation
and the release explicitly in its callback. When a buffer is actually allocated before
the PCM hw_params call, it turns on the runtime buffer_changed flag for drivers
changing their h/w parameters accordingly.

void snd_pcm_set_managed_buffer_all(struct snd_pcm * pcm, int type,
struct device * data, size_t size,
size_t max)

set up buffer management for all substreams for all substreams

Parameters
struct snd_pcm * pcm the pcm instance

int type DMA type (SNDRV_DMA_TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation to all substreams of the given pcm for the specified DMA type
and size, and set the managed_buffer_alloc flag to each substream.

int snd_pcm_lib_malloc_pages(struct snd_pcm_substream * substream,
size_t size)

allocate the DMA buffer

Parameters
struct snd_pcm_substream * substream the substream to allocate the DMA

buffer to

size_t size the requested buffer size in bytes

36 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
Allocates the DMA buffer on the BUS type given earlier to
snd_pcm_lib_preallocate_xxx_pages().

Return
1 if the buffer is changed, 0 if not changed, or a negative code on failure.

int snd_pcm_lib_free_pages(struct snd_pcm_substream * substream)
release the allocated DMA buffer.

Parameters
struct snd_pcm_substream * substream the substream to release the DMA

buffer

Description
Releases the DMA buffer allocated via snd_pcm_lib_malloc_pages().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_lib_free_vmalloc_buffer(struct snd_pcm_substream
* substream)

free vmalloc buffer

Parameters
struct snd_pcm_substream * substream the substream with a buffer allocated

by snd_pcm_lib_alloc_vmalloc_buffer()

Return
Zero if successful, or a negative error code on failure.

struct page * snd_pcm_lib_get_vmalloc_page(struct snd_pcm_substream
* substream, unsigned
long offset)

map vmalloc buffer offset to page struct

Parameters
struct snd_pcm_substream * substream the substream with a buffer allocated

by snd_pcm_lib_alloc_vmalloc_buffer()

unsigned long offset offset in the buffer

Description
This function is to be used as the page callback in the PCM ops.

Return
The page struct, or NULL on failure.

1.1. The ALSA Driver API 37

Linux Sound Documentation

PCM DMA Engine API

int snd_hwparams_to_dma_slave_config(const struct snd_pcm_substream
* substream, const struct
snd_pcm_hw_params * params,
struct dma_slave_config
* slave_config)

Convert hw_params to dma_slave_config

Parameters
const struct snd_pcm_substream * substream PCM substream

const struct snd_pcm_hw_params * params hw_params

struct dma_slave_config * slave_config DMA slave config

Description
This function can be used to initialize a dma_slave_config from a substream and
hw_params in a dmaengine based PCM driver implementation.

void snd_dmaengine_pcm_set_config_from_dai_data(const struct
snd_pcm_substream
* substream,
const struct
snd_dmaengine_dai_dma_data
* dma_data, struct
dma_slave_config
* slave_config)

Initializes a dma slave config using DAI DMA data.

Parameters
const struct snd_pcm_substream * substream PCM substream

const struct snd_dmaengine_dai_dma_data * dma_data DAI DMA data

struct dma_slave_config * slave_config DMA slave configuration

Description
Initializes the {dst,src}_addr, {dst,src}_maxburst, {dst,src}_addr_width and
slave_id fields of the DMA slave config from the same fields of the DAI DMA data
struct. The src and dst fields will be initialized depending on the direction of the
substream. If the substream is a playback stream the dst fields will be initialized,
if it is a capture stream the src fields will be initialized. The {dst,src}_addr_width
field will only be initialized if the SND_DMAENGINE_PCM_DAI_FLAG_PACK flag
is set or if the addr_width field of the DAI DMA data struct is not equal to
DMA_SLAVE_BUSWIDTH_UNDEFINED. If both conditions aremet the latter takes
priority.

int snd_dmaengine_pcm_trigger(struct snd_pcm_substream * substream,
int cmd)

dmaengine based PCM trigger implementation

Parameters
struct snd_pcm_substream * substream PCM substream

38 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int cmd Trigger command

Description
Returns 0 on success, a negative error code otherwise.

This function can be used as the PCM trigger callback for dmaengine based PCM
driver implementations.

snd_pcm_uframes_t snd_dmaengine_pcm_pointer_no_residue(struct
snd_pcm_substream
* substream)

dmaengine based PCM pointer implementation

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This function is deprecated and should not be used by new drivers, as its results
may be unreliable.

snd_pcm_uframes_t snd_dmaengine_pcm_pointer(struct
snd_pcm_substream
* substream)

dmaengine based PCM pointer implementation

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This function can be used as the PCM pointer callback for dmaengine based PCM
driver implementations.

struct dma_chan * snd_dmaengine_pcm_request_channel(dma_filter_fn filter_fn,
void
* filter_data)

Request channel for the dmaengine PCM

Parameters
dma_filter_fn filter_fn Filter function used to request the DMA channel

void * filter_data Data passed to the DMA filter function

Description
Returns NULL or the requested DMA channel.

This function request a DMA channel for usage with dmaengine PCM.

int snd_dmaengine_pcm_open(struct snd_pcm_substream * substream,
struct dma_chan * chan)

Open a dmaengine based PCM substream

Parameters
struct snd_pcm_substream * substream PCM substream

struct dma_chan * chan DMA channel to use for data transfers

1.1. The ALSA Driver API 39

Linux Sound Documentation

Description
Returns 0 on success, a negative error code otherwise.

The function should usually be called from the pcm open callback. Note that this
function will use private_data field of the substream’s runtime. So it is not available
to your pcm driver implementation.

int snd_dmaengine_pcm_open_request_chan(struct snd_pcm_substream
* substream,
dma_filter_fn filter_fn, void
* filter_data)

Open a dmaengine based PCM substream and request channel

Parameters
struct snd_pcm_substream * substream PCM substream

dma_filter_fn filter_fn Filter function used to request the DMA channel

void * filter_data Data passed to the DMA filter function

Description
Returns 0 on success, a negative error code otherwise.

This function will request a DMA channel using the passed filter function and data.
The function should usually be called from the pcm open callback. Note that this
function will use private_data field of the substream’s runtime. So it is not available
to your pcm driver implementation.

int snd_dmaengine_pcm_close(struct snd_pcm_substream * substream)
Close a dmaengine based PCM substream

Parameters
struct snd_pcm_substream * substream PCM substream

int snd_dmaengine_pcm_close_release_chan(struct snd_pcm_substream
* substream)

Close a dmaengine based PCM substream and release channel

Parameters
struct snd_pcm_substream * substream PCM substream

Description
Releases the DMA channel associated with the PCM substream.

int snd_dmaengine_pcm_refine_runtime_hwparams(struct
snd_pcm_substream
* substream, struct
snd_dmaengine_dai_dma_data
* dma_data, struct
snd_pcm_hardware
* hw, struct dma_chan
* chan)

Refine runtime hw params

Parameters

40 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

struct snd_pcm_substream * substream PCM substream

struct snd_dmaengine_dai_dma_data * dma_data DAI DMA data

struct snd_pcm_hardware * hw PCM hw params

struct dma_chan * chan DMA channel to use for data transfers

Description
Returns 0 on success, a negative error code otherwise.

This function will query DMA capability, then refine the pcm hardware parameters.

enum dma_transfer_direction snd_pcm_substream_to_dma_direction(const
struct
snd_pcm_substream
* substream)

Get dma_transfer_direction for a PCM substream

Parameters
const struct snd_pcm_substream * substream PCM substream

struct snd_dmaengine_dai_dma_data
DAI DMA configuration data

Definition

struct snd_dmaengine_dai_dma_data {
dma_addr_t addr;
enum dma_slave_buswidth addr_width;
u32 maxburst;
unsigned int slave_id;
void *filter_data;
const char *chan_name;
unsigned int fifo_size;
unsigned int flags;

};

Members
addr Address of the DAI data source or destination register.

addr_width Width of the DAI data source or destination register.

maxburst Maximum number of words(note: words, as in units of the
src_addr_width member, not bytes) that can be send to or received from the
DAI in one burst.

slave_id Slave requester id for the DMA channel.

filter_data Custom DMA channel filter data, this will usually be used when re-
questing the DMA channel.

chan_name Custom channel name to use when requesting DMA channel.

fifo_size FIFO size of the DAI controller in bytes

flags PCM_DAI flags, only SND_DMAENGINE_PCM_DAI_FLAG_PACK for now

1.1. The ALSA Driver API 41

Linux Sound Documentation

struct snd_dmaengine_pcm_config
Configuration data for dmaengine based PCM

Definition

struct snd_dmaengine_pcm_config {
int (*prepare_slave_config)(struct snd_pcm_substream *substream,struct␣

↪→snd_pcm_hw_params *params, struct dma_slave_config *slave_config);
struct dma_chan *(*compat_request_channel)(struct snd_soc_pcm_runtime␣

↪→*rtd, struct snd_pcm_substream *substream);
int (*process)(struct snd_pcm_substream *substream,int channel, unsigned␣

↪→long hwoff, void *buf, unsigned long bytes);
dma_filter_fn compat_filter_fn;
struct device *dma_dev;
const char *chan_names[SNDRV_PCM_STREAM_LAST + 1];
const struct snd_pcm_hardware *pcm_hardware;
unsigned int prealloc_buffer_size;

};

Members
prepare_slave_config Callback used to fill in the DMA slave_config for a PCM

substream. Will be called from the PCM drivers hwparams callback.

compat_request_channel Callback to request a DMA channel for platforms which
do not use devicetree.

process Callback used to apply processing on samples transferred from/to user
space.

compat_filter_fn Will be used as the filter function when requesting a channel
for platforms which do not use devicetree. The filter parameter will be the
DAI’s DMA data.

dma_dev If set, request DMA channel on this device rather than the DAI device.

chan_names If set, these custom DMA channel names will be requested at regis-
tration time.

pcm_hardware snd_pcm_hardware struct to be used for the PCM.

prealloc_buffer_size Size of the preallocated audio buffer.

Note
If both compat_request_channel and compat_filter_fn are set com-
pat_request_channel will be used to request the channel and compat_filter_fn will
be ignored. Otherwise the channel will be requested using dma_request_channel
with compat_filter_fn as the filter function.

42 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

1.1.3 Control/Mixer API

General Control Interface

void snd_ctl_notify(struct snd_card * card, unsigned int mask, struct
snd_ctl_elem_id * id)

Send notification to user-space for a control change

Parameters
struct snd_card * card the card to send notification

unsigned int mask the event mask, SNDRV_CTL_EVENT_*

struct snd_ctl_elem_id * id the ctl element id to send notification

Description
This function adds an event record with the given id and mask, appends to the
list and wakes up the user-space for notification. This can be called in the atomic
context.

int snd_ctl_new(struct snd_kcontrol ** kctl, unsigned int count, unsigned
int access, struct snd_ctl_file * file)

create a new control instance with some elements

Parameters
struct snd_kcontrol ** kctl the pointer to store new control instance

unsigned int count the number of elements in this control

unsigned int access the default access flags for elements in this control

struct snd_ctl_file * file given when locking these elements

Description
Allocates a memory object for a new control instance. The instance has elements
as many as the given number (count). Each element has given access permissions
(access). Each element is locked when file is given.
Return
0 on success, error code on failure

struct snd_kcontrol * snd_ctl_new1(const struct snd_kcontrol_new
* ncontrol, void * private_data)

create a control instance from the template

Parameters
const struct snd_kcontrol_new * ncontrol the initialization record

void * private_data the private data to set

Description
Allocates a new struct snd_kcontrol instance and initialize from the given template.
When the access field of ncontrol is 0, it’s assumed as READWRITE access. When
the count field is 0, it’s assumes as one.
Return

1.1. The ALSA Driver API 43

Linux Sound Documentation

The pointer of the newly generated instance, or NULL on failure.

void snd_ctl_free_one(struct snd_kcontrol * kcontrol)
release the control instance

Parameters
struct snd_kcontrol * kcontrol the control instance

Description
Releases the control instance created via snd_ctl_new() or snd_ctl_new1(). Don’
t call this after the control was added to the card.

int snd_ctl_add(struct snd_card * card, struct snd_kcontrol * kcontrol)
add the control instance to the card

Parameters
struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to add

Description
Adds the control instance created via snd_ctl_new() or snd_ctl_new1() to the
given card. Assigns also an unique numid used for fast search.

It frees automatically the control which cannot be added.

Return
Zero if successful, or a negative error code on failure.

int snd_ctl_replace(struct snd_card * card, struct snd_kcontrol * kcontrol,
bool add_on_replace)

replace the control instance of the card

Parameters
struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to replace

bool add_on_replace add the control if not already added

Description
Replaces the given control. If the given control does not exist and the
add_on_replace flag is set, the control is added. If the control exists, it is destroyed
first.

It frees automatically the control which cannot be added or replaced.

Return
Zero if successful, or a negative error code on failure.

int snd_ctl_remove(struct snd_card * card, struct snd_kcontrol * kcontrol)
remove the control from the card and release it

Parameters
struct snd_card * card the card instance

44 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

struct snd_kcontrol * kcontrol the control instance to remove

Description
Removes the control from the card and then releases the instance. You
don’t need to call snd_ctl_free_one(). You must be in the write lock -
down_write(card->controls_rwsem).

Return
0 if successful, or a negative error code on failure.

int snd_ctl_remove_id(struct snd_card * card, struct snd_ctl_elem_id * id)
remove the control of the given id and release it

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * id the control id to remove

Description
Finds the control instance with the given id, removes it from the card list and
releases it.

Return
0 if successful, or a negative error code on failure.

int snd_ctl_remove_user_ctl(struct snd_ctl_file * file, struct
snd_ctl_elem_id * id)

remove and release the unlocked user control

Parameters
struct snd_ctl_file * file active control handle

struct snd_ctl_elem_id * id the control id to remove

Description
Finds the control instance with the given id, removes it from the card list and
releases it.

Return
0 if successful, or a negative error code on failure.

int snd_ctl_activate_id(struct snd_card * card, struct snd_ctl_elem_id
* id, int active)

activate/inactivate the control of the given id

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * id the control id to activate/inactivate

int active non-zero to activate

Description

1.1. The ALSA Driver API 45

Linux Sound Documentation

Finds the control instance with the given id, and activate or inactivate the control
together with notification, if changed. The given ID data is filled with full informa-
tion.

Return
0 if unchanged, 1 if changed, or a negative error code on failure.

int snd_ctl_rename_id(struct snd_card * card, struct snd_ctl_elem_id
* src_id, struct snd_ctl_elem_id * dst_id)

replace the id of a control on the card

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * src_id the old id

struct snd_ctl_elem_id * dst_id the new id

Description
Finds the control with the old id from the card, and replaces the id with the new
one.

Return
Zero if successful, or a negative error code on failure.

struct snd_kcontrol * snd_ctl_find_numid(struct snd_card * card, unsigned
int numid)

find the control instance with the given number-id

Parameters
struct snd_card * card the card instance

unsigned int numid the number-id to search

Description
Finds the control instance with the given number-id from the card.

The caller must down card->controls_rwsem before calling this function (if the
race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

struct snd_kcontrol * snd_ctl_find_id(struct snd_card * card, struct
snd_ctl_elem_id * id)

find the control instance with the given id

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * id the id to search

Description
Finds the control instance with the given id from the card.

46 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

The caller must down card->controls_rwsem before calling this function (if the
race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

int snd_ctl_register_ioctl(snd_kctl_ioctl_func_t fcn)
register the device-specific control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function

Description
called from each device manager like pcm.c, hwdep.c, etc.

int snd_ctl_register_ioctl_compat(snd_kctl_ioctl_func_t fcn)
register the device-specific 32bit compat control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function

int snd_ctl_unregister_ioctl(snd_kctl_ioctl_func_t fcn)
de-register the device-specific control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister

int snd_ctl_unregister_ioctl_compat(snd_kctl_ioctl_func_t fcn)
de-register the device-specific compat 32bit control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister

int snd_ctl_boolean_mono_info(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

Helper function for a standard boolean info callback with a mono channel

Parameters
struct snd_kcontrol * kcontrol the kcontrol instance

struct snd_ctl_elem_info * uinfo info to store

Description
This is a function that can be used as info callback for a standard boolean control
with a single mono channel.

int snd_ctl_boolean_stereo_info(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

Helper function for a standard boolean info callback with stereo two channels

Parameters
struct snd_kcontrol * kcontrol the kcontrol instance

struct snd_ctl_elem_info * uinfo info to store

1.1. The ALSA Driver API 47

Linux Sound Documentation

Description
This is a function that can be used as info callback for a standard boolean control
with stereo two channels.

int snd_ctl_enum_info(struct snd_ctl_elem_info * info, unsigned
int channels, unsigned int items, const char
*const names)

fills the info structure for an enumerated control

Parameters
struct snd_ctl_elem_info * info the structure to be filled

unsigned int channels the number of the control’s channels; often one
unsigned int items the number of control values; also the size of names
const char *const names an array containing the names of all control values

Description
Sets all required fields in info to their appropriate values. If the control’s accessi-
bility is not the default (readable and writable), the caller has to fill info->access.
Return
Zero.

AC97 Codec API

void snd_ac97_write(struct snd_ac97 * ac97, unsigned short reg, unsigned
short value)

write a value on the given register

Parameters
struct snd_ac97 * ac97 the ac97 instance

unsigned short reg the register to change

unsigned short value the value to set

Description
Writes a value on the given register. This will invoke the write callback directly
after the register check. This function doesn’t change the register cache unlike
#snd_ca97_write_cache(), so use this only when you don’t want to reflect the
change to the suspend/resume state.

unsigned short snd_ac97_read(struct snd_ac97 * ac97, unsigned short reg)
read a value from the given register

Parameters
struct snd_ac97 * ac97 the ac97 instance

unsigned short reg the register to read

Description
Reads a value from the given register. This will invoke the read callback directly
after the register check.

48 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Return
The read value.

void snd_ac97_write_cache(struct snd_ac97 * ac97, unsigned short reg, un-
signed short value)

write a value on the given register and update the cache

Parameters
struct snd_ac97 * ac97 the ac97 instance

unsigned short reg the register to change

unsigned short value the value to set

Description
Writes a value on the given register and updates the register cache. The cached
values are used for the cached-read and the suspend/resume.

int snd_ac97_update(struct snd_ac97 * ac97, unsigned short reg, unsigned
short value)

update the value on the given register

Parameters
struct snd_ac97 * ac97 the ac97 instance

unsigned short reg the register to change

unsigned short value the value to set

Description
Compares the value with the register cache and updates the value only when the
value is changed.

Return
1 if the value is changed, 0 if no change, or a negative code on failure.

int snd_ac97_update_bits(struct snd_ac97 * ac97, unsigned short reg, un-
signed short mask, unsigned short value)

update the bits on the given register

Parameters
struct snd_ac97 * ac97 the ac97 instance

unsigned short reg the register to change

unsigned short mask the bit-mask to change

unsigned short value the value to set

Description
Updates the masked-bits on the given register only when the value is changed.

Return
1 if the bits are changed, 0 if no change, or a negative code on failure.

const char * snd_ac97_get_short_name(struct snd_ac97 * ac97)
retrieve codec name

1.1. The ALSA Driver API 49

Linux Sound Documentation

Parameters
struct snd_ac97 * ac97 the codec instance

Return
The short identifying name of the codec.

int snd_ac97_bus(struct snd_card * card, int num, const struct
snd_ac97_bus_ops * ops, void * private_data, struct
snd_ac97_bus ** rbus)

create an AC97 bus component

Parameters
struct snd_card * card the card instance

int num the bus number

const struct snd_ac97_bus_ops * ops the bus callbacks table

void * private_data private data pointer for the new instance

struct snd_ac97_bus ** rbus the pointer to store the new AC97 bus instance.

Description
Creates an AC97 bus component. An struct snd_ac97_bus instance is newly allo-
cated and initialized.

The ops table must include valid callbacks (at least read and write). The other
callbacks, wait and reset, are not mandatory.

The clock is set to 48000. If another clock is needed, set (*rbus)->clockmanually.

The AC97 bus instance is registered as a low-level device, so you don’t have to
release it manually.

Return
Zero if successful, or a negative error code on failure.

int snd_ac97_mixer(struct snd_ac97_bus * bus, struct snd_ac97_template
* template, struct snd_ac97 ** rac97)

create an Codec97 component

Parameters
struct snd_ac97_bus * bus the AC97 bus which codec is attached to

struct snd_ac97_template * template the template of ac97, including index,
callbacks and the private data.

struct snd_ac97 ** rac97 the pointer to store the new ac97 instance.

Description
Creates an Codec97 component. An struct snd_ac97 instance is newly allocated
and initialized from the template. The codec is then initialized by the standard
procedure.

The template must include the codec number (num) and address (addr), and the
private data (private_data).

50 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

The ac97 instance is registered as a low-level device, so you don’t have to release
it manually.

Return
Zero if successful, or a negative error code on failure.

int snd_ac97_update_power(struct snd_ac97 * ac97, int reg, int powerup)
update the powerdown register

Parameters
struct snd_ac97 * ac97 the codec instance

int reg the rate register, e.g. AC97_PCM_FRONT_DAC_RATE

int powerup non-zero when power up the part

Description
Update the AC97 powerdown register bits of the given part.

Return
Zero.

void snd_ac97_suspend(struct snd_ac97 * ac97)
General suspend function for AC97 codec

Parameters
struct snd_ac97 * ac97 the ac97 instance

Description
Suspends the codec, power down the chip.

void snd_ac97_resume(struct snd_ac97 * ac97)
General resume function for AC97 codec

Parameters
struct snd_ac97 * ac97 the ac97 instance

Description
Do the standard resume procedure, power up and restoring the old register values.

int snd_ac97_tune_hardware(struct snd_ac97 * ac97, const struct
ac97_quirk * quirk, const char * override)

tune up the hardware

Parameters
struct snd_ac97 * ac97 the ac97 instance

const struct ac97_quirk * quirk quirk list

const char * override explicit quirk value (overrides the list if non-NULL)

Description

1.1. The ALSA Driver API 51

Linux Sound Documentation

Do some workaround for each pci device, such as renaming of the headphone (true
line-out) control as“Master”. The quirk-list must be terminated with a zero-filled
entry.

Return
Zero if successful, or a negative error code on failure.

int snd_ac97_set_rate(struct snd_ac97 * ac97, int reg, unsigned int rate)
change the rate of the given input/output.

Parameters
struct snd_ac97 * ac97 the ac97 instance

int reg the register to change

unsigned int rate the sample rate to set

Description
Changes the rate of the given input/output on the codec. If the codec doesn’t
support VAR, the rate must be 48000 (except for SPDIF).

The valid registers are AC97_PMC_MIC_ADC_RATE,
AC97_PCM_FRONT_DAC_RATE, AC97_PCM_LR_ADC_RATE.
AC97_PCM_SURR_DAC_RATE and AC97_PCM_LFE_DAC_RATE are accepted
if the codec supports them. AC97_SPDIF is accepted as a pseudo register to
modify the SPDIF status bits.

Return
Zero if successful, or a negative error code on failure.

int snd_ac97_pcm_assign(struct snd_ac97_bus * bus, unsigned
short pcms_count, const struct ac97_pcm * pcms)

assign AC97 slots to given PCM streams

Parameters
struct snd_ac97_bus * bus the ac97 bus instance

unsigned short pcms_count count of PCMs to be assigned

const struct ac97_pcm * pcms PCMs to be assigned

Description
It assigns available AC97 slots for given PCMs. If none or only some slots are
available, pcm->xxx.slots and pcm->xxx.rslots[] members are reduced and might
be zero.

Return
Zero if successful, or a negative error code on failure.

int snd_ac97_pcm_open(struct ac97_pcm * pcm, unsigned int rate, enum
ac97_pcm_cfg cfg, unsigned short slots)

opens the given AC97 pcm

Parameters
struct ac97_pcm * pcm the ac97 pcm instance

52 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

unsigned int rate rate in Hz, if codec does not support VRA, this value must be
48000Hz

enum ac97_pcm_cfg cfg output stream characteristics

unsigned short slots a subset of allocated slots (snd_ac97_pcm_assign) for this
pcm

Description
It locks the specified slots and sets the given rate to AC97 registers.

Return
Zero if successful, or a negative error code on failure.

int snd_ac97_pcm_close(struct ac97_pcm * pcm)
closes the given AC97 pcm

Parameters
struct ac97_pcm * pcm the ac97 pcm instance

Description
It frees the locked AC97 slots.

Return
Zero.

int snd_ac97_pcm_double_rate_rules(struct snd_pcm_runtime * runtime)
set double rate constraints

Parameters
struct snd_pcm_runtime * runtime the runtime of the ac97 front playback pcm

Description
Installs the hardware constraint rules to prevent using double rates and more than
two channels at the same time.

Return
Zero if successful, or a negative error code on failure.

Virtual Master Control API

struct snd_kcontrol * snd_ctl_make_virtual_master(char * name, const
unsigned int * tlv)

Create a virtual master control

Parameters
char * name name string of the control element to create

const unsigned int * tlv optional TLV int array for dB information

Description
Creates a virtual master control with the given name string.

1.1. The ALSA Driver API 53

Linux Sound Documentation

After creating a vmaster element, you can add the slave controls via
snd_ctl_add_slave() or snd_ctl_add_slave_uncached().

The optional argument tlv can be used to specify the TLV informa-
tion for dB scale of the master control. It should be a single ele-
ment with #SNDRV_CTL_TLVT_DB_SCALE, #SNDRV_CTL_TLV_DB_MINMAX or
#SNDRV_CTL_TLVT_DB_MINMAX_MUTE type, and should be the max 0dB.

Return
The created control element, or NULL for errors (ENOMEM).

int snd_ctl_add_vmaster_hook(struct snd_kcontrol * kcontrol, void
(*hook)(void *private_data, int), void
* private_data)

Add a hook to a vmaster control

Parameters
struct snd_kcontrol * kcontrol vmaster kctl element

void (*)(void *private_data, int) hook the hook function

void * private_data the private_data pointer to be saved

Description
Adds the given hook to the vmaster control element so that it’s called at each time
when the value is changed.

Return
Zero.

void snd_ctl_sync_vmaster(struct snd_kcontrol * kcontrol, bool hook_only)
Sync the vmaster slaves and hook

Parameters
struct snd_kcontrol * kcontrol vmaster kctl element

bool hook_only sync only the hook

Description
Forcibly call the put callback of each slave and call the hook function to synchro-
nize with the current value of the given vmaster element. NOP when NULL is
passed to kcontrol.
int snd_ctl_apply_vmaster_slaves(struct snd_kcontrol * kctl, int

(*func)(struct snd_kcontrol *vslave,
struct snd_kcontrol *slave, void *arg),
void * arg)

Apply function to each vmaster slave

Parameters
struct snd_kcontrol * kctl vmaster kctl element

int (*)(struct snd_kcontrol *vslave, struct snd_kcontrol *slave, void *arg) func
function to apply

void * arg optional function argument

54 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
Apply the function func to each slave kctl of the given vmaster kctl. Returns 0 if
successful, or a negative error code.

int snd_ctl_add_slave(struct snd_kcontrol * master, struct snd_kcontrol
* slave)

Add a virtual slave control

Parameters
struct snd_kcontrol * master vmaster element

struct snd_kcontrol * slave slave element to add

Description
Add a virtual slave control to the given master element created via
snd_ctl_create_virtual_master() beforehand.

All slaves must be the same type (returning the same information via info callback).
The function doesn’t check it, so it’s your responsibility.
Also, some additional limitations: at most two channels, logarithmic volume con-
trol (dB level) thus no linear volume, master can only attenuate the volume without
gain

Return
Zero if successful or a negative error code.

int snd_ctl_add_slave_uncached(struct snd_kcontrol * master, struct
snd_kcontrol * slave)

Add a virtual slave control

Parameters
struct snd_kcontrol * master vmaster element

struct snd_kcontrol * slave slave element to add

Description
Add a virtual slave control to the given master. Unlike snd_ctl_add_slave(),
the element added via this function is supposed to have volatile values, and get
callback is called at each time queried from the master.

When the control peeks the hardware values directly and the value can be changed
by other means than the put callback of the element, this function should be used
to keep the value always up-to-date.

Return
Zero if successful or a negative error code.

1.1. The ALSA Driver API 55

Linux Sound Documentation

1.1.4 MIDI API

Raw MIDI API

int snd_rawmidi_receive(struct snd_rawmidi_substream * substream, const
unsigned char * buffer, int count)

receive the input data from the device

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

const unsigned char * buffer the buffer pointer

int count the data size to read

Description
Reads the data from the internal buffer.

Return
The size of read data, or a negative error code on failure.

int snd_rawmidi_transmit_empty(struct snd_rawmidi_substream
* substream)

check whether the output buffer is empty

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

Return
1 if the internal output buffer is empty, 0 if not.

int __snd_rawmidi_transmit_peek(struct snd_rawmidi_substream
* substream, unsigned char * buffer,
int count)

copy data from the internal buffer

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

unsigned char * buffer the buffer pointer

int count data size to transfer

Description
This is a variant of snd_rawmidi_transmit_peek() without spinlock.

int snd_rawmidi_transmit_peek(struct snd_rawmidi_substream
* substream, unsigned char * buffer,
int count)

copy data from the internal buffer

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

unsigned char * buffer the buffer pointer

56 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int count data size to transfer

Description
Copies data from the internal output buffer to the given buffer.

Call this in the interrupt handler when the midi output is ready, and call
snd_rawmidi_transmit_ack() after the transmission is finished.

Return
The size of copied data, or a negative error code on failure.

int __snd_rawmidi_transmit_ack(struct snd_rawmidi_substream
* substream, int count)

acknowledge the transmission

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

int count the transferred count

Description
This is a variant of __snd_rawmidi_transmit_ack() without spinlock.

int snd_rawmidi_transmit_ack(struct snd_rawmidi_substream
* substream, int count)

acknowledge the transmission

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

int count the transferred count

Description
Advances the hardware pointer for the internal output buffer with the given size
and updates the condition. Call after the transmission is finished.

Return
The advanced size if successful, or a negative error code on failure.

int snd_rawmidi_transmit(struct snd_rawmidi_substream * substream, un-
signed char * buffer, int count)

copy from the buffer to the device

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

unsigned char * buffer the buffer pointer

int count the data size to transfer

Description
Copies data from the buffer to the device and advances the pointer.

Return
The copied size if successful, or a negative error code on failure.

1.1. The ALSA Driver API 57

Linux Sound Documentation

int snd_rawmidi_proceed(struct snd_rawmidi_substream * substream)
Discard the all pending bytes and proceed

Parameters
struct snd_rawmidi_substream * substream rawmidi substream

Return
the number of discarded bytes

int snd_rawmidi_new(struct snd_card * card, char * id, int device,
int output_count, int input_count, struct snd_rawmidi
** rrawmidi)

create a rawmidi instance

Parameters
struct snd_card * card the card instance

char * id the id string

int device the device index

int output_count the number of output streams

int input_count the number of input streams

struct snd_rawmidi ** rrawmidi the pointer to store the new rawmidi instance

Description
Creates a new rawmidi instance. Use snd_rawmidi_set_ops() to set the operators
to the new instance.

Return
Zero if successful, or a negative error code on failure.

void snd_rawmidi_set_ops(struct snd_rawmidi * rmidi, int stream, const
struct snd_rawmidi_ops * ops)

set the rawmidi operators

Parameters
struct snd_rawmidi * rmidi the rawmidi instance

int stream the stream direction, SNDRV_RAWMIDI_STREAM_XXX

const struct snd_rawmidi_ops * ops the operator table

Description
Sets the rawmidi operators for the given stream direction.

58 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

MPU401-UART API

irqreturn_t snd_mpu401_uart_interrupt(int irq, void * dev_id)
generic MPU401-UART interrupt handler

Parameters
int irq the irq number

void * dev_id mpu401 instance

Description
Processes the interrupt for MPU401-UART i/o.

Return
IRQ_HANDLED if the interrupt was handled. IRQ_NONE otherwise.

irqreturn_t snd_mpu401_uart_interrupt_tx(int irq, void * dev_id)
generic MPU401-UART transmit irq handler

Parameters
int irq the irq number

void * dev_id mpu401 instance

Description
Processes the interrupt for MPU401-UART output.

Return
IRQ_HANDLED if the interrupt was handled. IRQ_NONE otherwise.

int snd_mpu401_uart_new(struct snd_card * card, int device, unsigned
short hardware, unsigned long port, unsigned
int info_flags, int irq, struct snd_rawmidi
** rrawmidi)

create an MPU401-UART instance

Parameters
struct snd_card * card the card instance

int device the device index, zero-based

unsigned short hardware the hardware type, MPU401_HW_XXXX

unsigned long port the base address of MPU401 port

unsigned int info_flags bitflags MPU401_INFO_XXX

int irq the ISA irq number, -1 if not to be allocated

struct snd_rawmidi ** rrawmidi the pointer to store the new rawmidi instance

Description
Creates a new MPU-401 instance.

Note that the rawmidi instance is returned on the rrawmidi argument, not the
mpu401 instance itself. To access to the mpu401 instance, cast from rawmidi-
>private_data (with struct snd_mpu401 magic-cast).

1.1. The ALSA Driver API 59

Linux Sound Documentation

Return
Zero if successful, or a negative error code.

1.1.5 Proc Info API

Proc Info Interface

int snd_info_get_line(struct snd_info_buffer * buffer, char * line, int len)
read one line from the procfs buffer

Parameters
struct snd_info_buffer * buffer the procfs buffer

char * line the buffer to store

int len the max. buffer size

Description
Reads one line from the buffer and stores the string.

Return
Zero if successful, or 1 if error or EOF.

const char * snd_info_get_str(char * dest, const char * src, int len)
parse a string token

Parameters
char * dest the buffer to store the string token

const char * src the original string

int len the max. length of token - 1

Description
Parses the original string and copy a token to the given string buffer.

Return
The updated pointer of the original string so that it can be used for the next call.

struct snd_info_entry * snd_info_create_module_entry(struct mod-
ule * module,
const char
* name, struct
snd_info_entry
* parent)

create an info entry for the given module

Parameters
struct module * module the module pointer

const char * name the file name

struct snd_info_entry * parent the parent directory

60 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
Creates a new info entry and assigns it to the given module.

Return
The pointer of the new instance, or NULL on failure.

struct snd_info_entry * snd_info_create_card_entry(struct snd_card
* card, const char
* name, struct
snd_info_entry
* parent)

create an info entry for the given card

Parameters
struct snd_card * card the card instance

const char * name the file name

struct snd_info_entry * parent the parent directory

Description
Creates a new info entry and assigns it to the given card.

Return
The pointer of the new instance, or NULL on failure.

void snd_info_free_entry(struct snd_info_entry * entry)
release the info entry

Parameters
struct snd_info_entry * entry the info entry

Description
Releases the info entry.

int snd_info_register(struct snd_info_entry * entry)
register the info entry

Parameters
struct snd_info_entry * entry the info entry

Description
Registers the proc info entry. The all children entries are registered recursively.

Return
Zero if successful, or a negative error code on failure.

int snd_card_rw_proc_new(struct snd_card * card, const char * name,
void * private_data, void (*read)(struct
snd_info_entry *, struct snd_info_buffer *),
void (*write) (struct snd_info_entry *entry,
struct snd_info_buffer *buffer))

Create a read/write text proc file entry for the card

1.1. The ALSA Driver API 61

Linux Sound Documentation

Parameters
struct snd_card * card the card instance

const char * name the file name

void * private_data the arbitrary private data

void (*)(struct snd_info_entry *, struct snd_info_buffer *) read the
read callback

void (*)(struct snd_info_entry *entry, struct snd_info_buffer *buffer) write
the write callback, NULL for read-only

Description
This proc file entry will be registered via snd_card_register() call, and it will be
removed automatically at the card removal, too.

1.1.6 Compress Offload

Compress Offload API

int snd_compress_register(struct snd_compr * device)
register compressed device

Parameters
struct snd_compr * device compressed device to register

struct snd_compressed_buffer
compressed buffer

Definition

struct snd_compressed_buffer {
__u32 fragment_size;
__u32 fragments;

};

Members
fragment_size size of buffer fragment in bytes

fragments number of such fragments

struct snd_compr_params
compressed stream params

Definition

struct snd_compr_params {
struct snd_compressed_buffer buffer;
struct snd_codec codec;
__u8 no_wake_mode;

};

Members
buffer buffer description

62 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

codec codec parameters

no_wake_mode dont wake on fragment elapsed

struct snd_compr_tstamp
timestamp descriptor

Definition

struct snd_compr_tstamp {
__u32 byte_offset;
__u32 copied_total;
__u32 pcm_frames;
__u32 pcm_io_frames;
__u32 sampling_rate;

};

Members
byte_offset Byte offset in ring buffer to DSP

copied_total Total number of bytes copied from/to ring buffer to/by DSP

pcm_frames Frames decoded or encoded by DSP. This field will evolve by large
steps and should only be used to monitor encoding/decoding progress. It
shall not be used for timing estimates.

pcm_io_frames Frames rendered or received by DSP into a mixer or an audio
output/input. This field should be used for A/V sync or time estimates.

sampling_rate sampling rate of audio

struct snd_compr_avail
avail descriptor

Definition

struct snd_compr_avail {
__u64 avail;
struct snd_compr_tstamp tstamp;

};

Members
avail Number of bytes available in ring buffer for writing/reading

tstamp timestamp information

struct snd_compr_caps
caps descriptor

Definition

struct snd_compr_caps {
__u32 num_codecs;
__u32 direction;
__u32 min_fragment_size;
__u32 max_fragment_size;
__u32 min_fragments;
__u32 max_fragments;

(continues on next page)

1.1. The ALSA Driver API 63

Linux Sound Documentation

(continued from previous page)
__u32 codecs[MAX_NUM_CODECS];
__u32 reserved[11];

};

Members
num_codecs number of codecs supported

direction direction supported. Of type snd_compr_direction

min_fragment_size minimum fragment supported by DSP

max_fragment_size maximum fragment supported by DSP

min_fragments min fragments supported by DSP

max_fragments max fragments supported by DSP

codecs pointer to array of codecs

reserved reserved field

struct snd_compr_codec_caps
query capability of codec

Definition

struct snd_compr_codec_caps {
__u32 codec;
__u32 num_descriptors;
struct snd_codec_desc descriptor[MAX_NUM_CODEC_DESCRIPTORS];

};

Members
codec codec for which capability is queried

num_descriptors number of codec descriptors

descriptor array of codec capability descriptor

enum sndrv_compress_encoder

Constants
SNDRV_COMPRESS_ENCODER_PADDING no of samples appended by the encoder at the

end of the track

SNDRV_COMPRESS_ENCODER_DELAY no of samples inserted by the encoder at the be-
ginning of the track

struct snd_compr_metadata
compressed stream metadata

Definition

struct snd_compr_metadata {
__u32 key;
__u32 value[8];

};

64 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Members
key key id

value key value

SNDRV_COMPRESS_IOCTL_VERSION()

Parameters
Description
SNDRV_COMPRESS_GET_CAPS: Query capability of DSP
SNDRV_COMPRESS_GET_CODEC_CAPS: Query capability of a codec
SNDRV_COMPRESS_SET_PARAMS: Set codec and stream parameters

Note
only codec params can be changed runtime and stream params
cant be SNDRV_COMPRESS_GET_PARAMS: Query codec params
SNDRV_COMPRESS_TSTAMP: get the current timestamp value
SNDRV_COMPRESS_AVAIL: get the current buffer avail value. This also
queries the tstamp properties SNDRV_COMPRESS_PAUSE: Pause the
running stream SNDRV_COMPRESS_RESUME: resume a paused stream
SNDRV_COMPRESS_START: Start a stream SNDRV_COMPRESS_STOP: stop
a running stream, discarding ring buffer content and the buffers currently with
DSP SNDRV_COMPRESS_DRAIN: Play till end of buffers and stop after that
SNDRV_COMPRESS_IOCTL_VERSION: Query the API version

struct snd_enc_vorbis

Definition

struct snd_enc_vorbis {
__s32 quality;
__u32 managed;
__u32 max_bit_rate;
__u32 min_bit_rate;
__u32 downmix;

};

Members
quality Sets encoding quality to n, between -1 (low) and 10 (high). In the default

mode of operation, the quality level is 3. Normal quality range is 0 - 10.

managed Boolean. Set bitrate management mode. This turns off the normal VBR
encoding, but allows hard or soft bitrate constraints to be enforced by the en-
coder. This mode can be slower, and may also be lower quality. It is primarily
useful for streaming.

max_bit_rate Enabled only if managed is TRUE

min_bit_rate Enabled only if managed is TRUE

downmix Boolean. Downmix input from stereo tomono (has no effect on non-stereo
streams). Useful for lower-bitrate encoding.

Description

1.1. The ALSA Driver API 65

Linux Sound Documentation

These options were extracted from the OpenMAX IL spec and Gstreamer vorbisenc
properties

For best quality users should specify VBR mode and set quality levels.

struct snd_enc_real

Definition

struct snd_enc_real {
__u32 quant_bits;
__u32 start_region;
__u32 num_regions;

};

Members
quant_bits number of coupling quantization bits in the stream

start_region coupling start region in the stream

num_regions number of regions value

Description
These options were extracted from the OpenMAX IL spec

struct snd_enc_flac

Definition

struct snd_enc_flac {
__u32 num;
__u32 gain;

};

Members
num serial number, valid only for OGG formats needs to be set by application

gain Add replay gain tags

Description
These options were extracted from the FLAC online documentation at http://flac.
sourceforge.net/documentation_tools_flac.html

To make the API simpler, it is assumed that the user will select quality profiles.
Additional options that affect encoding quality and speed can be added at a later
stage if needed.

By default the Subset format is used by encoders.

TAGS such as pictures, etc, cannot be handled by an offloaded encoder and are
not supported in this API.

struct snd_compr_runtime

Definition

66 Chapter 1. ALSA Kernel API Documentation

http://flac.sourceforge.net/documentation_tools_flac.html
http://flac.sourceforge.net/documentation_tools_flac.html

Linux Sound Documentation

struct snd_compr_runtime {
snd_pcm_state_t state;
struct snd_compr_ops *ops;
void *buffer;
u64 buffer_size;
u32 fragment_size;
u32 fragments;
u64 total_bytes_available;
u64 total_bytes_transferred;
wait_queue_head_t sleep;
void *private_data;
unsigned char *dma_area;
dma_addr_t dma_addr;
size_t dma_bytes;
struct snd_dma_buffer *dma_buffer_p;

};

Members
state stream state

ops pointer to DSP callbacks

buffer pointer to kernel buffer, valid only when not in mmap mode or DSP doesn’
t implement copy

buffer_size size of the above buffer

fragment_size size of buffer fragment in bytes

fragments number of such fragments

total_bytes_available cumulative number of bytes made available in the ring
buffer

total_bytes_transferred cumulative bytes transferred by offload DSP

sleep poll sleep

private_data driver private data pointer

dma_area virtual buffer address

dma_addr physical buffer address (not accessible from main CPU)

dma_bytes size of DMA area

dma_buffer_p runtime dma buffer pointer

struct snd_compr_stream

Definition

struct snd_compr_stream {
const char *name;
struct snd_compr_ops *ops;
struct snd_compr_runtime *runtime;
struct snd_compr *device;
struct delayed_work error_work;
enum snd_compr_direction direction;
bool metadata_set;

(continues on next page)

1.1. The ALSA Driver API 67

Linux Sound Documentation

(continued from previous page)
bool next_track;
bool partial_drain;
void *private_data;
struct snd_dma_buffer dma_buffer;

};

Members
name device name

ops pointer to DSP callbacks

runtime pointer to runtime structure

device device pointer

error_work delayed work used when closing the stream due to an error

direction stream direction, playback/recording

metadata_set metadata set flag, true when set

next_track has userspace signal next track transition, true when set

partial_drain undergoing partial_drain for stream, true when set

private_data pointer to DSP private data

dma_buffer allocated buffer if any

struct snd_compr_ops

Definition

struct snd_compr_ops {
int (*open)(struct snd_compr_stream *stream);
int (*free)(struct snd_compr_stream *stream);
int (*set_params)(struct snd_compr_stream *stream, struct snd_compr_

↪→params *params);
int (*get_params)(struct snd_compr_stream *stream, struct snd_codec␣

↪→*params);
int (*set_metadata)(struct snd_compr_stream *stream, struct snd_compr_

↪→metadata *metadata);
int (*get_metadata)(struct snd_compr_stream *stream, struct snd_compr_

↪→metadata *metadata);
int (*trigger)(struct snd_compr_stream *stream, int cmd);
int (*pointer)(struct snd_compr_stream *stream, struct snd_compr_tstamp␣

↪→*tstamp);
int (*copy)(struct snd_compr_stream *stream, char __user *buf, size_t␣

↪→count);
int (*mmap)(struct snd_compr_stream *stream, struct vm_area_struct *vma);
int (*ack)(struct snd_compr_stream *stream, size_t bytes);
int (*get_caps) (struct snd_compr_stream *stream, struct snd_compr_caps␣

↪→*caps);
int (*get_codec_caps) (struct snd_compr_stream *stream, struct snd_compr_

↪→codec_caps *codec);
};

Members

68 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

open Open the compressed stream This callback is mandatory and shall keep dsp
ready to receive the stream parameter

free Close the compressed stream, mandatory

set_params Sets the compressed stream parameters, mandatory This can be
called in during stream creation only to set codec params and the stream
properties

get_params retrieve the codec parameters, mandatory

set_metadata Set the metadata values for a stream

get_metadata retrieves the requested metadata values from stream

trigger Trigger operations like start, pause, resume, drain, stop. This callback
is mandatory

pointer Retrieve current h/w pointer information. Mandatory

copy Copy the compressed data to/from userspace, Optional Can’t be imple-
mented if DSP supports mmap

mmap DSP mmap method to mmap DSP memory

ack Ack for DSP when data is written to audio buffer, Optional Not valid if copy is
implemented

get_caps Retrieve DSP capabilities, mandatory

get_codec_caps Retrieve capabilities for a specific codec, mandatory

struct snd_compr

Definition

struct snd_compr {
const char *name;
struct device dev;
struct snd_compr_ops *ops;
void *private_data;
struct snd_card *card;
unsigned int direction;
struct mutex lock;
int device;

#ifdef CONFIG_SND_VERBOSE_PROCFS;
};

Members
name DSP device name

dev associated device instance

ops pointer to DSP callbacks

private_data pointer to DSP pvt data

card sound card pointer

direction Playback or capture direction

lock device lock

1.1. The ALSA Driver API 69

Linux Sound Documentation

device device id

void snd_compr_set_runtime_buffer(struct snd_compr_stream * stream,
struct snd_dma_buffer * bufp)

Set the Compress runtime buffer

Parameters
struct snd_compr_stream * stream compress stream to set

struct snd_dma_buffer * bufp the buffer information, NULL to clear

Description
Copy the buffer information to runtime buffer when bufp is non-NULL. Otherwise
it clears the current buffer information.

1.1.7 ASoC

ASoC Core API

struct snd_soc_jack_pin
Describes a pin to update based on jack detection

Definition

struct snd_soc_jack_pin {
struct list_head list;
const char *pin;
int mask;
bool invert;

};

Members
list internal list entry

pin name of the pin to update

mask bits to check for in reported jack status

invert if non-zero then pin is enabled when status is not reported

struct snd_soc_jack_zone
Describes voltage zones of jack detection

Definition

struct snd_soc_jack_zone {
unsigned int min_mv;
unsigned int max_mv;
unsigned int jack_type;
unsigned int debounce_time;
struct list_head list;

};

Members
min_mv start voltage in mv

70 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

max_mv end voltage in mv

jack_type type of jack that is expected for this voltage

debounce_time debounce_time for jack, codec driver should wait for this duration
before reading the adc for voltages

list internal list entry

struct snd_soc_jack_gpio
Describes a gpio pin for jack detection

Definition

struct snd_soc_jack_gpio {
unsigned int gpio;
unsigned int idx;
struct device *gpiod_dev;
const char *name;
int report;
int invert;
int debounce_time;
bool wake;
int (*jack_status_check)(void *data);

};

Members
gpio legacy gpio number

idx gpio descriptor index within the function of the GPIO consumer device

gpiod_dev GPIO consumer device

name gpio name. Also as connection ID for the GPIO consumer device function
name lookup

report value to report when jack detected

invert report presence in low state

debounce_time debounce time in ms

wake enable as wake source

jack_status_check callback function which overrides the detection to provide
more complex checks (eg, reading an ADC).

struct snd_soc_component * snd_soc_kcontrol_component(struct
snd_kcontrol
* kcontrol)

Returns the component that registered the control

Parameters
struct snd_kcontrol * kcontrol The control for which to get the component

Note
This function will work correctly if the control has been registered for a com-
ponent. With snd_soc_add_codec_controls() or via table based setup for either
a CODEC or component driver. Otherwise the behavior is undefined.

1.1. The ALSA Driver API 71

Linux Sound Documentation

struct snd_soc_dai * snd_soc_find_dai(const struct
snd_soc_dai_link_component * dlc)

Find a registered DAI

Parameters
const struct snd_soc_dai_link_component * dlc name of the DAI or the DAI

driver and optional component info to match

Description
This function will search all registered components and their DAIs to find the DAI
of the same name. The component’s of_node and name should also match if being
specified.

Return
pointer of DAI, or NULL if not found.

void snd_soc_remove_pcm_runtime(struct snd_soc_card * card, struct
snd_soc_pcm_runtime * rtd)

Remove a pcm_runtime from card

Parameters
struct snd_soc_card * card The ASoC card to which the pcm_runtime has

struct snd_soc_pcm_runtime * rtd The pcm_runtime to remove

Description
This function removes a pcm_runtime from the ASoC card.

int snd_soc_add_pcm_runtime(struct snd_soc_card * card, struct
snd_soc_dai_link * dai_link)

Add a pcm_runtime dynamically via dai_link

Parameters
struct snd_soc_card * card The ASoC card to which the pcm_runtime is added

struct snd_soc_dai_link * dai_link The DAI link to find pcm_runtime

Description
This function adds a pcm_runtime ASoC card by using dai_link.

Note
Topology can use this API to add pcm_runtime when probing the topology compo-
nent. And machine drivers can still define static DAI links in dai_link array.

int snd_soc_runtime_set_dai_fmt(struct snd_soc_pcm_runtime * rtd, un-
signed int dai_fmt)

Change DAI link format for a ASoC runtime

Parameters
struct snd_soc_pcm_runtime * rtd The runtime for which the DAI link format

should be changed

unsigned int dai_fmt The new DAI link format

72 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
This function updates the DAI link format for all DAIs connected to the DAI link
for the specified runtime.

Returns 0 on success, otherwise a negative error code.

Note
For setups with a static format set the dai_fmt field in the corresponding
snd_dai_link struct instead of using this function.

int snd_soc_set_dmi_name(struct snd_soc_card * card, const char * flavour)
Register DMI names to card

Parameters
struct snd_soc_card * card The card to register DMI names

const char * flavour The flavour“differentiator”for the card amongst its peers.
Description
An Intel machine driver may be used by many different devices but are difficult
for userspace to differentiate, since machine drivers ususally use their own name
as the card short name and leave the card long name blank. To differentiate such
devices and fix bugs due to lack of device-specific configurations, this function
allows DMI info to be used as the sound card long name, in the format of“vendor-
product-version-board”(Character‘-‘is used to separate different DMI fields here).
This will help the user space to load the device-specific Use Case Manager (UCM)
configurations for the card.

Possible card long names may be: DellInc.-XPS139343-01-
0310JH ASUSTeKCOMPUTERINC.-T100TA-1.0-T100TA Circuitco-
MinnowboardMaxD0PLATFORM-D0-MinnowBoardMAX

This function also supports flavoring the card longname to provide the extra dif-
ferentiation, like “vendor-product-version-board-flavor”.
We only keep number and alphabet characters and a few separator characters in
the card long name since UCM in the user space uses the card long names as card
configuration directory names and AudoConf cannot support special charactors
like SPACE.

Returns 0 on success, otherwise a negative error code.

struct snd_kcontrol * snd_soc_cnew(const struct snd_kcontrol_new
* _template, void * data, const char
* long_name, const char * prefix)

create new control

Parameters
const struct snd_kcontrol_new * _template control template

void * data control private data

const char * long_name control long name

const char * prefix control name prefix

1.1. The ALSA Driver API 73

Linux Sound Documentation

Description
Create a new mixer control from a template control.

Returns 0 for success, else error.

int snd_soc_add_component_controls(struct snd_soc_component
* component, const struct
snd_kcontrol_new * controls, un-
signed int num_controls)

Add an array of controls to a component.

Parameters
struct snd_soc_component * component Component to add controls to

const struct snd_kcontrol_new * controls Array of controls to add

unsigned int num_controls Number of elements in the array

Return
0 for success, else error.

int snd_soc_add_card_controls(struct snd_soc_card * soc_card, const
struct snd_kcontrol_new * controls,
int num_controls)

add an array of controls to a SoC card. Convenience function to add a list of
controls.

Parameters
struct snd_soc_card * soc_card SoC card to add controls to

const struct snd_kcontrol_new * controls array of controls to add

int num_controls number of elements in the array

Description
Return 0 for success, else error.

int snd_soc_add_dai_controls(struct snd_soc_dai * dai, const
struct snd_kcontrol_new * controls,
int num_controls)

add an array of controls to a DAI. Convienience function to add a list of con-
trols.

Parameters
struct snd_soc_dai * dai DAI to add controls to

const struct snd_kcontrol_new * controls array of controls to add

int num_controls number of elements in the array

Description
Return 0 for success, else error.

int snd_soc_register_card(struct snd_soc_card * card)
Register a card with the ASoC core

Parameters

74 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

struct snd_soc_card * card Card to register

int snd_soc_unregister_card(struct snd_soc_card * card)
Unregister a card with the ASoC core

Parameters
struct snd_soc_card * card Card to unregister

struct snd_soc_dai * snd_soc_register_dai(struct snd_soc_component
* component, struct
snd_soc_dai_driver * dai_drv,
bool legacy_dai_naming)

Register a DAI dynamically & create its widgets

Parameters
struct snd_soc_component * component The component the DAIs are regis-

tered for

struct snd_soc_dai_driver * dai_drv DAI driver to use for the DAI

bool legacy_dai_naming if true, use legacy single-name format; if false, use
multiple-name format;

Description
Topology can use this API to register DAIs when probing a component. These
DAIs’s widgets will be freed in the card cleanup and the DAIs will be freed in the
component cleanup.

void snd_soc_unregister_dais(struct snd_soc_component * component)
Unregister DAIs from the ASoC core

Parameters
struct snd_soc_component * component The component for which the DAIs

should be unregistered

int snd_soc_register_dais(struct snd_soc_component * component, struct
snd_soc_dai_driver * dai_drv, size_t count)

Register a DAI with the ASoC core

Parameters
struct snd_soc_component * component The component the DAIs are regis-

tered for

struct snd_soc_dai_driver * dai_drv DAI driver to use for the DAIs

size_t count Number of DAIs

void snd_soc_component_init_regmap(struct snd_soc_component
* component, struct regmap
* regmap)

Initialize regmap instance for the component

Parameters
struct snd_soc_component * component The component for which to initialize

the regmap instance

1.1. The ALSA Driver API 75

Linux Sound Documentation

struct regmap * regmap The regmap instance that should be used by the com-
ponent

Description
This function allows deferred assignment of the regmap instance that is associated
with the component. Only use this if the regmap instance is not yet ready when
the component is registered. The function must also be called before the first IO
attempt of the component.

void snd_soc_component_exit_regmap(struct snd_soc_component
* component)

De-initialize regmap instance for the component

Parameters
struct snd_soc_component * component The component for which to de-

initialize the regmap instance

Description
Calls regmap_exit() on the regmap instance associated to the component and re-
moves the regmap instance from the component.

This function should only be used if snd_soc_component_init_regmap()was used
to initialize the regmap instance.

void snd_soc_unregister_component(struct device * dev)
Unregister all related component from the ASoC core

Parameters
struct device * dev The device to unregister

struct snd_soc_dai * devm_snd_soc_register_dai(struct device
* dev, struct
snd_soc_component
* component, struct
snd_soc_dai_driver
* dai_drv,
bool legacy_dai_naming)

resource-managed dai registration

Parameters
struct device * dev Device used to manage component

struct snd_soc_component * component The component the DAIs are regis-
tered for

struct snd_soc_dai_driver * dai_drv DAI driver to use for the DAI

bool legacy_dai_naming if true, use legacy single-name format; if false, use
multiple-name format;

int devm_snd_soc_register_component(struct device * dev, const struct
snd_soc_component_driver
* cmpnt_drv, struct
snd_soc_dai_driver * dai_drv,
int num_dai)

resource managed component registration

76 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
struct device * dev Device used to manage component

const struct snd_soc_component_driver * cmpnt_drv Component driver

struct snd_soc_dai_driver * dai_drv DAI driver

int num_dai Number of DAIs to register

Description
Register a component with automatic unregistration when the device is unregis-
tered.

int devm_snd_soc_register_card(struct device * dev, struct snd_soc_card
* card)

resource managed card registration

Parameters
struct device * dev Device used to manage card

struct snd_soc_card * card Card to register

Description
Register a card with automatic unregistration when the device is unregistered.

int devm_snd_dmaengine_pcm_register(struct device * dev, const struct
snd_dmaengine_pcm_config
* config, unsigned int flags)

resource managed dmaengine PCM registration

Parameters
struct device * dev The parent device for the PCM device

const struct snd_dmaengine_pcm_config * config Platform specific PCM
configuration

unsigned int flags Platform specific quirks

Description
Register a dmaengine based PCM device with automatic unregistration when the
device is unregistered.

int snd_soc_component_read(struct snd_soc_component * component, un-
signed int reg, unsigned int * val)

Read register value

Parameters
struct snd_soc_component * component Component to read from

unsigned int reg Register to read

unsigned int * val Pointer to where the read value is stored

Return
0 on success, a negative error code otherwise.

1.1. The ALSA Driver API 77

Linux Sound Documentation

int snd_soc_component_write(struct snd_soc_component * component, un-
signed int reg, unsigned int val)

Write register value

Parameters
struct snd_soc_component * component Component to write to

unsigned int reg Register to write

unsigned int val Value to write to the register

Return
0 on success, a negative error code otherwise.

int snd_soc_component_update_bits(struct snd_soc_component
* component, unsigned int reg, un-
signed int mask, unsigned int val)

Perform read/modify/write cycle

Parameters
struct snd_soc_component * component Component to update

unsigned int reg Register to update

unsigned int mask Mask that specifies which bits to update

unsigned int val New value for the bits specified by mask

Return
1 if the operation was successful and the value of the register changed, 0 if the
operation was successful, but the value did not change. Returns a negative error
code otherwise.

int snd_soc_component_update_bits_async(struct snd_soc_component
* component, unsigned
int reg, unsigned int mask,
unsigned int val)

Perform asynchronous read/modify/write cycle

Parameters
struct snd_soc_component * component Component to update

unsigned int reg Register to update

unsigned int mask Mask that specifies which bits to update

unsigned int val New value for the bits specified by mask

Description
This function is similar to snd_soc_component_update_bits(), but the update op-
eration is scheduled asynchronously. This means it may not be completed when
the function returns. To make sure that all scheduled updates have been com-
pleted snd_soc_component_async_complete() must be called.

Return

78 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

1 if the operation was successful and the value of the register changed, 0 if the
operation was successful, but the value did not change. Returns a negative error
code otherwise.

void snd_soc_component_async_complete(struct snd_soc_component
* component)

Ensure asynchronous I/O has completed

Parameters
struct snd_soc_component * component Component for which to wait

Description
This function blocks until all asynchronous I/O which has previously been sched-
uled using snd_soc_component_update_bits_async() has completed.

int snd_soc_component_test_bits(struct snd_soc_component * component,
unsigned int reg, unsigned int mask, un-
signed int value)

Test register for change

Parameters
struct snd_soc_component * component component

unsigned int reg Register to test

unsigned int mask Mask that specifies which bits to test

unsigned int value Value to test against

Description
Tests a register with a new value and checks if the new value is different from the
old value.

Return
1 for change, otherwise 0.

void snd_soc_runtime_action(struct snd_soc_pcm_runtime * rtd,
int stream, int action)

Increment/Decrement active count for PCM runtime components

Parameters
struct snd_soc_pcm_runtime * rtd ASoC PCM runtime that is activated

int stream Direction of the PCM stream

int action undescribed

Description
Increments/Decrements the active count for all the DAIs and components attached
to a PCM runtime. Should typically be called when a stream is opened.

Must be called with the rtd->card->pcm_mutex being held

bool snd_soc_runtime_ignore_pmdown_time(struct snd_soc_pcm_runtime
* rtd)

Check whether to ignore the power down delay

1.1. The ALSA Driver API 79

Linux Sound Documentation

Parameters
struct snd_soc_pcm_runtime * rtd The ASoC PCM runtime that should be

checked.

Description
This function checks whether the power down delay should be ignored for a spe-
cific PCM runtime. Returns true if the delay is 0, if it the DAI link has been con-
figured to ignore the delay, or if none of the components benefits from having the
delay.

int snd_soc_set_runtime_hwparams(struct snd_pcm_substream
* substream, const struct
snd_pcm_hardware * hw)

set the runtime hardware parameters

Parameters
struct snd_pcm_substream * substream the pcm substream

const struct snd_pcm_hardware * hw the hardware parameters

Description
Sets the substream runtime hardware parameters.

int snd_soc_runtime_calc_hw(struct snd_soc_pcm_runtime * rtd, struct
snd_pcm_hardware * hw, int stream)

Calculate hw limits for a PCM stream

Parameters
struct snd_soc_pcm_runtime * rtd ASoC PCM runtime

struct snd_pcm_hardware * hw PCM hardware parameters (output)

int stream Direction of the PCM stream

Description
Calculates the subset of stream parameters supported by all DAIs associated with
the PCM stream.

int snd_soc_info_enum_double(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

enumerated double mixer info callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_info * uinfo control element information

Description
Callback to provide information about a double enumerated mixer control.

Returns 0 for success.

int snd_soc_get_enum_double(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

enumerated double mixer get callback

80 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value of a double enumerated mixer.

Returns 0 for success.

int snd_soc_put_enum_double(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

enumerated double mixer put callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value of a double enumerated mixer.

Returns 0 for success.

int snd_soc_read_signed(struct snd_soc_component * component, un-
signed int reg, unsigned int mask, unsigned
int shift, unsigned int sign_bit, int * signed_val)

Read a codec register and interpret as signed value

Parameters
struct snd_soc_component * component component

unsigned int reg Register to read

unsigned int mask Mask to use after shifting the register value

unsigned int shift Right shift of register value

unsigned int sign_bit Bit that describes if a number is negative or not.

int * signed_val Pointer to where the read value should be stored

Description
This functions reads a codec register. The register value is shifted right by‘shift’
bits and masked with the given ‘mask’. Afterwards it translates the given reg-
istervalue into a signed integer if sign_bit is non-zero.

Returns 0 on sucess, otherwise an error value

int snd_soc_info_volsw(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

single mixer info callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_info * uinfo control element information

1.1. The ALSA Driver API 81

Linux Sound Documentation

Description
Callback to provide information about a single mixer control, or a double mixer
control that spans 2 registers.

Returns 0 for success.

int snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

Mixer info callback for SX TLV controls

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_info * uinfo control element information

Description
Callback to provide information about a single mixer control, or a double mixer
control that spans 2 registers of the SX TLV type. SX TLV controls have a range
that represents both positive and negative values either side of zero but without a
sign bit.

Returns 0 for success.

int snd_soc_get_volsw(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

single mixer get callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value of a single mixer control, or a double mixer control that
spans 2 registers.

Returns 0 for success.

int snd_soc_put_volsw(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

single mixer put callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value of a single mixer control, or a double mixer control that
spans 2 registers.

Returns 0 for success.

int snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

single mixer get callback

82 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value of a single mixer control, or a double mixer control that
spans 2 registers.

Returns 0 for success.

int snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

double mixer set callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value of a double mixer control that spans 2 registers.

Returns 0 for success.

int snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

single mixer info callback with range.

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_info * uinfo control element information

Description
Callback to provide information, within a range, about a single mixer control.

returns 0 for success.

int snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

single mixer put value callback with range.

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value, within a range, for a single mixer control.

Returns 0 for success.

int snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

single mixer get callback with range

Parameters

1.1. The ALSA Driver API 83

Linux Sound Documentation

struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value, within a range, of a single mixer control.

Returns 0 for success.

int snd_soc_limit_volume(struct snd_soc_card * card, const char * name,
int max)

Set new limit to an existing volume control.

Parameters
struct snd_soc_card * card where to look for the control

const char * name Name of the control

int max new maximum limit

Description
Return 0 for success, else error.

int snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

signed multi register info callback

Parameters
struct snd_kcontrol * kcontrol mreg control

struct snd_ctl_elem_info * uinfo control element information

Description
Callback to provide information of a control that can span multiple codec registers
which together forms a single signed value in a MSB/LSB manner.

Returns 0 for success.

int snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

signed multi register get callback

Parameters
struct snd_kcontrol * kcontrol mreg control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value of a control that can span multiple codec registers which
together forms a single signed value in a MSB/LSB manner. The control supports
specifying total no of bits used to allow for bitfields across the multiple codec
registers.

Returns 0 for success.

int snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

signed multi register get callback

84 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Parameters
struct snd_kcontrol * kcontrol mreg control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value of a control that can span multiple codec registers which
together forms a single signed value in a MSB/LSB manner. The control supports
specifying total no of bits used to allow for bitfields across the multiple codec
registers.

Returns 0 for success.

int snd_soc_get_strobe(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

strobe get callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback get the value of a strobe mixer control.

Returns 0 for success.

int snd_soc_put_strobe(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

strobe put callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback strobe a register bit to high then low (or the inverse) in one pass of a
single mixer enum control.

Returns 1 for success.

int snd_soc_new_compress(struct snd_soc_pcm_runtime * rtd, int num)
create a new compress.

Parameters
struct snd_soc_pcm_runtime * rtd The runtime for which we will create com-

press

int num the device index number (zero based - shared with normal PCMs)

Return
0 for success, else error.

1.1. The ALSA Driver API 85

Linux Sound Documentation

ASoC DAPM API

struct snd_soc_dapm_widget * snd_soc_dapm_kcontrol_widget(struct
snd_kcontrol
* kcontrol)

Returns the widget associated to a kcontrol

Parameters
struct snd_kcontrol * kcontrol The kcontrol

struct snd_soc_dapm_context * snd_soc_dapm_kcontrol_dapm(struct
snd_kcontrol
* kcontrol)

Returns the dapm context associated to a kcontrol

Parameters
struct snd_kcontrol * kcontrol The kcontrol

Note
This function must only be used on kcontrols that are known to have been regis-
tered for a CODEC. Otherwise the behaviour is undefined.

int snd_soc_dapm_force_bias_level(struct snd_soc_dapm_context * dapm,
enum snd_soc_bias_level level)

Sets the DAPM bias level

Parameters
struct snd_soc_dapm_context * dapm The DAPM context for which to set the

level

enum snd_soc_bias_level level The level to set

Description
Forces the DAPM bias level to a specific state. It will call the bias level callback
of DAPM context with the specified level. This will even happen if the context is
already at the same level. Furthermore it will not go through the normal bias level
sequencing, meaning any intermediate states between the current and the target
state will not be entered.

Note that the change in bias level is only temporary and the next time
snd_soc_dapm_sync() is called the state will be set to the level as determined by
the DAPM core. The function is mainly intended to be used to used during probe or
resume from suspend to power up the device so initialization can be done, before
the DAPM core takes over.

int snd_soc_dapm_set_bias_level(struct snd_soc_dapm_context * dapm,
enum snd_soc_bias_level level)

set the bias level for the system

Parameters
struct snd_soc_dapm_context * dapm DAPM context

enum snd_soc_bias_level level level to configure

Description

86 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Configure the bias (power) levels for the SoC audio device.

Returns 0 for success else error.

int snd_soc_dapm_dai_get_connected_widgets(struct snd_soc_dai
* dai, int stream, struct
snd_soc_dapm_widget_list
** list, bool (*cus-
tom_stop_condition)(struct
snd_soc_dapm_widget
*, enum
snd_soc_dapm_direction))

query audio path and it’s widgets.
Parameters
struct snd_soc_dai * dai the soc DAI.

int stream stream direction.

struct snd_soc_dapm_widget_list ** list list of active widgets for this
stream.

bool (*)(struct snd_soc_dapm_widget *, enum snd_soc_dapm_direction) custom_stop_condition
(optional) a function meant to stop the widget graph walk based on custom
logic.

Description
Queries DAPM graph as to whether a valid audio stream path exists for the initial
stream specified by name. This takes into account current mixer and mux kcontrol
settings. Creates list of valid widgets.

Optionally, can be supplied with a function acting as a stopping condition. This
function takes the dapm widget currently being examined and the walk direction
as an arguments, it should return true if the walk should be stopped and false
otherwise.

Returns the number of valid paths or negative error.

int snd_soc_dapm_sync_unlocked(struct snd_soc_dapm_context * dapm)
scan and power dapm paths

Parameters
struct snd_soc_dapm_context * dapm DAPM context

Description
Walks all dapm audio paths and powers widgets according to their stream or path
usage.

Requires external locking.

Returns 0 for success.

int snd_soc_dapm_sync(struct snd_soc_dapm_context * dapm)
scan and power dapm paths

Parameters
struct snd_soc_dapm_context * dapm DAPM context

1.1. The ALSA Driver API 87

Linux Sound Documentation

Description
Walks all dapm audio paths and powers widgets according to their stream or path
usage.

Returns 0 for success.

int snd_soc_dapm_add_routes(struct snd_soc_dapm_context * dapm, const
struct snd_soc_dapm_route * route, int num)

Add routes between DAPM widgets

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const struct snd_soc_dapm_route * route audio routes

int num number of routes

Description
Connects 2 dapm widgets together via a named audio path. The sink is the widget
receiving the audio signal, whilst the source is the sender of the audio signal.

Returns 0 for success else error. On error all resources can be freed with a call to
snd_soc_card_free().

int snd_soc_dapm_del_routes(struct snd_soc_dapm_context * dapm, const
struct snd_soc_dapm_route * route, int num)

Remove routes between DAPM widgets

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const struct snd_soc_dapm_route * route audio routes

int num number of routes

Description
Removes routes from the DAPM context.

int snd_soc_dapm_weak_routes(struct snd_soc_dapm_context * dapm,
const struct snd_soc_dapm_route * route,
int num)

Mark routes between DAPM widgets as weak

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const struct snd_soc_dapm_route * route audio routes

int num number of routes

Description
Mark existing routes matching those specified in the passed array as being weak,
meaning that they are ignored for the purpose of power decisions. The main in-
tended use case is for sidetone paths which couple audio between other indepen-
dent paths if they are both active in order to make the combination work better at
the user level but which aren’t intended to be “used”.

88 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Note that CODEC drivers should not use this as sidetone type paths can frequently
also be used as bypass paths.

int snd_soc_dapm_new_widgets(struct snd_soc_card * card)
add new dapm widgets

Parameters
struct snd_soc_card * card card to be checked for new dapm widgets

Description
Checks the codec for any new dapm widgets and creates them if found.

Returns 0 for success.

int snd_soc_dapm_get_volsw(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

dapm mixer get callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value of a dapm mixer control.

Returns 0 for success.

int snd_soc_dapm_put_volsw(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

dapm mixer set callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value of a dapm mixer control.

Returns 0 for success.

int snd_soc_dapm_get_enum_double(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

dapm enumerated double mixer get callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to get the value of a dapm enumerated double mixer control.

Returns 0 for success.

1.1. The ALSA Driver API 89

Linux Sound Documentation

int snd_soc_dapm_put_enum_double(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

dapm enumerated double mixer set callback

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol control element information

Description
Callback to set the value of a dapm enumerated double mixer control.

Returns 0 for success.

int snd_soc_dapm_info_pin_switch(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

Info for a pin switch

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_info * uinfo control element information

Description
Callback to provide information about a pin switch control.

int snd_soc_dapm_get_pin_switch(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

Get information for a pin switch

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol Value

int snd_soc_dapm_put_pin_switch(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_value * ucontrol)

Set information for a pin switch

Parameters
struct snd_kcontrol * kcontrol mixer control

struct snd_ctl_elem_value * ucontrol Value

struct snd_soc_dapm_widget * snd_soc_dapm_new_control(struct
snd_soc_dapm_context
* dapm,
const struct
snd_soc_dapm_widget
* widget)

create new dapm control

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const struct snd_soc_dapm_widget * widget widget template

90 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
Creates new DAPM control based upon a template.

Returns a widget pointer on success or an error pointer on failure

int snd_soc_dapm_new_controls(struct snd_soc_dapm_context * dapm,
const struct snd_soc_dapm_widget
* widget, int num)

create new dapm controls

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const struct snd_soc_dapm_widget * widget widget array

int num number of widgets

Description
Creates new DAPM controls based upon the templates.

Returns 0 for success else error.

void snd_soc_dapm_stream_event(struct snd_soc_pcm_runtime * rtd,
int stream, int event)

send a stream event to the dapm core

Parameters
struct snd_soc_pcm_runtime * rtd PCM runtime data

int stream stream name

int event stream event

Description
Sends a stream event to the dapm core. The core thenmakes any necessary widget
power changes.

Returns 0 for success else error.

int snd_soc_dapm_enable_pin_unlocked(struct snd_soc_dapm_context
* dapm, const char * pin)

enable pin.

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Enables input/output pin and its parents or children widgets iff there is a valid
audio route and active audio stream.

Requires external locking.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

1.1. The ALSA Driver API 91

Linux Sound Documentation

int snd_soc_dapm_enable_pin(struct snd_soc_dapm_context * dapm, const
char * pin)

enable pin.

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Enables input/output pin and its parents or children widgets iff there is a valid
audio route and active audio stream.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

int snd_soc_dapm_force_enable_pin_unlocked(struct
snd_soc_dapm_context
* dapm, const char * pin)

force a pin to be enabled

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Enables input/output pin regardless of any other state. This is intended for use
with microphone bias supplies used in microphone jack detection.

Requires external locking.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

int snd_soc_dapm_force_enable_pin(struct snd_soc_dapm_context * dapm,
const char * pin)

force a pin to be enabled

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Enables input/output pin regardless of any other state. This is intended for use
with microphone bias supplies used in microphone jack detection.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

92 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

int snd_soc_dapm_disable_pin_unlocked(struct snd_soc_dapm_context
* dapm, const char * pin)

disable pin.

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Disables input/output pin and its parents or children widgets.

Requires external locking.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

int snd_soc_dapm_disable_pin(struct snd_soc_dapm_context * dapm, const
char * pin)

disable pin.

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Disables input/output pin and its parents or children widgets.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

int snd_soc_dapm_nc_pin_unlocked(struct snd_soc_dapm_context * dapm,
const char * pin)

permanently disable pin.

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Marks the specified pin as being not connected, disabling it along any parent or
child widgets. At present this is identical to snd_soc_dapm_disable_pin() but in
future it will be extended to do additional things such as disabling controls which
only affect paths through the pin.

Requires external locking.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

1.1. The ALSA Driver API 93

Linux Sound Documentation

int snd_soc_dapm_nc_pin(struct snd_soc_dapm_context * dapm, const char
* pin)

permanently disable pin.

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin pin name

Description
Marks the specified pin as being not connected, disabling it along any parent or
child widgets. At present this is identical to snd_soc_dapm_disable_pin() but in
future it will be extended to do additional things such as disabling controls which
only affect paths through the pin.

NOTE
snd_soc_dapm_sync() needs to be called after this for DAPM to do any widget
power switching.

int snd_soc_dapm_get_pin_status(struct snd_soc_dapm_context * dapm,
const char * pin)

get audio pin status

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin audio signal pin endpoint (or start point)

Description
Get audio pin status - connected or disconnected.

Returns 1 for connected otherwise 0.

int snd_soc_dapm_ignore_suspend(struct snd_soc_dapm_context * dapm,
const char * pin)

ignore suspend status for DAPM endpoint

Parameters
struct snd_soc_dapm_context * dapm DAPM context

const char * pin audio signal pin endpoint (or start point)

Description
Mark the given endpoint or pin as ignoring suspend. When the system is disabled
a path between two endpoints flagged as ignoring suspend will not be disabled.
The path must already be enabled via normal means at suspend time, it will not
be turned on if it was not already enabled.

void snd_soc_dapm_free(struct snd_soc_dapm_context * dapm)
free dapm resources

Parameters
struct snd_soc_dapm_context * dapm DAPM context

94 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
Free all dapm widgets and resources.

ASoC DMA Engine API

int snd_dmaengine_pcm_prepare_slave_config(struct snd_pcm_substream
* substream, struct
snd_pcm_hw_params
* params, struct
dma_slave_config
* slave_config)

Generic prepare_slave_config callback

Parameters
struct snd_pcm_substream * substream PCM substream

struct snd_pcm_hw_params * params hw_params

struct dma_slave_config * slave_config DMA slave config to prepare

Description
This function can be used as a generic prepare_slave_config callback
for platforms which make use of the snd_dmaengine_dai_dma_data
struct for their DAI DMA data. Internally the function will first call
snd_hwparams_to_dma_slave_config to fill in the slave config based on the
hw_params, followed by snd_dmaengine_set_config_from_dai_data to fill in the
remaining fields based on the DAI DMA data.

int snd_dmaengine_pcm_register(struct device * dev, const struct
snd_dmaengine_pcm_config * config,
unsigned int flags)

Register a dmaengine based PCM device

Parameters
struct device * dev The parent device for the PCM device

const struct snd_dmaengine_pcm_config * config Platform specific PCM
configuration

unsigned int flags Platform specific quirks

void snd_dmaengine_pcm_unregister(struct device * dev)
Removes a dmaengine based PCM device

Parameters
struct device * dev Parent device the PCM was register with

Description
Removes a dmaengine based PCM device previously registered with
snd_dmaengine_pcm_register.

1.1. The ALSA Driver API 95

Linux Sound Documentation

1.1.8 Miscellaneous Functions

Hardware-Dependent Devices API

int snd_hwdep_new(struct snd_card * card, char * id, int device, struct
snd_hwdep ** rhwdep)

create a new hwdep instance

Parameters
struct snd_card * card the card instance

char * id the id string

int device the device index (zero-based)

struct snd_hwdep ** rhwdep the pointer to store the new hwdep instance

Description
Creates a new hwdep instance with the given index on the card. The callbacks
(hwdep->ops) must be set on the returned instance after this call manually by the
caller.

Return
Zero if successful, or a negative error code on failure.

Jack Abstraction Layer API

enum snd_jack_types
Jack types which can be reported

Constants
SND_JACK_HEADPHONE Headphone

SND_JACK_MICROPHONE Microphone

SND_JACK_HEADSET Headset

SND_JACK_LINEOUT Line out

SND_JACK_MECHANICAL Mechanical switch

SND_JACK_VIDEOOUT Video out

SND_JACK_AVOUT AV (Audio Video) out

SND_JACK_LINEIN Line in

SND_JACK_BTN_0 Button 0

SND_JACK_BTN_1 Button 1

SND_JACK_BTN_2 Button 2

SND_JACK_BTN_3 Button 3

SND_JACK_BTN_4 Button 4

SND_JACK_BTN_5 Button 5

96 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
These values are used as a bitmask.

Note that this must be kept in sync with the lookup table in sound/core/jack.c.

int snd_jack_add_new_kctl(struct snd_jack * jack, const char * name,
int mask)

Create a new snd_jack_kctl and add it to jack

Parameters
struct snd_jack * jack the jack instance which the kctl will attaching to

const char * name the name for the snd_kcontrol object

int mask a bitmask of enum snd_jack_type values that can be detected by this
snd_jack_kctl object.

Description
Creates a new snd_kcontrol object and adds it to the jack kctl_list.

Return
Zero if successful, or a negative error code on failure.

int snd_jack_new(struct snd_card * card, const char * id, int type, struct
snd_jack ** jjack, bool initial_kctl, bool phantom_jack)

Create a new jack

Parameters
struct snd_card * card the card instance

const char * id an identifying string for this jack

int type a bitmask of enum snd_jack_type values that can be detected by this
jack

struct snd_jack ** jjack Used to provide the allocated jack object to the
caller.

bool initial_kctl if true, create a kcontrol and add it to the jack list.

bool phantom_jack Don’t create a input device for phantom jacks.

Description
Creates a new jack object.

Return
Zero if successful, or a negative error code on failure. On success jjack will be
initialised.

void snd_jack_set_parent(struct snd_jack * jack, struct device * parent)
Set the parent device for a jack

Parameters
struct snd_jack * jack The jack to configure

struct device * parent The device to set as parent for the jack.

1.1. The ALSA Driver API 97

Linux Sound Documentation

Description
Set the parent for the jack devices in the device tree. This function is only valid
prior to registration of the jack. If no parent is configured then the parent device
will be the sound card.

int snd_jack_set_key(struct snd_jack * jack, enum snd_jack_types type,
int keytype)

Set a key mapping on a jack

Parameters
struct snd_jack * jack The jack to configure

enum snd_jack_types type Jack report type for this key

int keytype Input layer key type to be reported

Description
Map a SND_JACK_BTN_* button type to an input layer key, allowing reporting of
keys on accessories via the jack abstraction. If no mapping is provided but keys
are enabled in the jack type then BTN_n numeric buttons will be reported.

If jacks are not reporting via the input API this call will have no effect.

Note that this is intended to be use by simple devices with small numbers of keys
that can be reported. It is also possible to access the input device directly - devices
with complex input capabilities on accessories should consider doing this rather
than using this abstraction.

This function may only be called prior to registration of the jack.

Return
Zero if successful, or a negative error code on failure.

void snd_jack_report(struct snd_jack * jack, int status)
Report the current status of a jack

Parameters
struct snd_jack * jack The jack to report status for

int status The current status of the jack

void snd_soc_jack_report(struct snd_soc_jack * jack, int status, int mask)
Report the current status for a jack

Parameters
struct snd_soc_jack * jack the jack

int status a bitmask of enum snd_jack_type values that are currently detected.

int mask a bitmask of enum snd_jack_type values that being reported.

Description
If configured using snd_soc_jack_add_pins() then the associated DAPM pins will
be enabled or disabled as appropriate and DAPM synchronised.

Note

98 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

This function uses mutexes and should be called from a context which can sleep
(such as a workqueue).

int snd_soc_jack_add_zones(struct snd_soc_jack * jack, int count, struct
snd_soc_jack_zone * zones)

Associate voltage zones with jack

Parameters
struct snd_soc_jack * jack ASoC jack

int count Number of zones

struct snd_soc_jack_zone * zones Array of zones

Description
After this function has been called the zones specified in the array will be associ-
ated with the jack.

int snd_soc_jack_get_type(struct snd_soc_jack * jack, int micbias_voltage)
Based on the mic bias value, this function returns the type of jack from the
zones declared in the jack type

Parameters
struct snd_soc_jack * jack ASoC jack

int micbias_voltage mic bias voltage at adc channel when jack is plugged in

Description
Based on the mic bias value passed, this function helps identify the type of jack
from the already declared jack zones

int snd_soc_jack_add_pins(struct snd_soc_jack * jack, int count, struct
snd_soc_jack_pin * pins)

Associate DAPM pins with an ASoC jack

Parameters
struct snd_soc_jack * jack ASoC jack

int count Number of pins

struct snd_soc_jack_pin * pins Array of pins

Description
After this function has been called the DAPM pins specified in the pins array will
have their status updated to reflect the current state of the jack whenever the jack
status is updated.

void snd_soc_jack_notifier_register(struct snd_soc_jack * jack, struct
notifier_block * nb)

Register a notifier for jack status

Parameters
struct snd_soc_jack * jack ASoC jack

struct notifier_block * nb Notifier block to register

1.1. The ALSA Driver API 99

Linux Sound Documentation

Description
Register for notification of the current status of the jack. Note that it is not possible
to report additional jack events in the callback from the notifier, this is intended to
support applications such as enabling electrical detection only when a mechanical
detection event has occurred.

void snd_soc_jack_notifier_unregister(struct snd_soc_jack * jack, struct
notifier_block * nb)

Unregister a notifier for jack status

Parameters
struct snd_soc_jack * jack ASoC jack

struct notifier_block * nb Notifier block to unregister

Description
Stop notifying for status changes.

int snd_soc_jack_add_gpios(struct snd_soc_jack * jack, int count, struct
snd_soc_jack_gpio * gpios)

Associate GPIO pins with an ASoC jack

Parameters
struct snd_soc_jack * jack ASoC jack

int count number of pins

struct snd_soc_jack_gpio * gpios array of gpio pins

Description
This function will request gpio, set data direction and request irq for each gpio in
the array.

int snd_soc_jack_add_gpiods(struct device * gpiod_dev, struct
snd_soc_jack * jack, int count, struct
snd_soc_jack_gpio * gpios)

Associate GPIO descriptor pins with an ASoC jack

Parameters
struct device * gpiod_dev GPIO consumer device

struct snd_soc_jack * jack ASoC jack

int count number of pins

struct snd_soc_jack_gpio * gpios array of gpio pins

Description
This function will request gpio, set data direction and request irq for each gpio in
the array.

void snd_soc_jack_free_gpios(struct snd_soc_jack * jack, int count, struct
snd_soc_jack_gpio * gpios)

Release GPIO pins’resources of an ASoC jack
Parameters

100 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

struct snd_soc_jack * jack ASoC jack

int count number of pins

struct snd_soc_jack_gpio * gpios array of gpio pins

Description
Release gpio and irq resources for gpio pins associated with an ASoC jack.

ISA DMA Helpers

void snd_dma_program(unsigned long dma, unsigned long addr, unsigned
int size, unsigned short mode)

program an ISA DMA transfer

Parameters
unsigned long dma the dma number

unsigned long addr the physical address of the buffer

unsigned int size the DMA transfer size

unsigned short mode the DMA transfer mode, DMA_MODE_XXX

Description
Programs an ISA DMA transfer for the given buffer.

void snd_dma_disable(unsigned long dma)
stop the ISA DMA transfer

Parameters
unsigned long dma the dma number

Description
Stops the ISA DMA transfer.

unsigned int snd_dma_pointer(unsigned long dma, unsigned int size)
return the current pointer to DMA transfer buffer in bytes

Parameters
unsigned long dma the dma number

unsigned int size the dma transfer size

Return
The current pointer in DMA transfer buffer in bytes.

1.1. The ALSA Driver API 101

Linux Sound Documentation

Other Helper Macros

void snd_card_unref(struct snd_card * card)
Unreference the card object

Parameters
struct snd_card * card the card object to unreference

Description
Call this function for the card object that was obtained via snd_card_ref() or
snd_lookup_minor_data().

snd_printk(fmt, ⋯)
printk wrapper

Parameters
fmt format string

... variable arguments

Description
Works like printk() but prints the file and the line of the caller when configured
with CONFIG_SND_VERBOSE_PRINTK.

snd_printd(fmt, ⋯)
debug printk

Parameters
fmt format string

... variable arguments

Description
Works like snd_printk() for debugging purposes. Ignored when CON-
FIG_SND_DEBUG is not set.

snd_BUG()
give a BUG warning message and stack trace

Parameters
Description
Calls WARN() if CONFIG_SND_DEBUG is set. Ignored when CON-
FIG_SND_DEBUG is not set.

snd_printd_ratelimit()

Parameters
snd_BUG_ON(cond)

debugging check macro

Parameters
cond condition to evaluate

102 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Description
Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, other-
wise just evaluates the conditional and returns the value.

snd_printdd(format, ⋯)
debug printk

Parameters
format format string

... variable arguments

Description
Works like snd_printk() for debugging purposes. Ignored when CON-
FIG_SND_DEBUG_VERBOSE is not set.

1.2 Writing an ALSA Driver

Author Takashi Iwai <tiwai@suse.de>

1.2.1 Preface

This document describes how to write an ALSA (Advanced Linux Sound Architec-
ture) driver. The document focuses mainly on PCI soundcards. In the case of other
device types, the API might be different, too. However, at least the ALSA kernel
API is consistent, and therefore it would be still a bit help for writing them.

This document targets people who already have enough C language skills and have
basic linux kernel programming knowledge. This document doesn’t explain the
general topic of linux kernel coding and doesn’t cover low-level driver implemen-
tation details. It only describes the standard way to write a PCI sound driver on
ALSA.

This document is still a draft version. Any feedback and corrections, please!!

1.2.2 File Tree Structure

General

The file tree structure of ALSA driver is depicted below.

sound
/core

/oss
/seq

/oss
/include
/drivers

/mpu401
/opl3

(continues on next page)

1.2. Writing an ALSA Driver 103

mailto:tiwai@suse.de
http://www.alsa-project.org/
http://www.alsa-project.org/

Linux Sound Documentation

(continued from previous page)
/i2c
/synth

/emux
/pci

/(cards)
/isa

/(cards)
/arm
/ppc
/sparc
/usb
/pcmcia /(cards)
/soc
/oss

core directory

This directory contains the middle layer which is the heart of ALSA drivers. In
this directory, the native ALSA modules are stored. The sub-directories contain
different modules and are dependent upon the kernel config.

core/oss

The codes for PCM and mixer OSS emulation modules are stored in this directory.
The rawmidi OSS emulation is included in the ALSA rawmidi code since it’s quite
small. The sequencer code is stored in core/seq/oss directory (see below).

core/seq

This directory and its sub-directories are for the ALSA sequencer. This directory
contains the sequencer core and primary sequencer modules such like snd-seq-
midi, snd-seq-virmidi, etc. They are compiled only when CONFIG_SND_SEQUENCER
is set in the kernel config.

core/seq/oss

This contains the OSS sequencer emulation codes.

104 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

include directory

This is the place for the public header files of ALSA drivers, which are to be ex-
ported to user-space, or included by several files at different directories. Basically,
the private header files should not be placed in this directory, but you may still find
files there, due to historical reasons :)

drivers directory

This directory contains code shared among different drivers on different architec-
tures. They are hence supposed not to be architecture-specific. For example, the
dummy pcm driver and the serial MIDI driver are found in this directory. In the
sub-directories, there is code for components which are independent from bus and
cpu architectures.

drivers/mpu401

The MPU401 and MPU401-UART modules are stored here.

drivers/opl3 and opl4

The OPL3 and OPL4 FM-synth stuff is found here.

i2c directory

This contains the ALSA i2c components.

Although there is a standard i2c layer on Linux, ALSA has its own i2c code for some
cards, because the soundcard needs only a simple operation and the standard i2c
API is too complicated for such a purpose.

synth directory

This contains the synth middle-level modules.

So far, there is only Emu8000/Emu10k1 synth driver under the synth/emux sub-
directory.

pci directory

This directory and its sub-directories hold the top-level card modules for PCI
soundcards and the code specific to the PCI BUS.

The drivers compiled from a single file are stored directly in the pci directory,
while the drivers with several source files are stored on their own sub-directory
(e.g. emu10k1, ice1712).

1.2. Writing an ALSA Driver 105

Linux Sound Documentation

isa directory

This directory and its sub-directories hold the top-level card modules for ISA
soundcards.

arm, ppc, and sparc directories

They are used for top-level card modules which are specific to one of these archi-
tectures.

usb directory

This directory contains the USB-audio driver. In the latest version, the USB MIDI
driver is integrated in the usb-audio driver.

pcmcia directory

The PCMCIA, especially PCCard drivers will go here. CardBus drivers will be in
the pci directory, because their API is identical to that of standard PCI cards.

soc directory

This directory contains the codes for ASoC (ALSA System on Chip) layer including
ASoC core, codec and machine drivers.

oss directory

Here contains OSS/Lite codes. All codes have been deprecated except for dma-
sound on m68k as of writing this.

1.2.3 Basic Flow for PCI Drivers

Outline

The minimum flow for PCI soundcards is as follows:

• define the PCI ID table (see the section PCI Entries).

• create probe callback.

• create remove callback.

• create a struct pci_driver structure containing the three pointers above.

• create an init function just calling the pci_register_driver() to register
the pci_driver table defined above.

• create an exit function to call the pci_unregister_driver() function.

106 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Full Code Example

The code example is shown below. Some parts are kept unimplemented at this
moment but will be filled in the next sections. The numbers in the comment lines
of the snd_mychip_probe() function refer to details explained in the following
section.

#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>

/* module parameters (see "Module Parameters") */
/* SNDRV_CARDS: maximum number of cards supported by this module */
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;

/* definition of the chip-specific record */
struct mychip {

struct snd_card *card;
/* the rest of the implementation will be in section
* "PCI Resource Management"
*/

};

/* chip-specific destructor
* (see "PCI Resource Management")
*/

static int snd_mychip_free(struct mychip *chip)
{

.... /* will be implemented later... */
}

/* component-destructor
* (see "Management of Cards and Components")
*/

static int snd_mychip_dev_free(struct snd_device *device)
{

return snd_mychip_free(device->device_data);
}

/* chip-specific constructor
* (see "Management of Cards and Components")
*/

static int snd_mychip_create(struct snd_card *card,
struct pci_dev *pci,
struct mychip **rchip)

{
struct mychip *chip;
int err;
static const struct snd_device_ops ops = {

.dev_free = snd_mychip_dev_free,
};

(continues on next page)

1.2. Writing an ALSA Driver 107

Linux Sound Documentation

(continued from previous page)
*rchip = NULL;

/* check PCI availability here
* (see "PCI Resource Management")
*/

....

/* allocate a chip-specific data with zero filled */
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL)

return -ENOMEM;

chip->card = card;

/* rest of initialization here; will be implemented
* later, see "PCI Resource Management"
*/

....

err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
if (err < 0) {

snd_mychip_free(chip);
return err;

}

*rchip = chip;
return 0;

}

/* constructor -- see "Driver Constructor" sub-section */
static int snd_mychip_probe(struct pci_dev *pci,

const struct pci_device_id *pci_id)
{

static int dev;
struct snd_card *card;
struct mychip *chip;
int err;

/* (1) */
if (dev >= SNDRV_CARDS)

return -ENODEV;
if (!enable[dev]) {

dev++;
return -ENOENT;

}

/* (2) */
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,

0, &card);
if (err < 0)

return err;

/* (3) */
err = snd_mychip_create(card, pci, &chip);
if (err < 0)

goto error;
(continues on next page)

108 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)

/* (4) */
strcpy(card->driver, "My Chip");
strcpy(card->shortname, "My Own Chip 123");
sprintf(card->longname, "%s at 0x%lx irq %i",

card->shortname, chip->port, chip->irq);

/* (5) */
.... /* implemented later */

/* (6) */
err = snd_card_register(card);
if (err < 0)

goto error;

/* (7) */
pci_set_drvdata(pci, card);
dev++;
return 0;

error:
snd_card_free(card);
return err;

}

/* destructor -- see the "Destructor" sub-section */
static void snd_mychip_remove(struct pci_dev *pci)
{

snd_card_free(pci_get_drvdata(pci));
}

Driver Constructor

The real constructor of PCI drivers is the probe callback. The probe callback and
other component-constructors which are called from the probe callback cannot be
used with the __init prefix because any PCI device could be a hotplug device.

In the probe callback, the following scheme is often used.

1) Check and increment the device index.

static int dev;
....
if (dev >= SNDRV_CARDS)

return -ENODEV;
if (!enable[dev]) {

dev++;
return -ENOENT;

}

where enable[dev] is the module option.

Each time the probe callback is called, check the availability of the device. If not

1.2. Writing an ALSA Driver 109

Linux Sound Documentation

available, simply increment the device index and returns. dev will be incremented
also later (step 7).

2) Create a card instance

struct snd_card *card;
int err;
....
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,

0, &card);

The details will be explained in the sectionManagement of Cards and Components.

3) Create a main component

In this part, the PCI resources are allocated.

struct mychip *chip;
....
err = snd_mychip_create(card, pci, &chip);
if (err < 0)

goto error;

The details will be explained in the section PCI Resource Management.

When something goes wrong, the probe function needs to deal with the error.
In this example, we have a single error handling path placed at the end of the
function.

error:
snd_card_free(card);
return err;

Since each component can be properly freed, the single snd_card_free() call
should suffice in most cases.

4) Set the driver ID and name strings.

strcpy(card->driver, "My Chip");
strcpy(card->shortname, "My Own Chip 123");
sprintf(card->longname, "%s at 0x%lx irq %i",

card->shortname, chip->port, chip->irq);

The driver field holds the minimal ID string of the chip. This is used by alsa-lib’s
configurator, so keep it simple but unique. Even the same driver can have different
driver IDs to distinguish the functionality of each chip type.

The shortname field is a string shown as more verbose name. The longname field
contains the information shown in /proc/asound/cards.

110 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

5) Create other components, such as mixer, MIDI, etc.

Here you define the basic components such as PCM, mixer (e.g. AC97), MIDI (e.g.
MPU-401), and other interfaces. Also, if you want a proc file, define it here, too.

6) Register the card instance.

err = snd_card_register(card);
if (err < 0)

goto error;

Will be explained in the section Management of Cards and Components, too.

7) Set the PCI driver data and return zero.

pci_set_drvdata(pci, card);
dev++;
return 0;

In the above, the card record is stored. This pointer is used in the remove callback
and power-management callbacks, too.

Destructor

The destructor, remove callback, simply releases the card instance. Then the ALSA
middle layer will release all the attached components automatically.

It would be typically just calling snd_card_free():

static void snd_mychip_remove(struct pci_dev *pci)
{

snd_card_free(pci_get_drvdata(pci));
}

The above code assumes that the card pointer is set to the PCI driver data.

Header Files

For the above example, at least the following include files are necessary.

#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>

where the last one is necessary only whenmodule options are defined in the source
file. If the code is split into several files, the files without module options don’t
need them.

1.2. Writing an ALSA Driver 111

Linux Sound Documentation

In addition to these headers, you’ll need <linux/interrupt.h> for interrupt han-
dling, and <linux/io.h> for I/O access. If you use the mdelay() or udelay()
functions, you’ll need to include <linux/delay.h> too.
The ALSA interfaces like the PCM and control APIs are defined in other <sound/
xxx.h> header files. They have to be included after <sound/core.h>.

1.2.4 Management of Cards and Components

Card Instance

For each soundcard, a “card”record must be allocated.
A card record is the headquarters of the soundcard. It manages the whole list of
devices (components) on the soundcard, such as PCM, mixers, MIDI, synthesizer,
and so on. Also, the card record holds the ID and the name strings of the card,
manages the root of proc files, and controls the power-management states and
hotplug disconnections. The component list on the card record is used to manage
the correct release of resources at destruction.

As mentioned above, to create a card instance, call snd_card_new().

struct snd_card *card;
int err;
err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);

The function takes six arguments: the parent device pointer, the card-index num-
ber, the id string, the module pointer (usually THIS_MODULE), the size of extra-data
space, and the pointer to return the card instance. The extra_size argument is
used to allocate card->private_data for the chip-specific data. Note that these
data are allocated by snd_card_new().

The first argument, the pointer of struct struct device, specifies the parent de-
vice. For PCI devices, typically &pci-> is passed there.

Components

After the card is created, you can attach the components (devices) to the card
instance. In an ALSA driver, a component is represented as a struct snd_device
object. A component can be a PCM instance, a control interface, a raw MIDI
interface, etc. Each such instance has one component entry.

A component can be created via snd_device_new() function.

snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);

This takes the card pointer, the device-level (SNDRV_DEV_XXX), the data pointer,
and the callback pointers (&ops). The device-level defines the type of compo-
nents and the order of registration and de-registration. For most components,
the device-level is already defined. For a user-defined component, you can use
SNDRV_DEV_LOWLEVEL.

112 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

This function itself doesn’t allocate the data space. The data must be allocated
manually beforehand, and its pointer is passed as the argument. This pointer (chip
in the above example) is used as the identifier for the instance.

Each pre-defined ALSA component such as ac97 and pcm calls snd_device_new()
inside its constructor. The destructor for each component is defined in the callback
pointers. Hence, you don’t need to take care of calling a destructor for such a
component.

If you wish to create your own component, you need to set the destructor function
to the dev_free callback in the ops, so that it can be released automatically via
snd_card_free(). The next example will show an implementation of chip-specific
data.

Chip-Specific Data

Chip-specific information, e.g. the I/O port address, its resource pointer, or the irq
number, is stored in the chip-specific record.

struct mychip {
....

};

In general, there are two ways of allocating the chip record.

1. Allocating via snd_card_new().

As mentioned above, you can pass the extra-data-length to the 5th argument of
snd_card_new(), i.e.

err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
sizeof(struct mychip), &card);

struct mychip is the type of the chip record.

In return, the allocated record can be accessed as

struct mychip *chip = card->private_data;

With this method, you don’t have to allocate twice. The record is released together
with the card instance.

2. Allocating an extra device.

After allocating a card instance via snd_card_new() (with 0 on the 4th arg), call
kzalloc().

struct snd_card *card;
struct mychip *chip;
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,

0, &card);
(continues on next page)

1.2. Writing an ALSA Driver 113

Linux Sound Documentation

(continued from previous page)
.....
chip = kzalloc(sizeof(*chip), GFP_KERNEL);

The chip record should have the field to hold the card pointer at least,

struct mychip {
struct snd_card *card;
....

};

Then, set the card pointer in the returned chip instance.

chip->card = card;

Next, initialize the fields, and register this chip record as a low-level device with
a specified ops,

static const struct snd_device_ops ops = {
.dev_free = snd_mychip_dev_free,

};
....
snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);

snd_mychip_dev_free() is the device-destructor function, which will call the real
destructor.

static int snd_mychip_dev_free(struct snd_device *device)
{

return snd_mychip_free(device->device_data);
}

where snd_mychip_free() is the real destructor.

The demerit of this method is the obviously more amount of codes. The merit is,
however, you can trigger the own callback at registering and disconnecting the
card via setting in snd_device_ops. About the registering and disconnecting the
card, see the subsections below.

Registration and Release

After all components are assigned, register the card instance by calling
snd_card_register(). Access to the device files is enabled at this point. That
is, before snd_card_register() is called, the components are safely inaccessible
from external side. If this call fails, exit the probe function after releasing the card
via snd_card_free().

For releasing the card instance, you can call simply snd_card_free(). As men-
tioned earlier, all components are released automatically by this call.

For a device which allows hotplugging, you can use
snd_card_free_when_closed(). This one will postpone the destruction until
all devices are closed.

114 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

1.2.5 PCI Resource Management

Full Code Example

In this section, we’ll complete the chip-specific constructor, destructor and PCI
entries. Example code is shown first, below.

struct mychip {
struct snd_card *card;
struct pci_dev *pci;

unsigned long port;
int irq;

};

static int snd_mychip_free(struct mychip *chip)
{

/* disable hardware here if any */
.... /* (not implemented in this document) */

/* release the irq */
if (chip->irq >= 0)

free_irq(chip->irq, chip);
/* release the I/O ports & memory */
pci_release_regions(chip->pci);
/* disable the PCI entry */
pci_disable_device(chip->pci);
/* release the data */
kfree(chip);
return 0;

}

/* chip-specific constructor */
static int snd_mychip_create(struct snd_card *card,

struct pci_dev *pci,
struct mychip **rchip)

{
struct mychip *chip;
int err;
static const struct snd_device_ops ops = {

.dev_free = snd_mychip_dev_free,
};

*rchip = NULL;

/* initialize the PCI entry */
err = pci_enable_device(pci);
if (err < 0)

return err;
/* check PCI availability (28bit DMA) */
if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||

pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
printk(KERN_ERR "error to set 28bit mask DMA\n");
pci_disable_device(pci);
return -ENXIO;

}
(continues on next page)

1.2. Writing an ALSA Driver 115

Linux Sound Documentation

(continued from previous page)

chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {

pci_disable_device(pci);
return -ENOMEM;

}

/* initialize the stuff */
chip->card = card;
chip->pci = pci;
chip->irq = -1;

/* (1) PCI resource allocation */
err = pci_request_regions(pci, "My Chip");
if (err < 0) {

kfree(chip);
pci_disable_device(pci);
return err;

}
chip->port = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_mychip_interrupt,

IRQF_SHARED, KBUILD_MODNAME, chip)) {
printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
snd_mychip_free(chip);
return -EBUSY;

}
chip->irq = pci->irq;
card->sync_irq = chip->irq;

/* (2) initialization of the chip hardware */
.... /* (not implemented in this document) */

err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
if (err < 0) {

snd_mychip_free(chip);
return err;

}

*rchip = chip;
return 0;

}

/* PCI IDs */
static struct pci_device_id snd_mychip_ids[] = {

{ PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },

....
{ 0, }

};
MODULE_DEVICE_TABLE(pci, snd_mychip_ids);

/* pci_driver definition */
static struct pci_driver driver = {

.name = KBUILD_MODNAME,

.id_table = snd_mychip_ids,

.probe = snd_mychip_probe,
(continues on next page)

116 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
.remove = snd_mychip_remove,

};

/* module initialization */
static int __init alsa_card_mychip_init(void)
{

return pci_register_driver(&driver);
}

/* module clean up */
static void __exit alsa_card_mychip_exit(void)
{

pci_unregister_driver(&driver);
}

module_init(alsa_card_mychip_init)
module_exit(alsa_card_mychip_exit)

EXPORT_NO_SYMBOLS; /* for old kernels only */

Some Hafta’s

The allocation of PCI resources is done in the probe function, and usually an extra
xxx_create() function is written for this purpose.

In the case of PCI devices, you first have to call the pci_enable_device() func-
tion before allocating resources. Also, you need to set the proper PCI DMA
mask to limit the accessed I/O range. In some cases, you might need to call
pci_set_master() function, too.

Suppose the 28bit mask, and the code to be added would be like:

err = pci_enable_device(pci);
if (err < 0)

return err;
if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||

pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
printk(KERN_ERR "error to set 28bit mask DMA\n");
pci_disable_device(pci);
return -ENXIO;

}

Resource Allocation

The allocation of I/O ports and irqs is done via standard kernel functions. These
resources must be released in the destructor function (see below).

Now assume that the PCI device has an I/O port with 8 bytes and an interrupt.
Then struct mychip will have the following fields:

struct mychip {
struct snd_card *card;

(continues on next page)

1.2. Writing an ALSA Driver 117

Linux Sound Documentation

(continued from previous page)

unsigned long port;
int irq;

};

For an I/O port (and also a memory region), you need to have the resource pointer
for the standard resource management. For an irq, you have to keep only the
irq number (integer). But you need to initialize this number as -1 before actual
allocation, since irq 0 is valid. The port address and its resource pointer can be
initialized as null by kzalloc() automatically, so you don’t have to take care of
resetting them.

The allocation of an I/O port is done like this:

err = pci_request_regions(pci, "My Chip");
if (err < 0) {

kfree(chip);
pci_disable_device(pci);
return err;

}
chip->port = pci_resource_start(pci, 0);

It will reserve the I/O port region of 8 bytes of the given PCI device. The returned
value, chip->res_port, is allocated via kmalloc() by request_region(). The
pointer must be released via kfree(), but there is a problem with this. This issue
will be explained later.

The allocation of an interrupt source is done like this:

if (request_irq(pci->irq, snd_mychip_interrupt,
IRQF_SHARED, KBUILD_MODNAME, chip)) {

printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
snd_mychip_free(chip);
return -EBUSY;

}
chip->irq = pci->irq;

where snd_mychip_interrupt() is the interrupt handler defined later. Note that
chip->irq should be defined only when request_irq() succeeded.

On the PCI bus, interrupts can be shared. Thus, IRQF_SHARED is used as the inter-
rupt flag of request_irq().

The last argument of request_irq() is the data pointer passed to the interrupt
handler. Usually, the chip-specific record is used for that, but you can use what
you like, too.

I won’t give details about the interrupt handler at this point, but at least its appear-
ance can be explained now. The interrupt handler looks usually like the following:

static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
{

struct mychip *chip = dev_id;
....
return IRQ_HANDLED;

}

118 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

After requesting the IRQ, you can passed it to card->sync_irq field:

card->irq = chip->irq;

This allows PCM core automatically performing synchronize_irq() at the neces-
sary timing like hw_free. See the later section sync_stop callback for details.

Now let’s write the corresponding destructor for the resources above. The role of
destructor is simple: disable the hardware (if already activated) and release the
resources. So far, we have no hardware part, so the disabling code is not written
here.

To release the resources, the“check-and-release”method is a safer way. For the
interrupt, do like this:

if (chip->irq >= 0)
free_irq(chip->irq, chip);

Since the irq number can start from 0, you should initialize chip->irq with a
negative value (e.g. -1), so that you can check the validity of the irq number as
above.

When you requested I/O ports or memory regions via pci_request_region() or
pci_request_regions() like in this example, release the resource(s) using the
corresponding function, pci_release_region() or pci_release_regions().

pci_release_regions(chip->pci);

When you requested manually via request_region() or request_mem_region(),
you can release it via release_resource(). Suppose that you keep the resource
pointer returned from request_region() in chip->res_port, the release procedure
looks like:

release_and_free_resource(chip->res_port);

Don’t forget to call pci_disable_device() before the end.
And finally, release the chip-specific record.

kfree(chip);

We didn’t implement the hardware disabling part in the above. If you need to do
this, please note that the destructor may be called even before the initialization of
the chip is completed. It would be better to have a flag to skip hardware disabling
if the hardware was not initialized yet.

When the chip-data is assigned to the card using snd_device_new() with
SNDRV_DEV_LOWLELVEL , its destructor is called at the last. That is, it is assured
that all other components like PCMs and controls have already been released. You
don’t have to stop PCMs, etc. explicitly, but just call low-level hardware stopping.
The management of a memory-mapped region is almost as same as the manage-
ment of an I/O port. You’ll need three fields like the following:
struct mychip {

....
(continues on next page)

1.2. Writing an ALSA Driver 119

Linux Sound Documentation

(continued from previous page)
unsigned long iobase_phys;
void __iomem *iobase_virt;

};

and the allocation would be like below:

err = pci_request_regions(pci, "My Chip");
if (err < 0) {

kfree(chip);
return err;

}
chip->iobase_phys = pci_resource_start(pci, 0);
chip->iobase_virt = ioremap(chip->iobase_phys,

pci_resource_len(pci, 0));

and the corresponding destructor would be:

static int snd_mychip_free(struct mychip *chip)
{

....
if (chip->iobase_virt)

iounmap(chip->iobase_virt);
....
pci_release_regions(chip->pci);
....

}

Of course, a modern way with pci_iomap() will make things a bit easier, too.

err = pci_request_regions(pci, "My Chip");
if (err < 0) {

kfree(chip);
return err;

}
chip->iobase_virt = pci_iomap(pci, 0, 0);

which is paired with pci_iounmap() at destructor.

PCI Entries

So far, so good. Let’s finish the missing PCI stuff. At first, we need a struct
pci_device_id table for this chipset. It’s a table of PCI vendor/device ID number,
and some masks.

For example,

static struct pci_device_id snd_mychip_ids[] = {
{ PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,

PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
....
{ 0, }

};
MODULE_DEVICE_TABLE(pci, snd_mychip_ids);

120 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

The first and second fields of the struct pci_device_id structure are the vendor
and device IDs. If you have no reason to filter the matching devices, you can leave
the remaining fields as above. The last field of the struct pci_device_id struct
contains private data for this entry. You can specify any value here, for example,
to define specific operations for supported device IDs. Such an example is found
in the intel8x0 driver.

The last entry of this list is the terminator. You must specify this all-zero entry.

Then, prepare the struct pci_driver record:

static struct pci_driver driver = {
.name = KBUILD_MODNAME,
.id_table = snd_mychip_ids,
.probe = snd_mychip_probe,
.remove = snd_mychip_remove,

};

The probe and remove functions have already been defined in the previous sec-
tions. The name field is the name string of this device. Note that you must not use
a slash “/”in this string.
And at last, the module entries:

static int __init alsa_card_mychip_init(void)
{

return pci_register_driver(&driver);
}

static void __exit alsa_card_mychip_exit(void)
{

pci_unregister_driver(&driver);
}

module_init(alsa_card_mychip_init)
module_exit(alsa_card_mychip_exit)

Note that these module entries are tagged with __init and __exit prefixes.

That’s all!

1.2.6 PCM Interface

General

The PCM middle layer of ALSA is quite powerful and it is only necessary for each
driver to implement the low-level functions to access its hardware.

For accessing to the PCM layer, you need to include <sound/pcm.h> first. In ad-
dition, <sound/pcm_params.h> might be needed if you access to some functions
related with hw_param.

Each card device can have up to four pcm instances. A pcm instance corresponds
to a pcm device file. The limitation of number of instances comes only from the
available bit size of the Linux’s device numbers. Once when 64bit device number
is used, we’ll have more pcm instances available.

1.2. Writing an ALSA Driver 121

Linux Sound Documentation

A pcm instance consists of pcm playback and capture streams, and each pcm
stream consists of one or more pcm substreams. Some soundcards support mul-
tiple playback functions. For example, emu10k1 has a PCM playback of 32 stereo
substreams. In this case, at each open, a free substream is (usually) automati-
cally chosen and opened. Meanwhile, when only one substream exists and it was
already opened, the successful open will either block or error with EAGAIN accord-
ing to the file open mode. But you don’t have to care about such details in your
driver. The PCM middle layer will take care of such work.

Full Code Example

The example code below does not include any hardware access routines but shows
only the skeleton, how to build up the PCM interfaces.

#include <sound/pcm.h>
....

/* hardware definition */
static struct snd_pcm_hardware snd_mychip_playback_hw = {

.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),

.formats = SNDRV_PCM_FMTBIT_S16_LE,

.rates = SNDRV_PCM_RATE_8000_48000,

.rate_min = 8000,

.rate_max = 48000,

.channels_min = 2,

.channels_max = 2,

.buffer_bytes_max = 32768,

.period_bytes_min = 4096,

.period_bytes_max = 32768,

.periods_min = 1,

.periods_max = 1024,
};

/* hardware definition */
static struct snd_pcm_hardware snd_mychip_capture_hw = {

.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),

.formats = SNDRV_PCM_FMTBIT_S16_LE,

.rates = SNDRV_PCM_RATE_8000_48000,

.rate_min = 8000,

.rate_max = 48000,

.channels_min = 2,

.channels_max = 2,

.buffer_bytes_max = 32768,

.period_bytes_min = 4096,

.period_bytes_max = 32768,

.periods_min = 1,

.periods_max = 1024,
};

(continues on next page)

122 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
/* open callback */
static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;

runtime->hw = snd_mychip_playback_hw;
/* more hardware-initialization will be done here */
....
return 0;

}

/* close callback */
static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
/* the hardware-specific codes will be here */
....
return 0;

}

/* open callback */
static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;

runtime->hw = snd_mychip_capture_hw;
/* more hardware-initialization will be done here */
....
return 0;

}

/* close callback */
static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
/* the hardware-specific codes will be here */
....
return 0;

}

/* hw_params callback */
static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,

struct snd_pcm_hw_params *hw_params)
{

/* the hardware-specific codes will be here */
....
return 0;

}

/* hw_free callback */
static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
{

/* the hardware-specific codes will be here */
(continues on next page)

1.2. Writing an ALSA Driver 123

Linux Sound Documentation

(continued from previous page)
....
return 0;

}

/* prepare callback */
static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;

/* set up the hardware with the current configuration
* for example...
*/

mychip_set_sample_format(chip, runtime->format);
mychip_set_sample_rate(chip, runtime->rate);
mychip_set_channels(chip, runtime->channels);
mychip_set_dma_setup(chip, runtime->dma_addr,

chip->buffer_size,
chip->period_size);

return 0;
}

/* trigger callback */
static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,

int cmd)
{

switch (cmd) {
case SNDRV_PCM_TRIGGER_START:

/* do something to start the PCM engine */
....
break;

case SNDRV_PCM_TRIGGER_STOP:
/* do something to stop the PCM engine */
....
break;

default:
return -EINVAL;

}
}

/* pointer callback */
static snd_pcm_uframes_t
snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
unsigned int current_ptr;

/* get the current hardware pointer */
current_ptr = mychip_get_hw_pointer(chip);
return current_ptr;

}

/* operators */
static struct snd_pcm_ops snd_mychip_playback_ops = {

.open = snd_mychip_playback_open,

.close = snd_mychip_playback_close,
(continues on next page)

124 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
.hw_params = snd_mychip_pcm_hw_params,
.hw_free = snd_mychip_pcm_hw_free,
.prepare = snd_mychip_pcm_prepare,
.trigger = snd_mychip_pcm_trigger,
.pointer = snd_mychip_pcm_pointer,

};

/* operators */
static struct snd_pcm_ops snd_mychip_capture_ops = {

.open = snd_mychip_capture_open,

.close = snd_mychip_capture_close,

.hw_params = snd_mychip_pcm_hw_params,

.hw_free = snd_mychip_pcm_hw_free,

.prepare = snd_mychip_pcm_prepare,

.trigger = snd_mychip_pcm_trigger,

.pointer = snd_mychip_pcm_pointer,
};

/*
* definitions of capture are omitted here...
*/

/* create a pcm device */
static int snd_mychip_new_pcm(struct mychip *chip)
{

struct snd_pcm *pcm;
int err;

err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
if (err < 0)

return err;
pcm->private_data = chip;
strcpy(pcm->name, "My Chip");
chip->pcm = pcm;
/* set operators */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,

&snd_mychip_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,

&snd_mychip_capture_ops);
/* pre-allocation of buffers */
/* NOTE: this may fail */
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,

&chip->pci->dev,
64*1024, 64*1024);

return 0;
}

1.2. Writing an ALSA Driver 125

Linux Sound Documentation

PCM Constructor

A pcm instance is allocated by the snd_pcm_new() function. It would be better to
create a constructor for pcm, namely,

static int snd_mychip_new_pcm(struct mychip *chip)
{

struct snd_pcm *pcm;
int err;

err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
if (err < 0)

return err;
pcm->private_data = chip;
strcpy(pcm->name, "My Chip");
chip->pcm = pcm;
....
return 0;

}

The snd_pcm_new() function takes four arguments. The first argument is the card
pointer to which this pcm is assigned, and the second is the ID string.

The third argument (index, 0 in the above) is the index of this new pcm. It be-
gins from zero. If you create more than one pcm instances, specify the different
numbers in this argument. For example, index = 1 for the second PCM device.

The fourth and fifth arguments are the number of substreams for playback and
capture, respectively. Here 1 is used for both arguments. When no playback or
capture substreams are available, pass 0 to the corresponding argument.

If a chip supports multiple playbacks or captures, you can specify more numbers,
but they must be handled properly in open/close, etc. callbacks. When you need to
know which substream you are referring to, then it can be obtained from struct
snd_pcm_substream data passed to each callback as follows:

struct snd_pcm_substream *substream;
int index = substream->number;

After the pcm is created, you need to set operators for each pcm stream.

snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_mychip_playback_ops);

snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_mychip_capture_ops);

The operators are defined typically like this:

static struct snd_pcm_ops snd_mychip_playback_ops = {
.open = snd_mychip_pcm_open,
.close = snd_mychip_pcm_close,
.hw_params = snd_mychip_pcm_hw_params,
.hw_free = snd_mychip_pcm_hw_free,
.prepare = snd_mychip_pcm_prepare,
.trigger = snd_mychip_pcm_trigger,
.pointer = snd_mychip_pcm_pointer,

};

126 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

All the callbacks are described in the Operators subsection.

After setting the operators, you probably will want to pre-allocate the buffer and
set up the managed allocation mode. For that, simply call the following:

snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
&chip->pci->dev,
64*1024, 64*1024);

It will allocate a buffer up to 64kB as default. Buffer management details will be
described in the later section Buffer and Memory Management.

Additionally, you can set some extra information for this pcm in pcm->info_flags.
The available values are defined as SNDRV_PCM_INFO_XXX in <sound/asound.h>,
which is used for the hardware definition (described later). When your soundchip
supports only half-duplex, specify like this:

pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;

⋯And the Destructor?

The destructor for a pcm instance is not always necessary. Since the pcm device
will be released by the middle layer code automatically, you don’t have to call the
destructor explicitly.

The destructor would be necessary if you created special records internally
and needed to release them. In such a case, set the destructor function to
pcm->private_free:

static void mychip_pcm_free(struct snd_pcm *pcm)
{

struct mychip *chip = snd_pcm_chip(pcm);
/* free your own data */
kfree(chip->my_private_pcm_data);
/* do what you like else */
....

}

static int snd_mychip_new_pcm(struct mychip *chip)
{

struct snd_pcm *pcm;
....
/* allocate your own data */
chip->my_private_pcm_data = kmalloc(...);
/* set the destructor */
pcm->private_data = chip;
pcm->private_free = mychip_pcm_free;
....

}

1.2. Writing an ALSA Driver 127

Linux Sound Documentation

Runtime Pointer - The Chest of PCM Information

When the PCM substream is opened, a PCM runtime instance is allocated and
assigned to the substream. This pointer is accessible via substream->runtime.
This runtime pointer holds most information you need to control the PCM: the copy
of hw_params and sw_params configurations, the buffer pointers, mmap records,
spinlocks, etc.

The definition of runtime instance is found in <sound/pcm.h>. Here are the con-
tents of this file:

struct _snd_pcm_runtime {
/* -- Status -- */
struct snd_pcm_substream *trigger_master;
snd_timestamp_t trigger_tstamp; /* trigger timestamp */
int overrange;
snd_pcm_uframes_t avail_max;
snd_pcm_uframes_t hw_ptr_base; /* Position at buffer␣

↪→restart */
snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/

/* -- HW params -- */
snd_pcm_access_t access; /* access mode */
snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
snd_pcm_subformat_t subformat; /* subformat */
unsigned int rate; /* rate in Hz */
unsigned int channels; /* channels */
snd_pcm_uframes_t period_size; /* period size */
unsigned int periods; /* periods */
snd_pcm_uframes_t buffer_size; /* buffer size */
unsigned int tick_time; /* tick time */
snd_pcm_uframes_t min_align; /* Min alignment for the format */
size_t byte_align;
unsigned int frame_bits;
unsigned int sample_bits;
unsigned int info;
unsigned int rate_num;
unsigned int rate_den;

/* -- SW params -- */
struct timespec tstamp_mode; /* mmap timestamp is updated */
unsigned int period_step;
unsigned int sleep_min; /* min ticks to sleep */
snd_pcm_uframes_t start_threshold;
snd_pcm_uframes_t stop_threshold;
snd_pcm_uframes_t silence_threshold; /* Silence filling happens␣

↪→when
noise is nearest than this␣

↪→*/
snd_pcm_uframes_t silence_size; /* Silence filling size */
snd_pcm_uframes_t boundary; /* pointers wrap point */

snd_pcm_uframes_t silenced_start;
snd_pcm_uframes_t silenced_size;

snd_pcm_sync_id_t sync; /* hardware synchronization␣
↪→ID */

(continues on next page)

128 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)

/* -- mmap -- */
volatile struct snd_pcm_mmap_status *status;
volatile struct snd_pcm_mmap_control *control;
atomic_t mmap_count;

/* -- locking / scheduling -- */
spinlock_t lock;
wait_queue_head_t sleep;
struct timer_list tick_timer;
struct fasync_struct *fasync;

/* -- private section -- */
void *private_data;
void (*private_free)(struct snd_pcm_runtime *runtime);

/* -- hardware description -- */
struct snd_pcm_hardware hw;
struct snd_pcm_hw_constraints hw_constraints;

/* -- timer -- */
unsigned int timer_resolution; /* timer resolution */

/* -- DMA -- */
unsigned char *dma_area; /* DMA area */
dma_addr_t dma_addr; /* physical bus address (not␣

↪→accessible from main CPU) */
size_t dma_bytes; /* size of DMA area */

struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */

#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
/* -- OSS things -- */
struct snd_pcm_oss_runtime oss;

#endif
};

For the operators (callbacks) of each sound driver, most of these records are sup-
posed to be read-only. Only the PCM middle-layer changes / updates them. The
exceptions are the hardware description (hw) DMA buffer information and the pri-
vate data. Besides, if you use the standard managed buffer allocation mode, you
don’t need to set the DMA buffer information by yourself.
In the sections below, important records are explained.

1.2. Writing an ALSA Driver 129

Linux Sound Documentation

Hardware Description

The hardware descriptor (struct snd_pcm_hardware) contains the definitions of
the fundamental hardware configuration. Above all, you’ll need to define this
in the PCM open callback. Note that the runtime instance holds the copy of the
descriptor, not the pointer to the existing descriptor. That is, in the open callback,
you can modify the copied descriptor (runtime->hw) as you need. For example, if
the maximum number of channels is 1 only on some chip models, you can still use
the same hardware descriptor and change the channels_max later:

struct snd_pcm_runtime *runtime = substream->runtime;
...
runtime->hw = snd_mychip_playback_hw; /* common definition */
if (chip->model == VERY_OLD_ONE)

runtime->hw.channels_max = 1;

Typically, you’ll have a hardware descriptor as below:
static struct snd_pcm_hardware snd_mychip_playback_hw = {

.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),

.formats = SNDRV_PCM_FMTBIT_S16_LE,

.rates = SNDRV_PCM_RATE_8000_48000,

.rate_min = 8000,

.rate_max = 48000,

.channels_min = 2,

.channels_max = 2,

.buffer_bytes_max = 32768,

.period_bytes_min = 4096,

.period_bytes_max = 32768,

.periods_min = 1,

.periods_max = 1024,
};

• The info field contains the type and capabilities of this pcm. The bit
flags are defined in <sound/asound.h> as SNDRV_PCM_INFO_XXX. Here, at
least, you have to specify whether the mmap is supported and which in-
terleaved format is supported. When the hardware supports mmap, add
the SNDRV_PCM_INFO_MMAP flag here. When the hardware supports the in-
terleaved or the non-interleaved formats, SNDRV_PCM_INFO_INTERLEAVED or
SNDRV_PCM_INFO_NONINTERLEAVED flag must be set, respectively. If both are
supported, you can set both, too.

In the above example, MMAP_VALID and BLOCK_TRANSFER are specified for the
OSS mmap mode. Usually both are set. Of course, MMAP_VALID is set only if
the mmap is really supported.

The other possible flags are SNDRV_PCM_INFO_PAUSE and
SNDRV_PCM_INFO_RESUME. The PAUSE bit means that the pcm supports
the“pause”operation, while the RESUME bit means that the pcm supports the
full“suspend/resume”operation. If the PAUSE flag is set, the trigger callback
below must handle the corresponding (pause push/release) commands. The
suspend/resume trigger commands can be defined even without the RESUME

130 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

flag. See Power Management section for details.

When the PCM substreams can be synchronized (typically, synchro-
nized start/stop of a playback and a capture streams), you can give
SNDRV_PCM_INFO_SYNC_START, too. In this case, you’ll need to check the
linked-list of PCM substreams in the trigger callback. This will be described
in the later section.

• formats field contains the bit-flags of supported formats
(SNDRV_PCM_FMTBIT_XXX). If the hardware supports more than one for-
mat, give all or’ed bits. In the example above, the signed 16bit little-endian
format is specified.

• rates field contains the bit-flags of supported rates (SNDRV_PCM_RATE_XXX).
When the chip supports continuous rates, pass CONTINUOUS bit additionally.
The pre-defined rate bits are provided only for typical rates. If your chip
supports unconventional rates, you need to add the KNOT bit and set up the
hardware constraint manually (explained later).

• rate_min and rate_max define the minimum and maximum sample rate. This
should correspond somehow to rates bits.

• channel_min and channel_max define, as you might already expected, the
minimum and maximum number of channels.

• buffer_bytes_max defines the maximum buffer size in bytes. There is no
buffer_bytes_min field, since it can be calculated from the minimum period
size and theminimum number of periods. Meanwhile, period_bytes_min and
define the minimum and maximum size of the period in bytes. periods_max
and periods_min define the maximum and minimum number of periods in
the buffer.

The “period”is a term that corresponds to a fragment in the OSS world.
The period defines the size at which a PCM interrupt is generated. This size
strongly depends on the hardware. Generally, the smaller period size will give
you more interrupts, that is, more controls. In the case of capture, this size
defines the input latency. On the other hand, the whole buffer size defines
the output latency for the playback direction.

• There is also a field fifo_size. This specifies the size of the hardware FIFO,
but currently it is neither used in the driver nor in the alsa-lib. So, you can
ignore this field.

PCM Configurations

Ok, let’s go back again to the PCM runtime records. The most frequently referred
records in the runtime instance are the PCM configurations. The PCM configura-
tions are stored in the runtime instance after the application sends hw_params data
via alsa-lib. There are many fields copied from hw_params and sw_params structs.
For example, format holds the format type chosen by the application. This field
contains the enum value SNDRV_PCM_FORMAT_XXX.

One thing to be noted is that the configured buffer and period sizes are
stored in “frames”in the runtime. In the ALSA world, 1 frame = channels

1.2. Writing an ALSA Driver 131

Linux Sound Documentation

* samples-size. For conversion between frames and bytes, you can use the
frames_to_bytes() and bytes_to_frames() helper functions.

period_bytes = frames_to_bytes(runtime, runtime->period_size);

Also, many software parameters (sw_params) are stored in frames, too. Please
check the type of the field. snd_pcm_uframes_t is for the frames as unsigned
integer while snd_pcm_sframes_t is for the frames as signed integer.

DMA Buffer Information

The DMA buffer is defined by the following four fields, dma_area, dma_addr,
dma_bytes and dma_private. The dma_area holds the buffer pointer (the logical
address). You can call memcpy() from/to this pointer. Meanwhile, dma_addr holds
the physical address of the buffer. This field is specified only when the buffer is a
linear buffer. dma_bytes holds the size of buffer in bytes. dma_private is used for
the ALSA DMA allocator.

If you use either the managed buffer allocation mode or the standard API function
snd_pcm_lib_malloc_pages() for allocating the buffer, these fields are set by the
ALSA middle layer, and you should not change them by yourself. You can read
them but not write them. On the other hand, if you want to allocate the buffer by
yourself, you’ll need to manage it in hw_params callback. At least, dma_bytes
is mandatory. dma_area is necessary when the buffer is mmapped. If your driver
doesn’t support mmap, this field is not necessary. dma_addr is also optional. You
can use dma_private as you like, too.

Running Status

The running status can be referred via runtime->status. This is the pointer to
the struct snd_pcm_mmap_status record. For example, you can get the current
DMA hardware pointer via runtime->status->hw_ptr.

The DMA application pointer can be referred via runtime->control, which points
to the struct snd_pcm_mmap_control record. However, accessing directly to this
value is not recommended.

Private Data

You can allocate a record for the substream and store it in
runtime->private_data. Usually, this is done in the PCM open callback.
Don’t mix this with pcm->private_data. The pcm->private_data usually
points to the chip instance assigned statically at the creation of PCM, while the
runtime->private_data points to a dynamic data structure created at the PCM
open callback.

static int snd_xxx_open(struct snd_pcm_substream *substream)
{

struct my_pcm_data *data;
....

(continues on next page)

132 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
data = kmalloc(sizeof(*data), GFP_KERNEL);
substream->runtime->private_data = data;
....

}

The allocated object must be released in the close callback.

Operators

OK, now let me give details about each pcm callback (ops). In general, every
callback must return 0 if successful, or a negative error number such as -EINVAL.
To choose an appropriate error number, it is advised to check what value other
parts of the kernel return when the same kind of request fails.

The callback function takes at least the argument with struct
snd_pcm_substream pointer. To retrieve the chip record from the given sub-
stream instance, you can use the following macro.

int xxx() {
struct mychip *chip = snd_pcm_substream_chip(substream);
....

}

The macro reads substream->private_data, which is a copy of
pcm->private_data. You can override the former if you need to assign dif-
ferent data records per PCM substream. For example, the cmi8330 driver assigns
different private_data for playback and capture directions, because it uses two
different codecs (SB- and AD-compatible) for different directions.

PCM open callback

static int snd_xxx_open(struct snd_pcm_substream *substream);

This is called when a pcm substream is opened.

At least, here you have to initialize the runtime->hw record. Typically, this is done
by like this:

static int snd_xxx_open(struct snd_pcm_substream *substream)
{

struct mychip *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;

runtime->hw = snd_mychip_playback_hw;
return 0;

}

where snd_mychip_playback_hw is the pre-defined hardware description.

You can allocate a private data in this callback, as described in Private Data sec-
tion.

1.2. Writing an ALSA Driver 133

Linux Sound Documentation

If the hardware configuration needs more constraints, set the hardware con-
straints here, too. See Constraints for more details.

close callback

static int snd_xxx_close(struct snd_pcm_substream *substream);

Obviously, this is called when a pcm substream is closed.

Any private instance for a pcm substream allocated in the open callback will be
released here.

static int snd_xxx_close(struct snd_pcm_substream *substream)
{

....
kfree(substream->runtime->private_data);
....

}

ioctl callback

This is used for any special call to pcm ioctls. But usually you can leave it as NULL,
then PCM core calls the generic ioctl callback function snd_pcm_lib_ioctl(). If
you need to deal with the unique setup of channel info or reset procedure, you can
pass your own callback function here.

hw_params callback

static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params);

This is called when the hardware parameter (hw_params) is set up by the applica-
tion, that is, once when the buffer size, the period size, the format, etc. are defined
for the pcm substream.

Many hardware setups should be done in this callback, including the allocation of
buffers.

Parameters to be initialized are retrieved by params_xxx() macros.

When you set up the managed buffer allocation mode for the substream, a buffer
is already allocated before this callback gets called. Alternatively, you can call a
helper function below for allocating the buffer, too.

snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));

snd_pcm_lib_malloc_pages() is available only when the DMA buffers have been
pre-allocated. See the section Buffer Types for more details.

Note that this and prepare callbacks may be called multiple times per initializa-
tion. For example, the OSS emulation may call these callbacks at each change via
its ioctl.

134 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Thus, you need to be careful not to allocate the same buffers many times, which
will lead to memory leaks! Calling the helper function above many times is OK. It
will release the previous buffer automatically when it was already allocated.

Another note is that this callback is non-atomic (schedulable) as default, i.e. when
no nonatomic flag set. This is important, because the trigger callback is atomic
(non-schedulable). That is, mutexes or any schedule-related functions are not
available in trigger callback. Please see the subsection Atomicity for details.

hw_free callback

static int snd_xxx_hw_free(struct snd_pcm_substream *substream);

This is called to release the resources allocated via hw_params.

This function is always called before the close callback is called. Also, the callback
may be called multiple times, too. Keep track whether the resource was already
released.

When you have set up the managed buffer allocation mode for the PCM substream,
the allocated PCM buffer will be automatically released after this callback gets
called. Otherwise you’ll have to release the buffer manually. Typically, when the
buffer was allocated from the pre-allocated pool, you can use the standard API
function snd_pcm_lib_malloc_pages() like:

snd_pcm_lib_free_pages(substream);

prepare callback

static int snd_xxx_prepare(struct snd_pcm_substream *substream);

This callback is called when the pcm is“prepared”. You can set the format type,
sample rate, etc. here. The difference from hw_params is that the prepare callback
will be called each time snd_pcm_prepare() is called, i.e. when recovering after
underruns, etc.

Note that this callback is now non-atomic. You can use schedule-related functions
safely in this callback.

In this and the following callbacks, you can refer to the values via the
runtime record, substream->runtime. For example, to get the current
rate, format or channels, access to runtime->rate, runtime->format or
runtime->channels, respectively. The physical address of the allocated
buffer is set to runtime->dma_area. The buffer and period sizes are in
runtime->buffer_size and runtime->period_size, respectively.

Be careful that this callback will be called many times at each setup, too.

1.2. Writing an ALSA Driver 135

Linux Sound Documentation

trigger callback

static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);

This is called when the pcm is started, stopped or paused.

Which action is specified in the second argument, SNDRV_PCM_TRIGGER_XXX in
<sound/pcm.h>. At least, the START and STOP commands must be defined in this
callback.

switch (cmd) {
case SNDRV_PCM_TRIGGER_START:

/* do something to start the PCM engine */
break;

case SNDRV_PCM_TRIGGER_STOP:
/* do something to stop the PCM engine */
break;

default:
return -EINVAL;

}

When the pcm supports the pause operation (given in the info field of the hardware
table), the PAUSE_PUSH and PAUSE_RELEASE commands must be handled here, too.
The former is the command to pause the pcm, and the latter to restart the pcm
again.

When the pcm supports the suspend/resume operation, regardless of full or par-
tial suspend/resume support, the SUSPEND and RESUME commandsmust be handled,
too. These commands are issued when the power-management status is changed.
Obviously, the SUSPEND and RESUME commands suspend and resume the pcm sub-
stream, and usually, they are identical to the STOP and START commands, respec-
tively. See the Power Management section for details.

As mentioned, this callback is atomic as default unless nonatomic flag set, and you
cannot call functions which may sleep. The trigger callback should be as minimal
as possible, just really triggering the DMA. The other stuff should be initialized
hw_params and prepare callbacks properly beforehand.

sync_stop callback

static int snd_xxx_sync_stop(struct snd_pcm_substream *substream);

This callback is optional, and NULL can be passed. It’s called after the PCM core
stops the stream and changes the stream state prepare, hw_params or hw_free.
Since the IRQ handler might be still pending, we need to wait until the pending
task finishes before moving to the next step; otherwise it might lead to a crash due
to resource conflicts or access to the freed resources. A typical behavior is to call
a synchronization function like synchronize_irq() here.

For majority of drivers that need only a call of synchronize_irq(), there is a
simpler setup, too. While keeping NULL to sync_stop PCM callback, the driver
can set card->sync_irq field to store the valid interrupt number after requesting

136 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

an IRQ, instead. Then PCM core will look call synchronize_irq() with the given
IRQ appropriately.

If the IRQ handler is released at the card destructor, you don’t need to clear
card->sync_irq, as the card itself is being released. So, usually you’ll need to
add just a single line for assigning card->sync_irq in the driver code unless the
driver re-acquires the IRQ. When the driver frees and re-acquires the IRQ dynami-
cally (e.g. for suspend/resume), it needs to clear and re-set card->sync_irq again
appropriately.

pointer callback

static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream␣
↪→*substream)

This callback is called when the PCM middle layer inquires the current hardware
position on the buffer. The position must be returned in frames, ranging from 0 to
buffer_size - 1.

This is called usually from the buffer-update routine in the pcmmiddle layer, which
is invoked when snd_pcm_period_elapsed() is called in the interrupt routine.
Then the pcmmiddle layer updates the position and calculates the available space,
and wakes up the sleeping poll threads, etc.

This callback is also atomic as default.

copy_user, copy_kernel and fill_silence ops

These callbacks are not mandatory, and can be omitted in most cases. These call-
backs are used when the hardware buffer cannot be in the normal memory space.
Some chips have their own buffer on the hardware which is not mappable. In
such a case, you have to transfer the data manually from the memory buffer to the
hardware buffer. Or, if the buffer is non-contiguous on both physical and virtual
memory spaces, these callbacks must be defined, too.

If these two callbacks are defined, copy and set-silence operations are done by
them. The detailed will be described in the later section Buffer and Memory Man-
agement.

ack callback

This callback is also not mandatory. This callback is called when the appl_ptr is
updated in read or write operations. Some drivers like emu10k1-fx and cs46xx
need to track the current appl_ptr for the internal buffer, and this callback is
useful only for such a purpose.

This callback is atomic as default.

1.2. Writing an ALSA Driver 137

Linux Sound Documentation

page callback

This callback is optional too. The mmap calls this callback to get the page fault
address.

Since the recent changes, you need no special callback any longer for the standard
SG-buffer or vmalloc-buffer. Hence this callback should be rarely used.

mmap calllback

This is another optional callback for controlling mmap behavior. Once when de-
fined, PCM core calls this callback when a page is memory-mapped instead of
dealing via the standard helper. If you need special handling (due to some archi-
tecture or device-specific issues), implement everything here as you like.

PCM Interrupt Handler

The rest of pcm stuff is the PCM interrupt handler. The role of PCM interrupt
handler in the sound driver is to update the buffer position and to tell the PCM
middle layer when the buffer position goes across the prescribed period size. To
inform this, call the snd_pcm_period_elapsed() function.

There are several types of sound chips to generate the interrupts.

Interrupts at the period (fragment) boundary

This is the most frequently found type: the hardware generates an interrupt at
each period boundary. In this case, you can call snd_pcm_period_elapsed() at
each interrupt.

snd_pcm_period_elapsed() takes the substream pointer as its argument. Thus,
you need to keep the substream pointer accessible from the chip instance. For
example, define substream field in the chip record to hold the current running
substream pointer, and set the pointer value at open callback (and reset at close
callback).

If you acquire a spinlock in the interrupt handler, and the lock is used in
other pcm callbacks, too, then you have to release the lock before calling
snd_pcm_period_elapsed(), because snd_pcm_period_elapsed() calls other
pcm callbacks inside.

Typical code would be like:

static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
{

struct mychip *chip = dev_id;
spin_lock(&chip->lock);
....
if (pcm_irq_invoked(chip)) {

/* call updater, unlock before it */
spin_unlock(&chip->lock);

(continues on next page)

138 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
snd_pcm_period_elapsed(chip->substream);
spin_lock(&chip->lock);
/* acknowledge the interrupt if necessary */

}
....
spin_unlock(&chip->lock);
return IRQ_HANDLED;

}

High frequency timer interrupts

This happens when the hardware doesn’t generate interrupts at the period bound-
ary but issues timer interrupts at a fixed timer rate (e.g. es1968 or ymfpci drivers).
In this case, you need to check the current hardware position and accumulate the
processed sample length at each interrupt. When the accumulated size exceeds
the period size, call snd_pcm_period_elapsed() and reset the accumulator.

Typical code would be like the following.

static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
{

struct mychip *chip = dev_id;
spin_lock(&chip->lock);
....
if (pcm_irq_invoked(chip)) {

unsigned int last_ptr, size;
/* get the current hardware pointer (in frames) */
last_ptr = get_hw_ptr(chip);
/* calculate the processed frames since the
* last update
*/

if (last_ptr < chip->last_ptr)
size = runtime->buffer_size + last_ptr

- chip->last_ptr;
else

size = last_ptr - chip->last_ptr;
/* remember the last updated point */
chip->last_ptr = last_ptr;
/* accumulate the size */
chip->size += size;
/* over the period boundary? */
if (chip->size >= runtime->period_size) {

/* reset the accumulator */
chip->size %= runtime->period_size;
/* call updater */
spin_unlock(&chip->lock);
snd_pcm_period_elapsed(substream);
spin_lock(&chip->lock);

}
/* acknowledge the interrupt if necessary */

}
....
spin_unlock(&chip->lock);

(continues on next page)

1.2. Writing an ALSA Driver 139

Linux Sound Documentation

(continued from previous page)
return IRQ_HANDLED;

}

On calling snd_pcm_period_elapsed()

In both cases, even if more than one period are elapsed, you don’t have to call
snd_pcm_period_elapsed() many times. Call only once. And the pcm layer will
check the current hardware pointer and update to the latest status.

Atomicity

One of the most important (and thus difficult to debug) problems in kernel pro-
gramming are race conditions. In the Linux kernel, they are usually avoided via
spin-locks, mutexes or semaphores. In general, if a race condition can happen in
an interrupt handler, it has to be managed atomically, and you have to use a spin-
lock to protect the critical session. If the critical section is not in interrupt handler
code and if taking a relatively long time to execute is acceptable, you should use
mutexes or semaphores instead.

As already seen, some pcm callbacks are atomic and some are not. For exam-
ple, the hw_params callback is non-atomic, while trigger callback is atomic. This
means, the latter is called already in a spinlock held by the PCM middle layer.
Please take this atomicity into account when you choose a locking scheme in the
callbacks.

In the atomic callbacks, you cannot use functions which may call schedule() or go
to sleep(). Semaphores and mutexes can sleep, and hence they cannot be used
inside the atomic callbacks (e.g. trigger callback). To implement some delay in
such a callback, please use udelay() or mdelay().

All three atomic callbacks (trigger, pointer, and ack) are called with local interrupts
disabled.

The recent changes in PCM core code, however, allow all PCM operations to be
non-atomic. This assumes that the all caller sides are in non-atomic contexts. For
example, the function snd_pcm_period_elapsed() is called typically from the in-
terrupt handler. But, if you set up the driver to use a threaded interrupt handler,
this call can be in non-atomic context, too. In such a case, you can set nonatomic
filed of struct snd_pcm object after creating it. When this flag is set, mutex and
rwsem are used internally in the PCM core instead of spin and rwlocks, so that
you can call all PCM functions safely in a non-atomic context.

140 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Constraints

If your chip supports unconventional sample rates, or only the limited samples,
you need to set a constraint for the condition.

For example, in order to restrict the sample rates in the some supported values,
use snd_pcm_hw_constraint_list(). You need to call this function in the open
callback.

static unsigned int rates[] =
{4000, 10000, 22050, 44100};

static struct snd_pcm_hw_constraint_list constraints_rates = {
.count = ARRAY_SIZE(rates),
.list = rates,
.mask = 0,

};

static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
{

int err;
....
err = snd_pcm_hw_constraint_list(substream->runtime, 0,

SNDRV_PCM_HW_PARAM_RATE,
&constraints_rates);

if (err < 0)
return err;

....
}

There are many different constraints. Look at sound/pcm.h for a complete list. You
can even define your own constraint rules. For example, let’s suppose my_chip
can manage a substream of 1 channel if and only if the format is S16_LE, otherwise
it supports any format specified in the struct snd_pcm_hardware structure (or in
any other constraint_list). You can build a rule like this:

static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)

{
struct snd_interval *c = hw_param_interval(params,

SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_

↪→FORMAT);
struct snd_interval ch;

snd_interval_any(&ch);
if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {

ch.min = ch.max = 1;
ch.integer = 1;
return snd_interval_refine(c, &ch);

}
return 0;

}

Then you need to call this function to add your rule:

1.2. Writing an ALSA Driver 141

Linux Sound Documentation

snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
hw_rule_channels_by_format, NULL,
SNDRV_PCM_HW_PARAM_FORMAT, -1);

The rule function is called when an application sets the PCM format, and it refines
the number of channels accordingly. But an application may set the number of
channels before setting the format. Thus you also need to define the inverse rule:

static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)

{
struct snd_interval *c = hw_param_interval(params,

SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_

↪→FORMAT);
struct snd_mask fmt;

snd_mask_any(&fmt); /* Init the struct */
if (c->min < 2) {

fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
return snd_mask_refine(f, &fmt);

}
return 0;

}

⋯and in the open callback:
snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,

hw_rule_format_by_channels, NULL,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);

One typical usage of the hw constraints is to align the buffer size with the period
size. As default, ALSA PCM core doesn’t enforce the buffer size to be aligned
with the period size. For example, it’d be possible to have a combination like 256
period bytes with 999 buffer bytes.

Many device chips, however, require the buffer to be a multiple of
periods. In such a case, call snd_pcm_hw_constraint_integer() for
SNDRV_PCM_HW_PARAM_PERIODS.

snd_pcm_hw_constraint_integer(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIODS);

This assures that the number of periods is integer, hence the buffer size is aligned
with the period size.

The hw constraint is a very much powerful mechanism to define the preferred
PCM configuration, and there are relevant helpers. I won’t give more details
here, rather I would like to say, “Luke, use the source.”

142 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

1.2.7 Control Interface

General

The control interface is used widely for many switches, sliders, etc. which are
accessed from user-space. Its most important use is the mixer interface. In other
words, since ALSA 0.9.x, all the mixer stuff is implemented on the control kernel
API.

ALSA has a well-defined AC97 control module. If your chip supports only the AC97
and nothing else, you can skip this section.

The control API is defined in <sound/control.h>. Include this file if you want to
add your own controls.

Definition of Controls

To create a new control, you need to define the following three callbacks: info,
get and put. Then, define a struct snd_kcontrol_new record, such as:

static struct snd_kcontrol_new my_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Switch",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = 0xffff,
.info = my_control_info,
.get = my_control_get,
.put = my_control_put

};

The iface field specifies the control type, SNDRV_CTL_ELEM_IFACE_XXX, which is
usually MIXER. Use CARD for global controls that are not logically part of the mixer.
If the control is closely associated with some specific device on the sound card, use
HWDEP, PCM, RAWMIDI, TIMER, or SEQUENCER, and specify the device number with the
device and subdevice fields.

The name is the name identifier string. Since ALSA 0.9.x, the control name is very
important, because its role is classified from its name. There are pre-defined stan-
dard control names. The details are described in the Control Names subsection.

The index field holds the index number of this control. If there are several different
controls with the same name, they can be distinguished by the index number. This
is the case when several codecs exist on the card. If the index is zero, you can
omit the definition above.

The access field contains the access type of this control. Give the combination of
bit masks, SNDRV_CTL_ELEM_ACCESS_XXX, there. The details will be explained in
the Access Flags subsection.

The private_value field contains an arbitrary long integer value for this record.
When using the generic info, get and put callbacks, you can pass a value through
this field. If several small numbers are necessary, you can combine them in bitwise.
Or, it’s possible to give a pointer (casted to unsigned long) of some record to this
field, too.

1.2. Writing an ALSA Driver 143

Linux Sound Documentation

The tlv field can be used to provide metadata about the control; see the Metadata
subsection.

The other three are Control Callbacks.

Control Names

There are some standards to define the control names. A control is usually defined
from the three parts as “SOURCE DIRECTION FUNCTION”.
The first, SOURCE, specifies the source of the control, and is a string such as“Mas-
ter”, “PCM”, “CD”and “Line”. There are many pre-defined sources.
The second, DIRECTION, is one of the following strings according to the direction
of the control:“Playback”,“Capture”,“Bypass Playback”and“Bypass Capture”
. Or, it can be omitted, meaning both playback and capture directions.

The third, FUNCTION, is one of the following strings according to the function of
the control: “Switch”, “Volume”and “Route”.
The example of control names are, thus,“Master Capture Switch”or“PCM Play-
back Volume”.
There are some exceptions:

Global capture and playback

“Capture Source”, “Capture Switch”and “Capture Volume”are used for the
global capture (input) source, switch and volume. Similarly, “Playback Switch”
and “Playback Volume”are used for the global output gain switch and volume.

Tone-controls

tone-control switch and volumes are specified like “Tone Control - XXX”, e.g.
“Tone Control - Switch”, “Tone Control - Bass”, “Tone Control - Center”.

3D controls

3D-control switches and volumes are specified like“3D Control - XXX”, e.g.“3D
Control - Switch”, “3D Control - Center”, “3D Control - Space”.

Mic boost

Mic-boost switch is set as “Mic Boost”or “Mic Boost (6dB)”.
More precise information can be found in Documentation/sound/designs/
control-names.rst.

144 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

Access Flags

The access flag is the bitmask which specifies the access type of the given control.
The default access type is SNDRV_CTL_ELEM_ACCESS_READWRITE, which means both
read and write are allowed to this control. When the access flag is omitted (i.e. =
0), it is considered as READWRITE access as default.

When the control is read-only, pass SNDRV_CTL_ELEM_ACCESS_READ instead. In this
case, you don’t have to define the put callback. Similarly, when the control is
write-only (although it’s a rare case), you can use the WRITE flag instead, and you
don’t need the get callback.
If the control value changes frequently (e.g. the VU meter), VOLATILE flag should
be given. This means that the control may be changed without Change notification.
Applications should poll such a control constantly.

When the control is inactive, set the INACTIVE flag, too. There are LOCK and OWNER
flags to change the write permissions.

Control Callbacks

info callback

The info callback is used to get detailed information on this control. This must
store the values of the given struct snd_ctl_elem_info object. For example, for
a boolean control with a single element:

static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)

{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;

}

The type field specifies the type of the control. There are BOOLEAN, INTEGER,
ENUMERATED, BYTES, IEC958 and INTEGER64. The count field specifies the num-
ber of elements in this control. For example, a stereo volume would have count
= 2. The value field is a union, and the values stored are depending on the type.
The boolean and integer types are identical.

The enumerated type is a bit different from others. You’ll need to set the string
for the currently given item index.

static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)

{
static char *texts[4] = {

"First", "Second", "Third", "Fourth"
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;

(continues on next page)

1.2. Writing an ALSA Driver 145

Linux Sound Documentation

(continued from previous page)
uinfo->value.enumerated.items = 4;
if (uinfo->value.enumerated.item > 3)

uinfo->value.enumerated.item = 3;
strcpy(uinfo->value.enumerated.name,

texts[uinfo->value.enumerated.item]);
return 0;

}

The above callback can be simplified with a helper function,
snd_ctl_enum_info(). The final code looks like below. (You can pass
ARRAY_SIZE(texts) instead of 4 in the third argument; it’s a matter of taste.)
static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,

struct snd_ctl_elem_info *uinfo)
{

static char *texts[4] = {
"First", "Second", "Third", "Fourth"

};
return snd_ctl_enum_info(uinfo, 1, 4, texts);

}

Some common info callbacks are available for your convenience:
snd_ctl_boolean_mono_info() and snd_ctl_boolean_stereo_info(). Ob-
viously, the former is an info callback for a mono channel boolean item, just like
snd_myctl_mono_info() above, and the latter is for a stereo channel boolean
item.

get callback

This callback is used to read the current value of the control and to return to user-
space.

For example,

static int snd_myctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)

{
struct mychip *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = get_some_value(chip);
return 0;

}

The value field depends on the type of control as well as on the info callback. For
example, the sb driver uses this field to store the register offset, the bit-shift and
the bit-mask. The private_value field is set as follows:

.private_value = reg | (shift << 16) | (mask << 24)

and is retrieved in callbacks like

static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)

{
(continues on next page)

146 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 16) & 0xff;
int mask = (kcontrol->private_value >> 24) & 0xff;
....

}

In the get callback, you have to fill all the elements if the control has more than
one elements, i.e. count > 1. In the example above, we filled only one element
(value.integer.value[0]) since it’s assumed as count = 1.

put callback

This callback is used to write a value from user-space.

For example,

static int snd_myctl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)

{
struct mychip *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
if (chip->current_value !=

ucontrol->value.integer.value[0]) {
change_current_value(chip,

ucontrol->value.integer.value[0]);
changed = 1;

}
return changed;

}

As seen above, you have to return 1 if the value is changed. If the value is not
changed, return 0 instead. If any fatal error happens, return a negative error
code as usual.

As in the get callback, when the control has more than one elements, all elements
must be evaluated in this callback, too.

Callbacks are not atomic

All these three callbacks are basically not atomic.

Control Constructor

When everything is ready, finally we can create a new control. To create a control,
there are two functions to be called, snd_ctl_new1() and snd_ctl_add().

In the simplest way, you can do like this:

err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
if (err < 0)

return err;

1.2. Writing an ALSA Driver 147

Linux Sound Documentation

where my_control is the struct snd_kcontrol_new object defined above, and
chip is the object pointer to be passed to kcontrol->private_data which can be
referred to in callbacks.

snd_ctl_new1() allocates a new struct snd_kcontrol instance, and
snd_ctl_add() assigns the given control component to the card.

Change Notification

If you need to change and update a control in the interrupt routine, you can call
snd_ctl_notify(). For example,

snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);

This function takes the card pointer, the event-mask, and the control id pointer for
the notification. The event-mask specifies the types of notification, for example, in
the above example, the change of control values is notified. The id pointer is the
pointer of struct snd_ctl_elem_id to be notified. You can find some examples
in es1938.c or es1968.c for hardware volume interrupts.

Metadata

To provide information about the dB values of a mixer control, use on of the
DECLARE_TLV_xxx macros from <sound/tlv.h> to define a variable containing
this information, set the tlv.p field to point to this variable, and include the
SNDRV_CTL_ELEM_ACCESS_TLV_READ flag in the access field; like this:

static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);

static struct snd_kcontrol_new my_control = {
...
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |

SNDRV_CTL_ELEM_ACCESS_TLV_READ,
...
.tlv.p = db_scale_my_control,

};

The DECLARE_TLV_DB_SCALE() macro defines information about a mixer control
where each step in the control’s value changes the dB value by a constant dB
amount. The first parameter is the name of the variable to be defined. The second
parameter is the minimum value, in units of 0.01 dB. The third parameter is the
step size, in units of 0.01 dB. Set the fourth parameter to 1 if the minimum value
actually mutes the control.

The DECLARE_TLV_DB_LINEAR() macro defines information about a mixer control
where the control’s value affects the output linearly. The first parameter is
the name of the variable to be defined. The second parameter is the minimum
value, in units of 0.01 dB. The third parameter is the maximum value, in units
of 0.01 dB. If the minimum value mutes the control, set the second parameter to
TLV_DB_GAIN_MUTE.

148 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

1.2.8 API for AC97 Codec

General

The ALSA AC97 codec layer is a well-defined one, and you don’t have to write
much code to control it. Only low-level control routines are necessary. The AC97
codec API is defined in <sound/ac97_codec.h>.

Full Code Example

struct mychip {
....
struct snd_ac97 *ac97;
....

};

static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)

{
struct mychip *chip = ac97->private_data;
....
/* read a register value here from the codec */
return the_register_value;

}

static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)

{
struct mychip *chip = ac97->private_data;
....
/* write the given register value to the codec */

}

static int snd_mychip_ac97(struct mychip *chip)
{

struct snd_ac97_bus *bus;
struct snd_ac97_template ac97;
int err;
static struct snd_ac97_bus_ops ops = {

.write = snd_mychip_ac97_write,

.read = snd_mychip_ac97_read,
};

err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
if (err < 0)

return err;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
return snd_ac97_mixer(bus, &ac97, &chip->ac97);

}

1.2. Writing an ALSA Driver 149

Linux Sound Documentation

AC97 Constructor

To create an ac97 instance, first call snd_ac97_bus() with an ac97_bus_ops_t
record with callback functions.

struct snd_ac97_bus *bus;
static struct snd_ac97_bus_ops ops = {

.write = snd_mychip_ac97_write,

.read = snd_mychip_ac97_read,
};

snd_ac97_bus(card, 0, &ops, NULL, &pbus);

The bus record is shared among all belonging ac97 instances.

And then call snd_ac97_mixer() with an struct snd_ac97_template record to-
gether with the bus pointer created above.

struct snd_ac97_template ac97;
int err;

memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
snd_ac97_mixer(bus, &ac97, &chip->ac97);

where chip->ac97 is a pointer to a newly created ac97_t instance. In this case,
the chip pointer is set as the private data, so that the read/write callback functions
can refer to this chip instance. This instance is not necessarily stored in the chip
record. If you need to change the register values from the driver, or need the
suspend/resume of ac97 codecs, keep this pointer to pass to the corresponding
functions.

AC97 Callbacks

The standard callbacks are read and write. Obviously they correspond to the
functions for read and write accesses to the hardware low-level codes.

The read callback returns the register value specified in the argument.

static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)

{
struct mychip *chip = ac97->private_data;
....
return the_register_value;

}

Here, the chip can be cast from ac97->private_data.

Meanwhile, the write callback is used to set the register value

static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)

These callbacks are non-atomic like the control API callbacks.

150 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

There are also other callbacks: reset, wait and init.

The reset callback is used to reset the codec. If the chip requires a special kind
of reset, you can define this callback.

The wait callback is used to add some waiting time in the standard initialization
of the codec. If the chip requires the extra waiting time, define this callback.

The init callback is used for additional initialization of the codec.

Updating Registers in The Driver

If you need to access to the codec from the driver, you can call the follow-
ing functions: snd_ac97_write(), snd_ac97_read(), snd_ac97_update() and
snd_ac97_update_bits().

Both snd_ac97_write() and snd_ac97_update() functions are used to set a
value to the given register (AC97_XXX). The difference between them is that
snd_ac97_update() doesn’t write a value if the given value has been already
set, while snd_ac97_write() always rewrites the value.

snd_ac97_write(ac97, AC97_MASTER, 0x8080);
snd_ac97_update(ac97, AC97_MASTER, 0x8080);

snd_ac97_read() is used to read the value of the given register. For example,

value = snd_ac97_read(ac97, AC97_MASTER);

snd_ac97_update_bits() is used to update some bits in the given register.

snd_ac97_update_bits(ac97, reg, mask, value);

Also, there is a function to change the sample rate (of a given register such
as AC97_PCM_FRONT_DAC_RATE) when VRA or DRA is supported by the codec:
snd_ac97_set_rate().

snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);

The following registers are available to set the rate: AC97_PCM_MIC_ADC_RATE,
AC97_PCM_FRONT_DAC_RATE, AC97_PCM_LR_ADC_RATE, AC97_SPDIF. When
AC97_SPDIF is specified, the register is not really changed but the corresponding
IEC958 status bits will be updated.

Clock Adjustment

In some chips, the clock of the codec isn’t 48000 but using a PCI clock (to save
a quartz!). In this case, change the field bus->clock to the corresponding value.
For example, intel8x0 and es1968 drivers have their own function to read from the
clock.

1.2. Writing an ALSA Driver 151

Linux Sound Documentation

Proc Files

The ALSA AC97 interface will create a proc file such as /proc/asound/card0/
codec97#0/ac97#0-0 and ac97#0-0+regs. You can refer to these files to see the
current status and registers of the codec.

Multiple Codecs

When there are several codecs on the same card, you need to call
snd_ac97_mixer()multiple times with ac97.num=1 or greater. The num field spec-
ifies the codec number.

If you set up multiple codecs, you either need to write different callbacks for each
codec or check ac97->num in the callback routines.

1.2.9 MIDI (MPU401-UART) Interface

General

Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the sound-
card supports the standard MPU401-UART interface, most likely you can use the
ALSA MPU401-UART API. The MPU401-UART API is defined in <sound/mpu401.
h>.

Some soundchips have a similar but slightly different implementation of mpu401
stuff. For example, emu10k1 has its own mpu401 routines.

MIDI Constructor

To create a rawmidi object, call snd_mpu401_uart_new().

struct snd_rawmidi *rmidi;
snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,

irq, &rmidi);

The first argument is the card pointer, and the second is the index of this compo-
nent. You can create up to 8 rawmidi devices.

The third argument is the type of the hardware, MPU401_HW_XXX. If it’s not a special
one, you can use MPU401_HW_MPU401.

The 4th argument is the I/O port address. Many backward-compatible MPU401
have an I/O port such as 0x330. Or, it might be a part of its own PCI I/O region. It
depends on the chip design.

The 5th argument is a bitflag for additional information. When the I/O port ad-
dress above is part of the PCI I/O region, the MPU401 I/O port might have been
already allocated (reserved) by the driver itself. In such a case, pass a bit flag
MPU401_INFO_INTEGRATED, and the mpu401-uart layer will allocate the I/O ports
by itself.

152 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

When the controller supports only the input or output MIDI stream, pass the
MPU401_INFO_INPUT or MPU401_INFO_OUTPUT bitflag, respectively. Then the
rawmidi instance is created as a single stream.

MPU401_INFO_MMIO bitflag is used to change the access method toMMIO (via readb
and writeb) instead of iob and outb. In this case, you have to pass the iomapped
address to snd_mpu401_uart_new().

When MPU401_INFO_TX_IRQ is set, the output stream isn’t checked in the default
interrupt handler. The driver needs to call snd_mpu401_uart_interrupt_tx() by
itself to start processing the output stream in the irq handler.

If the MPU-401 interface shares its interrupt with the other logical devices on the
card, set MPU401_INFO_IRQ_HOOK (see below).

Usually, the port address corresponds to the command port and port + 1
corresponds to the data port. If not, you may change the cport field of
struct snd_mpu401 manually afterward. However, struct snd_mpu401 pointer
is not returned explicitly by snd_mpu401_uart_new(). You need to cast
rmidi->private_data to struct snd_mpu401 explicitly,

struct snd_mpu401 *mpu;
mpu = rmidi->private_data;

and reset the cport as you like:

mpu->cport = my_own_control_port;

The 6th argument specifies the ISA irq number that will be allocated. If no inter-
rupt is to be allocated (because your code is already allocating a shared interrupt,
or because the device does not use interrupts), pass -1 instead. For a MPU-401
device without an interrupt, a polling timer will be used instead.

MIDI Interrupt Handler

When the interrupt is allocated in snd_mpu401_uart_new(), an exclusive ISA inter-
rupt handler is automatically used, hence you don’t have anything else to do than
creating the mpu401 stuff. Otherwise, you have to set MPU401_INFO_IRQ_HOOK,
and call snd_mpu401_uart_interrupt() explicitly from your own interrupt han-
dler when it has determined that a UART interrupt has occurred.

In this case, you need to pass the private_data of the returned
rawmidi object from snd_mpu401_uart_new() as the second argument of
snd_mpu401_uart_interrupt().

snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);

1.2. Writing an ALSA Driver 153

Linux Sound Documentation

1.2.10 RawMIDI Interface

Overview

The raw MIDI interface is used for hardware MIDI ports that can be accessed as
a byte stream. It is not used for synthesizer chips that do not directly understand
MIDI.

ALSA handles file and buffer management. All you have to do is to write some
code to move data between the buffer and the hardware.

The rawmidi API is defined in <sound/rawmidi.h>.

RawMIDI Constructor

To create a rawmidi device, call the snd_rawmidi_new() function:

struct snd_rawmidi *rmidi;
err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
if (err < 0)

return err;
rmidi->private_data = chip;
strcpy(rmidi->name, "My MIDI");
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |

SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;

The first argument is the card pointer, the second argument is the ID string.

The third argument is the index of this component. You can create up to 8 rawmidi
devices.

The fourth and fifth arguments are the number of output and input substreams,
respectively, of this device (a substream is the equivalent of a MIDI port).

Set the info_flags field to specify the capabilities of the device.
Set SNDRV_RAWMIDI_INFO_OUTPUT if there is at least one output port,
SNDRV_RAWMIDI_INFO_INPUT if there is at least one input port, and
SNDRV_RAWMIDI_INFO_DUPLEX if the device can handle output and input at
the same time.

After the rawmidi device is created, you need to set the operators (callbacks) for
each substream. There are helper functions to set the operators for all the sub-
streams of a device:

snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_
↪→ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_
↪→ops);

The operators are usually defined like this:

static struct snd_rawmidi_ops snd_mymidi_output_ops = {
.open = snd_mymidi_output_open,
.close = snd_mymidi_output_close,

(continues on next page)

154 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
.trigger = snd_mymidi_output_trigger,

};

These callbacks are explained in the RawMIDI Callbacks section.

If there are more than one substream, you should give a unique name to each of
them:

struct snd_rawmidi_substream *substream;
list_for_each_entry(substream,

&rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].
↪→substreams,

list {
sprintf(substream->name, "My MIDI Port %d", substream->number + 1);

}
/* same for SNDRV_RAWMIDI_STREAM_INPUT */

RawMIDI Callbacks

In all the callbacks, the private data that you’ve set for the rawmidi device can
be accessed as substream->rmidi->private_data.

If there is more than one port, your callbacks can determine the port index from
the struct snd_rawmidi_substream data passed to each callback:

struct snd_rawmidi_substream *substream;
int index = substream->number;

RawMIDI open callback

static int snd_xxx_open(struct snd_rawmidi_substream *substream);

This is called when a substream is opened. You can initialize the hardware here,
but you shouldn’t start transmitting/receiving data yet.

RawMIDI close callback

static int snd_xxx_close(struct snd_rawmidi_substream *substream);

Guess what.

The open and close callbacks of a rawmidi device are serialized with a mutex, and
can sleep.

1.2. Writing an ALSA Driver 155

Linux Sound Documentation

Rawmidi trigger callback for output substreams

static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream,
↪→ int up);

This is called with a nonzero up parameter when there is some data in the sub-
stream buffer that must be transmitted.

To read data from the buffer, call snd_rawmidi_transmit_peek(). It will return
the number of bytes that have been read; this will be less than the number of
bytes requested when there are no more data in the buffer. After the data have
been transmitted successfully, call snd_rawmidi_transmit_ack() to remove the
data from the substream buffer:

unsigned char data;
while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {

if (snd_mychip_try_to_transmit(data))
snd_rawmidi_transmit_ack(substream, 1);

else
break; /* hardware FIFO full */

}

If you know beforehand that the hardware will accept data, you can use the
snd_rawmidi_transmit() function which reads some data and removes them from
the buffer at once:

while (snd_mychip_transmit_possible()) {
unsigned char data;
if (snd_rawmidi_transmit(substream, &data, 1) != 1)

break; /* no more data */
snd_mychip_transmit(data);

}

If you know beforehand how many bytes you can accept, you can use a buffer size
greater than one with the snd_rawmidi_transmit*() functions.

The trigger callback must not sleep. If the hardware FIFO is full before the sub-
stream buffer has been emptied, you have to continue transmitting data later,
either in an interrupt handler, or with a timer if the hardware doesn’t have a
MIDI transmit interrupt.

The trigger callback is called with a zero up parameter when the transmission of
data should be aborted.

RawMIDI trigger callback for input substreams

static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream,␣
↪→int up);

This is called with a nonzero up parameter to enable receiving data, or with a zero
up parameter do disable receiving data.

The trigger callback must not sleep; the actual reading of data from the device
is usually done in an interrupt handler.

156 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

When data reception is enabled, your interrupt handler should call
snd_rawmidi_receive() for all received data:

void snd_mychip_midi_interrupt(...)
{

while (mychip_midi_available()) {
unsigned char data;
data = mychip_midi_read();
snd_rawmidi_receive(substream, &data, 1);

}
}

drain callback

static void snd_xxx_drain(struct snd_rawmidi_substream *substream);

This is only used with output substreams. This function should wait until all data
read from the substream buffer have been transmitted. This ensures that the de-
vice can be closed and the driver unloaded without losing data.

This callback is optional. If you do not set drain in the struct snd_rawmidi_ops
structure, ALSA will simply wait for 50 milliseconds instead.

1.2.11 Miscellaneous Devices

FM OPL3

The FMOPL3 is still used in many chips (mainly for backward compatibility). ALSA
has a nice OPL3 FM control layer, too. The OPL3 API is defined in <sound/opl3.h>.

FM registers can be directly accessed through the direct-FM API, defined in
<sound/asound_fm.h>. In ALSA native mode, FM registers are accessed through
the Hardware-Dependent Device direct-FM extension API, whereas in OSS com-
patible mode, FM registers can be accessed with the OSS direct-FM compatible
API in /dev/dmfmX device.

To create the OPL3 component, you have two functions to call. The first one is a
constructor for the opl3_t instance.

struct snd_opl3 *opl3;
snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,

integrated, &opl3);

The first argument is the card pointer, the second one is the left port address, and
the third is the right port address. In most cases, the right port is placed at the
left port + 2.

The fourth argument is the hardware type.

When the left and right ports have been already allocated by the card driver, pass
non-zero to the fifth argument (integrated). Otherwise, the opl3 module will
allocate the specified ports by itself.

1.2. Writing an ALSA Driver 157

Linux Sound Documentation

When the accessing the hardware requires special method instead of the standard
I/O access, you can create opl3 instance separately with snd_opl3_new().

struct snd_opl3 *opl3;
snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);

Then set command, private_data and private_free for the private access func-
tion, the private data and the destructor. The l_port and r_port are not neces-
sarily set. Only the command must be set properly. You can retrieve the data from
the opl3->private_data field.

After creating the opl3 instance via snd_opl3_new(), call snd_opl3_init() to ini-
tialize the chip to the proper state. Note that snd_opl3_create() always calls it
internally.

If the opl3 instance is created successfully, then create a hwdep device for this
opl3.

struct snd_hwdep *opl3hwdep;
snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);

The first argument is the opl3_t instance you created, and the second is the index
number, usually 0.

The third argument is the index-offset for the sequencer client assigned to the
OPL3 port. When there is an MPU401-UART, give 1 for here (UART always takes
0).

Hardware-Dependent Devices

Some chips need user-space access for special controls or for loading the micro
code. In such a case, you can create a hwdep (hardware-dependent) device. The
hwdep API is defined in <sound/hwdep.h>. You can find examples in opl3 driver
or isa/sb/sb16_csp.c.

The creation of the hwdep instance is done via snd_hwdep_new().

struct snd_hwdep *hw;
snd_hwdep_new(card, "My HWDEP", 0, &hw);

where the third argument is the index number.

You can then pass any pointer value to the private_data. If you assign a private
data, you should define the destructor, too. The destructor function is set in the
private_free field.

struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
hw->private_data = p;
hw->private_free = mydata_free;

and the implementation of the destructor would be:

static void mydata_free(struct snd_hwdep *hw)
{

struct mydata *p = hw->private_data;
(continues on next page)

158 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
kfree(p);

}

The arbitrary file operations can be defined for this instance. The file operators
are defined in the ops table. For example, assume that this chip needs an ioctl.

hw->ops.open = mydata_open;
hw->ops.ioctl = mydata_ioctl;
hw->ops.release = mydata_release;

And implement the callback functions as you like.

IEC958 (S/PDIF)

Usually the controls for IEC958 devices are implemented via the control in-
terface. There is a macro to compose a name string for IEC958 controls,
SNDRV_CTL_NAME_IEC958() defined in <include/asound.h>.

There are some standard controls for IEC958 status bits. These controls use the
type SNDRV_CTL_ELEM_TYPE_IEC958, and the size of element is fixed as 4 bytes
array (value.iec958.status[x]). For the info callback, you don’t specify the value
field for this type (the count field must be set, though).

“IEC958 Playback Con Mask”is used to return the bit-mask for the IEC958 status
bits of consumermode. Similarly,“IEC958 Playback ProMask”returns the bitmask
for professional mode. They are read-only controls, and are defined as MIXER
controls (iface = SNDRV_CTL_ELEM_IFACE_MIXER).

Meanwhile,“IEC958 Playback Default”control is defined for getting and setting
the current default IEC958 bits. Note that this one is usually defined as a PCM
control (iface = SNDRV_CTL_ELEM_IFACE_PCM), although in some places it’s defined
as a MIXER control.

In addition, you can define the control switches to enable/disable or to set the raw
bit mode. The implementation will depend on the chip, but the control should be
named as“IEC958 xxx”, preferably using the SNDRV_CTL_NAME_IEC958() macro.
You can find several cases, for example, pci/emu10k1, pci/ice1712, or pci/
cmipci.c.

1.2.12 Buffer and Memory Management

Buffer Types

ALSA provides several different buffer allocation functions depending on the bus
and the architecture. All these have a consistent API. The allocation of physically-
contiguous pages is done via snd_malloc_xxx_pages() function, where xxx is the
bus type.

The allocation of pages with fallback is snd_malloc_xxx_pages_fallback(). This
function tries to allocate the specified pages but if the pages are not available, it
tries to reduce the page sizes until enough space is found.

1.2. Writing an ALSA Driver 159

Linux Sound Documentation

The release the pages, call snd_free_xxx_pages() function.

Usually, ALSA drivers try to allocate and reserve a large contiguous physical space
at the time themodule is loaded for the later use. This is called“pre-allocation”. As
already written, you can call the following function at pcm instance construction
time (in the case of PCI bus).

snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
&pci->dev, size, max);

where size is the byte size to be pre-allocated and the max is the maximum size
to be changed via the prealloc proc file. The allocator will try to get an area as
large as possible within the given size.

The second argument (type) and the third argument (device pointer) are de-
pendent on the bus. For normal devices, pass the device pointer (typically
identical as card->dev) to the third argument with SNDRV_DMA_TYPE_DEV type.
For the continuous buffer unrelated to the bus can be pre-allocated with
SNDRV_DMA_TYPE_CONTINUOUS type. You can pass NULL to the device pointer in
that case, which is the default mode implying to allocate with GFP_KRENEL flag.
If you need a different GFP flag, you can pass it by encoding the flag into the
device pointer via a special macro snd_dma_continuous_data(). For the scatter-
gather buffers, use SNDRV_DMA_TYPE_DEV_SG with the device pointer (see the Non-
Contiguous Buffers section).

Once the buffer is pre-allocated, you can use the allocator in the hw_params call-
back:

snd_pcm_lib_malloc_pages(substream, size);

Note that you have to pre-allocate to use this function.

Most of drivers use, though, rather the newly introduced “managed
buffer allocation mode”instead of the manual allocation or release.
This is done by calling snd_pcm_set_managed_buffer_all() instead of
snd_pcm_lib_preallocate_pages_for_all().

snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
&pci->dev, size, max);

where passed arguments are identical in both functions. The difference in
the managed mode is that PCM core will call snd_pcm_lib_malloc_pages()
internally already before calling the PCM hw_params callback, and call
snd_pcm_lib_free_pages() after the PCM hw_free callback automatically. So
the driver doesn’t have to call these functions explicitly in its callback any longer.
This made many driver code having NULL hw_params and hw_free entries.

160 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

External Hardware Buffers

Some chips have their own hardware buffers and the DMA transfer from the host
memory is not available. In such a case, you need to either 1) copy/set the audio
data directly to the external hardware buffer, or 2) make an intermediate buffer
and copy/set the data from it to the external hardware buffer in interrupts (or in
tasklets, preferably).

The first case works fine if the external hardware buffer is large enough. This
method doesn’t need any extra buffers and thus is more effective. You need to
define the copy_user and copy_kernel callbacks for the data transfer, in addition
to fill_silence callback for playback. However, there is a drawback: it cannot
be mmapped. The examples are GUS’s GF1 PCM or emu8000’s wavetable PCM.
The second case allows for mmap on the buffer, although you have to handle an
interrupt or a tasklet to transfer the data from the intermediate buffer to the hard-
ware buffer. You can find an example in the vxpocket driver.

Another case is when the chip uses a PCI memory-map region for the buffer instead
of the host memory. In this case, mmap is available only on certain architectures
like the Intel one. In non-mmapmode, the data cannot be transferred as in the nor-
mal way. Thus you need to define the copy_user, copy_kernel and fill_silence
callbacks as well, as in the cases above. The examples are found in rme32.c and
rme96.c.

The implementation of the copy_user, copy_kernel and silence callbacks de-
pends upon whether the hardware supports interleaved or non-interleaved sam-
ples. The copy_user callback is defined like below, a bit differently depending
whether the direction is playback or capture:

static int playback_copy_user(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
void __user *src, unsigned long count);

static int capture_copy_user(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
void __user *dst, unsigned long count);

In the case of interleaved samples, the second argument (channel) is not used.
The third argument (pos) points the current position offset in bytes.

The meaning of the fourth argument is different between playback and capture.
For playback, it holds the source data pointer, and for capture, it’s the destination
data pointer.

The last argument is the number of bytes to be copied.

What you have to do in this callback is again different between playback and cap-
ture directions. In the playback case, you copy the given amount of data (count)
at the specified pointer (src) to the specified offset (pos) on the hardware buffer.
When coded like memcpy-like way, the copy would be like:

my_memcpy_from_user(my_buffer + pos, src, count);

For the capture direction, you copy the given amount of data (count) at the speci-
fied offset (pos) on the hardware buffer to the specified pointer (dst).

1.2. Writing an ALSA Driver 161

Linux Sound Documentation

my_memcpy_to_user(dst, my_buffer + pos, count);

Here the functions are named as from_user and to_user because it’s the user-
space buffer that is passed to these callbacks. That is, the callback is supposed to
copy from/to the user-space data directly to/from the hardware buffer.

Careful readers might notice that these callbacks receive the arguments in bytes,
not in frames like other callbacks. It’s because it would make coding easier like
the examples above, and also it makes easier to unify both the interleaved and
non-interleaved cases, as explained in the following.

In the case of non-interleaved samples, the implementation will be a bit more com-
plicated. The callback is called for each channel, passed by the second argument,
so totally it’s called for N-channels times per transfer.
The meaning of other arguments are almost same as the interleaved case. The
callback is supposed to copy the data from/to the given user-space buffer, but only
for the given channel. For the detailed implementations, please check isa/gus/
gus_pcm.c or “pci/rme9652/rme9652.c”as examples.
The above callbacks are the copy from/to the user-space buffer. There are some
cases where we want copy from/to the kernel-space buffer instead. In such a case,
copy_kernel callback is called. It’d look like:
static int playback_copy_kernel(struct snd_pcm_substream *substream,

int channel, unsigned long pos,
void *src, unsigned long count);

static int capture_copy_kernel(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
void *dst, unsigned long count);

As found easily, the only difference is that the buffer pointer is without __user
prefix; that is, a kernel-buffer pointer is passed in the fourth argument. Corre-
spondingly, the implementation would be a version without the user-copy, such
as:

my_memcpy(my_buffer + pos, src, count);

Usually for the playback, another callback fill_silence is defined. It’s imple-
mented in a similar way as the copy callbacks above:

static int silence(struct snd_pcm_substream *substream, int channel,
unsigned long pos, unsigned long count);

The meanings of arguments are the same as in the copy_user and copy_kernel
callbacks, although there is no buffer pointer argument. In the case of interleaved
samples, the channel argument has no meaning, as well as on copy_* callbacks.

The role of fill_silence callback is to set the given amount (count) of silence
data at the specified offset (pos) on the hardware buffer. Suppose that the data
format is signed (that is, the silent-data is 0), and the implementation using a
memset-like function would be like:

my_memset(my_buffer + pos, 0, count);

162 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

In the case of non-interleaved samples, again, the implementation becomes a bit
more complicated, as it’s called N-times per transfer for each channel. See, for
example, isa/gus/gus_pcm.c.

Non-Contiguous Buffers

If your hardware supports the page table as in emu10k1 or the buffer descriptors
as in via82xx, you can use the scatter-gather (SG) DMA. ALSA provides an interface
for handling SG-buffers. The API is provided in <sound/pcm.h>.

For creating the SG-buffer handler, call snd_pcm_set_managed_buffer() or
snd_pcm_set_managed_buffer_all() with SNDRV_DMA_TYPE_DEV_SG in the PCM
constructor like other PCI pre-allocator. You need to pass &pci->dev, where pci is
the struct pci_dev pointer of the chip as well.

snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
&pci->dev, size, max);

The struct snd_sg_buf instance is created as substream->dma_private in turn.
You can cast the pointer like:

struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;

Then in snd_pcm_lib_malloc_pages() call, the common SG-buffer handler will
allocate the non-contiguous kernel pages of the given size and map them onto
the virtually contiguous memory. The virtual pointer is addressed in runtime-
>dma_area. The physical address (runtime->dma_addr) is set to zero, because
the buffer is physically non-contiguous. The physical address table is set up
in sgbuf->table. You can get the physical address at a certain offset via
snd_pcm_sgbuf_get_addr().

If you need to release the SG-buffer data explicitly, call the standard API function
snd_pcm_lib_free_pages() as usual.

Vmalloc’ed Buffers

It’s possible to use a buffer allocated via vmalloc(), for example, for an inter-
mediate buffer. In the recent version of kernel, you can simply allocate it via
standard snd_pcm_lib_malloc_pages() and co after setting up the buffer preal-
location with SNDRV_DMA_TYPE_VMALLOC type.

snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC,
NULL, 0, 0);

The NULL is passed to the device pointer argument, which indicates that the de-
fault pages (GFP_KERNEL and GFP_HIGHMEM) will be allocated.

Also, note that zero is passed to both the size and the max size arguments here.
Since each vmalloc call should succeed at any time, we don’t need to pre-allocate
the buffers like other continuous pages.

If you need the 32bit DMA allocation, pass the device pointer encoded by
snd_dma_continuous_data() with GFP_KERNEL|__GFP_DMA32 argument.

1.2. Writing an ALSA Driver 163

Linux Sound Documentation

snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC,
snd_dma_continuous_data(GFP_KERNEL | __GFP_DMA32), 0, 0);

1.2.13 Proc Interface

ALSA provides an easy interface for procfs. The proc files are very useful for
debugging. I recommend you set up proc files if you write a driver and want to
get a running status or register dumps. The API is found in <sound/info.h>.

To create a proc file, call snd_card_proc_new().

struct snd_info_entry *entry;
int err = snd_card_proc_new(card, "my-file", &entry);

where the second argument specifies the name of the proc file to be created. The
above example will create a file my-file under the card directory, e.g. /proc/
asound/card0/my-file.

Like other components, the proc entry created via snd_card_proc_new() will be
registered and released automatically in the card registration and release func-
tions.

When the creation is successful, the function stores a new instance in the pointer
given in the third argument. It is initialized as a text proc file for read only. To use
this proc file as a read-only text file as it is, set the read callback with a private
data via snd_info_set_text_ops().

snd_info_set_text_ops(entry, chip, my_proc_read);

where the second argument (chip) is the private data to be used in the callbacks.
The third parameter specifies the read buffer size and the fourth (my_proc_read)
is the callback function, which is defined like

static void my_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer);

In the read callback, use snd_iprintf() for output strings, which works just like
normal printf(). For example,

static void my_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)

{
struct my_chip *chip = entry->private_data;

snd_iprintf(buffer, "This is my chip!\n");
snd_iprintf(buffer, "Port = %ld\n", chip->port);

}

The file permissions can be changed afterwards. As default, it’s set as read only
for all users. If you want to add write permission for the user (root as default), do
as follows:

entry->mode = S_IFREG | S_IRUGO | S_IWUSR;

164 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

and set the write buffer size and the callback

entry->c.text.write = my_proc_write;

For the write callback, you can use snd_info_get_line() to get a text line, and
snd_info_get_str() to retrieve a string from the line. Some examples are found
in core/oss/mixer_oss.c, core/oss/and pcm_oss.c.

For a raw-data proc-file, set the attributes as follows:

static const struct snd_info_entry_ops my_file_io_ops = {
.read = my_file_io_read,

};

entry->content = SNDRV_INFO_CONTENT_DATA;
entry->private_data = chip;
entry->c.ops = &my_file_io_ops;
entry->size = 4096;
entry->mode = S_IFREG | S_IRUGO;

For the raw data, size field must be set properly. This specifies the maximum size
of the proc file access.

The read/write callbacks of raw mode are more direct than the text mode. You
need to use a low-level I/O functions such as copy_from/to_user() to transfer
the data.

static ssize_t my_file_io_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file,
char *buf,
size_t count,
loff_t pos)

{
if (copy_to_user(buf, local_data + pos, count))

return -EFAULT;
return count;

}

If the size of the info entry has been set up properly, count and pos are guaranteed
to fit within 0 and the given size. You don’t have to check the range in the callbacks
unless any other condition is required.

1.2.14 Power Management

If the chip is supposed to work with suspend/resume functions, you need
to add power-management code to the driver. The additional code for
power-management should be ifdef-ed with CONFIG_PM, or annotated with
__maybe_unused attribute; otherwise the compiler will complain you.

If the driver fully supports suspend/resume that is, the device can be
properly resumed to its state when suspend was called, you can set the
SNDRV_PCM_INFO_RESUME flag in the pcm info field. Usually, this is possible when
the registers of the chip can be safely saved and restored to RAM. If this is set,

1.2. Writing an ALSA Driver 165

Linux Sound Documentation

the trigger callback is called with SNDRV_PCM_TRIGGER_RESUME after the resume
callback completes.

Even if the driver doesn’t support PM fully but partial suspend/resume is still
possible, it’s still worthy to implement suspend/resume callbacks. In such a case,
applications would reset the status by calling snd_pcm_prepare() and restart the
stream appropriately. Hence, you can define suspend/resume callbacks below but
don’t set SNDRV_PCM_INFO_RESUME info flag to the PCM.
Note that the trigger with SUSPEND can always be called when
snd_pcm_suspend_all() is called, regardless of the SNDRV_PCM_INFO_RESUME
flag. The RESUME flag affects only the behavior of snd_pcm_resume(). (Thus, in
theory, SNDRV_PCM_TRIGGER_RESUME isn’t needed to be handled in the trigger
callback when no SNDRV_PCM_INFO_RESUME flag is set. But, it’s better to keep it
for compatibility reasons.)

In the earlier version of ALSA drivers, a common power-management layer was
provided, but it has been removed. The driver needs to define the suspend/resume
hooks according to the bus the device is connected to. In the case of PCI drivers,
the callbacks look like below:

static int __maybe_unused snd_my_suspend(struct device *dev)
{

.... /* do things for suspend */
return 0;

}
static int __maybe_unused snd_my_resume(struct device *dev)
{

.... /* do things for suspend */
return 0;

}

The scheme of the real suspend job is as follows.

1. Retrieve the card and the chip data.

2. Call snd_power_change_state() with SNDRV_CTL_POWER_D3hot to change
the power status.

3. If AC97 codecs are used, call snd_ac97_suspend() for each codec.

4. Save the register values if necessary.

5. Stop the hardware if necessary.

A typical code would be like:

static int __maybe_unused mychip_suspend(struct device *dev)
{

/* (1) */
struct snd_card *card = dev_get_drvdata(dev);
struct mychip *chip = card->private_data;
/* (2) */
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
/* (3) */
snd_ac97_suspend(chip->ac97);
/* (4) */
snd_mychip_save_registers(chip);

(continues on next page)

166 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

(continued from previous page)
/* (5) */
snd_mychip_stop_hardware(chip);
return 0;

}

The scheme of the real resume job is as follows.

1. Retrieve the card and the chip data.

2. Re-initialize the chip.

3. Restore the saved registers if necessary.

4. Resume the mixer, e.g. calling snd_ac97_resume().

5. Restart the hardware (if any).

6. Call snd_power_change_state()with SNDRV_CTL_POWER_D0 to notify the pro-
cesses.

A typical code would be like:

static int __maybe_unused mychip_resume(struct pci_dev *pci)
{

/* (1) */
struct snd_card *card = dev_get_drvdata(dev);
struct mychip *chip = card->private_data;
/* (2) */
snd_mychip_reinit_chip(chip);
/* (3) */
snd_mychip_restore_registers(chip);
/* (4) */
snd_ac97_resume(chip->ac97);
/* (5) */
snd_mychip_restart_chip(chip);
/* (6) */
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;

}

Note that, at the time this callback gets called, the PCM stream has been already
suspended via its own PM ops calling snd_pcm_suspend_all() internally.

OK, we have all callbacks now. Let’s set them up. In the initialization of the
card, make sure that you can get the chip data from the card instance, typically
via private_data field, in case you created the chip data individually.

static int snd_mychip_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)

{
....
struct snd_card *card;
struct mychip *chip;
int err;
....
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,

0, &card);
(continues on next page)

1.2. Writing an ALSA Driver 167

Linux Sound Documentation

(continued from previous page)
....
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
....
card->private_data = chip;
....

}

When you created the chip data with snd_card_new(), it’s anyway accessible via
private_data field.

static int snd_mychip_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)

{
....
struct snd_card *card;
struct mychip *chip;
int err;
....
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,

sizeof(struct mychip), &card);
....
chip = card->private_data;
....

}

If you need a space to save the registers, allocate the buffer for it here, too, since it
would be fatal if you cannot allocate a memory in the suspend phase. The allocated
buffer should be released in the corresponding destructor.

And next, set suspend/resume callbacks to the pci_driver.

static SIMPLE_DEV_PM_OPS(snd_my_pm_ops, mychip_suspend, mychip_resume);

static struct pci_driver driver = {
.name = KBUILD_MODNAME,
.id_table = snd_my_ids,
.probe = snd_my_probe,
.remove = snd_my_remove,
.driver.pm = &snd_my_pm_ops,

};

1.2.15 Module Parameters

There are standard module options for ALSA. At least, each module should have
the index, id and enable options.

If the module supports multiple cards (usually up to 8 = SNDRV_CARDS cards), they
should be arrays. The default initial values are defined already as constants for
easier programming:

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;

168 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

If the module supports only a single card, they could be single variables, instead.
enable option is not always necessary in this case, but it would be better to have
a dummy option for compatibility.

The module parameters must be declared with the standard module_param(),
module_param_array() and MODULE_PARM_DESC() macros.

The typical coding would be like below:

#define CARD_NAME "My Chip"

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");

Also, don’t forget to define the module description and the license. Especially,
the recent modprobe requires to define the module license as GPL, etc., otherwise
the system is shown as “tainted”.
MODULE_DESCRIPTION("Sound driver for My Chip");
MODULE_LICENSE("GPL");

1.2.16 How To Put Your Driver Into ALSA Tree

General

So far, you’ve learned how to write the driver codes. And youmight have a question
now: how to put my own driver into the ALSA driver tree? Here (finally :) the
standard procedure is described briefly.

Suppose that you create a new PCI driver for the card “xyz”. The card module
name would be snd-xyz. The new driver is usually put into the alsa-driver tree,
sound/pci directory in the case of PCI cards.

In the following sections, the driver code is supposed to be put into Linux kernel
tree. The two cases are covered: a driver consisting of a single source file and one
consisting of several source files.

Driver with A Single Source File

1. Modify sound/pci/Makefile

Suppose you have a file xyz.c. Add the following two lines

snd-xyz-objs := xyz.o
obj-$(CONFIG_SND_XYZ) += snd-xyz.o

2. Create the Kconfig entry

Add the new entry of Kconfig for your xyz driver. config SND_XYZ tris-
tate “Foobar XYZ”depends on SND select SND_PCM help Say Y here

1.2. Writing an ALSA Driver 169

Linux Sound Documentation

to include support for Foobar XYZ soundcard. To compile this driver as
a module, choose M here: the module will be called snd-xyz. the line,
select SND_PCM, specifies that the driver xyz supports PCM. In addi-
tion to SND_PCM, the following components are supported for select com-
mand: SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC. Add the
select command for each supported component.

Note that some selections imply the lowlevel selections. For example, PCM
includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC includes
PCM, and OPL3_LIB includes HWDEP. You don’t need to give the lowlevel
selections again.

For the details of Kconfig script, refer to the kbuild documentation.

Drivers with Several Source Files

Suppose that the driver snd-xyz have several source files. They are located in the
new subdirectory, sound/pci/xyz.

1. Add a new directory (sound/pci/xyz) in sound/pci/Makefile as below

obj-$(CONFIG_SND) += sound/pci/xyz/

2. Under the directory sound/pci/xyz, create a Makefile

snd-xyz-objs := xyz.o abc.o def.o
obj-$(CONFIG_SND_XYZ) += snd-xyz.o

3. Create the Kconfig entry

This procedure is as same as in the last section.

1.2.17 Useful Functions

snd_printk() and friends

Note: This subsection describes a few helper functions for decorating a bit more
on the standard printk() & co. However, in general, the use of such helpers is
no longer recommended. If possible, try to stick with the standard functions like
dev_err() or pr_err().

ALSA provides a verbose version of the printk() function. If a kernel config
CONFIG_SND_VERBOSE_PRINTK is set, this function prints the given message to-
gether with the file name and the line of the caller. The KERN_XXX prefix is pro-
cessed as well as the original printk() does, so it’s recommended to add this
prefix, e.g. snd_printk(KERN_ERR “Oh my, sorry, it’s extremely bad!\n”);
There are also printk()’s for debugging. snd_printd() can be used for general
debugging purposes. If CONFIG_SND_DEBUG is set, this function is compiled, and
works just like snd_printk(). If the ALSA is compiled without the debugging flag,
it’s ignored.

170 Chapter 1. ALSA Kernel API Documentation

Linux Sound Documentation

snd_printdd() is compiled in only when CONFIG_SND_DEBUG_VERBOSE is set.

snd_BUG()

It shows the BUG? message and stack trace as well as snd_BUG_ON() at the point.
It’s useful to show that a fatal error happens there.
When no debug flag is set, this macro is ignored.

snd_BUG_ON()

snd_BUG_ON() macro is similar with WARN_ON() macro. For exam-
ple, snd_BUG_ON(!pointer); or it can be used as the condition, if
(snd_BUG_ON(non_zero_is_bug)) return -EINVAL;

The macro takes an conditional expression to evaluate. When CONFIG_SND_DEBUG,
is set, if the expression is non-zero, it shows the warning message such as BUG?
(xxx) normally followed by stack trace. In both cases it returns the evaluated
value.

1.2.18 Acknowledgments

I would like to thank Phil Kerr for his help for improvement and corrections of this
document.

Kevin Conder reformatted the original plain-text to the DocBook format.

Giuliano Pochini corrected typos and contributed the example codes in the hard-
ware constraints section.

1.2. Writing an ALSA Driver 171

Linux Sound Documentation

172 Chapter 1. ALSA Kernel API Documentation

CHAPTER

TWO

DESIGNS AND IMPLEMENTATIONS

2.1 Standard ALSA Control Names

This document describes standard names of mixer controls.

2.1.1 Standard Syntax

Syntax: [LOCATION] SOURCE [CHANNEL] [DIRECTION] FUNCTION

DIRECTION

<nothing> both directions
Playback one direction
Capture one direction
Bypass Playback one direction
Bypass Capture one direction

FUNCTION

Switch on/off switch
Volume amplifier
Route route control, hardware specific

CHANNEL

<nothing> channel independent, or applies to all channels
Front front left/right channels
Surround rear left/right in 4.0/5.1 surround
CLFE C/LFE channels
Center center cannel
LFE LFE channel
Side side left/right for 7.1 surround

173

Linux Sound Documentation

LOCATION (Physical location of source)

Front front position
Rear rear position
Dock on docking station
Internal internal

SOURCE

Master
Master Mono
Hardware Master
Speaker internal speaker
Bass Speaker internal LFE speaker
Headphone
Line Out
Beep beep generator
Phone
Phone Input
Phone Output
Synth
FM
Mic
Headset Mic mic part of combined headset jack - 4-pin headphone + mic
Headphone Mic mic part of either/or - 3-pin headphone or mic
Line input only, use “Line Out”for output
CD
Video
Zoom Video
Aux
PCM
PCM Pan
Loopback
Analog Loopback D/A -> A/D loopback
Digital Loopback playback -> capture loopback - without analog path
Mono
Mono Output
Multi
ADC
Wave
Music
I2S
IEC958
HDMI
SPDIF output only
SPDIF In
Digital In

Continued on next page

174 Chapter 2. Designs and Implementations

Linux Sound Documentation

Table 1 – continued from previous page
HDMI/DP either HDMI or DisplayPort

2.1.2 Exceptions (deprecated)

[Analogue|Digital] Capture Source
[Analogue|Digital] Capture Switch aka input gain switch
[Analogue|Digital] Capture Volume aka input gain volume
[Analogue|Digital] Playback Switch aka output gain switch
[Analogue|Digital] Playback Volume aka output gain volume
Tone Control - Switch
Tone Control - Bass
Tone Control - Treble
3D Control - Switch
3D Control - Center
3D Control - Depth
3D Control - Wide
3D Control - Space
3D Control - Level
Mic Boost [(?dB)]

2.1.3 PCM interface

Sample Clock Source { “Word”, “Internal”, “AutoSync”}
Clock Sync Status { “Lock”, “Sync”, “No Lock”}
External Rate external capture rate
Capture Rate capture rate taken from external source

2.1.4 IEC958 (S/PDIF) interface

IEC958 [⋯] [Playback|Capture] Switch turn on/off the IEC958 interface
IEC958 [⋯] [Playback|Capture] Volume digital volume control
IEC958 [⋯] [Playback|Capture] Default default or global value - read/write
IEC958 [⋯] [Playback|Capture] Mask consumer and professional mask
IEC958 [⋯] [Playback|Capture] Con Mask consumer mask
IEC958 [⋯] [Playback|Capture] Pro Mask professional mask
IEC958 [⋯] [Playback|Capture] PCM
Stream

the settings assigned to a PCM
stream

IEC958 Q-subcode [Playback|Capture] De-
fault

Q-subcode bits

IEC958 Preamble [Playback|Capture] De-
fault

burst preamble words (4*16bits)

2.1. Standard ALSA Control Names 175

Linux Sound Documentation

2.2 ALSA PCM channel-mapping API

Takashi Iwai <tiwai@suse.de>

2.2.1 General

The channel mapping API allows user to query the possible channel maps and the
current channel map, also optionally to modify the channel map of the current
stream.

A channel map is an array of position for each PCM channel. Typically, a stereo
PCM stream has a channel map of { front_left, front_right } while a 4.0
surround PCM stream has a channel map of { front left, front right, rear
left, rear right }.

The problem, so far, was that we had no standard channel map explicitly, and
applications had no way to know which channel corresponds to which (speaker)
position. Thus, applications applied wrong channels for 5.1 outputs, and you hear
suddenly strange sound from rear. Or, some devices secretly assume that cen-
ter/LFE is the third/fourth channels while others that C/LFE as 5th/6th channels.

Also, some devices such as HDMI are configurable for different speaker positions
even with the same number of total channels. However, there was no way to
specify this because of lack of channel map specification. These are the main mo-
tivations for the new channel mapping API.

2.2.2 Design

Actually, “the channel mapping API”doesn’t introduce anything new in the
kernel/user-space ABI perspective. It uses only the existing control element fea-
tures.

As a ground design, each PCM substreammay contain a control element providing
the channel mapping information and configuration. This element is specified by:

• iface = SNDRV_CTL_ELEM_IFACE_PCM

• name = “Playback Channel Map”or “Capture Channel Map”
• device = the same device number for the assigned PCM substream

• index = the same index number for the assigned PCM substream

Note the name is different depending on the PCM substream direction.

Each control element provides at least the TLV read operation and the read oper-
ation. Optionally, the write operation can be provided to allow user to change the
channel map dynamically.

176 Chapter 2. Designs and Implementations

mailto:tiwai@suse.de

Linux Sound Documentation

TLV

The TLV operation gives the list of available channel maps. A list item of a channel
map is usually a TLV of type data-bytes ch0 ch1 ch2... where type is the TLV
type value, the second argument is the total bytes (not the numbers) of channel
values, and the rest are the position value for each channel.

As a TLV type, either SNDRV_CTL_TLVT_CHMAP_FIXED, SNDRV_CTL_TLV_CHMAP_VAR
or SNDRV_CTL_TLVT_CHMAP_PAIRED can be used. The _FIXED type is for a channel
map with the fixed channel position while the latter two are for flexible channel
positions. _VAR type is for a channel map where all channels are freely swappable
and _PAIRED type is where pair-wise channels are swappable. For example, when
you have {FL/FR/RL/RR} channel map, _PAIRED type would allow you to swap only
{RL/RR/FL/FR} while _VAR type would allow even swapping FL and RR.

These new TLV types are defined in sound/tlv.h.

The available channel position values are defined in sound/asound.h, here is a
cut:

/* channel positions */
enum {

SNDRV_CHMAP_UNKNOWN = 0,
SNDRV_CHMAP_NA, /* N/A, silent */
SNDRV_CHMAP_MONO, /* mono stream */
/* this follows the alsa-lib mixer channel value + 3 */
SNDRV_CHMAP_FL, /* front left */
SNDRV_CHMAP_FR, /* front right */
SNDRV_CHMAP_RL, /* rear left */
SNDRV_CHMAP_RR, /* rear right */
SNDRV_CHMAP_FC, /* front center */
SNDRV_CHMAP_LFE, /* LFE */
SNDRV_CHMAP_SL, /* side left */
SNDRV_CHMAP_SR, /* side right */
SNDRV_CHMAP_RC, /* rear center */
/* new definitions */
SNDRV_CHMAP_FLC, /* front left center */
SNDRV_CHMAP_FRC, /* front right center */
SNDRV_CHMAP_RLC, /* rear left center */
SNDRV_CHMAP_RRC, /* rear right center */
SNDRV_CHMAP_FLW, /* front left wide */
SNDRV_CHMAP_FRW, /* front right wide */
SNDRV_CHMAP_FLH, /* front left high */
SNDRV_CHMAP_FCH, /* front center high */
SNDRV_CHMAP_FRH, /* front right high */
SNDRV_CHMAP_TC, /* top center */
SNDRV_CHMAP_TFL, /* top front left */
SNDRV_CHMAP_TFR, /* top front right */
SNDRV_CHMAP_TFC, /* top front center */
SNDRV_CHMAP_TRL, /* top rear left */
SNDRV_CHMAP_TRR, /* top rear right */
SNDRV_CHMAP_TRC, /* top rear center */
SNDRV_CHMAP_LAST = SNDRV_CHMAP_TRC,

};

When a PCM stream can provide more than one channel map, you can provide
multiple channel maps in a TLV container type. The TLV data to be returned will

2.2. ALSA PCM channel-mapping API 177

Linux Sound Documentation

contain such as:

SNDRV_CTL_TLVT_CONTAINER 96
SNDRV_CTL_TLVT_CHMAP_FIXED 4 SNDRV_CHMAP_FC
SNDRV_CTL_TLVT_CHMAP_FIXED 8 SNDRV_CHMAP_FL SNDRV_CHMAP_FR
SNDRV_CTL_TLVT_CHMAP_FIXED 16 NDRV_CHMAP_FL SNDRV_CHMAP_FR \

SNDRV_CHMAP_RL SNDRV_CHMAP_RR

The channel position is provided in LSB 16bits. The upper bits are used for bit
flags.

#define SNDRV_CHMAP_POSITION_MASK 0xffff
#define SNDRV_CHMAP_PHASE_INVERSE (0x01 << 16)
#define SNDRV_CHMAP_DRIVER_SPEC (0x02 << 16)

SNDRV_CHMAP_PHASE_INVERSE indicates the channel is phase inverted, (thus sum-
ming left and right channels would result in almost silence). Some digital mic
devices have this.

When SNDRV_CHMAP_DRIVER_SPEC is set, all the channel position values don’t follow
the standard definition above but driver-specific.

Read Operation

The control read operation is for providing the current channel map of the given
stream. The control element returns an integer array containing the position of
each channel.

When this is performed before the number of the channel is specified (i.e.
hw_params is set), it should return all channels set to UNKNOWN.

Write Operation

The control write operation is optional, and only for devices that can change the
channel configuration on the fly, such as HDMI. User needs to pass an integer
value containing the valid channel positions for all channels of the assigned PCM
substream.

This operation is allowed only at PCM PREPARED state. When called in other
states, it shall return an error.

2.3 ALSA Compress-Offload API

Pierre-Louis.Bossart <pierre-louis.bossart@linux.intel.com>

Vinod Koul <vinod.koul@linux.intel.com>

178 Chapter 2. Designs and Implementations

mailto:pierre-louis.bossart@linux.intel.com
mailto:vinod.koul@linux.intel.com

Linux Sound Documentation

2.3.1 Overview

Since its early days, the ALSA API was defined with PCM support or constant bi-
trates payloads such as IEC61937 in mind. Arguments and returned values in
frames are the norm, making it a challenge to extend the existing API to com-
pressed data streams.

In recent years, audio digital signal processors (DSP) were integrated in system-
on-chip designs, and DSPs are also integrated in audio codecs. Processing com-
pressed data on such DSPs results in a dramatic reduction of power consumption
compared to host-based processing. Support for such hardware has not been very
good in Linux, mostly because of a lack of a generic API available in the mainline
kernel.

Rather than requiring a compatibility break with an API change of the ALSA PCM
interface, a new ‘Compressed Data’API is introduced to provide a control and
data-streaming interface for audio DSPs.

The design of this API was inspired by the 2-year experience with the Intel
Moorestown SOC, with many corrections required to upstream the API in themain-
line kernel instead of the staging tree and make it usable by others.

2.3.2 Requirements

The main requirements are:

• separation between byte counts and time. Compressed formats may have a
header per file, per frame, or no header at all. The payload size may vary
from frame-to-frame. As a result, it is not possible to estimate reliably the
duration of audio buffers when handling compressed data. Dedicated mech-
anisms are required to allow for reliable audio-video synchronization, which
requires precise reporting of the number of samples rendered at any given
time.

• Handling of multiple formats. PCM data only requires a specification of the
sampling rate, number of channels and bits per sample. In contrast, com-
pressed data comes in a variety of formats. Audio DSPs may also provide
support for a limited number of audio encoders and decoders embedded
in firmware, or may support more choices through dynamic download of li-
braries.

• Focus on main formats. This API provides support for the most popular for-
mats used for audio and video capture and playback. It is likely that as audio
compression technology advances, new formats will be added.

• Handling of multiple configurations. Even for a given format like AAC, some
implementations may support AAC multichannel but HE-AAC stereo. Like-
wise WMA10 level M3 may require too much memory and cpu cycles. The
new API needs to provide a generic way of listing these formats.

• Rendering/Grabbing only. This API does not provide any means of hardware
acceleration, where PCM samples are provided back to user-space for addi-
tional processing. This API focuses instead on streaming compressed data to
a DSP, with the assumption that the decoded samples are routed to a physical
output or logical back-end.

2.3. ALSA Compress-Offload API 179

Linux Sound Documentation

• Complexity hiding. Existing user-spacemultimedia frameworks all have exist-
ing enums/structures for each compressed format. This new API assumes the
existence of a platform-specific compatibility layer to expose, translate and
make use of the capabilities of the audio DSP, eg. Android HAL or PulseAudio
sinks. By construction, regular applications are not supposed to make use of
this API.

2.3.3 Design

The new API shares a number of concepts with the PCMAPI for flow control. Start,
pause, resume, drain and stop commands have the same semantics no matter what
the content is.

The concept of memory ring buffer divided in a set of fragments is borrowed from
the ALSA PCM API. However, only sizes in bytes can be specified.

Seeks/trick modes are assumed to be handled by the host.

The notion of rewinds/forwards is not supported. Data committed to the ring buffer
cannot be invalidated, except when dropping all buffers.

The Compressed Data API does not make any assumptions on how the data is
transmitted to the audio DSP. DMA transfers from main memory to an embedded
audio cluster or to a SPI interface for external DSPs are possible. As in the ALSA
PCM case, a core set of routines is exposed; each driver implementer will have to
write support for a set of mandatory routines and possibly make use of optional
ones.

The main additions are

get_caps This routine returns the list of audio formats supported. Querying the
codecs on a capture stream will return encoders, decoders will be listed for
playback streams.

get_codec_caps For each codec, this routine returns a list of capabilities. The
intent is to make sure all the capabilities correspond to valid settings, and
to minimize the risks of configuration failures. For example, for a complex
codec such as AAC, the number of channels supported may depend on a spe-
cific profile. If the capabilities were exposed with a single descriptor, it may
happen that a specific combination of profiles/channels/formats may not be
supported. Likewise, embedded DSPs have limited memory and cpu cycles,
it is likely that some implementations make the list of capabilities dynamic
and dependent on existing workloads. In addition to codec settings, this rou-
tine returns the minimum buffer size handled by the implementation. This
information can be a function of the DMA buffer sizes, the number of bytes
required to synchronize, etc, and can be used by userspace to define how
much needs to be written in the ring buffer before playback can start.

set_params This routine sets the configuration chosen for a specific codec. The
most important field in the parameters is the codec type; in most cases de-
coders will ignore other fields, while encoders will strictly comply to the set-
tings

get_params This routines returns the actual settings used by the DSP. Changes
to the settings should remain the exception.

180 Chapter 2. Designs and Implementations

Linux Sound Documentation

get_timestamp The timestamp becomes a multiple field structure. It lists the
number of bytes transferred, the number of samples processed and the num-
ber of samples rendered/grabbed. All these values can be used to determine
the average bitrate, figure out if the ring buffer needs to be refilled or the
delay due to decoding/encoding/io on the DSP.

Note that the list of codecs/profiles/modes was derived from the OpenMAX AL
specification instead of reinventing the wheel. Modifications include: - Addition
of FLAC and IEC formats - Merge of encoder/decoder capabilities - Profiles/modes
listed as bitmasks to make descriptors more compact - Addition of set_params for
decoders (missing in OpenMAX AL) - Addition of AMR/AMR-WB encoding modes
(missing in OpenMAX AL) - Addition of format information for WMA - Addition of
encoding options when required (derived from OpenMAX IL) - Addition of rate-
ControlSupported (missing in OpenMAX AL)

2.3.4 Gapless Playback

When playing thru an album, the decoders have the ability to skip the encoder
delay and padding and directly move from one track content to another. The end
user can perceive this as gapless playback as we don’t have silence while switching
from one track to another

Also, there might be low-intensity noises due to encoding. Perfect gapless is dif-
ficult to reach with all types of compressed data, but works fine with most music
content. The decoder needs to know the encoder delay and encoder padding. So
we need to pass this to DSP. This metadata is extracted from ID3/MP4 headers and
are not present by default in the bitstream, hence the need for a new interface to
pass this information to the DSP. Also DSP and userspace needs to switch from
one track to another and start using data for second track.

The main additions are:

set_metadata This routine sets the encoder delay and encoder padding. This can
be used by decoder to strip the silence. This needs to be set before the data
in the track is written.

set_next_track This routine tells DSP that metadata and write operation sent af-
ter this would correspond to subsequent track

partial drain This is called when end of file is reached. The userspace can inform
DSP that EOF is reached and now DSP can start skipping padding delay. Also
next write data would belong to next track

Sequence flow for gapless would be: - Open - Get caps / codec caps - Set params
- Set metadata of the first track - Fill data of the first track - Trigger start - User-
space finished sending all, - Indicate next track data by sending set_next_track -
Set metadata of the next track - then call partial_drain to flush most of buffer in
DSP - Fill data of the next track - DSP switches to second track

(note: order for partial_drain and write for next track can be reversed as well)

2.3. ALSA Compress-Offload API 181

Linux Sound Documentation

2.3.5 Not supported

• Support for VoIP/circuit-switched calls is not the target of this API. Support
for dynamic bit-rate changes would require a tight coupling between the DSP
and the host stack, limiting power savings.

• Packet-loss concealment is not supported. This would require an additional
interface to let the decoder synthesize data when frames are lost during trans-
mission. This may be added in the future.

• Volume control/routing is not handled by this API. Devices exposing a com-
pressed data interface will be considered as regular ALSA devices; volume
changes and routing information will be provided with regular ALSA kcon-
trols.

• Embedded audio effects. Such effects should be enabled in the same manner,
no matter if the input was PCM or compressed.

• multichannel IEC encoding. Unclear if this is required.

• Encoding/decoding acceleration is not supported as mentioned above. It is
possible to route the output of a decoder to a capture stream, or even im-
plement transcoding capabilities. This routing would be enabled with ALSA
kcontrols.

• Audio policy/resource management. This API does not provide any hooks to
query the utilization of the audio DSP, nor any preemption mechanisms.

• No notion of underrun/overrun. Since the bytes written are compressed in
nature and data written/read doesn’t translate directly to rendered output
in time, this does not deal with underrun/overrun and maybe dealt in user-
library

2.3.6 Credits

• Mark Brown and Liam Girdwood for discussions on the need for this API

• Harsha Priya for her work on intel_sst compressed API

• Rakesh Ughreja for valuable feedback

• Sing Nallasellan, Sikkandar Madar and Prasanna Samaga for demonstrating
and quantifying the benefits of audio offload on a real platform.

2.4 ALSA PCM Timestamping

The ALSA API can provide two different system timestamps:

• Trigger_tstamp is the system time snapshot taken when the .trigger callback
is invoked. This snapshot is taken by the ALSA core in the general case, but
specific hardware may have synchronization capabilities or conversely may
only be able to provide a correct estimate with a delay. In the latter two
cases, the low-level driver is responsible for updating the trigger_tstamp at
the most appropriate and precise moment. Applications should not rely solely

182 Chapter 2. Designs and Implementations

Linux Sound Documentation

on the first trigger_tstamp but update their internal calculations if the driver
provides a refined estimate with a delay.

• tstamp is the current system timestamp updated during the last event or ap-
plication query. The difference (tstamp - trigger_tstamp) defines the elapsed
time.

The ALSA API provides two basic pieces of information, avail and delay, which
combined with the trigger and current system timestamps allow for applications
to keep track of the‘fullness’of the ring buffer and the amount of queued samples.
The use of these different pointers and time information depends on the application
needs:

• avail reports how much can be written in the ring buffer

• delay reports the time it will take to hear a new sample after all queued
samples have been played out.

When timestamps are enabled, the avail/delay information is reported along
with a snapshot of system time. Applications can select from CLOCK_REALTIME
(NTP corrections including going backwards), CLOCK_MONOTONIC (NTP corrections
but never going backwards), CLOCK_MONOTIC_RAW (without NTP corrections) and
change the mode dynamically with sw_params

The ALSA API also provide an audio_tstamp which reflects the passage of time as
measured by different components of audio hardware. In ascii-art, this could be
represented as follows (for the playback case):

--> time
^ ^ ^ ^ ^
| | | | |
analog link dma app FullBuffer
time time time time time
< codec delay >	<--hw delay-->	<queued samples>	<---avail->
<----------------- delay---------------------->			

|<----ring buffer length---->|

The analog time is taken at the last stage of the playback, as close as possible to
the actual transducer

The link time is taken at the output of the SoC/chipset as the samples are pushed on
a link. The link time can be directly measured if supported in hardware by sample
counters or wallclocks (e.g. with HDAudio 24MHz or PTP clock for networked
solutions) or indirectly estimated (e.g. with the frame counter in USB).

The DMA time is measured using counters - typically the least reliable of all mea-
surements due to the bursty nature of DMA transfers.

The app time corresponds to the time tracked by an application after writing in
the ring buffer.

The application can query the hardware capabilities, define which audio time it
wants reported by selecting the relevant settings in audio_tstamp_config fields,
thus get an estimate of the timestamp accuracy. It can also request the delay-
to-analog be included in the measurement. Direct access to the link time is very
interesting on platforms that provide an embedded DSP; measuring directly the

2.4. ALSA PCM Timestamping 183

Linux Sound Documentation

link time with dedicated hardware, possibly synchronized with system time, re-
moves the need to keep track of internal DSP processing times and latency.

In case the application requests an audio tstamp that is not supported in
hardware/low-level driver, the type is overridden as DEFAULT and the timestamp
will report the DMA time based on the hw_pointer value.

For backwards compatibility with previous implementations that did not provide
timestamp selection, with a zero-valued COMPAT timestamp type the results will
default to the HDAudio wall clock for playback streams and to the DMA time
(hw_ptr) in all other cases.

The audio timestamp accuracy can be returned to user-space, so that appropriate
decisions are made:

• for dma time (default), the granularity of the transfers can be inferred from
the steps between updates and in turn provide information on how much the
application pointer can be rewound safely.

• the link time can be used to track long-term drifts between audio and sys-
tem time using the (tstamp-trigger_tstamp)/audio_tstamp ratio, the precision
helps define how much smoothing/low-pass filtering is required. The link
time can be either reset on startup or reported as is (the latter being useful
to compare progress of different streams - but may require the wallclock to
be always running and not wrap-around during idle periods). If supported in
hardware, the absolute link time could also be used to define a precise start
time (patches WIP)

• including the delay in the audio timestamp may counter-intuitively not in-
crease the precision of timestamps, e.g. if a codec includes variable-latency
DSP processing or a chain of hardware components the delay is typically not
known with precision.

The accuracy is reported in nanosecond units (using an unsigned 32-bit word),
which gives a max precision of 4.29s, more than enough for audio applications⋯
Due to the varied nature of timestamping needs, even for a single application, the
audio_tstamp_config can be changed dynamically. In the STATUS ioctl, the param-
eters are read-only and do not allow for any application selection. To work around
this limitation without impacting legacy applications, a new STATUS_EXT ioctl is
introduced with read/write parameters. ALSA-lib will be modified to make use of
STATUS_EXT and effectively deprecate STATUS.

The ALSA API only allows for a single audio timestamp to be reported at a time.
This is a conscious design decision, reading the audio timestamps from hardware
registers or from IPC takes time, the more timestamps are read the more impre-
cise the combined measurements are. To avoid any interpretation issues, a single
(system, audio) timestamp is reported. Applications that need different times-
tamps will be required to issue multiple queries and perform an interpolation of
the results

In some hardware-specific configuration, the system timestamp is latched by a
low-level audio subsystem, and the information provided back to the driver. Due
to potential delays in the communication with the hardware, there is a risk of mis-
alignment with the avail and delay information. To make sure applications are not
confused, a driver_timestamp field is added in the snd_pcm_status structure; this

184 Chapter 2. Designs and Implementations

Linux Sound Documentation

timestamp shows when the information is put together by the driver before return-
ing from the STATUS and STATUS_EXT ioctl. in most cases this driver_timestampwill
be identical to the regular system tstamp.

Examples of typestamping with HDaudio:

1. DMA timestamp, no compensation for DMA+analog delay

$./audio_time -p --ts_type=1
playback: systime: 341121338 nsec, audio time 342000000 nsec, ␣
↪→systime delta -878662
playback: systime: 426236663 nsec, audio time 427187500 nsec, ␣
↪→systime delta -950837
playback: systime: 597080580 nsec, audio time 598000000 nsec, ␣
↪→systime delta -919420
playback: systime: 682059782 nsec, audio time 683020833 nsec, ␣
↪→systime delta -961051
playback: systime: 852896415 nsec, audio time 853854166 nsec, ␣
↪→systime delta -957751
playback: systime: 937903344 nsec, audio time 938854166 nsec, ␣
↪→systime delta -950822

2. DMA timestamp, compensation for DMA+analog delay

$./audio_time -p --ts_type=1 -d
playback: systime: 341053347 nsec, audio time 341062500 nsec, ␣
↪→systime delta -9153
playback: systime: 426072447 nsec, audio time 426062500 nsec, ␣
↪→systime delta 9947
playback: systime: 596899518 nsec, audio time 596895833 nsec, ␣
↪→systime delta 3685
playback: systime: 681915317 nsec, audio time 681916666 nsec, ␣
↪→systime delta -1349
playback: systime: 852741306 nsec, audio time 852750000 nsec, ␣
↪→systime delta -8694

3. link timestamp, compensation for DMA+analog delay

$./audio_time -p --ts_type=2 -d
playback: systime: 341060004 nsec, audio time 341062791 nsec, ␣
↪→systime delta -2787
playback: systime: 426242074 nsec, audio time 426244875 nsec, ␣
↪→systime delta -2801
playback: systime: 597080992 nsec, audio time 597084583 nsec, ␣
↪→systime delta -3591
playback: systime: 682084512 nsec, audio time 682088291 nsec, ␣
↪→systime delta -3779
playback: systime: 852936229 nsec, audio time 852940916 nsec, ␣
↪→systime delta -4687
playback: systime: 938107562 nsec, audio time 938112708 nsec, ␣
↪→systime delta -5146

Example 1 shows that the timestamp at the DMA level is close to 1ms ahead of
the actual playback time (as a side time this sort of measurement can help define
rewind safeguards). Compensating for the DMA-link delay in example 2 helps
remove the hardware buffering but the information is still very jittery, with up to
one sample of error. In example 3 where the timestamps are measured with the

2.4. ALSA PCM Timestamping 185

Linux Sound Documentation

link wallclock, the timestamps show a monotonic behavior and a lower dispersion.

Example 3 and 4 are with USB audio class. Example 3 shows a high offset between
audio time and system time due to buffering. Example 4 shows how compensating
for the delay exposes a 1ms accuracy (due to the use of the frame counter by the
driver)

Example 3: DMA timestamp, no compensation for delay, delta of ~5ms

$./audio_time -p -Dhw:1 -t1
playback: systime: 120174019 nsec, audio time 125000000 nsec, ␣
↪→systime delta -4825981
playback: systime: 245041136 nsec, audio time 250000000 nsec, ␣
↪→systime delta -4958864
playback: systime: 370106088 nsec, audio time 375000000 nsec, ␣
↪→systime delta -4893912
playback: systime: 495040065 nsec, audio time 500000000 nsec, ␣
↪→systime delta -4959935
playback: systime: 620038179 nsec, audio time 625000000 nsec, ␣
↪→systime delta -4961821
playback: systime: 745087741 nsec, audio time 750000000 nsec, ␣
↪→systime delta -4912259
playback: systime: 870037336 nsec, audio time 875000000 nsec, ␣
↪→systime delta -4962664

Example 4: DMA timestamp, compensation for delay, delay of ~1ms

$./audio_time -p -Dhw:1 -t1 -d
playback: systime: 120190520 nsec, audio time 120000000 nsec, ␣
↪→systime delta 190520
playback: systime: 245036740 nsec, audio time 244000000 nsec, ␣
↪→systime delta 1036740
playback: systime: 370034081 nsec, audio time 369000000 nsec, ␣
↪→systime delta 1034081
playback: systime: 495159907 nsec, audio time 494000000 nsec, ␣
↪→systime delta 1159907
playback: systime: 620098824 nsec, audio time 619000000 nsec, ␣
↪→systime delta 1098824
playback: systime: 745031847 nsec, audio time 744000000 nsec, ␣
↪→systime delta 1031847

2.5 ALSA Jack Controls

2.5.1 Why we need Jack kcontrols

ALSA uses kcontrols to export audio controls(switch, volume, Mux, ⋯) to user
space. This means userspace applications like pulseaudio can switch off head-
phones and switch on speakers when no headphones are pluged in.

The old ALSA jack code only created input devices for each registered jack. These
jack input devices are not readable by userspace devices that run as non root.

The new jack code creates embedded jack kcontrols for each jack that can be read
by any process.

186 Chapter 2. Designs and Implementations

Linux Sound Documentation

This can be combined with UCM to allow userspace to route audio more intelli-
gently based on jack insertion or removal events.

2.5.2 Jack Kcontrol Internals

Each jack will have a kcontrol list, so that we can create a kcontrol and attach it
to the jack, at jack creation stage. We can also add a kcontrol to an existing jack,
at anytime when required.

Those kcontrols will be freed automatically when the Jack is freed.

2.5.3 How to use jack kcontrols

In order to keep compatibility, snd_jack_new() has been modified by adding two
params:

initial_kctl if true, create a kcontrol and add it to the jack list.
phantom_jack Don’t create a input device for phantom jacks.

HDA jacks can set phantom_jack to true in order to create a phantom jack and set
initial_kctl to true to create an initial kcontrol with the correct id.

ASoC jacks should set initial_kctl as false. The pin name will be assigned as the
jack kcontrol name.

2.6 Tracepoints in ALSA

2017/07/02 Takasahi Sakamoto

2.6.1 Tracepoints in ALSA PCM core

ALSA PCM core registers snd_pcm subsystem to kernel tracepoint system. This
subsystem includes two categories of tracepoints; for state of PCM buffer and for
processing of PCM hardware parameters. These tracepoints are available when
corresponding kernel configurations are enabled. When CONFIG_SND_DEBUG is en-
abled, the latter tracepoints are available. When additional SND_PCM_XRUN_DEBUG
is enabled too, the former trace points are enabled.

Tracepoints for state of PCM buffer

This category includes four tracepoints; hwptr, applptr, xrun and hw_ptr_error.

2.6. Tracepoints in ALSA 187

Linux Sound Documentation

Tracepoints for processing of PCM hardware parameters

This category includes two tracepoints; hw_mask_param and hw_interval_param.

In a design of ALSA PCM core, data transmission is abstracted as PCM sub-
stream. Applications manage PCM substream to maintain data transmission for
PCM frames. Before starting the data transmission, applications need to config-
ure PCM substream. In this procedure, PCM hardware parameters are decided
by interaction between applications and ALSA PCM core. Once decided, runtime
of the PCM substream keeps the parameters.

The parameters are described in struct snd_pcm_hw_params. This structure
includes several types of parameters. Applications set preferable value to
these parameters, then execute ioctl(2) with SNDRV_PCM_IOCTL_HW_REFINE
or SNDRV_PCM_IOCTL_HW_PARAMS. The former is used just for refining avail-
able set of parameters. The latter is used for an actual decision of the parameters.

The struct snd_pcm_hw_params structure has below members:

flags Configurable. ALSA PCM core and some drivers handle this flag to select
convenient parameters or change their behaviour.

masks Configurable. This type of parameter is described in struct snd_mask and
represent mask values. As of PCM protocol v2.0.13, three types are defined.

• SNDRV_PCM_HW_PARAM_ACCESS

• SNDRV_PCM_HW_PARAM_FORMAT

• SNDRV_PCM_HW_PARAM_SUBFORMAT

intervals Configurable. This type of parameter is described in struct
snd_interval and represent values with a range. As of PCMprotocol v2.0.13,
twelve types are defined.

• SNDRV_PCM_HW_PARAM_SAMPLE_BITS

• SNDRV_PCM_HW_PARAM_FRAME_BITS

• SNDRV_PCM_HW_PARAM_CHANNELS

• SNDRV_PCM_HW_PARAM_RATE

• SNDRV_PCM_HW_PARAM_PERIOD_TIME

• SNDRV_PCM_HW_PARAM_PERIOD_SIZE

• SNDRV_PCM_HW_PARAM_PERIOD_BYTES

• SNDRV_PCM_HW_PARAM_PERIODS

• SNDRV_PCM_HW_PARAM_BUFFER_TIME

• SNDRV_PCM_HW_PARAM_BUFFER_SIZE

• SNDRV_PCM_HW_PARAM_BUFFER_BYTES

• SNDRV_PCM_HW_PARAM_TICK_TIME

rmask Configurable. This is evaluated at ioctl(2) with
SNDRV_PCM_IOCTL_HW_REFINE only. Applications can select which
mask/interval parameter can be changed by ALSA PCM core. For

188 Chapter 2. Designs and Implementations

Linux Sound Documentation

SNDRV_PCM_IOCTL_HW_PARAMS, this mask is ignored and all of pa-
rameters are going to be changed.

cmask Read-only. After returning from ioctl(2), buffer in user space for struct
snd_pcm_hw_params includes result of each operation. This mask represents
which mask/interval parameter is actually changed.

info Read-only. This represents hardware/driver capabilities as bit
flags with SNDRV_PCM_INFO_XXX. Typically, applications execute
ioctl(2) with SNDRV_PCM_IOCTL_HW_REFINE to retrieve this flag,
then decide candidates of parameters and execute ioctl(2) with
SNDRV_PCM_IOCTL_HW_PARAMS to configure PCM substream.

msbits Read-only. This value represents available bit width in MSB side of a PCM
sample. When a parameter of SNDRV_PCM_HW_PARAM_SAMPLE_BITS was
decided as a fixed number, this value is also calculated according to it. Else,
zero. But this behaviour depends on implementations in driver side.

rate_num Read-only. This value represents numerator of sampling rate in fraction
notation. Basically, when a parameter of SNDRV_PCM_HW_PARAM_RATE
was decided as a single value, this value is also calculated according to it.
Else, zero. But this behaviour depends on implementations in driver side.

rate_den Read-only. This value represents denominator of sam-
pling rate in fraction notation. Basically, when a parameter of
SNDRV_PCM_HW_PARAM_RATE was decided as a single value, this value is
also calculated according to it. Else, zero. But this behaviour depends on
implementations in driver side.

fifo_size Read-only. This value represents the size of FIFO in serial sound in-
terface of hardware. Basically, each driver can assigns a proper value to this
parameter but some drivers intentionally set zero with a care of hardware
design or data transmission protocol.

ALSA PCM core handles buffer of struct snd_pcm_hw_params when applications
execute ioctl(2) with SNDRV_PCM_HW_REFINE or SNDRV_PCM_HW_PARAMS.
Parameters in the buffer are changed according to struct snd_pcm_hardware and
rules of constraints in the runtime. The structure describes capabilities of handled
hardware. The rules describes dependencies on which a parameter is decided
according to several parameters. A rule has a callback function, and drivers can
register arbitrary functions to compute the target parameter. ALSA PCM core
registers some rules to the runtime as a default.

Each driver can join in the interaction as long as it prepared for two stuffs in a
callback of struct snd_pcm_ops.open.

1. In the callback, drivers are expected to change a member of struct
snd_pcm_hardware type in the runtime, according to capacities of corre-
sponding hardware.

2. In the same callback, drivers are also expected to register additional rules
of constraints into the runtime when several parameters have dependencies
due to hardware design.

The driver can refers to result of the interaction in a callback of struct
snd_pcm_ops.hw_params, however it should not change the content.

2.6. Tracepoints in ALSA 189

Linux Sound Documentation

Tracepoints in this category are designed to trace changes of the mask/interval
parameters. When ALSA PCM core changes them, hw_mask_param or
hw_interval_param event is probed according to type of the changed parameter.

ALSA PCM core also has a pretty print format for each of the tracepoints. Below
is an example for hw_mask_param.

hw_mask_param: pcmC0D0p 001/023 FORMAT 00000000000000000000001000000044␣
↪→00000000000000000000001000000044

Below is an example for hw_interval_param.

hw_interval_param: pcmC0D0p 000/023 BUFFER_SIZE 0 0 [0 4294967295] 0 1 [0␣
↪→4294967295]

The first three fields are common. They represent name of ALSA PCM character
device, rules of constraint and name of the changed parameter, in order. The field
for rules of constraint consists of two sub-fields; index of applied rule and total
number of rules added to the runtime. As an exception, the index 000 means that
the parameter is changed by ALSA PCM core, regardless of the rules.

The rest of field represent state of the parameter before/after changing. These
fields are different according to type of the parameter. For parameters of mask
type, the fields represent hexadecimal dump of content of the parameter. For
parameters of interval type, the fields represent values of each member of empty,
integer, openmin, min, max, openmax in struct snd_interval in this order.

2.6.2 Tracepoints in drivers

Some drivers have tracepoints for developers’convenience. For them, please refer
to each documentation or implementation.

2.7 Proc Files of ALSA Drivers

Takashi Iwai <tiwai@suse.de>

2.7.1 General

ALSA has its own proc tree, /proc/asound. Many useful information are found in
this tree. When you encounter a problem and need debugging, check the files
listed in the following sections.

Each card has its subtree cardX, where X is from 0 to 7. The card-specific files are
stored in the card* subdirectories.

190 Chapter 2. Designs and Implementations

mailto:tiwai@suse.de

Linux Sound Documentation

2.7.2 Global Information

cards Shows the list of currently configured ALSA drivers, index, the id string,
short and long descriptions.

version Shows the version string and compile date.

modules Lists the module of each card
devices Lists the ALSA native device mappings.
meminfo Shows the status of allocated pages via ALSA drivers. Appears only

when CONFIG_SND_DEBUG=y.

hwdep Lists the currently available hwdep devices in format of
<card>-<device>: <name>

pcm Lists the currently available PCM devices in format of <card>-<device>:
<id>: <name> : <sub-streams>

timer Lists the currently available timer devices
oss/devices Lists the OSS device mappings.
oss/sndstat Provides the output compatible with /dev/sndstat. You can symlink

this to /dev/sndstat.

2.7.3 Card Specific Files

The card-specific files are found in /proc/asound/card* directories. Some drivers
(e.g. cmipci) have their own proc entries for the register dump, etc (e.g. /proc/
asound/card*/cmipci shows the register dump). These files would be really help-
ful for debugging.

When PCM devices are available on this card, you can see directories like pcm0p
or pcm1c. They hold the PCM information for each PCM stream. The number
after pcm is the PCM device number from 0, and the last p or c means playback or
capture direction. The files in this subtree is described later.

The status of MIDI I/O is found in midi* files. It shows the device name and the
received/transmitted bytes through the MIDI device.

When the card is equipped with AC97 codecs, there are codec97#* subdirectories
(described later).

When the OSS mixer emulation is enabled (and the module is loaded), oss_mixer
file appears here, too. This shows the current mapping of OSS mixer elements to
the ALSA control elements. You can change the mapping by writing to this device.
Read OSS-Emulation.txt for details.

2.7. Proc Files of ALSA Drivers 191

Linux Sound Documentation

2.7.4 PCM Proc Files

card*/pcm*/info The general information of this PCM device: card #, device #,
substreams, etc.

card*/pcm*/xrun_debug This file appears when CONFIG_SND_DEBUG=y and
CONFIG_PCM_XRUN_DEBUG=y. This shows the status of xrun (= buffer over-
run/xrun) and invalid PCM position debug/check of ALSA PCM middle layer.
It takes an integer value, can be changed by writing to this file, such as:

echo 5 > /proc/asound/card0/pcm0p/xrun_debug

The value consists of the following bit flags:

• bit 0 = Enable XRUN/jiffies debug messages

• bit 1 = Show stack trace at XRUN / jiffies check

• bit 2 = Enable additional jiffies check

When the bit 0 is set, the driver will show the messages to kernel log when
an xrun is detected. The debug message is shown also when the invalid H/W
pointer is detected at the update of periods (usually called from the interrupt
handler).

When the bit 1 is set, the driver will show the stack trace additionally. This
may help the debugging.

Since 2.6.30, this option can enable the hwptr check using jiffies. This detects
spontaneous invalid pointer callback values, but can be lead to too much cor-
rections for a (mostly buggy) hardware that doesn’t give smooth pointer
updates. This feature is enabled via the bit 2.

card*/pcm*/sub*/info The general information of this PCM sub-stream.

card*/pcm*/sub*/status The current status of this PCM sub-stream, elapsed
time, H/W position, etc.

card*/pcm*/sub*/hw_params The hardware parameters set for this sub-stream.

card*/pcm*/sub*/sw_params The soft parameters set for this sub-stream.

card*/pcm*/sub*/prealloc The buffer pre-allocation information.

card*/pcm*/sub*/xrun_injection Triggers an XRUN to the running stream
when any value is written to this proc file. Used for fault injection. This
entry is write-only.

2.7.5 AC97 Codec Information

card*/codec97#*/ac97#?-? Shows the general information of this AC97 codec
chip, such as name, capabilities, set up.

card*/codec97#0/ac97#?-?+regs Shows the AC97 register dump. Useful for de-
bugging.

When CONFIG_SND_DEBUG is enabled, you can write to this file for chang-
ing an AC97 register directly. Pass two hex numbers. For example,

192 Chapter 2. Designs and Implementations

Linux Sound Documentation

echo 02 9f1f > /proc/asound/card0/codec97#0/ac97#0-0+regs

2.7.6 USB Audio Streams

card*/stream* Shows the assignment and the current status of each audio stream
of the given card. This information is very useful for debugging.

2.7.7 HD-Audio Codecs

card*/codec#* Shows the general codec information and the attribute of each
widget node.

card*/eld#* Available for HDMI or DisplayPort interfaces. Shows ELD(EDID Like
Data) info retrieved from the attached HDMI sink, and describes its audio
capabilities and configurations.

Some ELD fields may be modified by doing echo name hex_value > eld#*.
Only do this if you are sure the HDMI sink provided value is wrong. And if
that makes your HDMI audio work, please report to us so that we can fix it in
future kernel releases.

2.7.8 Sequencer Information

seq/drivers Lists the currently available ALSA sequencer drivers.
seq/clients Shows the list of currently available sequencer clients and ports. The

connection status and the running status are shown in this file, too.

seq/queues Lists the currently allocated/running sequencer queues.
seq/timer Lists the currently allocated/running sequencer timers.
seq/oss Lists the OSS-compatible sequencer stuffs.

2.7.9 Help For Debugging?

When the problem is related with PCM, first try to turn on xrun_debug mode. This
will give you the kernel messages when and where xrun happened.

If it’s really a bug, report it with the following information:
• the name of the driver/card, show in /proc/asound/cards

• the register dump, if available (e.g. card*/cmipci)

when it’s a PCM problem,

• set-up of PCM, shown in hw_parms, sw_params, and status in the PCM sub-
stream directory

when it’s a mixer problem,
• AC97 proc files, codec97#*/* files

for USB audio/midi,

2.7. Proc Files of ALSA Drivers 193

Linux Sound Documentation

• output of lsusb -v

• stream* files in card directory

The ALSA bug-tracking system is found at: https://bugtrack.alsa-project.org/
alsa-bug/

2.8 Notes on Power-Saving Mode

AC97 and HD-audio drivers have the automatic power-saving mode.
This feature is enabled via Kconfig CONFIG_SND_AC97_POWER_SAVE and
CONFIG_SND_HDA_POWER_SAVE options, respectively.

With the automatic power-saving, the driver turns off the codec power appropri-
ately when no operation is required. When no applications use the device and/or
no analog loopback is set, the power disablement is done fully or partially. It’ll
save a certain power consumption, thus good for laptops (even for desktops).

The time-out for automatic power-off can be specified via power_save mod-
ule option of snd-ac97-codec and snd-hda-intel modules. Specify the time-out
value in seconds. 0 means to disable the automatic power-saving. The de-
fault value of timeout is given via CONFIG_SND_AC97_POWER_SAVE_DEFAULT and
CONFIG_SND_HDA_POWER_SAVE_DEFAULT Kconfig options. Setting this to 1 (the min-
imum value) isn’t recommended because many applications try to reopen the
device frequently. 10 would be a good choice for normal operations.

The power_save option is exported as writable. This means you can adjust the
value via sysfs on the fly. For example, to turn on the automatic power-save
mode with 10 seconds, write to /sys/modules/snd_ac97_codec/parameters/
power_save (usually as root):

echo 10 > /sys/modules/snd_ac97_codec/parameters/power_save

Note that you might hear click noise/pop when changing the power state. Also,
it often takes certain time to wake up from the power-down to the active state.
These are often hardly to fix, so don’t report extra bug reports unless you have a
fix patch ;-)

For HD-audio interface, there is another module option, power_save_controller.
This enables/disables the power-save mode of the controller side. Setting this on
may reduce a bit more power consumption, but might result in longer wake-up
time and click noise. Try to turn it off when you experience such a thing too often.

2.9 Notes on Kernel OSS-Emulation

Jan. 22, 2004 Takashi Iwai <tiwai@suse.de>

194 Chapter 2. Designs and Implementations

https://bugtrack.alsa-project.org/alsa-bug/
https://bugtrack.alsa-project.org/alsa-bug/
mailto:tiwai@suse.de

Linux Sound Documentation

2.9.1 Modules

ALSA provides a powerful OSS emulation on the kernel. The OSS emulation for
PCM, mixer and sequencer devices is implemented as add-on kernel modules, snd-
pcm-oss, snd-mixer-oss and snd-seq-oss. When you need to access the OSS PCM,
mixer or sequencer devices, the corresponding module has to be loaded.

These modules are loaded automatically when the corresponding service is called.
The alias is defined sound-service-x-y, where x and y are the card number and
the minor unit number. Usually you don’t have to define these aliases by yourself.
Only necessary step for auto-loading of OSS modules is to define the card alias in
/etc/modprobe.d/alsa.conf, such as:

alias sound-slot-0 snd-emu10k1

As the second card, define sound-slot-1 as well. Note that you can’t use the
aliased name as the target name (i.e. alias sound-slot-0 snd-card-0 doesn’t
work any more like the old modutils).

The currently available OSS configuration is shown in /proc/asound/oss/sndstat.
This shows in the same syntax of /dev/sndstat, which is available on the commercial
OSS driver. On ALSA, you can symlink /dev/sndstat to this proc file.

Please note that the devices listed in this proc file appear only after the corre-
sponding OSS-emulation module is loaded. Don’t worry even if“NOT ENABLED
IN CONFIG”is shown in it.

2.9.2 Device Mapping

ALSA supports the following OSS device files:

PCM:
/dev/dspX
/dev/adspX

Mixer:
/dev/mixerX

MIDI:
/dev/midi0X
/dev/amidi0X

Sequencer:
/dev/sequencer
/dev/sequencer2 (aka /dev/music)

where X is the card number from 0 to 7.

(NOTE: Some distributions have the device files like /dev/midi0 and /dev/midi1.
They are NOT for OSS but for tclmidi, which is a totally different thing.)

Unlike the real OSS, ALSA cannot use the device files more than the assigned ones.
For example, the first card cannot use /dev/dsp1 or /dev/dsp2, but only /dev/dsp0
and /dev/adsp0.

2.9. Notes on Kernel OSS-Emulation 195

Linux Sound Documentation

As seen above, PCM andMIDI may have two devices. Usually, the first PCM device
(hw:0,0 in ALSA) is mapped to /dev/dsp and the secondary device (hw:0,1) to
/dev/adsp (if available). For MIDI, /dev/midi and /dev/amidi, respectively.

You can change this device mapping via the module options of snd-pcm-oss and
snd-rawmidi. In the case of PCM, the following options are available for snd-pcm-
oss:

dsp_map PCM device number assigned to /dev/dspX (default = 0)

adsp_map PCM device number assigned to /dev/adspX (default = 1)

For example, to map the third PCM device (hw:0,2) to /dev/adsp0, define like this:

options snd-pcm-oss adsp_map=2

The options take arrays. For configuring the second card, specify two entries
separated by comma. For example, to map the third PCM device on the second
card to /dev/adsp1, define like below:

options snd-pcm-oss adsp_map=0,2

To change the mapping of MIDI devices, the following options are available for
snd-rawmidi:

midi_map MIDI device number assigned to /dev/midi0X (default = 0)
amidi_map MIDI device number assigned to /dev/amidi0X (default = 1)
For example, to assign the thirdMIDI device on the first card to /dev/midi00, define
as follows:

options snd-rawmidi midi_map=2

2.9.3 PCM Mode

As default, ALSA emulates the OSS PCM with so-called plugin layer, i.e. tries to
convert the sample format, rate or channels automatically when the card doesn’
t support it natively. This will lead to some problems for some applications like
quake or wine, especially if they use the card only in the MMAP mode.

In such a case, you can change the behavior of PCM per application by writing a
command to the proc file. There is a proc file for each PCM stream, /proc/asound/
cardX/pcmY[cp]/oss, where X is the card number (zero-based), Y the PCM device
number (zero-based), and p is for playback and c for capture, respectively. Note
that this proc file exists only after snd-pcm-oss module is loaded.

The command sequence has the following syntax:

app_name fragments fragment_size [options]

app_name is the name of application with (higher priority) or without path.
fragments specifies the number of fragments or zero if no specific number is given.
fragment_size is the size of fragment in bytes or zero if not given. options is the
optional parameters. The following options are available:

196 Chapter 2. Designs and Implementations

Linux Sound Documentation

disable the application tries to open a pcm device for this channel but does not
want to use it.

direct don’t use plugins
block force block open mode
non-block force non-block open mode
partial-frag write also partial fragments (affects playback only)
no-silence do not fill silence ahead to avoid clicks
The disable option is useful when one stream direction (playback or capture) is
not handled correctly by the application although the hardware itself does support
both directions. The direct option is used, as mentioned above, to bypass the
automatic conversion and useful for MMAP-applications. For example, to playback
the first PCM device without plugins for quake, send a command via echo like the
following:

% echo "quake 0 0 direct" > /proc/asound/card0/pcm0p/oss

While quake wants only playback, you may append the second command to notify
driver that only this direction is about to be allocated:

% echo "quake 0 0 disable" > /proc/asound/card0/pcm0c/oss

The permission of proc files depend on the module options of snd. As default it’s
set as root, so you’ll likely need to be superuser for sending the command above.
The block and non-block options are used to change the behavior of opening the
device file.

As default, ALSA behaves as original OSS drivers, i.e. does not block the file when
it’s busy. The -EBUSY error is returned in this case.
This blocking behavior can be changed globally via nonblock_open module option
of snd-pcm-oss. For using the blocking mode as default for OSS devices, define
like the following:

options snd-pcm-oss nonblock_open=0

The partial-frag and no-silence commands have been added recently. Both
commands are for optimization use only. The former command specifies to invoke
the write transfer only when the whole fragment is filled. The latter stops writing
the silence data ahead automatically. Both are disabled as default.

You can check the currently defined configuration by reading the proc file. The
read image can be sent to the proc file again, hence you can save the current
configuration

% cat /proc/asound/card0/pcm0p/oss > /somewhere/oss-cfg

and restore it like

% cat /somewhere/oss-cfg > /proc/asound/card0/pcm0p/oss

Also, for clearing all the current configuration, send erase command as below:

2.9. Notes on Kernel OSS-Emulation 197

Linux Sound Documentation

% echo "erase" > /proc/asound/card0/pcm0p/oss

2.9.4 Mixer Elements

Since ALSA has completely different mixer interface, the emulation of OSS mixer
is relatively complicated. ALSA builds up a mixer element from several different
ALSA (mixer) controls based on the name string. For example, the volume element
SOUND_MIXER_PCM is composed from“PCM Playback Volume”and“PCM Play-
back Switch”controls for the playback direction and from“PCM Capture Volume”
and “PCM Capture Switch”for the capture directory (if exists). When the PCM
volume of OSS is changed, all the volume and switch controls above are adjusted
automatically.

As default, ALSA uses the following control for OSS volumes:

OSS volume ALSA control Index
SOUND_MIXER_VOLUME Master 0
SOUND_MIXER_BASS Tone Control - Bass 0
SOUND_MIXER_TREBLE Tone Control - Treble 0
SOUND_MIXER_SYNTH Synth 0
SOUND_MIXER_PCM PCM 0
SOUND_MIXER_SPEAKER PC Speaker 0
SOUND_MIXER_LINE Line 0
SOUND_MIXER_MIC Mic 0
SOUND_MIXER_CD CD 0
SOUND_MIXER_IMIX Monitor Mix 0
SOUND_MIXER_ALTPCM PCM 1
SOUND_MIXER_RECLEV (not assigned)
SOUND_MIXER_IGAIN Capture 0
SOUND_MIXER_OGAIN Playback 0
SOUND_MIXER_LINE1 Aux 0
SOUND_MIXER_LINE2 Aux 1
SOUND_MIXER_LINE3 Aux 2
SOUND_MIXER_DIGITAL1 Digital 0
SOUND_MIXER_DIGITAL2 Digital 1
SOUND_MIXER_DIGITAL3 Digital 2
SOUND_MIXER_PHONEIN Phone 0
SOUND_MIXER_PHONEOUT Phone 1
SOUND_MIXER_VIDEO Video 0
SOUND_MIXER_RADIO Radio 0
SOUND_MIXER_MONITOR Monitor 0

The second column is the base-string of the corresponding ALSA control. In fact,
the controls with XXX [Playback|Capture] [Volume|Switch] will be checked in
addition.

The current assignment of these mixer elements is listed in the proc file,
/proc/asound/cardX/oss_mixer, which will be like the following

198 Chapter 2. Designs and Implementations

Linux Sound Documentation

VOLUME "Master" 0
BASS "" 0
TREBLE "" 0
SYNTH "" 0
PCM "PCM" 0
...

where the first column is the OSS volume element, the second column the base-
string of the corresponding ALSA control, and the third the control index. When
the string is empty, it means that the corresponding OSS control is not available.

For changing the assignment, you can write the configuration to this proc file. For
example, to map“Wave Playback”to the PCM volume, send the command like the
following:

% echo 'VOLUME "Wave Playback" 0' > /proc/asound/card0/oss_mixer

The command is exactly as same as listed in the proc file. You can change one or
more elements, one volume per line. In the last example, both “Wave Playback
Volume”and“Wave Playback Switch”will be affected when PCM volume is changed.
Like the case of PCM proc file, the permission of proc files depend on the module
options of snd. you’ll likely need to be superuser for sending the command above.
As well as in the case of PCM proc file, you can save and restore the current mixer
configuration by reading and writing the whole file image.

2.9.5 Duplex Streams

Note that when attempting to use a single device file for playback and capture,
the OSS API provides no way to set the format, sample rate or number of channels
different in each direction. Thus

io_handle = open("device", O_RDWR)

will only function correctly if the values are the same in each direction.

To use different values in the two directions, use both

input_handle = open("device", O_RDONLY)
output_handle = open("device", O_WRONLY)

and set the values for the corresponding handle.

2.9.6 Unsupported Features

MMAP on ICE1712 driver

ICE1712 supports only the unconventional format, interleaved 10-channels 24bit
(packed in 32bit) format. Therefore you cannot mmap the buffer as the conven-
tional (mono or 2-channels, 8 or 16bit) format on OSS.

2.9. Notes on Kernel OSS-Emulation 199

Linux Sound Documentation

2.10 OSS Sequencer Emulation on ALSA

Copyright (c) 1998,1999 by Takashi Iwai

ver.0.1.8; Nov. 16, 1999

2.10.1 Description

This directory contains the OSS sequencer emulation driver on ALSA. Note that
this program is still in the development state.

What this does - it provides the emulation of the OSS sequencer, access via /dev/
sequencer and /dev/music devices. The most of applications using OSS can run
if the appropriate ALSA sequencer is prepared.

The following features are emulated by this driver:

• Normal sequencer and MIDI events:

They are converted to the ALSA sequencer events, and sent to the
corresponding port.

• Timer events:

The timer is not selectable by ioctl. The control rate is fixed to 100
regardless of HZ. That is, even on Alpha system, a tick is always
1/100 second. The base rate and tempo can be changed in /dev/
music.

• Patch loading:

It purely depends on the synth drivers whether it’s supported since
the patch loading is realized by callback to the synth driver.

• I/O controls:

Most of controls are accepted. Some controls are dependent on the
synth driver, as well as even on original OSS.

Furthermore, you can find the following advanced features:

• Better queue mechanism:

The events are queued before processing them.

• Multiple applications:

You can run two or more applications simultaneously (even for OSS
sequencer)! However, each MIDI device is exclusive - that is, if a
MIDI device is opened once by some application, other applications
can’t use it. No such a restriction in synth devices.

• Real-time event processing:

The events can be processed in real time without using out of bound
ioctl. To switch to real-time mode, send ABSTIME 0 event. The
followed events will be processed in real-time without queued. To
switch off the real-time mode, send RELTIME 0 event.

• /proc interface:

200 Chapter 2. Designs and Implementations

Linux Sound Documentation

The status of applications and devices can be shown via /proc/
asound/seq/oss at any time. In the later version, configuration will
be changed via /proc interface, too.

2.10.2 Installation

Run configure script with both sequencer support (--with-sequencer=yes) and
OSS emulation (--with-oss=yes) options. A module snd-seq-oss.o will be cre-
ated. If the synth module of your sound card supports for OSS emulation (so far,
only Emu8000 driver), this module will be loaded automatically. Otherwise, you
need to load this module manually.

At beginning, this module probes all the MIDI ports which have been already con-
nected to the sequencer. Once after that, the creation and deletion of ports are
watched by announcement mechanism of ALSA sequencer.

The available synth and MIDI devices can be found in proc interface. Run cat /
proc/asound/seq/oss, and check the devices. For example, if you use an AWE64
card, you’ll see like the following:
OSS sequencer emulation version 0.1.8
ALSA client number 63
ALSA receiver port 0

Number of applications: 0

Number of synth devices: 1
synth 0: [EMU8000]

type 0x1 : subtype 0x20 : voices 32
capabilties : ioctl enabled / load_patch enabled

Number of MIDI devices: 3
midi 0: [Emu8000 Port-0] ALSA port 65:0

capability write / opened none

midi 1: [Emu8000 Port-1] ALSA port 65:1
capability write / opened none

midi 2: [0: MPU-401 (UART)] ALSA port 64:0
capability read/write / opened none

Note that the device number may be different from the information of /proc/
asound/oss-devices or ones of the original OSS driver. Use the device number
listed in /proc/asound/seq/oss to play via OSS sequencer emulation.

2.10. OSS Sequencer Emulation on ALSA 201

Linux Sound Documentation

2.10.3 Using Synthesizer Devices

Run your favorite program. I’ve tested playmidi-2.4, awemidi-0.4.3, gmod-3.1 and
xmp-1.1.5. You can load samples via /dev/sequencer like sfxload, too.

If the lowlevel driver supports multiple access to synth devices (like Emu8000
driver), two or more applications are allowed to run at the same time.

2.10.4 Using MIDI Devices

So far, only MIDI output was tested. MIDI input was not checked at all, but hope-
fully it will work. Use the device number listed in /proc/asound/seq/oss. Be
aware that these numbers are mostly different from the list in /proc/asound/
oss-devices.

2.10.5 Module Options

The following module options are available:

maxqlen specifies the maximum read/write queue length. This queue is private
for OSS sequencer, so that it is independent from the queue length of ALSA
sequencer. Default value is 1024.

seq_oss_debug specifies the debug level and accepts zero (= no debug message)
or positive integer. Default value is 0.

2.10.6 Queue Mechanism

OSS sequencer emulation uses an ALSA priority queue. The events from /dev/
sequencer are processed and put onto the queue specified by module option.

All the events from /dev/sequencer are parsed at beginning. The timing events
are also parsed at this moment, so that the events may be processed in real-time.
Sending an event ABSTIME 0 switches the operation mode to real-time mode, and
sending an event RELTIME 0 switches it off. In the real-time mode, all events are
dispatched immediately.

The queued events are dispatched to the corresponding ALSA sequencer ports
after scheduled time by ALSA sequencer dispatcher.

If the write-queue is full, the application sleeps until a certain amount (as default
one half) becomes empty in blocking mode. The synchronization to write timing
was implemented, too.

The input from MIDI devices or echo-back events are stored on read FIFO queue.
If application reads /dev/sequencer in blockingmode, the process will be awaked.

202 Chapter 2. Designs and Implementations

Linux Sound Documentation

2.10.7 Interface to Synthesizer Device

Registration

To register an OSS synthesizer device, use snd_seq_oss_synth_register() function:

int snd_seq_oss_synth_register(char *name, int type, int subtype, int␣
↪→nvoices,

snd_seq_oss_callback_t *oper, void *private_data)

The arguments name, type, subtype and nvoices are used for making the appro-
priate synth_info structure for ioctl. The return value is an index number of this
device. This index must be remembered for unregister. If registration is failed,
-errno will be returned.

To release this device, call snd_seq_oss_synth_unregister() function:

int snd_seq_oss_synth_unregister(int index)

where the index is the index number returned by register function.

Callbacks

OSS synthesizer devices have capability for sample downloading and ioctls like
sample reset. In OSS emulation, these special features are realized by using call-
backs. The registration argument oper is used to specify these callbacks. The
following callback functions must be defined:

snd_seq_oss_callback_t:
int (*open)(snd_seq_oss_arg_t *p, void *closure);
int (*close)(snd_seq_oss_arg_t *p);
int (*ioctl)(snd_seq_oss_arg_t *p, unsigned int cmd, unsigned long arg);
int (*load_patch)(snd_seq_oss_arg_t *p, int format, const char *buf, int␣
↪→offs, int count);
int (*reset)(snd_seq_oss_arg_t *p);

Except for open and close callbacks, they are allowed to be NULL.

Each callback function takes the argument type snd_seq_oss_arg_t as the first
argument.

struct snd_seq_oss_arg_t {
int app_index;
int file_mode;
int seq_mode;
snd_seq_addr_t addr;
void *private_data;
int event_passing;

};

The first three fields, app_index, file_mode and seq_mode are initialized by OSS
sequencer. The app_index is the application index which is unique to each ap-
plication opening OSS sequencer. The file_mode is bit-flags indicating the file
operation mode. See seq_oss.h for its meaning. The seq_mode is sequencer op-
eration mode. In the current version, only SND_OSSSEQ_MODE_SYNTH is used.

2.10. OSS Sequencer Emulation on ALSA 203

Linux Sound Documentation

The next two fields, addr and private_data, must be filled by the synth driver at
open callback. The addr contains the address of ALSA sequencer port which is
assigned to this device. If the driver allocates memory for private_data, it must
be released in close callback by itself.

The last field, event_passing, indicates how to translate note-on / off events. In
PROCESS_EVENTSmode, the note 255 is regarded as velocity change, and key pres-
sure event is passed to the port. In PASS_EVENTS mode, all note on/off events are
passed to the port without modified. PROCESS_KEYPRESS mode checks the note
above 128 and regards it as key pressure event (mainly for Emu8000 driver).

Open Callback

The open is called at each time this device is opened by an application using OSS
sequencer. This must not be NULL. Typically, the open callback does the following
procedure:

1. Allocate private data record.

2. Create an ALSA sequencer port.

3. Set the new port address on arg->addr.

4. Set the private data record pointer on arg->private_data.

Note that the type bit-flags in port_info of this synth port must NOT con-
tain TYPE_MIDI_GENERIC bit. Instead, TYPE_SPECIFIC should be used. Also,
CAP_SUBSCRIPTION bit should NOT be included, too. This is necessary to tell it
from other normal MIDI devices. If the open procedure succeeded, return zero.
Otherwise, return -errno.

Ioctl Callback

The ioctl callback is called when the sequencer receives device-specific ioctls.
The following two ioctls should be processed by this callback:

IOCTL_SEQ_RESET_SAMPLES reset all samples on memory – return 0

IOCTL_SYNTH_MEMAVL return the available memory size
FM_4OP_ENABLE can be ignored usually

The other ioctls are processed inside the sequencer without passing to the lowlevel
driver.

Load_Patch Callback

The load_patch callback is used for sample-downloading. This callback must read
the data on user-space and transfer to each device. Return 0 if succeeded, and -
errno if failed. The format argument is the patch key in patch_info record. The buf
is user-space pointer where patch_info record is stored. The offs can be ignored.
The count is total data size of this sample data.

204 Chapter 2. Designs and Implementations

Linux Sound Documentation

Close Callback

The close callback is called when this device is closed by the application. If any
private data was allocated in open callback, it must be released in the close call-
back. The deletion of ALSA port should be done here, too. This callback must not
be NULL.

Reset Callback

The reset callback is called when sequencer device is reset or closed by applica-
tions. The callback should turn off the sounds on the relevant port immediately,
and initialize the status of the port. If this callback is undefined, OSS seq sends a
HEARTBEAT event to the port.

2.10.8 Events

Most of the events are processed by sequencer and translated to the adequate
ALSA sequencer events, so that each synth device can receive by input_event call-
back of ALSA sequencer port. The following ALSA events should be implemented
by the driver:

ALSA event Original OSS events
NOTEON SEQ_NOTEON, MIDI_NOTEON
NOTE SEQ_NOTEOFF, MIDI_NOTEOFF
KEYPRESS MIDI_KEY_PRESSURE
CHANPRESS SEQ_AFTERTOUCH, MIDI_CHN_PRESSURE
PGM-
CHANGE

SEQ_PGMCHANGE, MIDI_PGM_CHANGE

PITCHBEND SEQ_CONTROLLER(CTRL_PITCH_BENDER),
MIDI_PITCH_BEND

CON-
TROLLER

MIDI_CTL_CHANGE, SEQ_BALANCE (with CTL_PAN)

CONTROL14 SEQ_CONTROLLER
REGPARAM SEQ_CONTROLLER(CTRL_PITCH_BENDER_RANGE)
SYSEX SEQ_SYSEX

The most of these behavior can be realized by MIDI emulation driver included in
the Emu8000 lowlevel driver. In the future release, this module will be indepen-
dent.

Some OSS events (SEQ_PRIVATE and SEQ_VOLUME events) are passed as event type
SND_SEQ_OSS_PRIVATE. The OSS sequencer passes these event 8 byte packets
without any modification. The lowlevel driver should process these events appro-
priately.

2.10. OSS Sequencer Emulation on ALSA 205

Linux Sound Documentation

2.10.9 Interface to MIDI Device

Since the OSS emulation probes the creation and deletion of ALSA MIDI se-
quencer ports automatically by receiving announcement from ALSA sequencer,
the MIDI devices don’t need to be registered explicitly like synth devices. How-
ever, the MIDI port_info registered to ALSA sequencer must include a group name
SND_SEQ_GROUP_DEVICE and a capability-bit CAP_READ or CAP_WRITE. Also, sub-
scription capabilities, CAP_SUBS_READ or CAP_SUBS_WRITE, must be defined, too.
If these conditions are not satisfied, the port is not registered as OSS sequencer
MIDI device.

The events via MIDI devices are parsed in OSS sequencer and converted to the
corresponding ALSA sequencer events. The input from MIDI sequencer is also
converted to MIDI byte events by OSS sequencer. This works just a reverse way
of seq_midi module.

2.10.10 Known Problems / TODO’s

• Patch loading via ALSA instrument layer is not implemented yet.

206 Chapter 2. Designs and Implementations

CHAPTER

THREE

ALSA SOC LAYER

The documentation is spilt into the following sections:-

3.1 ALSA SoC Layer Overview

The overall project goal of the ALSA System on Chip (ASoC) layer is to provide bet-
ter ALSA support for embedded system-on-chip processors (e.g. pxa2xx, au1x00,
iMX, etc) and portable audio codecs. Prior to the ASoC subsystem there was some
support in the kernel for SoC audio, however it had some limitations:-

• Codec drivers were often tightly coupled to the underlying SoC CPU. This
is not ideal and leads to code duplication - for example, Linux had different
wm8731 drivers for 4 different SoC platforms.

• There was no standard method to signal user initiated audio events
(e.g. Headphone/Mic insertion, Headphone/Mic detection after an insertion
event). These are quite common events on portable devices and often re-
quire machine specific code to re-route audio, enable amps, etc., after such
an event.

• Drivers tended to power up the entire codec when playing (or recording) au-
dio. This is fine for a PC, but tends to waste a lot of power on portable devices.
There was also no support for saving power via changing codec oversampling
rates, bias currents, etc.

3.1.1 ASoC Design

The ASoC layer is designed to address these issues and provide the following fea-
tures :-

• Codec independence. Allows reuse of codec drivers on other platforms and
machines.

• Easy I2S/PCM audio interface setup between codec and SoC. Each SoC in-
terface and codec registers its audio interface capabilities with the core and
are subsequently matched and configured when the application hardware pa-
rameters are known.

• Dynamic Audio Power Management (DAPM). DAPM automatically sets the
codec to its minimum power state at all times. This includes powering

207

Linux Sound Documentation

up/down internal power blocks depending on the internal codec audio routing
and any active streams.

• Pop and click reduction. Pops and clicks can be reduced by powering the
codec up/down in the correct sequence (including using digital mute). ASoC
signals the codec when to change power states.

• Machine specific controls: Allow machines to add controls to the sound card
(e.g. volume control for speaker amplifier).

To achieve all this, ASoC basically splits an embedded audio system into multiple
re-usable component drivers :-

• Codec class drivers: The codec class driver is platform independent and con-
tains audio controls, audio interface capabilities, codec DAPM definition and
codec IO functions. This class extends to BT, FM and MODEM ICs if required.
Codec class drivers should be generic code that can run on any architecture
and machine.

• Platform class drivers: The platform class driver includes the audio DMA
engine driver, digital audio interface (DAI) drivers (e.g. I2S, AC97, PCM) and
any audio DSP drivers for that platform.

• Machine class driver: Themachine driver class acts as the glue that describes
and binds the other component drivers together to form an ALSA“sound card
device”. It handles any machine specific controls and machine level audio
events (e.g. turning on an amp at start of playback).

3.2 ASoC Codec Class Driver

The codec class driver is generic and hardware independent code that configures
the codec, FM, MODEM, BT or external DSP to provide audio capture and play-
back. It should contain no code that is specific to the target platform or machine.
All platform and machine specific code should be added to the platform and ma-
chine drivers respectively.

Each codec class driver must provide the following features:-

1. Codec DAI and PCM configuration

2. Codec control IO - using RegMap API

3. Mixers and audio controls

4. Codec audio operations

5. DAPM description.

6. DAPM event handler.

Optionally, codec drivers can also provide:-

7. DAC Digital mute control.

Its probably best to use this guide in conjunction with the existing codec driver
code in sound/soc/codecs/

208 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

3.2.1 ASoC Codec driver breakdown

Codec DAI and PCM configuration

Each codec driver must have a struct snd_soc_dai_driver to define its DAI and PCM
capabilities and operations. This struct is exported so that it can be registered with
the core by your machine driver.

e.g.

static struct snd_soc_dai_ops wm8731_dai_ops = {
.prepare = wm8731_pcm_prepare,
.hw_params = wm8731_hw_params,
.shutdown = wm8731_shutdown,
.digital_mute = wm8731_mute,
.set_sysclk = wm8731_set_dai_sysclk,
.set_fmt = wm8731_set_dai_fmt,

};

struct snd_soc_dai_driver wm8731_dai = {
.name = "wm8731-hifi",
.playback = {

.stream_name = "Playback",

.channels_min = 1,

.channels_max = 2,

.rates = WM8731_RATES,

.formats = WM8731_FORMATS,},
.capture = {

.stream_name = "Capture",

.channels_min = 1,

.channels_max = 2,

.rates = WM8731_RATES,

.formats = WM8731_FORMATS,},
.ops = &wm8731_dai_ops,
.symmetric_rates = 1,

};

Codec control IO

The codec can usually be controlled via an I2C or SPI style interface (AC97 com-
bines control with data in the DAI). The codec driver should use the Regmap API
for all codec IO. Please see include/linux/regmap.h and existing codec drivers for
example regmap usage.

3.2. ASoC Codec Class Driver 209

Linux Sound Documentation

Mixers and audio controls

All the codec mixers and audio controls can be defined using the convenience
macros defined in soc.h.

#define SOC_SINGLE(xname, reg, shift, mask, invert)

Defines a single control as follows:-

xname = Control name e.g. "Playback Volume"
reg = codec register
shift = control bit(s) offset in register
mask = control bit size(s) e.g. mask of 7 = 3 bits
invert = the control is inverted

Other macros include:-

#define SOC_DOUBLE(xname, reg, shift_left, shift_right, mask, invert)

A stereo control

#define SOC_DOUBLE_R(xname, reg_left, reg_right, shift, mask, invert)

A stereo control spanning 2 registers

#define SOC_ENUM_SINGLE(xreg, xshift, xmask, xtexts)

Defines an single enumerated control as follows:-

xreg = register
xshift = control bit(s) offset in register
xmask = control bit(s) size
xtexts = pointer to array of strings that describe each setting

#define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, xtexts)

Defines a stereo enumerated control

Codec Audio Operations

The codec driver also supports the following ALSA PCM operations:-

/* SoC audio ops */
struct snd_soc_ops {

int (*startup)(struct snd_pcm_substream *);
void (*shutdown)(struct snd_pcm_substream *);
int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_

↪→params *);
int (*hw_free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);

};

Please refer to the ALSA driver PCM documentation for details. http://www.
alsa-project.org/~iwai/writing-an-alsa-driver/

210 Chapter 3. ALSA SoC Layer

http://www.alsa-project.org/~iwai/writing-an-alsa-driver/
http://www.alsa-project.org/~iwai/writing-an-alsa-driver/

Linux Sound Documentation

DAPM description

The Dynamic Audio Power Management description describes the codec power
components and their relationships and registers to the ASoC core. Please read
dapm.rst for details of building the description.

Please also see the examples in other codec drivers.

DAPM event handler

This function is a callback that handles codec domain PM calls and system domain
PM calls (e.g. suspend and resume). It is used to put the codec to sleep when not
in use.

Power states:-

SNDRV_CTL_POWER_D0: /* full On */
/* vref/mid, clk and osc on, active */

SNDRV_CTL_POWER_D1: /* partial On */
SNDRV_CTL_POWER_D2: /* partial On */

SNDRV_CTL_POWER_D3hot: /* Off, with power */
/* everything off except vref/vmid, inactive */

SNDRV_CTL_POWER_D3cold: /* Everything Off, without power */

Codec DAC digital mute control

Most codecs have a digital mute before the DACs that can be used to minimise any
system noise. The mute stops any digital data from entering the DAC.

A callback can be created that is called by the core for each codec DAI when the
mute is applied or freed.

i.e.

static int wm8974_mute(struct snd_soc_dai *dai, int mute)
{

struct snd_soc_component *component = dai->component;
u16 mute_reg = snd_soc_component_read32(component, WM8974_DAC) &␣

↪→0xffbf;

if (mute)
snd_soc_component_write(component, WM8974_DAC, mute_reg |␣

↪→0x40);
else

snd_soc_component_write(component, WM8974_DAC, mute_reg);
return 0;

}

3.2. ASoC Codec Class Driver 211

Linux Sound Documentation

3.3 ASoC Digital Audio Interface (DAI)

ASoC currently supports the three main Digital Audio Interfaces (DAI) found on
SoC controllers and portable audio CODECs today, namely AC97, I2S and PCM.

3.3.1 AC97

AC97 is a five wire interface commonly found on many PC sound cards. It is now
also popular in many portable devices. This DAI has a reset line and time multi-
plexes its data on its SDATA_OUT (playback) and SDATA_IN (capture) lines. The bit
clock (BCLK) is always driven by the CODEC (usually 12.288MHz) and the frame
(FRAME) (usually 48kHz) is always driven by the controller. Each AC97 frame is
21uS long and is divided into 13 time slots.

The AC97 specification can be found at : http://www.intel.com/p/en_US/business/
design

3.3.2 I2S

I2S is a common 4 wire DAI used in HiFi, STB and portable devices. The Tx and
Rx lines are used for audio transmission, while the bit clock (BCLK) and left/right
clock (LRC) synchronise the link. I2S is flexible in that either the controller or
CODEC can drive (master) the BCLK and LRC clock lines. Bit clock usually varies
depending on the sample rate and themaster system clock (SYSCLK). LRCLK is the
same as the sample rate. A few devices support separate ADC and DAC LRCLKs,
this allows for simultaneous capture and playback at different sample rates.

I2S has several different operating modes:-

I2S MSB is transmitted on the falling edge of the first BCLK after LRC transition.

Left Justified MSB is transmitted on transition of LRC.
Right Justified MSB is transmitted sample size BCLKs before LRC transition.

3.3.3 PCM

PCM is another 4 wire interface, very similar to I2S, which can support a more
flexible protocol. It has bit clock (BCLK) and sync (SYNC) lines that are used to
synchronise the link while the Tx and Rx lines are used to transmit and receive
the audio data. Bit clock usually varies depending on sample rate while sync runs
at the sample rate. PCM also supports Time Division Multiplexing (TDM) in that
several devices can use the bus simultaneously (this is sometimes referred to as
network mode).

Common PCM operating modes:-

Mode A MSB is transmitted on falling edge of first BCLK after FRAME/SYNC.

Mode B MSB is transmitted on rising edge of FRAME/SYNC.

212 Chapter 3. ALSA SoC Layer

http://www.intel.com/p/en_US/business/design
http://www.intel.com/p/en_US/business/design

Linux Sound Documentation

3.4 Dynamic Audio Power Management for Portable De-
vices

3.4.1 Description

Dynamic Audio Power Management (DAPM) is designed to allow portable Linux
devices to use the minimum amount of power within the audio subsystem at all
times. It is independent of other kernel PM and as such, can easily co-exist with
the other PM systems.

DAPM is also completely transparent to all user space applications as all power
switching is done within the ASoC core. No code changes or recompiling are
required for user space applications. DAPM makes power switching decisions
based upon any audio stream (capture/playback) activity and audio mixer settings
within the device.

DAPM spans the whole machine. It covers power control within the entire audio
subsystem, this includes internal codec power blocks and machine level power
systems.

There are 4 power domains within DAPM

Codec bias domain VREF, VMID (core codec and audio power)

Usually controlled at codec probe/remove and suspend/resume, although can
be set at stream time if power is not needed for sidetone, etc.

Platform/Machine domain physically connected inputs and outputs

Is platform/machine and user action specific, is configured by the machine
driver and responds to asynchronous events e.g when HP are inserted

Path domain audio subsystem signal paths

Automatically set when mixer and mux settings are changed by the user. e.g.
alsamixer, amixer.

Stream domain DACs and ADCs.

Enabled and disabled when stream playback/capture is started and stopped
respectively. e.g. aplay, arecord.

All DAPM power switching decisions are made automatically by consulting an au-
dio routing map of the whole machine. This map is specific to each machine and
consists of the interconnections between every audio component (including inter-
nal codec components). All audio components that effect power are called widgets
hereafter.

3.4. Dynamic Audio Power Management for Portable Devices 213

Linux Sound Documentation

3.4.2 DAPM Widgets

Audio DAPM widgets fall into a number of types:-

Mixer Mixes several analog signals into a single analog signal.
Mux An analog switch that outputs only one of many inputs.
PGA A programmable gain amplifier or attenuation widget.

ADC Analog to Digital Converter

DAC Digital to Analog Converter

Switch An analog switch

Input A codec input pin
Output A codec output pin
Headphone Headphone (and optional Jack)
Mic Mic (and optional Jack)
Line Line Input/Output (and optional Jack)
Speaker Speaker
Supply Power or clock supply widget used by other widgets.
Regulator External regulator that supplies power to audio components.
Clock External clock that supplies clock to audio components.
AIF IN Audio Interface Input (with TDM slot mask).

AIF OUT Audio Interface Output (with TDM slot mask).

Siggen Signal Generator.

DAI IN Digital Audio Interface Input.

DAI OUT Digital Audio Interface Output.

DAI Link DAI Link between two DAI structures
Pre Special PRE widget (exec before all others)
Post Special POST widget (exec after all others)
Buffer Inter widget audio data buffer within a DSP.
Scheduler DSP internal scheduler that schedules component/pipeline processing

work.

Effect Widget that performs an audio processing effect.
SRC Sample Rate Converter within DSP or CODEC

ASRC Asynchronous Sample Rate Converter within DSP or CODEC

Encoder Widget that encodes audio data from one format (usually PCM) to an-
other usually more compressed format.

Decoder Widget that decodes audio data from a compressed format to an uncom-
pressed format like PCM.

214 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

(Widgets are defined in include/sound/soc-dapm.h)

Widgets can be added to the sound card by any of the component driver types.
There are convenience macros defined in soc-dapm.h that can be used to quickly
build a list of widgets of the codecs and machines DAPM widgets.

Most widgets have a name, register, shift and invert. Some widgets have extra
parameters for stream name and kcontrols.

Stream Domain Widgets

Stream Widgets relate to the stream power domain and only consist of ADCs (ana-
log to digital converters), DACs (digital to analog converters), AIF IN and AIF
OUT.

Stream widgets have the following format:-

SND_SOC_DAPM_DAC(name, stream name, reg, shift, invert),
SND_SOC_DAPM_AIF_IN(name, stream, slot, reg, shift, invert)

NOTE: the stream namemust match the corresponding stream name in your codec
snd_soc_codec_dai.

e.g. stream widgets for HiFi playback and capture

SND_SOC_DAPM_DAC("HiFi DAC", "HiFi Playback", REG, 3, 1),
SND_SOC_DAPM_ADC("HiFi ADC", "HiFi Capture", REG, 2, 1),

e.g. stream widgets for AIF

SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF1TX", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),

Path Domain Widgets

Path domain widgets have a ability to control or affect the audio signal or audio
paths within the audio subsystem. They have the following form:-

SND_SOC_DAPM_PGA(name, reg, shift, invert, controls, num_controls)

Any widget kcontrols can be set using the controls and num_controls members.

e.g. Mixer widget (the kcontrols are declared first)

/* Output Mixer */
static const snd_kcontrol_new_t wm8731_output_mixer_controls[] = {
SOC_DAPM_SINGLE("Line Bypass Switch", WM8731_APANA, 3, 1, 0),
SOC_DAPM_SINGLE("Mic Sidetone Switch", WM8731_APANA, 5, 1, 0),
SOC_DAPM_SINGLE("HiFi Playback Switch", WM8731_APANA, 4, 1, 0),
};

SND_SOC_DAPM_MIXER("Output Mixer", WM8731_PWR, 4, 1, wm8731_output_mixer_
↪→controls,

ARRAY_SIZE(wm8731_output_mixer_controls)),

3.4. Dynamic Audio Power Management for Portable Devices 215

Linux Sound Documentation

If you don’t want the mixer elements prefixed with the name of the mixer widget,
you can use SND_SOC_DAPM_MIXER_NAMED_CTL instead. the parameters are
the same as for SND_SOC_DAPM_MIXER.

Machine domain Widgets

Machine widgets are different from codec widgets in that they don’t have a codec
register bit associated with them. A machine widget is assigned to each machine
audio component (non codec or DSP) that can be independently powered. e.g.

• Speaker Amp

• Microphone Bias

• Jack connectors

A machine widget can have an optional call back.

e.g. Jack connector widget for an external Mic that enables Mic Bias when the Mic
is inserted:-:

static int spitz_mic_bias(struct snd_soc_dapm_widget* w, int event)
{

gpio_set_value(SPITZ_GPIO_MIC_BIAS, SND_SOC_DAPM_EVENT_ON(event));
return 0;

}

SND_SOC_DAPM_MIC("Mic Jack", spitz_mic_bias),

Codec (BIAS) Domain

The codec bias power domain has no widgets and is handled by the codecs DAPM
event handler. This handler is called when the codec powerstate is changed wrt
to any stream event or by kernel PM events.

Virtual Widgets

Sometimes widgets exist in the codec or machine audio map that don’t have any
corresponding soft power control. In this case it is necessary to create a virtual
widget - a widget with no control bits e.g.

SND_SOC_DAPM_MIXER("AC97 Mixer", SND_SOC_DAPM_NOPM, 0, 0, NULL, 0),

This can be used to merge to signal paths together in software.

After all the widgets have been defined, they can then be added to the DAPM
subsystem individually with a call to snd_soc_dapm_new_control().

216 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

3.4.3 Codec/DSP Widget Interconnections

Widgets are connected to each other within the codec, platform and machine by
audio paths (called interconnections). Each interconnection must be defined in
order to create a map of all audio paths between widgets.

This is easiest with a diagram of the codec or DSP (and schematic of the machine
audio system), as it requires joining widgets together via their audio signal paths.

e.g., from the WM8731 output mixer (wm8731.c)

The WM8731 output mixer has 3 inputs (sources)

1. Line Bypass Input

2. DAC (HiFi playback)

3. Mic Sidetone Input

Each input in this example has a kcontrol associated with it (defined in example
above) and is connected to the output mixer via its kcontrol name. We can now
connect the destination widget (wrt audio signal) with its source widgets.

/* output mixer */
{"Output Mixer", "Line Bypass Switch", "Line Input"},
{"Output Mixer", "HiFi Playback Switch", "DAC"},
{"Output Mixer", "Mic Sidetone Switch", "Mic Bias"},

So we have :-

• Destination Widget <=== Path Name <=== Source Widget, or

• Sink, Path, Source, or

• Output Mixer is connected to the DAC via the HiFi Playback Switch.

When there is no path name connecting widgets (e.g. a direct connection) we pass
NULL for the path name.

Interconnections are created with a call to:-

snd_soc_dapm_connect_input(codec, sink, path, source);

Finally, snd_soc_dapm_new_widgets(codec) must be called after all widgets and
interconnections have been registered with the core. This causes the core to scan
the codec and machine so that the internal DAPM state matches the physical state
of the machine.

Machine Widget Interconnections

Machine widget interconnections are created in the same way as codec ones and
directly connect the codec pins to machine level widgets.

e.g. connects the speaker out codec pins to the internal speaker.

/* ext speaker connected to codec pins LOUT2, ROUT2 */
{"Ext Spk", NULL , "ROUT2"},
{"Ext Spk", NULL , "LOUT2"},

3.4. Dynamic Audio Power Management for Portable Devices 217

Linux Sound Documentation

This allows the DAPM to power on and off pins that are connected (and in use) and
pins that are NC respectively.

3.4.4 Endpoint Widgets

An endpoint is a start or end point (widget) of an audio signal within the machine
and includes the codec. e.g.

• Headphone Jack

• Internal Speaker

• Internal Mic

• Mic Jack

• Codec Pins

Endpoints are added to the DAPM graph so that their usage can be determined in
order to save power. e.g. NC codecs pins will be switched OFF, unconnected jacks
can also be switched OFF.

3.4.5 DAPM Widget Events

Some widgets can register their interest with the DAPM core in PM events. e.g. A
Speaker with an amplifier registers a widget so the amplifier can be powered only
when the spk is in use.

/* turn speaker amplifier on/off depending on use */
static int corgi_amp_event(struct snd_soc_dapm_widget *w, int event)
{

gpio_set_value(CORGI_GPIO_APM_ON, SND_SOC_DAPM_EVENT_ON(event));
return 0;

}

/* corgi machine dapm widgets */
static const struct snd_soc_dapm_widget wm8731_dapm_widgets =

SND_SOC_DAPM_SPK("Ext Spk", corgi_amp_event);

Please see soc-dapm.h for all other widgets that support events.

Event types

The following event types are supported by event widgets.

/* dapm event types */
#define SND_SOC_DAPM_PRE_PMU 0x1 /* before widget power up */
#define SND_SOC_DAPM_POST_PMU 0x2 /* after widget power up */
#define SND_SOC_DAPM_PRE_PMD 0x4 /* before widget power down */
#define SND_SOC_DAPM_POST_PMD 0x8 /* after widget power down */
#define SND_SOC_DAPM_PRE_REG 0x10 /* before audio path setup */
#define SND_SOC_DAPM_POST_REG 0x20 /* after audio path setup */

218 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

3.5 ASoC Platform Driver

An ASoC platform driver class can be divided into audio DMA drivers, SoC DAI
drivers and DSP drivers. The platform drivers only target the SoC CPU and must
have no board specific code.

3.5.1 Audio DMA

The platform DMA driver optionally supports the following ALSA operations:-

/* SoC audio ops */
struct snd_soc_ops {

int (*startup)(struct snd_pcm_substream *);
void (*shutdown)(struct snd_pcm_substream *);
int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_

↪→params *);
int (*hw_free)(struct snd_pcm_substream *);
int (*prepare)(struct snd_pcm_substream *);
int (*trigger)(struct snd_pcm_substream *, int);

};

The platform driver exports its DMA functionality via struct
snd_soc_component_driver:-

struct snd_soc_component_driver {
const char *name;

...
int (*probe)(struct snd_soc_component *);
void (*remove)(struct snd_soc_component *);
int (*suspend)(struct snd_soc_component *);
int (*resume)(struct snd_soc_component *);

/* pcm creation and destruction */
int (*pcm_new)(struct snd_soc_pcm_runtime *);
void (*pcm_free)(struct snd_pcm *);

...
const struct snd_pcm_ops *ops;
const struct snd_compr_ops *compr_ops;
...

};

Please refer to the ALSA driver documentation for details of audio DMA. http:
//www.alsa-project.org/~iwai/writing-an-alsa-driver/

An example DMA driver is soc/pxa/pxa2xx-pcm.c

3.5. ASoC Platform Driver 219

http://www.alsa-project.org/~iwai/writing-an-alsa-driver/
http://www.alsa-project.org/~iwai/writing-an-alsa-driver/

Linux Sound Documentation

3.5.2 SoC DAI Drivers

Each SoC DAI driver must provide the following features:-

1. Digital audio interface (DAI) description

2. Digital audio interface configuration

3. PCM’s description
4. SYSCLK configuration

5. Suspend and resume (optional)

Please see codec.rst for a description of items 1 - 4.

3.5.3 SoC DSP Drivers

Each SoC DSP driver usually supplies the following features :-

1. DAPM graph

2. Mixer controls

3. DMA IO to/from DSP buffers (if applicable)

4. Definition of DSP front end (FE) PCM devices.

Please see DPCM.txt for a description of item 4.

3.6 ASoC Machine Driver

The ASoC machine (or board) driver is the code that glues together all the compo-
nent drivers (e.g. codecs, platforms and DAIs). It also describes the relationships
between each component which include audio paths, GPIOs, interrupts, clocking,
jacks and voltage regulators.

The machine driver can contain codec and platform specific code. It registers the
audio subsystem with the kernel as a platform device and is represented by the
following struct:-

/* SoC machine */
struct snd_soc_card {

char *name;

...

int (*probe)(struct platform_device *pdev);
int (*remove)(struct platform_device *pdev);

/* the pre and post PM functions are used to do any PM work before␣
↪→and

* after the codec and DAIs do any PM work. */
int (*suspend_pre)(struct platform_device *pdev, pm_message_t state);
int (*suspend_post)(struct platform_device *pdev, pm_message_t␣

↪→state);
(continues on next page)

220 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

(continued from previous page)
int (*resume_pre)(struct platform_device *pdev);
int (*resume_post)(struct platform_device *pdev);

...

/* CPU <--> Codec DAI links */
struct snd_soc_dai_link *dai_link;
int num_links;

...
};

3.6.1 probe()/remove()

probe/remove are optional. Do any machine specific probe here.

3.6.2 suspend()/resume()

The machine driver has pre and post versions of suspend and resume to take care
of any machine audio tasks that have to be done before or after the codec, DAIs
and DMA is suspended and resumed. Optional.

3.6.3 Machine DAI Configuration

The machine DAI configuration glues all the codec and CPU DAIs together. It
can also be used to set up the DAI system clock and for any machine related DAI
initialisation e.g. the machine audio map can be connected to the codec audio
map, unconnected codec pins can be set as such.

struct snd_soc_dai_link is used to set up each DAI in your machine. e.g.

/* corgi digital audio interface glue - connects codec <--> CPU */
static struct snd_soc_dai_link corgi_dai = {

.name = "WM8731",

.stream_name = "WM8731",

.cpu_dai_name = "pxa-is2-dai",

.codec_dai_name = "wm8731-hifi",

.platform_name = "pxa-pcm-audio",

.codec_name = "wm8713-codec.0-001a",

.init = corgi_wm8731_init,

.ops = &corgi_ops,
};

struct snd_soc_card then sets up the machine with its DAIs. e.g.

/* corgi audio machine driver */
static struct snd_soc_card snd_soc_corgi = {

.name = "Corgi",

.dai_link = &corgi_dai,

.num_links = 1,
};

3.6. ASoC Machine Driver 221

Linux Sound Documentation

3.6.4 Machine Power Map

The machine driver can optionally extend the codec power map and to become an
audio powermap of the audio subsystem. This allows for automatic power up/down
of speaker/HP amplifiers, etc. Codec pins can be connected to the machines jack
sockets in the machine init function.

3.6.5 Machine Controls

Machine specific audio mixer controls can be added in the DAI init function.

3.7 Audio Pops and Clicks

Pops and clicks are unwanted audio artifacts caused by the powering up and down
of components within the audio subsystem. This is noticeable on PCs when an
audio module is either loaded or unloaded (at module load time the sound card is
powered up and causes a popping noise on the speakers).

Pops and clicks can be more frequent on portable systems with DAPM. This is
because the components within the subsystem are being dynamically powered de-
pending on the audio usage and this can subsequently cause a small pop or click
every time a component power state is changed.

3.7.1 Minimising Playback Pops and Clicks

Playback pops in portable audio subsystems cannot be completely eliminated cur-
rently, however future audio codec hardware will have better pop and click sup-
pression. Pops can be reduced within playback by powering the audio components
in a specific order. This order is different for startup and shutdown and follows
some basic rules:-

Startup Order :- DAC --> Mixers --> Output PGA --> Digital Unmute

Shutdown Order :- Digital Mute --> Output PGA --> Mixers --> DAC

This assumes that the codec PCM output path from the DAC is via a mixer and
then a PGA (programmable gain amplifier) before being output to the speakers.

3.7.2 Minimising Capture Pops and Clicks

Capture artifacts are somewhat easier to get rid as we can delay activating the
ADC until all the pops have occurred. This follows similar power rules to playback
in that components are powered in a sequence depending upon stream startup or
shutdown.

Startup Order - Input PGA --> Mixers --> ADC

Shutdown Order - ADC --> Mixers --> Input PGA

222 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

3.7.3 Zipper Noise

An unwanted zipper noise can occur within the audio playback or capture stream
when a volume control is changed near its maximum gain value. The zipper noise
is heard when the gain increase or decrease changes the mean audio signal ampli-
tude too quickly. It can be minimised by enabling the zero cross setting for each
volume control. The ZC forces the gain change to occur when the signal crosses
the zero amplitude line.

3.8 Audio Clocking

This text describes the audio clocking terms in ASoC and digital audio in general.
Note: Audio clocking can be complex!

3.8.1 Master Clock

Every audio subsystem is driven by amaster clock (sometimes referred to asMCLK
or SYSCLK). This audio master clock can be derived from a number of sources
(e.g. crystal, PLL, CPU clock) and is responsible for producing the correct audio
playback and capture sample rates.

Some master clocks (e.g. PLLs and CPU based clocks) are configurable in that
their speed can be altered by software (depending on the system use and to save
power). Other master clocks are fixed at a set frequency (i.e. crystals).

3.8.2 DAI Clocks

The Digital Audio Interface is usually driven by a Bit Clock (often referred to as
BCLK). This clock is used to drive the digital audio data across the link between
the codec and CPU.

The DAI also has a frame clock to signal the start of each audio frame. This clock
is sometimes referred to as LRC (left right clock) or FRAME. This clock runs at
exactly the sample rate (LRC = Rate).

Bit Clock can be generated as follows:-

• BCLK = MCLK / x, or

• BCLK = LRC * x, or

• BCLK = LRC * Channels * Word Size

This relationship depends on the codec or SoC CPU in particular. In general it
is best to configure BCLK to the lowest possible speed (depending on your rate,
number of channels and word size) to save on power.

It is also desirable to use the codec (if possible) to drive (or master) the audio
clocks as it usually gives more accurate sample rates than the CPU.

3.8. Audio Clocking 223

Linux Sound Documentation

3.9 ASoC jack detection

ALSA has a standard API for representing physical jacks to user space, the kernel
side of which can be seen in include/sound/jack.h. ASoC provides a version of this
API adding two additional features:

• It allows more than one jack detection method to work together on one user
visible jack. In embedded systems it is common for multiple to be present on
a single jack but handled by separate bits of hardware.

• Integration with DAPM, allowing DAPM endpoints to be updated automati-
cally based on the detected jack status (eg, turning off the headphone outputs
if no headphones are present).

This is done by splitting the jacks up into three things working together: the jack it-
self represented by a struct snd_soc_jack, sets of snd_soc_jack_pins representing
DAPM endpoints to update and blocks of code providing jack reporting mecha-
nisms.

For example, a system may have a stereo headset jack with two reporting mech-
anisms, one for the headphone and one for the microphone. Some systems won’
t be able to use their speaker output while a headphone is connected and so will
want to make sure to update both speaker and headphone when the headphone
jack status changes.

3.9.1 The jack - struct snd_soc_jack

This represents a physical jack on the system and is what is visible to user space.
The jack itself is completely passive, it is set up by the machine driver and updated
by jack detection methods.

Jacks are created by the machine driver calling snd_soc_jack_new().

3.9.2 snd_soc_jack_pin

These represent a DAPM pin to update depending on some of the status bits sup-
ported by the jack. Each snd_soc_jack has zero or more of these which are updated
automatically. They are created by the machine driver and associated with the jack
using snd_soc_jack_add_pins(). The status of the endpoint may configured to
be the opposite of the jack status if required (eg, enabling a built in microphone if
a microphone is not connected via a jack).

224 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

3.9.3 Jack detection methods

Actual jack detection is done by code which is able to monitor some input to the
system and update a jack by calling snd_soc_jack_report(), specifying a subset
of bits to update. The jack detection code should be set up by the machine driver,
taking configuration for the jack to update and the set of things to report when the
jack is connected.

Often this is done based on the status of a GPIO - a handler for this is provided
by the snd_soc_jack_add_gpio() function. Other methods are also available, for ex-
ample integrated into CODECs. One example of CODEC integrated jack detection
can be see in the WM8350 driver.

Each jack may have multiple reporting mechanisms, though it will need at least
one to be useful.

3.9.4 Machine drivers

These are all hooked together by the machine driver depending on the system
hardware. The machine driver will set up the snd_soc_jack and the list of pins to
update then set up one or more jack detection mechanisms to update that jack
based on their current status.

3.10 Dynamic PCM

3.10.1 Description

Dynamic PCM allows an ALSA PCM device to digitally route its PCM audio to
various digital endpoints during the PCM stream runtime. e.g. PCM0 can route
digital audio to I2S DAI0, I2S DAI1 or PDM DAI2. This is useful for on SoC DSP
drivers that expose several ALSA PCMs and can route to multiple DAIs.

The DPCM runtime routing is determined by the ALSA mixer settings in the same
way as the analog signal is routed in an ASoC codec driver. DPCM uses a DAPM
graph representing the DSP internal audio paths and uses the mixer settings to
determine the path used by each ALSA PCM.

DPCM re-uses all the existing component codec, platform and DAI drivers without
any modifications.

Phone Audio System with SoC based DSP

Consider the following phone audio subsystem. This will be used in this document
for all examples :-

| Front End PCMs | SoC DSP | Back End DAIs | Audio devices |

PCM0 <------------> * * <----DAI0-----> Codec Headset

* *
(continues on next page)

3.10. Dynamic PCM 225

Linux Sound Documentation

(continued from previous page)
PCM1 <------------> * * <----DAI1-----> Codec Speakers

* DSP *
PCM2 <------------> * * <----DAI2-----> MODEM

* *
PCM3 <------------> * * <----DAI3-----> BT

* *
* * <----DAI4-----> DMIC
* *
* * <----DAI5-----> FM

This diagram shows a simple smart phone audio subsystem. It supports Bluetooth,
FMdigital radio, Speakers, Headset Jack, digital microphones and cellularmodem.
This sound card exposes 4 DSP front end (FE) ALSA PCM devices and supports 6
back end (BE) DAIs. Each FE PCM can digitally route audio data to any of the BE
DAIs. The FE PCM devices can also route audio to more than 1 BE DAI.

Example - DPCM Switching playback from DAI0 to DAI1

Audio is being played to the Headset. After a while the user removes the headset
and audio continues playing on the speakers.

Playback on PCM0 to Headset would look like :-

PCM0 <============> * * <====DAI0=====> Codec Headset

* *
PCM1 <------------> * * <----DAI1-----> Codec Speakers

* DSP *
PCM2 <------------> * * <----DAI2-----> MODEM

* *
PCM3 <------------> * * <----DAI3-----> BT

* *
* * <----DAI4-----> DMIC
* *
* * <----DAI5-----> FM

The headset is removed from the jack by user so the speakers must now be used :-

PCM0 <============> * * <----DAI0-----> Codec Headset

* *
PCM1 <------------> * * <====DAI1=====> Codec Speakers

* DSP *
PCM2 <------------> * * <----DAI2-----> MODEM

* *
PCM3 <------------> * * <----DAI3-----> BT

* *
* * <----DAI4-----> DMIC
* *
* * <----DAI5-----> FM

The audio driver processes this as follows :-

226 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

1. Machine driver receives Jack removal event.

2. Machine driver OR audio HAL disables the Headset path.

3. DPCM runs the PCM trigger(stop), hw_free(), shutdown() operations on DAI0
for headset since the path is now disabled.

4. Machine driver or audio HAL enables the speaker path.

5. DPCM runs the PCM ops for startup(), hw_params(), prepare() and trig-
ger(start) for DAI1 Speakers since the path is enabled.

In this example, the machine driver or userspace audio HAL can alter the routing
and then DPCMwill take care of managing the DAI PCM operations to either bring
the link up or down. Audio playback does not stop during this transition.

3.10.2 DPCM machine driver

The DPCM enabled ASoC machine driver is similar to normal machine drivers
except that we also have to :-

1. Define the FE and BE DAI links.

2. Define any FE/BE PCM operations.

3. Define widget graph connections.

FE and BE DAI links

| Front End PCMs | SoC DSP | Back End DAIs | Audio devices |

PCM0 <------------> * * <----DAI0-----> Codec Headset

* *
PCM1 <------------> * * <----DAI1-----> Codec Speakers

* DSP *
PCM2 <------------> * * <----DAI2-----> MODEM

* *
PCM3 <------------> * * <----DAI3-----> BT

* *
* * <----DAI4-----> DMIC
* *
* * <----DAI5-----> FM

For the example above we have to define 4 FE DAI links and 6 BE DAI links. The
FE DAI links are defined as follows :-

static struct snd_soc_dai_link machine_dais[] = {
{

.name = "PCM0 System",

.stream_name = "System Playback",

.cpu_dai_name = "System Pin",

.platform_name = "dsp-audio",

.codec_name = "snd-soc-dummy",

.codec_dai_name = "snd-soc-dummy-dai",
(continues on next page)

3.10. Dynamic PCM 227

Linux Sound Documentation

(continued from previous page)
.dynamic = 1,
.trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_

↪→POST},
.dpcm_playback = 1,

},
.....< other FE and BE DAI links here >

};

This FE DAI link is pretty similar to a regular DAI link except that we also set the
DAI link to a DPCM FE with the dynamic = 1. The supported FE stream directions
should also be set with the dpcm_playback and dpcm_capture flags. There is also
an option to specify the ordering of the trigger call for each FE. This allows the
ASoC core to trigger the DSP before or after the other components (as some DSPs
have strong requirements for the ordering DAI/DSP start and stop sequences).

The FE DAI above sets the codec and code DAIs to dummy devices since the BE is
dynamic and will change depending on runtime config.

The BE DAIs are configured as follows :-

static struct snd_soc_dai_link machine_dais[] = {
.....< FE DAI links here >
{

.name = "Codec Headset",

.cpu_dai_name = "ssp-dai.0",

.platform_name = "snd-soc-dummy",

.no_pcm = 1,

.codec_name = "rt5640.0-001c",

.codec_dai_name = "rt5640-aif1",

.ignore_suspend = 1,

.ignore_pmdown_time = 1,

.be_hw_params_fixup = hswult_ssp0_fixup,

.ops = &haswell_ops,

.dpcm_playback = 1,

.dpcm_capture = 1,
},
.....< other BE DAI links here >

};

This BE DAI link connects DAI0 to the codec (in this case RT5460 AIF1). It sets
the no_pcm flag to mark it has a BE and sets flags for supported stream directions
using dpcm_playback and dpcm_capture above.

The BE has also flags set for ignoring suspend and PM down time. This allows the
BE to work in a hostless mode where the host CPU is not transferring data like a
BT phone call :-

PCM0 <------------> * * <----DAI0-----> Codec Headset

* *
PCM1 <------------> * * <----DAI1-----> Codec Speakers

* DSP *
PCM2 <------------> * * <====DAI2=====> MODEM

* *
PCM3 <------------> * * <====DAI3=====> BT

(continues on next page)

228 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

(continued from previous page)
* *
* * <----DAI4-----> DMIC
* *
* * <----DAI5-----> FM

This allows the host CPU to sleep while the DSP, MODEM DAI and the BT DAI are
still in operation.

A BE DAI link can also set the codec to a dummy device if the codec is a device
that is managed externally.

Likewise a BE DAI can also set a dummy cpu DAI if the CPU DAI is managed by
the DSP firmware.

FE/BE PCM operations

The BE above also exports some PCM operations and a fixup callback. The fixup
callback is used by the machine driver to (re)configure the DAI based upon the FE
hw params. i.e. the DSP may perform SRC or ASRC from the FE to BE.

e.g. DSP converts all FE hw params to run at fixed rate of 48k, 16bit, stereo
for DAI0. This means all FE hw_params have to be fixed in the machine driver
for DAI0 so that the DAI is running at desired configuration regardless of the FE
configuration.

static int dai0_fixup(struct snd_soc_pcm_runtime *rtd,
struct snd_pcm_hw_params *params)

{
struct snd_interval *rate = hw_param_interval(params,

SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *channels = hw_param_interval(params,

SNDRV_PCM_HW_PARAM_CHANNELS);

/* The DSP will convert the FE rate to 48k, stereo */
rate->min = rate->max = 48000;
channels->min = channels->max = 2;

/* set DAI0 to 16 bit */
params_set_format(params, SNDRV_PCM_FORMAT_S16_LE);
return 0;

}

The other PCM operation are the same as for regular DAI links. Use as necessary.

3.10. Dynamic PCM 229

Linux Sound Documentation

Widget graph connections

The BE DAI links will normally be connected to the graph at initialisation time by
the ASoC DAPM core. However, if the BE codec or BE DAI is a dummy then this
has to be set explicitly in the driver :-

/* BE for codec Headset - DAI0 is dummy and managed by DSP FW */
{"DAI0 CODEC IN", NULL, "AIF1 Capture"},
{"AIF1 Playback", NULL, "DAI0 CODEC OUT"},

3.10.3 Writing a DPCM DSP driver

The DPCM DSP driver looks much like a standard platform class ASoC driver com-
bined with elements from a codec class driver. A DSP platform driver must imple-
ment :-

1. Front End PCM DAIs - i.e. struct snd_soc_dai_driver.

2. DAPM graph showing DSP audio routing from FE DAIs to BEs.

3. DAPM widgets from DSP graph.

4. Mixers for gains, routing, etc.

5. DMA configuration.

6. BE AIF widgets.

Items 6 is important for routing the audio outside of the DSP. AIF need to be defined
for each BE and each stream direction. e.g for BE DAI0 above we would have :-

SND_SOC_DAPM_AIF_IN("DAI0 RX", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("DAI0 TX", NULL, 0, SND_SOC_NOPM, 0, 0),

The BE AIF are used to connect the DSP graph to the graphs for the other compo-
nent drivers (e.g. codec graph).

3.10.4 Hostless PCM streams

A hostless PCM stream is a stream that is not routed through the host CPU. An
example of this would be a phone call from handset to modem.

PCM0 <------------> * * <----DAI0-----> Codec Headset

* *
PCM1 <------------> * * <====DAI1=====> Codec Speakers/Mic

* DSP *
PCM2 <------------> * * <====DAI2=====> MODEM

* *
PCM3 <------------> * * <----DAI3-----> BT

* *
* * <----DAI4-----> DMIC
* *
* * <----DAI5-----> FM

230 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

In this case the PCM data is routed via the DSP. The host CPU in this use case is
only used for control and can sleep during the runtime of the stream.

The host can control the hostless link either by :-

1. Configuring the link as a CODEC <-> CODEC style link. In this case the link
is enabled or disabled by the state of the DAPM graph. This usually means
there is a mixer control that can be used to connect or disconnect the path
between both DAIs.

2. Hostless FE. This FE has a virtual connection to the BE DAI links on the
DAPM graph. Control is then carried out by the FE as regular PCM opera-
tions. This method gives more control over the DAI links, but requires much
more userspace code to control the link. Its recommended to use CODEC<-
>CODEC unless your HW needs more fine grained sequencing of the PCM
ops.

CODEC <-> CODEC link

This DAI link is enabled when DAPM detects a valid path within the DAPM graph.
The machine driver sets some additional parameters to the DAI link i.e.

static const struct snd_soc_pcm_stream dai_params = {
.formats = SNDRV_PCM_FMTBIT_S32_LE,
.rate_min = 8000,
.rate_max = 8000,
.channels_min = 2,
.channels_max = 2,

};

static struct snd_soc_dai_link dais[] = {
< ... more DAI links above ... >
{

.name = "MODEM",

.stream_name = "MODEM",

.cpu_dai_name = "dai2",

.codec_dai_name = "modem-aif1",

.codec_name = "modem",

.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF
| SND_SOC_DAIFMT_CBM_CFM,

.params = &dai_params,
}
< ... more DAI links here ... >

These parameters are used to configure the DAI hw_params() when DAPM detects
a valid path and then calls the PCM operations to start the link. DAPM will also
call the appropriate PCM operations to disable the DAI when the path is no longer
valid.

3.10. Dynamic PCM 231

Linux Sound Documentation

Hostless FE

The DAI link(s) are enabled by a FE that does not read or write any PCM data.
This means creating a new FE that is connected with a virtual path to both DAI
links. The DAI links will be started when the FE PCM is started and stopped when
the FE PCM is stopped. Note that the FE PCM cannot read or write data in this
configuration.

3.11 Creating codec to codec dai link for ALSA dapm

Mostly the flow of audio is always from CPU to codec so your system will look as
below:

--------- ---------
| | dai | |

CPU -------> codec
| | | |
--------- ---------

In case your system looks as below:

| |

codec-2

|
dai-2

|
---------- ---------

| | dai-1 | |
CPU -------> codec-1

| | | |
---------- ---------

|
dai-3

|

| |
codec-3

Suppose codec-2 is a bluetooth chip and codec-3 is connected to a speaker and
you have a below scenario: codec-2 will receive the audio data and the user wants
to play that audio through codec-3 without involving the CPU.This aforementioned
case is the ideal case when codec to codec connection should be used.

Your dai_link should appear as below in your machine file:

/*
* this pcm stream only supports 24 bit, 2 channel and
* 48k sampling rate.
*/

(continues on next page)

232 Chapter 3. ALSA SoC Layer

Linux Sound Documentation

(continued from previous page)
static const struct snd_soc_pcm_stream dsp_codec_params = {

.formats = SNDRV_PCM_FMTBIT_S24_LE,

.rate_min = 48000,

.rate_max = 48000,

.channels_min = 2,

.channels_max = 2,
};

{
.name = "CPU-DSP",
.stream_name = "CPU-DSP",
.cpu_dai_name = "samsung-i2s.0",
.codec_name = "codec-2,
.codec_dai_name = "codec-2-dai_name",
.platform_name = "samsung-i2s.0",
.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF

| SND_SOC_DAIFMT_CBM_CFM,
.ignore_suspend = 1,
.params = &dsp_codec_params,

},
{

.name = "DSP-CODEC",

.stream_name = "DSP-CODEC",

.cpu_dai_name = "wm0010-sdi2",

.codec_name = "codec-3,

.codec_dai_name = "codec-3-dai_name",

.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF
| SND_SOC_DAIFMT_CBM_CFM,

.ignore_suspend = 1,

.params = &dsp_codec_params,
},

Above code snippet is motivated from sound/soc/samsung/speyside.c.

Note the“params”callback which lets the dapm know that this dai_link is a codec
to codec connection.

In dapm core a route is created between cpu_dai playback widget and codec_dai
capture widget for playback path and vice-versa is true for capture path. In order
for this aforementioned route to get triggered, DAPM needs to find a valid end-
point which could be either a sink or source widget corresponding to playback and
capture path respectively.

In order to trigger this dai_link widget, a thin codec driver for the speaker amp
can be created as demonstrated in wm8727.c file, it sets appropriate constraints
for the device even if it needs no control.

Make sure to name your corresponding cpu and codec playback and capture dai
names ending with“Playback”and“Capture”respectively as dapm core will link
and power those dais based on the name.

A dai_link in a“simple-audio-card”will automatically be detected as codec to codec
when all DAIs on the link belong to codec components. The dai_link will be ini-
tialized with the subset of stream parameters (channels, format, sample rate) sup-
ported by all DAIs on the link. Since there is no way to provide these parameters in
the device tree, this is mostly useful for communication with simple fixed-function

3.11. Creating codec to codec dai link for ALSA dapm 233

Linux Sound Documentation

codecs, such as a Bluetooth controller or cellular modem.

234 Chapter 3. ALSA SoC Layer

CHAPTER

FOUR

ADVANCED LINUX SOUND ARCHITECTURE - DRIVER
CONFIGURATION GUIDE

4.1 Kernel Configuration

To enable ALSA support you need at least to build the kernel with primary sound
card support (CONFIG_SOUND). Since ALSA can emulate OSS, you don’t have to
choose any of the OSS modules.

Enable“OSS API emulation”(CONFIG_SND_OSSEMUL) and both OSS mixer and PCM
supports if you want to run OSS applications with ALSA.

If you want to support the WaveTable functionality on cards such as SB Live! then
you need to enable “Sequencer support”(CONFIG_SND_SEQUENCER).
To make ALSA debug messages more verbose, enable the “Verbose printk”and
“Debug”options. To check for memory leaks, turn on“Debugmemory”too.“Debug
detection”will add checks for the detection of cards.
Please note that all the ALSA ISA drivers support the Linux isapnp API (if the card
supports ISA PnP). You don’t need to configure the cards using isapnptools.

4.2 Module parameters

The user can load modules with options. If the module supports more than one
card and you have more than one card of the same type then you can specify
multiple values for the option separated by commas.

4.2.1 Module snd

The core ALSA module. It is used by all ALSA card drivers. It takes the following
options which have global effects.

major major number for sound driver; Default: 116
cards_limit limiting card index for auto-loading (1-8); Default: 1; For auto-

loading more than one card, specify this option together with snd-card-X
aliases.

slots Reserve the slot index for the given driver; This option takesmultiple strings.
See Module Autoloading Support section for details.

235

Linux Sound Documentation

debug Specifies the debug message level; (0 = disable debug prints, 1 = normal
debug messages, 2 = verbose debug messages); This option appears only
when CONFIG_SND_DEBUG=y. This option can be dynamically changed via sysfs
/sys/modules/snd/parameters/debug file.

4.2.2 Module snd-pcm-oss

The PCM OSS emulation module. This module takes options which change the
mapping of devices.

dsp_map PCM device number maps assigned to the 1st OSS device; Default: 0

adsp_map PCM device number maps assigned to the 2st OSS device; Default: 1

nonblock_open Don’t block opening busy PCM devices; Default: 1

For example, when dsp_map=2, /dev/dsp will be mapped to PCM #2 of the card #0.
Similarly, when adsp_map=0, /dev/adsp will be mapped to PCM #0 of the card #0.
For changing the second or later card, specify the option with commas, such like
dsp_map=0,1.

nonblock_open option is used to change the behavior of the PCM regarding open-
ing the device. When this option is non-zero, opening a busy OSS PCM device won’
t be blocked but return immediately with EAGAIN (just like O_NONBLOCK flag).

4.2.3 Module snd-rawmidi

This module takes options which change the mapping of devices. similar to those
of the snd-pcm-oss module.

midi_map MIDI device number maps assigned to the 1st OSS device; Default: 0
amidi_map MIDI device number maps assigned to the 2st OSS device; Default: 1

4.2.4 Common parameters for top sound card modules

Each of top level sound card module takes the following options.

index index (slot #) of sound card; Values: 0 through 31 or negative; If nonnega-
tive, assign that index number; if negative, interpret as a bitmask of permis-
sible indices; the first free permitted index is assigned; Default: -1

id card ID (identifier or name); Can be up to 15 characters long; Default: the
card type; A directory by this name is created under /proc/asound/ containing
information about the card; This ID can be used instead of the index number
in identifying the card

enable enable card; Default: enabled, for PCI and ISA PnP cards

236Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.5 Module snd-adlib

Module for AdLib FM cards.

port port # for OPL chip
This module supports multiple cards. It does not support autoprobe, so the port
must be specified. For actual AdLib FM cards it will be 0x388. Note that this card
does not have PCM support and no mixer; only FM synthesis.

Make sure you have sbiload from the alsa-tools package available and, after
loading the module, find out the assigned ALSA sequencer port number through
sbiload -l.

Example output:

Port Client name Port name
64:0 OPL2 FM synth OPL2 FM Port

Load the std.sb and drums.sb patches also supplied by sbiload:

sbiload -p 64:0 std.sb drums.sb

If you use this driver to drive an OPL3, you can use std.o3 and drums.o3 instead.
To have the card produce sound, use aplaymidi from alsa-utils:

aplaymidi -p 64:0 foo.mid

4.2.6 Module snd-ad1816a

Module for sound cards based on Analog Devices AD1816A/AD1815 ISA chips.

clockfreq Clock frequency for AD1816A chip (default = 0, 33000Hz)
This module supports multiple cards, autoprobe and PnP.

4.2.7 Module snd-ad1848

Module for sound cards based on AD1848/AD1847/CS4248 ISA chips.

port port # for AD1848 chip
irq IRQ # for AD1848 chip
dma1 DMA # for AD1848 chip (0,1,3)
This module supports multiple cards. It does not support autoprobe thus main
port must be specified!!! Other ports are optional.

The power-management is supported.

4.2. Module parameters 237

Linux Sound Documentation

4.2.8 Module snd-ad1889

Module for Analog Devices AD1889 chips.

ac97_quirk AC’97 workaround for strange hardware; See the description of in-
tel8x0 module for details.

This module supports multiple cards.

4.2.9 Module snd-ali5451

Module for ALi M5451 PCI chip.

pcm_channels Number of hardware channels assigned for PCM
spdif Support SPDIF I/O; Default: disabled
This module supports one chip and autoprobe.

The power-management is supported.

4.2.10 Module snd-als100

Module for sound cards based on Avance Logic ALS100/ALS120 ISA chips.

This module supports multiple cards, autoprobe and PnP.

The power-management is supported.

4.2.11 Module snd-als300

Module for Avance Logic ALS300 and ALS300+

This module supports multiple cards.

The power-management is supported.

4.2.12 Module snd-als4000

Module for sound cards based on Avance Logic ALS4000 PCI chip.

joystick_port port # for legacy joystick support; 0 = disabled (default), 1 = auto-
detect

This module supports multiple cards, autoprobe and PnP.

The power-management is supported.

238Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.13 Module snd-asihpi

Module for AudioScience ASI soundcards

enable_hpi_hwdep enable HPI hwdep for AudioScience soundcard
This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.14 Module snd-atiixp

Module for ATI IXP 150/200/250/400 AC97 controllers.

ac97_clock AC’97 clock (default = 48000)
ac97_quirk AC’97 workaround for strange hardware; See AC97 Quirk Option

section below.

ac97_codec Workaround to specify which AC’97 codec instead of probing. If this
works for you file a bug with your lspci -vn output. (-2 = Force probing, -1 =
Default behavior, 0-2 = Use the specified codec.)

spdif_aclink S/PDIF transfer over AC-link (default = 1)
This module supports one card and autoprobe.

ATI IXP has two different methods to control SPDIF output. One is over AC-link
and another is over the“direct”SPDIF output. The implementation depends on the
motherboard, and you’ll need to choose the correct one via spdif_aclink module
option.

The power-management is supported.

4.2.15 Module snd-atiixp-modem

Module for ATI IXP 150/200/250 AC97 modem controllers.

This module supports one card and autoprobe.

Note: The default index value of this module is -2, i.e. the first slot is excluded.

The power-management is supported.

4.2.16 Module snd-au8810, snd-au8820, snd-au8830

Module for Aureal Vortex, Vortex2 and Advantage device.

pcifix Control PCI workarounds; 0 = Disable all workarounds, 1 = Force the PCI
latency of the Aureal card to 0xff, 2 = Force the Extend PCI#2 Internal Master
for Efficient Handling of Dummy Requests on the VIA KT133 AGP Bridge, 3
= Force both settings, 255 = Autodetect what is required (default)

This module supports all ADB PCM channels, ac97 mixer, SPDIF, hardware EQ,
mpu401, gameport. A3D and wavetable support are still in development. De-
velopment and reverse engineering work is being coordinated at http://savannah.

4.2. Module parameters 239

http://savannah.nongnu.org/projects/openvortex/
http://savannah.nongnu.org/projects/openvortex/

Linux Sound Documentation

nongnu.org/projects/openvortex/ SPDIF output has a copy of the AC97 codec out-
put, unless you use the spdif pcm device, which allows raw data passthru. The
hardware EQ hardware and SPDIF is only present in the Vortex2 and Advantage.

Note: Some ALSA mixer applications don’t handle the SPDIF sample rate control
correctly. If you have problems regarding this, try another ALSA compliant mixer
(alsamixer works).

4.2.17 Module snd-azt1605

Module for Aztech Sound Galaxy soundcards based on the Aztech AZT1605
chipset.

port port # for BASE (0x220,0x240,0x260,0x280)
wss_port port # for WSS (0x530,0x604,0xe80,0xf40)
irq IRQ # for WSS (7,9,10,11)
dma1 DMA # for WSS playback (0,1,3)
dma2 DMA # for WSS capture (0,1), -1 = disabled (default)
mpu_port port # for MPU-401 UART (0x300,0x330), -1 = disabled (default)
mpu_irq IRQ # for MPU-401 UART (3,5,7,9), -1 = disabled (default)
fm_port port # for OPL3 (0x388), -1 = disabled (default)
This module supports multiple cards. It does not support autoprobe: port,
wss_port, irq and dma1 have to be specified. The other values are optional.

port needs to match the BASE ADDRESS jumper on the card (0x220 or 0x240) or
the value stored in the card’s EEPROM for cards that have an EEPROM and their
“CONFIG MODE”jumper set to “EEPROM SETTING”. The other values can be
chosen freely from the options enumerated above.

If dma2 is specified and different from dma1, the card will operate in full-duplex
mode. When dma1=3, only dma2=0 is valid and the only way to enable capture
since only channels 0 and 1 are available for capture.

Generic settings are port=0x220 wss_port=0x530 irq=10 dma1=1 dma2=0
mpu_port=0x330 mpu_irq=9 fm_port=0x388.

Whatever IRQ and DMA channels you pick, be sure to reserve them for legacy ISA
in your BIOS.

4.2.18 Module snd-azt2316

Module for Aztech Sound Galaxy soundcards based on the Aztech AZT2316
chipset.

port port # for BASE (0x220,0x240,0x260,0x280)
wss_port port # for WSS (0x530,0x604,0xe80,0xf40)
irq IRQ # for WSS (7,9,10,11)
dma1 DMA # for WSS playback (0,1,3)

240Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

http://savannah.nongnu.org/projects/openvortex/
http://savannah.nongnu.org/projects/openvortex/

Linux Sound Documentation

dma2 DMA # for WSS capture (0,1), -1 = disabled (default)
mpu_port port # for MPU-401 UART (0x300,0x330), -1 = disabled (default)
mpu_irq IRQ # for MPU-401 UART (5,7,9,10), -1 = disabled (default)
fm_port port # for OPL3 (0x388), -1 = disabled (default)
This module supports multiple cards. It does not support autoprobe: port,
wss_port, irq and dma1 have to be specified. The other values are optional.

port needs to match the BASE ADDRESS jumper on the card (0x220 or 0x240) or
the value stored in the card’s EEPROM for cards that have an EEPROM and their
“CONFIG MODE”jumper set to “EEPROM SETTING”. The other values can be
chosen freely from the options enumerated above.

If dma2 is specified and different from dma1, the card will operate in full-duplex
mode. When dma1=3, only dma2=0 is valid and the only way to enable capture
since only channels 0 and 1 are available for capture.

Generic settings are port=0x220 wss_port=0x530 irq=10 dma1=1 dma2=0
mpu_port=0x330 mpu_irq=9 fm_port=0x388.

Whatever IRQ and DMA channels you pick, be sure to reserve them for legacy ISA
in your BIOS.

4.2.19 Module snd-aw2

Module for Audiowerk2 sound card

This module supports multiple cards.

4.2.20 Module snd-azt2320

Module for sound cards based on Aztech System AZT2320 ISA chip (PnP only).

This module supports multiple cards, PnP and autoprobe.

The power-management is supported.

4.2.21 Module snd-azt3328

Module for sound cards based on Aztech AZF3328 PCI chip.

joystick Enable joystick (default off)
This module supports multiple cards.

4.2. Module parameters 241

Linux Sound Documentation

4.2.22 Module snd-bt87x

Module for video cards based on Bt87x chips.

digital_rate Override the default digital rate (Hz)
load_all Load the driver even if the card model isn’t known
This module supports multiple cards.

Note: The default index value of this module is -2, i.e. the first slot is excluded.

4.2.23 Module snd-ca0106

Module for Creative Audigy LS and SB Live 24bit

This module supports multiple cards.

4.2.24 Module snd-cmi8330

Module for sound cards based on C-Media CMI8330 ISA chips.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

wssport port # for CMI8330 chip (WSS)
wssirq IRQ # for CMI8330 chip (WSS)
wssdma first DMA # for CMI8330 chip (WSS)
sbport port # for CMI8330 chip (SB16)
sbirq IRQ # for CMI8330 chip (SB16)
sbdma8 8bit DMA # for CMI8330 chip (SB16)
sbdma16 16bit DMA # for CMI8330 chip (SB16)
fmport (optional) OPL3 I/O port
mpuport (optional) MPU401 I/O port
mpuirq (optional) MPU401 irq #
This module supports multiple cards and autoprobe.

The power-management is supported.

242Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.25 Module snd-cmipci

Module for C-Media CMI8338/8738/8768/8770 PCI sound cards.

mpu_port port address of MIDI interface (8338 only): 0x300,0x310,0x320,0x330
= legacy port, 1 = integrated PCI port (default on 8738), 0 = disable

fm_port port address of OPL-3 FM synthesizer (8x38 only): 0x388 = legacy port,
1 = integrated PCI port (default on 8738), 0 = disable

soft_ac3 Software-conversion of raw SPDIF packets (model 033 only) (default =
1)

joystick_port Joystick port address (0 = disable, 1 = auto-detect)
This module supports autoprobe and multiple cards.

The power-management is supported.

4.2.26 Module snd-cs4231

Module for sound cards based on CS4231 ISA chips.

port port # for CS4231 chip
mpu_port port # for MPU-401 UART (optional), -1 = disable
irq IRQ # for CS4231 chip
mpu_irq IRQ # for MPU-401 UART
dma1 first DMA # for CS4231 chip
dma2 second DMA # for CS4231 chip
This module supports multiple cards. This module does not support autoprobe
thus main port must be specified!!! Other ports are optional.

The power-management is supported.

4.2.27 Module snd-cs4236

Module for sound cards based on CS4232/CS4232A,
CS4235/CS4236/CS4236B/CS4237B/CS4238B/CS4239 ISA chips.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for CS4236 chip (PnP setup - 0x534)
cport control port # for CS4236 chip (PnP setup - 0x120,0x210,0xf00)
mpu_port port # for MPU-401 UART (PnP setup - 0x300), -1 = disable
fm_port FM port # for CS4236 chip (PnP setup - 0x388), -1 = disable

irq IRQ # for CS4236 chip (5,7,9,11,12,15)
mpu_irq IRQ # for MPU-401 UART (9,11,12,15)

4.2. Module parameters 243

Linux Sound Documentation

dma1 first DMA # for CS4236 chip (0,1,3)
dma2 second DMA # for CS4236 chip (0,1,3), -1 = disable
This module supports multiple cards. This module does not support autoprobe (if
ISA PnP is not used) thus main port and control port must be specified!!! Other
ports are optional.

The power-management is supported.

This module is aliased as snd-cs4232 since it provides the old snd-cs4232 func-
tionality, too.

4.2.28 Module snd-cs4281

Module for Cirrus Logic CS4281 soundchip.

dual_codec Secondary codec ID (0 = disable, default)
This module supports multiple cards.

The power-management is supported.

4.2.29 Module snd-cs46xx

Module for PCI sound cards based on CS4610/CS4612/CS4614/CS4615/CS4622/
CS4624/CS4630/CS4280 PCI chips.

external_amp Force to enable external amplifier.
thinkpad Force to enable Thinkpad’s CLKRUN control.
mmap_valid Support OSS mmap mode (default = 0).
This module supports multiple cards and autoprobe. Usually external amp and
CLKRUN controls are detected automatically from PCI sub vendor/device ids. If
they don’t work, give the options above explicitly.
The power-management is supported.

4.2.30 Module snd-cs5530

Module for Cyrix/NatSemi Geode 5530 chip.

4.2.31 Module snd-cs5535audio

Module for multifunction CS5535 companion PCI device

The power-management is supported.

244Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.32 Module snd-ctxfi

Module for Creative Sound Blaster X-Fi boards (20k1 / 20k2 chips)

• Creative Sound Blaster X-Fi Titanium Fatal1ty Champion Series

• Creative Sound Blaster X-Fi Titanium Fatal1ty Professional Series

• Creative Sound Blaster X-Fi Titanium Professional Audio

• Creative Sound Blaster X-Fi Titanium

• Creative Sound Blaster X-Fi Elite Pro

• Creative Sound Blaster X-Fi Platinum

• Creative Sound Blaster X-Fi Fatal1ty

• Creative Sound Blaster X-Fi XtremeGamer

• Creative Sound Blaster X-Fi XtremeMusic

reference_rate reference sample rate, 44100 or 48000 (default)
multiple multiple to ref. sample rate, 1 or 2 (default)
subsystem override the PCI SSID for probing; the value consists of SSVID << 16

| SSDID. The default is zero, which means no override.

This module supports multiple cards.

4.2.33 Module snd-darla20

Module for Echoaudio Darla20

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.34 Module snd-darla24

Module for Echoaudio Darla24

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.35 Module snd-dt019x

Module for Diamond Technologies DT-019X / Avance Logic ALS-007 (PnP only)

This module supports multiple cards. This module is enabled only with ISA PnP
support.

The power-management is supported.

4.2. Module parameters 245

Linux Sound Documentation

4.2.36 Module snd-dummy

Module for the dummy sound card. This “card”doesn’t do any output or input,
but you may use this module for any application which requires a sound card (like
RealPlayer).

pcm_devs Number of PCM devices assigned to each card (default = 1, up to 4)

pcm_substreams Number of PCM substreams assigned to each PCM (default =
8, up to 128)

hrtimer Use hrtimer (=1, default) or system timer (=0)

fake_buffer Fake buffer allocations (default = 1)
When multiple PCM devices are created, snd-dummy gives different behavior to
each PCM device: * 0 = interleaved with mmap support * 1 = non-interleaved
with mmap support * 2 = interleaved without mmap * 3 = non-interleaved without
mmap

As default, snd-dummy drivers doesn’t allocate the real buffers but either ignores
read/write or mmap a single dummy page to all buffer pages, in order to save the
resources. If your apps need the read/ written buffer data to be consistent, pass
fake_buffer=0 option.

The power-management is supported.

4.2.37 Module snd-echo3g

Module for Echoaudio 3G cards (Gina3G/Layla3G)

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.38 Module snd-emu10k1

Module for EMU10K1/EMU10k2 based PCI sound cards.

• Sound Blaster Live!

• Sound Blaster PCI 512

• Emu APS (partially supported)

• Sound Blaster Audigy

extin bitmap of available external inputs for FX8010 (see bellow)

extout bitmap of available external outputs for FX8010 (see bellow)
seq_ports allocated sequencer ports (4 by default)
max_synth_voices limit of voices used for wavetable (64 by default)
max_buffer_size specifies the maximum size of wavetable/pcm buffers given in

MB unit. Default value is 128.

enable_ir enable IR

246Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

This module supports multiple cards and autoprobe.

Input & Output configurations [extin/extout] * Creative Card wo/Digital out
[0x0003/0x1f03] * Creative Card w/Digital out [0x0003/0x1f0f] * Creative Card
w/Digital CD in [0x000f/0x1f0f] * Creative Card wo/Digital out + LiveDrive
[0x3fc3/0x1fc3] * Creative Card w/Digital out + LiveDrive [0x3fc3/0x1fcf] * Cre-
ative Card w/Digital CD in + LiveDrive [0x3fcf/0x1fcf] * Creative Card wo/Digital
out + Digital I/O 2 [0x0fc3/0x1f0f] * Creative Card w/Digital out + Digital I/O 2
[0x0fc3/0x1f0f] * Creative Card w/Digital CD in + Digital I/O 2 [0x0fcf/0x1f0f] *
Creative Card 5.1/w Digital out + LiveDrive [0x3fc3/0x1fff] * Creative Card 5.1 (c)
2003 [0x3fc3/0x7cff] * Creative Card all ins and outs [0x3fff/0x7fff]

The power-management is supported.

4.2.39 Module snd-emu10k1x

Module for Creative Emu10k1X (SB Live Dell OEM version)

This module supports multiple cards.

4.2.40 Module snd-ens1370

Module for Ensoniq AudioPCI ES1370 PCI sound cards.

• SoundBlaster PCI 64

• SoundBlaster PCI 128

joystick Enable joystick (default off)
This module supports multiple cards and autoprobe.

The power-management is supported.

4.2.41 Module snd-ens1371

Module for Ensoniq AudioPCI ES1371 PCI sound cards.

• SoundBlaster PCI 64

• SoundBlaster PCI 128

• SoundBlaster Vibra PCI

joystick_port port # for joystick (0x200,0x208,0x210,0x218), 0 = disable (de-
fault), 1 = auto-detect

This module supports multiple cards and autoprobe.

The power-management is supported.

4.2. Module parameters 247

Linux Sound Documentation

4.2.42 Module snd-es1688

Module for ESS AudioDrive ES-1688 and ES-688 sound cards.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
mpu_port port # for MPU-401 port (0x300,0x310,0x320,0x330), -1 = disable (de-

fault)

mpu_irq IRQ # for MPU-401 port (5,7,9,10)
fm_port port # for OPL3 (option; share the same port as default)
with isapnp=0, the following additional options are available:

port port # for ES-1688 chip (0x220,0x240,0x260)
irq IRQ # for ES-1688 chip (5,7,9,10)
dma8 DMA # for ES-1688 chip (0,1,3)
This module supports multiple cards and autoprobe (without MPU-401 port) and
PnP with the ES968 chip.

4.2.43 Module snd-es18xx

Module for ESS AudioDrive ES-18xx sound cards.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for ES-18xx chip (0x220,0x240,0x260)
mpu_port port # for MPU-401 port (0x300,0x310,0x320,0x330), -1 = disable (de-

fault)

fm_port port # for FM (optional, not used)

irq IRQ # for ES-18xx chip (5,7,9,10)
dma1 first DMA # for ES-18xx chip (0,1,3)
dma2 first DMA # for ES-18xx chip (0,1,3)
This module supports multiple cards, ISA PnP and autoprobe (without MPU-401
port if native ISA PnP routines are not used). When dma2 is equal with dma1, the
driver works as half-duplex.

The power-management is supported.

248Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.44 Module snd-es1938

Module for sound cards based on ESS Solo-1 (ES1938,ES1946) chips.

This module supports multiple cards and autoprobe.

The power-management is supported.

4.2.45 Module snd-es1968

Module for sound cards based on ESS Maestro-1/2/2E (ES1968/ES1978) chips.

total_bufsize total buffer size in kB (1-4096kB)
pcm_substreams_p playback channels (1-8, default=2)
pcm_substreams_c capture channels (1-8, default=0)
clock clock (0 = auto-detection)
use_pm support the power-management (0 = off, 1 = on, 2 = auto (default))

enable_mpu enable MPU401 (0 = off, 1 = on, 2 = auto (default))

joystick enable joystick (default off)
This module supports multiple cards and autoprobe.

The power-management is supported.

4.2.46 Module snd-fm801

Module for ForteMedia FM801 based PCI sound cards.

tea575x_tuner Enable TEA575x tuner; 1 =MediaForte 256-PCS, 2 =MediaForte
256-PCPR, 3 =MediaForte 64-PCR High 16-bits are video (radio) device num-
ber + 1; example: 0x10002 (MediaForte 256-PCPR, device 1)

This module supports multiple cards and autoprobe.

The power-management is supported.

4.2.47 Module snd-gina20

Module for Echoaudio Gina20

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2. Module parameters 249

Linux Sound Documentation

4.2.48 Module snd-gina24

Module for Echoaudio Gina24

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.49 Module snd-gusclassic

Module for Gravis UltraSound Classic sound card.

port port # for GF1 chip (0x220,0x230,0x240,0x250,0x260)
irq IRQ # for GF1 chip (3,5,9,11,12,15)
dma1 DMA # for GF1 chip (1,3,5,6,7)
dma2 DMA # for GF1 chip (1,3,5,6,7,-1=disable)
joystick_dac 0 to 31, (0.59V-4.52V or 0.389V-2.98V)
voices GF1 voices limit (14-32)
pcm_voices reserved PCM voices

This module supports multiple cards and autoprobe.

4.2.50 Module snd-gusextreme

Module for Gravis UltraSound Extreme (Synergy ViperMax) sound card.

port port # for ES-1688 chip (0x220,0x230,0x240,0x250,0x260)
gf1_port port # for GF1 chip (0x210,0x220,0x230,0x240,0x250,0x260,0x270)
mpu_port port # for MPU-401 port (0x300,0x310,0x320,0x330), -1 = disable
irq IRQ # for ES-1688 chip (5,7,9,10)
gf1_irq IRQ # for GF1 chip (3,5,9,11,12,15)
mpu_irq IRQ # for MPU-401 port (5,7,9,10)
dma8 DMA # for ES-1688 chip (0,1,3)
dma1 DMA # for GF1 chip (1,3,5,6,7)
joystick_dac 0 to 31, (0.59V-4.52V or 0.389V-2.98V)
voices GF1 voices limit (14-32)
pcm_voices reserved PCM voices

This module supports multiple cards and autoprobe (without MPU-401 port).

250Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.51 Module snd-gusmax

Module for Gravis UltraSound MAX sound card.

port port # for GF1 chip (0x220,0x230,0x240,0x250,0x260)
irq IRQ # for GF1 chip (3,5,9,11,12,15)
dma1 DMA # for GF1 chip (1,3,5,6,7)
dma2 DMA # for GF1 chip (1,3,5,6,7,-1=disable)
joystick_dac 0 to 31, (0.59V-4.52V or 0.389V-2.98V)
voices GF1 voices limit (14-32)
pcm_voices reserved PCM voices

This module supports multiple cards and autoprobe.

4.2.52 Module snd-hda-intel

Module for Intel HD Audio (ICH6, ICH6M, ESB2, ICH7, ICH8, ICH9, ICH10, PCH,
SCH), ATI SB450, SB600, R600, RS600, RS690, RS780, RV610, RV620, RV630,
RV635, RV670, RV770, VIA VT8251/VT8237A, SIS966, ULI M5461

[Multiple options for each card instance]

model force the model name
position_fix Fix DMA pointer; -1 = system default: choose appropriate one per

controller hardware, 0 = auto: falls back to LPIB when POSBUF doesn’t
work, 1 = use LPIB, 2 = POSBUF: use position buffer, 3 = VIACOMBO: VIA-
specific workaround for capture, 4 = COMBO: use LPIB for playback, auto
for capture stream 5 = SKL+: apply the delay calculation available on recent
Intel chips 6 = FIFO: correct the position with the fixed FIFO size, for recent
AMD chips

probe_mask Bitmask to probe codecs (default = -1, meaning all slots); When the
bit 8 (0x100) is set, the lower 8 bits are used as the “fixed”codec slots; i.e.
the driver probes the slots regardless what hardware reports back

probe_only Only probing and no codec initialization (default=off); Useful to check
the initial codec status for debugging

bdl_pos_adj Specifies the DMA IRQ timing delay in samples. Passing -1 will make
the driver to choose the appropriate value based on the controller chip.

patch Specifies the early “patch”files to modify the HD-audio setup be-
fore initializing the codecs. This option is available only when
CONFIG_SND_HDA_PATCH_LOADER=y is set. See hd-audio/notes.rst for details.

beep_mode Selects the beep registration mode (0=off, 1=on); default value is set
via CONFIG_SND_HDA_INPUT_BEEP_MODE kconfig.

[Single (global) options]

single_cmd Use single immediate commands to communicate with codecs (for
debugging only)

4.2. Module parameters 251

Linux Sound Documentation

enable_msi Enable Message Signaled Interrupt (MSI) (default = off)
power_save Automatic power-saving timeout (in second, 0 = disable)
power_save_controller Reset HD-audio controller in power-savingmode (default

= on)

align_buffer_size Force rounding of buffer/period sizes to multiples of 128 bytes.
This is more efficient in terms of memory access but isn’t required by the HDA
spec and prevents users from specifying exact period/buffer sizes. (default =
on)

snoop Enable/disable snooping (default = on)
This module supports multiple cards and autoprobe.

See hd-audio/notes.rst for more details about HD-audio driver.

Each codec may have a model table for different configurations. If your machine
isn’t listed there, the default (usually minimal) configuration is set up. You can
pass model=<name> option to specify a certain model in such a case. There are
different models depending on the codec chip. The list of available models is found
in hd-audio/models.rst.

The model name generic is treated as a special case. When this model is given,
the driver uses the generic codec parser without“codec-patch”. It’s sometimes
good for testing and debugging.

If the default configuration doesn’t work and one of the above matches with your
device, report it together with alsa-info.sh output (with --no-upload option) to
kernel bugzilla or alsa-devel ML (see the section Links and Addresses).

power_save and power_save_controller options are for power-saving mode. See
powersave.rst for details.

Note 2: If you get click noises on output, try the module option position_fix=1 or
2. position_fix=1 will use the SD_LPIB register value without FIFO size correc-
tion as the current DMA pointer. position_fix=2 will make the driver to use the
position buffer instead of reading SD_LPIB register. (Usually SD_LPIB register is
more accurate than the position buffer.)

position_fix=3 is specific to VIA devices. The position of the capture stream is
checked from both LPIB and POSBUF values. position_fix=4 is a combination
mode, using LPIB for playback and POSBUF for capture.

NB: If you get many azx_get_response timeout messages at loading, it’s likely
a problem of interrupts (e.g. ACPI irq routing). Try to boot with options like
pci=noacpi. Also, you can try single_cmd=1 module option. This will switch the
communication method between HDA controller and codecs to the single imme-
diate commands instead of CORB/RIRB. Basically, the single command mode is
provided only for BIOS, and you won’t get unsolicited events, too. But, at least,
this works independently from the irq. Remember this is a last resort, and should
be avoided as much as possible⋯
MORE NOTES ON azx_get_response timeout PROBLEMS: On some hardware,
you may need to add a proper probe_mask option to avoid the azx_get_response
timeout problem above, instead. This occurs when the access to non-existing

252Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

or non-working codec slot (likely a modem one) causes a stall of the communi-
cation via HD-audio bus. You can see which codec slots are probed by enabling
CONFIG_SND_DEBUG_VERBOSE, or simply from the file name of the codec proc files.
Then limit the slots to probe by probe_mask option. For example, probe_mask=1
means to probe only the first slot, and probe_mask=4 means only the third slot.

The power-management is supported.

4.2.53 Module snd-hdsp

Module for RME Hammerfall DSP audio interface(s)

This module supports multiple cards.

Note: The firmware data can be automatically loaded via hotplug when
CONFIG_FW_LOADER is set. Otherwise, you need to load the firmware via hdsploader
utility included in alsa-tools package. The firmware data is found in alsa-firmware
package.

Note: snd-page-alloc module does the job which snd-hammerfall-mem module did
formerly. It will allocate the buffers in advance when any HDSP cards are found.
To make the buffer allocation sure, load snd-page-alloc module in the early stage
of boot sequence. See Early Buffer Allocation section.

4.2.54 Module snd-hdspm

Module for RME HDSP MADI board.

precise_ptr Enable precise pointer, or disable.
line_outs_monitor Send playback streams to analog outs by default.
enable_monitor Enable Analog Out on Channel 63/64 by default.
See hdspm.rst for details.

4.2.55 Module snd-ice1712

Module for Envy24 (ICE1712) based PCI sound cards.

• MidiMan M Audio Delta 1010

• MidiMan M Audio Delta 1010LT

• MidiMan M Audio Delta DiO 2496

• MidiMan M Audio Delta 66

• MidiMan M Audio Delta 44

• MidiMan M Audio Delta 410

• MidiMan M Audio Audiophile 2496

• TerraTec EWS 88MT

• TerraTec EWS 88D

4.2. Module parameters 253

Linux Sound Documentation

• TerraTec EWX 24/96

• TerraTec DMX 6Fire

• TerraTec Phase 88

• Hoontech SoundTrack DSP 24

• Hoontech SoundTrack DSP 24 Value

• Hoontech SoundTrack DSP 24 Media 7.1

• Event Electronics, EZ8

• Digigram VX442

• Lionstracs, Mediastaton

• Terrasoniq TS 88

model Use the given board model, one of the following: delta1010, dio2496,
delta66, delta44, audiophile, delta410, delta1010lt, vx442, ewx2496,
ews88mt, ews88mt_new, ews88d, dmx6fire, dsp24, dsp24_value, dsp24_71,
ez8, phase88, mediastation

omni Omni I/O support for MidiMan M-Audio Delta44/66
cs8427_timeout reset timeout for the CS8427 chip (S/PDIF transceiver) in msec

resolution, default value is 500 (0.5 sec)

This module supports multiple cards and autoprobe. Note: The consumer part is
not used with all Envy24 based cards (for example in the MidiMan Delta siree).

Note: The supported board is detected by reading EEPROM or PCI SSID (if EEP-
ROM isn’t available). You can override the model by passing modelmodule option
in case that the driver isn’t configured properly or you want to try another type
for testing.

4.2.56 Module snd-ice1724

Module for Envy24HT (VT/ICE1724), Envy24PT (VT1720) based PCI sound cards.

• MidiMan M Audio Revolution 5.1

• MidiMan M Audio Revolution 7.1

• MidiMan M Audio Audiophile 192

• AMP Ltd AUDIO2000

• TerraTec Aureon 5.1 Sky

• TerraTec Aureon 7.1 Space

• TerraTec Aureon 7.1 Universe

• TerraTec Phase 22

• TerraTec Phase 28

• AudioTrak Prodigy 7.1

• AudioTrak Prodigy 7.1 LT

254Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

• AudioTrak Prodigy 7.1 XT

• AudioTrak Prodigy 7.1 HIFI

• AudioTrak Prodigy 7.1 HD2

• AudioTrak Prodigy 192

• Pontis MS300

• Albatron K8X800 Pro II

• Chaintech ZNF3-150

• Chaintech ZNF3-250

• Chaintech 9CJS

• Chaintech AV-710

• Shuttle SN25P

• Onkyo SE-90PCI

• Onkyo SE-200PCI

• ESI Juli@

• ESI Maya44

• Hercules Fortissimo IV

• EGO-SYS WaveTerminal 192M

model Use the given board model, one of the following: revo51, revo71,
amp2000, prodigy71, prodigy71lt, prodigy71xt, prodigy71hifi, prodigyhd2,
prodigy192, juli, aureon51, aureon71, universe, ap192, k8x800, phase22,
phase28, ms300, av710, se200pci, se90pci, fortissimo4, sn25p, WT192M,
maya44

This module supports multiple cards and autoprobe.

Note: The supported board is detected by reading EEPROM or PCI SSID (if EEP-
ROM isn’t available). You can override the model by passing modelmodule option
in case that the driver isn’t configured properly or you want to try another type
for testing.

4.2.57 Module snd-indigo

Module for Echoaudio Indigo

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2. Module parameters 255

Linux Sound Documentation

4.2.58 Module snd-indigodj

Module for Echoaudio Indigo DJ

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.59 Module snd-indigoio

Module for Echoaudio Indigo IO

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.60 Module snd-intel8x0

Module for AC’97 motherboards from Intel and compatibles.

• Intel i810/810E, i815, i820, i830, i84x, MX440 ICH5, ICH6, ICH7, 6300ESB,
ESB2

• SiS 7012 (SiS 735)

• NVidia NForce, NForce2, NForce3, MCP04, CK804 CK8, CK8S, MCP501

• AMD AMD768, AMD8111

• ALi m5455

ac97_clock AC’97 codec clock base (0 = auto-detect)
ac97_quirk AC’97 workaround for strange hardware; See AC97 Quirk Option

section below.

buggy_irq Enable workaround for buggy interrupts on some motherboards (de-
fault yes on nForce chips, otherwise off)

buggy_semaphore Enable workaround for hardware with buggy semaphores
(e.g. on some ASUS laptops) (default off)

spdif_aclink Use S/PDIF over AC-link instead of direct connection from the con-
troller chip (0 = off, 1 = on, -1 = default)

This module supports one chip and autoprobe.

Note: the latest driver supports auto-detection of chip clock. if you still en-
counter too fast playback, specify the clock explicitly via the module option
ac97_clock=41194.

Joystick/MIDI ports are not supported by this driver. If yourmotherboard has these
devices, use the ns558 or snd-mpu401 modules, respectively.

The power-management is supported.

256Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.61 Module snd-intel8x0m

Module for Intel ICH (i8x0) chipset MC97 modems.

• Intel i810/810E, i815, i820, i830, i84x, MX440 ICH5, ICH6, ICH7

• SiS 7013 (SiS 735)

• NVidia NForce, NForce2, NForce2s, NForce3

• AMD AMD8111

• ALi m5455

ac97_clock AC’97 codec clock base (0 = auto-detect)
This module supports one card and autoprobe.

Note: The default index value of this module is -2, i.e. the first slot is excluded.

The power-management is supported.

4.2.62 Module snd-interwave

Module for Gravis UltraSound PnP, Dynasonic 3-D/Pro, STB Sound Rage 32 and
other sound cards based on AMD InterWave (tm) chip.

joystick_dac 0 to 31, (0.59V-4.52V or 0.389V-2.98V)
midi 1 = MIDI UART enable, 0 = MIDI UART disable (default)
pcm_voices reserved PCM voices for the synthesizer (default 2)

effect 1 = InterWave effects enable (default 0); requires 8 voices
isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for InterWave chip (0x210,0x220,0x230,0x240,0x250,0x260)
irq IRQ # for InterWave chip (3,5,9,11,12,15)
dma1 DMA # for InterWave chip (0,1,3,5,6,7)
dma2 DMA # for InterWave chip (0,1,3,5,6,7,-1=disable)
This module supports multiple cards, autoprobe and ISA PnP.

4.2.63 Module snd-interwave-stb

Module for UltraSound 32-Pro (sound card from STB used by Compaq) and other
sound cards based on AMD InterWave (tm) chip with TEA6330T circuit for ex-
tended control of bass, treble and master volume.

joystick_dac 0 to 31, (0.59V-4.52V or 0.389V-2.98V)
midi 1 = MIDI UART enable, 0 = MIDI UART disable (default)
pcm_voices reserved PCM voices for the synthesizer (default 2)

effect 1 = InterWave effects enable (default 0); requires 8 voices

4.2. Module parameters 257

Linux Sound Documentation

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for InterWave chip (0x210,0x220,0x230,0x240,0x250,0x260)
port_tc tone control (i2c bus) port # for TEA6330T chip

(0x350,0x360,0x370,0x380)

irq IRQ # for InterWave chip (3,5,9,11,12,15)
dma1 DMA # for InterWave chip (0,1,3,5,6,7)
dma2 DMA # for InterWave chip (0,1,3,5,6,7,-1=disable)
This module supports multiple cards, autoprobe and ISA PnP.

4.2.64 Module snd-jazz16

Module for Media Vision Jazz16 chipset. The chipset consists of 3 chips: MVD1216
+ MVA416 + MVA514.

port port # for SB DSP chip (0x210,0x220,0x230,0x240,0x250,0x260)
irq IRQ # for SB DSP chip (3,5,7,9,10,15)
dma8 DMA # for SB DSP chip (1,3)
dma16 DMA # for SB DSP chip (5,7)
mpu_port MPU-401 port # (0x300,0x310,0x320,0x330)
mpu_irq MPU-401 irq # (2,3,5,7)
This module supports multiple cards.

4.2.65 Module snd-korg1212

Module for Korg 1212 IO PCI card

This module supports multiple cards.

4.2.66 Module snd-layla20

Module for Echoaudio Layla20

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

258Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.67 Module snd-layla24

Module for Echoaudio Layla24

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.68 Module snd-lola

Module for Digigram Lola PCI-e boards

This module supports multiple cards.

4.2.69 Module snd-lx6464es

Module for Digigram LX6464ES boards

This module supports multiple cards.

4.2.70 Module snd-maestro3

Module for Allegro/Maestro3 chips

external_amp enable external amp (enabled by default)
amp_gpio GPIO pin number for external amp (0-15) or -1 for default pin (8 for

allegro, 1 for others)

This module supports autoprobe and multiple chips.

Note: the binding of amplifier is dependent on hardware. If there is no sound
even though all channels are unmuted, try to specify other gpio connection via
amp_gpio option. For example, a Panasonic notebook might need amp_gpio=0x0d
option.

The power-management is supported.

4.2.71 Module snd-mia

Module for Echoaudio Mia

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2. Module parameters 259

Linux Sound Documentation

4.2.72 Module snd-miro

Module for Miro soundcards: miroSOUND PCM 1 pro, miroSOUND PCM 12,
miroSOUND PCM 20 Radio.

port Port # (0x530,0x604,0xe80,0xf40)
irq IRQ # (5,7,9,10,11)
dma1 1st dma # (0,1,3)
dma2 2nd dma # (0,1)
mpu_port MPU-401 port # (0x300,0x310,0x320,0x330)
mpu_irq MPU-401 irq # (5,7,9,10)
fm_port FM Port # (0x388)

wss enable WSS mode
ide enable onboard ide support

4.2.73 Module snd-mixart

Module for Digigram miXart8 sound cards.

This module supports multiple cards. Note: One miXart8 board will be repre-
sented as 4 alsa cards. See MIXART.txt for details.

When the driver is compiled as a module and the hotplug firmware is supported,
the firmware data is loaded via hotplug automatically. Install the necessary
firmware files in alsa-firmware package. When no hotplug fw loader is available,
you need to load the firmware via mixartloader utility in alsa-tools package.

4.2.74 Module snd-mona

Module for Echoaudio Mona

This module supports multiple cards. The driver requires the firmware loader
support on kernel.

4.2.75 Module snd-mpu401

Module for MPU-401 UART devices.

port port number or -1 (disable)
irq IRQ number or -1 (disable)
pnp PnP detection - 0 = disable, 1 = enable (default)
This module supports multiple devices and PnP.

260Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.76 Module snd-msnd-classic

Module for Turtle Beach MultiSound Classic, Tahiti or Monterey soundcards.

io Port # for msnd-classic card
irq IRQ # for msnd-classic card
mem Memory address (0xb0000, 0xc8000, 0xd0000, 0xd8000, 0xe0000 or

0xe8000)

write_ndelay enable write ndelay (default = 1)
calibrate_signal calibrate signal (default = 0)
isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
digital Digital daughterboard present (default = 0)
cfg Config port (0x250, 0x260 or 0x270) default = PnP
reset Reset all devices
mpu_io MPU401 I/O port
mpu_irq MPU401 irq#
ide_io0 IDE port #0
ide_io1 IDE port #1
ide_irq IDE irq#
joystick_io Joystick I/O port
The driver requires firmware files turtlebeach/msndinit.bin and turtlebeach/
msndperm.bin in the proper firmware directory.

See Documentation/sound/cards/multisound.sh for important information about
this driver. Note that it has been discontinued, but the Voyetra Turtle Beach knowl-
edge base entry for it is still available at http://www.turtlebeach.com

4.2.77 Module snd-msnd-pinnacle

Module for Turtle Beach MultiSound Pinnacle/Fiji soundcards.

io Port # for pinnacle/fiji card
irq IRQ # for pinnalce/fiji card
mem Memory address (0xb0000, 0xc8000, 0xd0000, 0xd8000, 0xe0000 or

0xe8000)

write_ndelay enable write ndelay (default = 1)
calibrate_signal calibrate signal (default = 0)
isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
The driver requires firmware files turtlebeach/pndspini.bin and turtlebeach/
pndsperm.bin in the proper firmware directory.

4.2. Module parameters 261

http://www.turtlebeach.com

Linux Sound Documentation

4.2.78 Module snd-mtpav

Module for MOTU MidiTimePiece AV multiport MIDI (on the parallel port).

port I/O port # for MTPAV (0x378,0x278, default=0x378)
irq IRQ # for MTPAV (7,5, default=7)
hwports number of supported hardware ports, default=8.
Module supports only 1 card. This module has no enable option.

4.2.79 Module snd-mts64

Module for Ego Systems (ESI) Miditerminal 4140

This module supports multiple devices. Requires parport (CONFIG_PARPORT).

4.2.80 Module snd-nm256

Module for NeoMagic NM256AV/ZX chips

playback_bufsize max playback frame size in kB (4-128kB)
capture_bufsize max capture frame size in kB (4-128kB)
force_ac97 0 or 1 (disabled by default)
buffer_top specify buffer top address
use_cache 0 or 1 (disabled by default)
vaio_hack alias buffer_top=0x25a800
reset_workaround enable AC97 RESET workaround for some laptops
reset_workaround2 enable extended AC97 RESET workaround for some other

laptops

This module supports one chip and autoprobe.

The power-management is supported.

Note: on some notebooks the buffer address cannot be detected automati-
cally, or causes hang-up during initialization. In such a case, specify the
buffer top address explicitly via the buffer_top option. For example, Sony F250:
buffer_top=0x25a800 Sony F270: buffer_top=0x272800 The driver supports only
ac97 codec. It’s possible to force to initialize/use ac97 although it’s not detected.
In such a case, use force_ac97=1 option - but NO guarantee whether it works!

Note: The NM256 chip can be linked internally with non-AC97 codecs. This driver
supports only the AC97 codec, and won’t work with machines with other (most
likely CS423x or OPL3SAx) chips, even though the device is detected in lspci. In
such a case, try other drivers, e.g. snd-cs4232 or snd-opl3sa2. Some has ISA-
PnP but some doesn’t have ISA PnP. You’ll need to specify isapnp=0 and proper
hardware parameters in the case without ISA PnP.

262Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

Note: some laptops need a workaround for AC97 RESET. For the known hard-
ware like Dell Latitude LS and Sony PCG-F305, this workaround is enabled auto-
matically. For other laptops with a hard freeze, you can try reset_workaround=1
option.

Note: Dell Latitude CSx laptops have another problem regarding AC97 RESET.
On these laptops, reset_workaround2 option is turned on as default. This option
is worth to try if the previous reset_workaround option doesn’t help.
Note: This driver is really crappy. It’s a porting from the OSS driver, which is a
result of black-magic reverse engineering. The detection of codec will fail if the
driver is loaded after X-server as described above. You might be able to force to
load the module, but it may result in hang-up. Hence, make sure that you load this
module before X if you encounter this kind of problem.

4.2.81 Module snd-opl3sa2

Module for Yamaha OPL3-SA2/SA3 sound cards.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port control port # for OPL3-SA chip (0x370)
sb_port SB port # for OPL3-SA chip (0x220,0x240)
wss_port WSS port # for OPL3-SA chip (0x530,0xe80,0xf40,0x604)
midi_port port # for MPU-401 UART (0x300,0x330), -1 = disable
fm_port FM port # for OPL3-SA chip (0x388), -1 = disable

irq IRQ # for OPL3-SA chip (5,7,9,10)
dma1 first DMA # for Yamaha OPL3-SA chip (0,1,3)
dma2 second DMA # for Yamaha OPL3-SA chip (0,1,3), -1 = disable
This module supports multiple cards and ISA PnP. It does not support autoprobe
(if ISA PnP is not used) thus all ports must be specified!!!

The power-management is supported.

4.2.82 Module snd-opti92x-ad1848

Module for sound cards based on OPTi 82c92x and Analog Devices AD1848 chips.
Module works with OAK Mozart cards as well.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for WSS chip (0x530,0xe80,0xf40,0x604)
mpu_port port # for MPU-401 UART (0x300,0x310,0x320,0x330)
fm_port port # for OPL3 device (0x388)
irq IRQ # for WSS chip (5,7,9,10,11)

4.2. Module parameters 263

Linux Sound Documentation

mpu_irq IRQ # for MPU-401 UART (5,7,9,10)
dma1 first DMA # for WSS chip (0,1,3)
This module supports only one card, autoprobe and PnP.

4.2.83 Module snd-opti92x-cs4231

Module for sound cards based on OPTi 82c92x and Crystal CS4231 chips.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for WSS chip (0x530,0xe80,0xf40,0x604)
mpu_port port # for MPU-401 UART (0x300,0x310,0x320,0x330)
fm_port port # for OPL3 device (0x388)
irq IRQ # for WSS chip (5,7,9,10,11)
mpu_irq IRQ # for MPU-401 UART (5,7,9,10)
dma1 first DMA # for WSS chip (0,1,3)
dma2 second DMA # for WSS chip (0,1,3)
This module supports only one card, autoprobe and PnP.

4.2.84 Module snd-opti93x

Module for sound cards based on OPTi 82c93x chips.

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for WSS chip (0x530,0xe80,0xf40,0x604)
mpu_port port # for MPU-401 UART (0x300,0x310,0x320,0x330)
fm_port port # for OPL3 device (0x388)
irq IRQ # for WSS chip (5,7,9,10,11)
mpu_irq IRQ # for MPU-401 UART (5,7,9,10)
dma1 first DMA # for WSS chip (0,1,3)
dma2 second DMA # for WSS chip (0,1,3)
This module supports only one card, autoprobe and PnP.

264Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.85 Module snd-oxygen

Module for sound cards based on the C-Media CMI8786/8787/8788 chip:

• Asound A-8788

• Asus Xonar DG/DGX

• AuzenTech X-Meridian

• AuzenTech X-Meridian 2G

• Bgears b-Enspirer

• Club3D Theatron DTS

• HT-Omega Claro (plus)

• HT-Omega Claro halo (XT)

• Kuroutoshikou CMI8787-HG2PCI

• Razer Barracuda AC-1

• Sondigo Inferno

• TempoTec HiFier Fantasia

• TempoTec HiFier Serenade

This module supports autoprobe and multiple cards.

4.2.86 Module snd-pcsp

Module for internal PC-Speaker.

nopcm Disable PC-Speaker PCM sound. Only beeps remain.

nforce_wa enable NForce chipset workaround. Expect bad sound.
This module supports system beeps, some kind of PCM playback and even a few
mixer controls.

4.2.87 Module snd-pcxhr

Module for Digigram PCXHR boards

This module supports multiple cards.

4.2. Module parameters 265

Linux Sound Documentation

4.2.88 Module snd-portman2x4

Module for Midiman Portman 2x4 parallel port MIDI interface

This module supports multiple cards.

4.2.89 Module snd-powermac (on ppc only)

Module for PowerMac, iMac and iBook on-board soundchips

enable_beep enable beep using PCM (enabled as default)

Module supports autoprobe a chip.

Note: the driver may have problems regarding endianness.

The power-management is supported.

4.2.90 Module snd-pxa2xx-ac97 (on arm only)

Module for AC97 driver for the Intel PXA2xx chip

For ARM architecture only.

The power-management is supported.

4.2.91 Module snd-riptide

Module for Conexant Riptide chip

joystick_port Joystick port # (default: 0x200)
mpu_port MPU401 port # (default: 0x330)
opl3_port OPL3 port # (default: 0x388)
This module supports multiple cards. The driver requires the firmware loader sup-
port on kernel. You need to install the firmware file riptide.hex to the standard
firmware path (e.g. /lib/firmware).

4.2.92 Module snd-rme32

Module for RME Digi32, Digi32 Pro and Digi32/8 (Sek’d Prodif32, Prodif96 and
Prodif Gold) sound cards.

This module supports multiple cards.

266Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.93 Module snd-rme96

Module for RME Digi96, Digi96/8 and Digi96/8 PRO/PAD/PST sound cards.

This module supports multiple cards.

4.2.94 Module snd-rme9652

Module for RME Digi9652 (Hammerfall, Hammerfall-Light) sound cards.

precise_ptr Enable precise pointer (doesn’t work reliably). (default = 0)
This module supports multiple cards.

Note: snd-page-alloc module does the job which snd-hammerfall-mem module did
formerly. It will allocate the buffers in advance when any RME9652 cards are
found. To make the buffer allocation sure, load snd-page-alloc module in the early
stage of boot sequence. See Early Buffer Allocation section.

4.2.95 Module snd-sa11xx-uda1341 (on arm only)

Module for Philips UDA1341TS on Compaq iPAQ H3600 sound card.

Module supports only one card. Module has no enable and index options.

The power-management is supported.

4.2.96 Module snd-sb8

Module for 8-bit SoundBlaster cards: SoundBlaster 1.0, SoundBlaster 2.0, Sound-
Blaster Pro

port port # for SB DSP chip (0x220,0x240,0x260)
irq IRQ # for SB DSP chip (5,7,9,10)
dma8 DMA # for SB DSP chip (1,3)
This module supports multiple cards and autoprobe.

The power-management is supported.

4.2.97 Module snd-sb16 and snd-sbawe

Module for 16-bit SoundBlaster cards: SoundBlaster 16 (PnP), SoundBlaster AWE
32 (PnP), SoundBlaster AWE 64 PnP

mic_agc Mic Auto-Gain-Control - 0 = disable, 1 = enable (default)
csp ASP/CSP chip support - 0 = disable (default), 1 = enable
isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

port port # for SB DSP 4.x chip (0x220,0x240,0x260)

4.2. Module parameters 267

Linux Sound Documentation

mpu_port port # for MPU-401 UART (0x300,0x330), -1 = disable
awe_port base port # for EMU8000 synthesizer (0x620,0x640,0x660) (snd-sbawe

module only)

irq IRQ # for SB DSP 4.x chip (5,7,9,10)
dma8 8-bit DMA # for SB DSP 4.x chip (0,1,3)
dma16 16-bit DMA # for SB DSP 4.x chip (5,6,7)
This module supports multiple cards, autoprobe and ISA PnP.

Note: To use Vibra16X cards in 16-bit half duplex mode, you must disable 16bit
DMA with dma16 = -1 module parameter. Also, all Sound Blaster 16 type cards
can operate in 16-bit half duplex mode through 8-bit DMA channel by disabling
their 16-bit DMA channel.

The power-management is supported.

4.2.98 Module snd-sc6000

Module for Gallant SC-6000 soundcard and later models: SC-6600 and SC-7000.

port Port # (0x220 or 0x240)
mss_port MSS Port # (0x530 or 0xe80)
irq IRQ # (5,7,9,10,11)
mpu_irq MPU-401 IRQ # (5,7,9,10) ,0 - no MPU-401 irq
dma DMA # (1,3,0)
joystick Enable gameport - 0 = disable (default), 1 = enable
This module supports multiple cards.

This card is also known as Audio Excel DSP 16 or Zoltrix AV302.

4.2.99 Module snd-sscape

Module for ENSONIQ SoundScape cards.

port Port # (PnP setup)
wss_port WSS Port # (PnP setup)
irq IRQ # (PnP setup)
mpu_irq MPU-401 IRQ # (PnP setup)
dma DMA # (PnP setup)
dma2 2nd DMA # (PnP setup, -1 to disable)
joystick Enable gameport - 0 = disable (default), 1 = enable
This module supports multiple cards.

The driver requires the firmware loader support on kernel.

268Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.2.100 Module snd-sun-amd7930 (on sparc only)

Module for AMD7930 sound chips found on Sparcs.

This module supports multiple cards.

4.2.101 Module snd-sun-cs4231 (on sparc only)

Module for CS4231 sound chips found on Sparcs.

This module supports multiple cards.

4.2.102 Module snd-sun-dbri (on sparc only)

Module for DBRI sound chips found on Sparcs.

This module supports multiple cards.

4.2.103 Module snd-wavefront

Module for Turtle Beach Maui, Tropez and Tropez+ sound cards.

use_cs4232_midi Use CS4232 MPU-401 interface (inaccessibly located inside
your computer)

isapnp ISA PnP detection - 0 = disable, 1 = enable (default)
with isapnp=0, the following options are available:

cs4232_pcm_port Port # for CS4232 PCM interface.

cs4232_pcm_irq IRQ # for CS4232 PCM interface (5,7,9,11,12,15).

cs4232_mpu_port Port # for CS4232 MPU-401 interface.
cs4232_mpu_irq IRQ # for CS4232 MPU-401 interface (9,11,12,15).
ics2115_port Port # for ICS2115
ics2115_irq IRQ # for ICS2115
fm_port FM OPL-3 Port #

dma1 DMA1 # for CS4232 PCM interface.

dma2 DMA2 # for CS4232 PCM interface.

The below are options for wavefront_synth features:

wf_raw Assume that we need to boot the OS (default:no); If yes, then during driver
loading, the state of the board is ignored, and we reset the board and load
the firmware anyway.

fx_raw Assume that the FX process needs help (default:yes); If false, we’ll leave
the FX processor in whatever state it is when the driver is loaded. The default
is to download the microprogram and associated coefficients to set it up for
“default”operation, whatever that means.

debug_default Debug parameters for card initialization

4.2. Module parameters 269

Linux Sound Documentation

wait_usecs How long to wait without sleeping, usecs (default:150); This magic
number seems to give pretty optimal throughput based on my limited exper-
imentation. If you want to play around with it and find a better value, be my
guest. Remember, the idea is to get a number that causes us to just busy
wait for as many WaveFront commands as possible, without coming up with
a number so large that we hog the whole CPU. Specifically, with this number,
out of about 134,000 status waits, only about 250 result in a sleep.

sleep_interval How long to sleep when waiting for reply (default: 100)
sleep_tries How many times to try sleeping during a wait (default: 50)
ospath Pathname to processed ICS2115 OS firmware (default:wavefront.os); The

path name of the ISC2115 OS firmware. In the recent version, it’s handled
via firmware loader framework, so it must be installed in the proper path,
typically, /lib/firmware.

reset_time How long to wait for a reset to take effect (default:2)
ramcheck_time How many seconds to wait for the RAM test (default:20)

osrun_time How many seconds to wait for the ICS2115 OS (default:10)
This module supports multiple cards and ISA PnP.

Note: the firmware file wavefront.os was located in the earlier version in /etc.
Now it’s loaded via firmware loader, and must be in the proper firmware path,
such as /lib/firmware. Copy (or symlink) the file appropriately if you get an error
regarding firmware downloading after upgrading the kernel.

4.2.104 Module snd-sonicvibes

Module for S3 SonicVibes PCI sound cards. * PINE Schubert 32 PCI

reverb Reverb Enable - 1 = enable, 0 = disable (default); SoundCard must have
onboard SRAM for this.

mge Mic Gain Enable - 1 = enable, 0 = disable (default)
This module supports multiple cards and autoprobe.

4.2.105 Module snd-serial-u16550

Module for UART16550A serial MIDI ports.

port port # for UART16550A chip
irq IRQ # for UART16550A chip, -1 = poll mode
speed speed in bauds (9600,19200,38400,57600,115200) 38400 = default
base base for divisor in bauds (57600,115200,230400,460800) 115200 = default
outs number of MIDI ports in a serial port (1-4) 1 = default
adaptor

Type of adaptor. 0 = Soundcanvas, 1 = MS-124T, 2 = MS-124W S/A, 3 =
MS-124W M/B, 4 = Generic

270Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

This module supports multiple cards. This module does not support autoprobe
thus the main port must be specified!!! Other options are optional.

4.2.106 Module snd-trident

Module for Trident 4DWave DX/NX sound cards. * Best Union Miss Melody
4DWave PCI * HIS 4DWave PCI * Warpspeed ONSpeed 4DWave PCI * AzTech
PCI 64-Q3D * Addonics SV 750 * CHIC True Sound 4Dwave * Shark Predator4D-
PCI * Jaton SonicWave 4D * SiS SI7018 PCI Audio * Hoontech SoundTrack Digital
4DWave NX

pcm_channels max channels (voices) reserved for PCM
wavetable_size max wavetable size in kB (4-?kb)
This module supports multiple cards and autoprobe.

The power-management is supported.

4.2.107 Module snd-ua101

Module for the Edirol UA-101/UA-1000 audio/MIDI interfaces.

This module supports multiple devices, autoprobe and hotplugging.

4.2.108 Module snd-usb-audio

Module for USB audio and USB MIDI devices.

vid Vendor ID for the device (optional)
pid Product ID for the device (optional)
nrpacks Max. number of packets per URB (default: 8)
device_setup Device specific magic number (optional); Influence depends on the

device Default: 0x0000

ignore_ctl_error Ignore any USB-controller regarding mixer interface (default:
no)

autoclock Enable auto-clock selection for UAC2 devices (default: yes)
quirk_alias Quirk alias list, pass strings like 0123abcd:5678beef, which applies

the existing quirk for the device 5678:beef to a new device 0123:abcd.

use_vmalloc Use vmalloc() for allocations of the PCM buffers (default: yes). For
architectures with non-coherent memory like ARM orMIPS, the mmap access
may give inconsistent results with vmalloc’ed buffers. If mmap is used on
such architectures, turn off this option, so that the DMA-coherent buffers are
allocated and used instead.

delayed_register The option is needed for devices that have multiple streams
defined in multiple USB interfaces. The driver may invoke registrations mul-
tiple times (once per interface) and this may lead to the insufficient device
enumeration. This option receives an array of strings, and you can pass

4.2. Module parameters 271

Linux Sound Documentation

ID:INTERFACE like 0123abcd:4 for performing the delayed registration to
the given device. In this example, when a USB device 0123:abcd is probed,
the driver waits the registration until the USB interface 4 gets probed. The
driver prints a message like “Found post-registration device assignment:
1234abcd:04”for such a device, so that user can notice the need.

This module supports multiple devices, autoprobe and hotplugging.

NB: nrpacks parameter can be modified dynamically via sysfs. Don’t put the value
over 20. Changing via sysfs has no sanity check.

NB: ignore_ctl_error=1 may help when you get an error at accessing the mixer
element such as URB error -22. This happens on some buggy USB device or the
controller.

NB: quirk_alias option is provided only for testing / development. If you want to
have a proper support, contact to upstream for adding the matching quirk in the
driver code statically.

4.2.109 Module snd-usb-caiaq

Module for caiaq UB audio interfaces,

• Native Instruments RigKontrol2

• Native Instruments Kore Controller

• Native Instruments Audio Kontrol 1

• Native Instruments Audio 8 DJ

This module supports multiple devices, autoprobe and hotplugging.

4.2.110 Module snd-usb-usx2y

Module for Tascam USB US-122, US-224 and US-428 devices.

This module supports multiple devices, autoprobe and hotplugging.

Note: you need to load the firmware via usx2yloader utility included in alsa-tools
and alsa-firmware packages.

4.2.111 Module snd-via82xx

Module for AC’97 motherboards based on VIA 82C686A/686B, 8233, 8233A,
8233C, 8235, 8237 (south) bridge.

mpu_port 0x300,0x310,0x320,0x330, otherwise obtain BIOS setup
[VIA686A/686B only]

joystick Enable joystick (default off) [VIA686A/686B only]
ac97_clock AC’97 codec clock base (default 48000Hz)
dxs_support support DXS channels, 0 = auto (default), 1 = enable, 2 = disable,

3 = 48k only, 4 = no VRA, 5 = enable any sample rate and different sample
rates on different channels [VIA8233/C, 8235, 8237 only]

272Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

ac97_quirk AC’97 workaround for strange hardware; See AC97 Quirk Option
section below.

This module supports one chip and autoprobe.

Note: on some SMP motherboards like MSI 694D the interrupts might not be
generated properly. In such a case, please try to set the SMP (or MPS) version
on BIOS to 1.1 instead of default value 1.4. Then the interrupt number will be
assigned under 15. You might also upgrade your BIOS.

Note: VIA8233/5/7 (not VIA8233A) can support DXS (direct sound) channels as
the first PCM. On these channels, up to 4 streams can be played at the same time,
and the controller can perform sample rate conversion with separate rates for
each channel. As default (dxs_support = 0), 48k fixed rate is chosen except for
the known devices since the output is often noisy except for 48k on some mother
boards due to the bug of BIOS. Please try once dxs_support=5 and if it works on
other sample rates (e.g. 44.1kHz of mp3 playback), please let us know the PCI sub-
system vendor/device id’s (output of lspci -nv). If dxs_support=5 does not work,
try dxs_support=4; if it doesn’t work too, try dxs_support=1. (dxs_support=1 is
usually for old motherboards. The correct implemented board should work with
4 or 5.) If it still doesn’t work and the default setting is ok, dxs_support=3 is
the right choice. If the default setting doesn’t work at all, try dxs_support=2
to disable the DXS channels. In any cases, please let us know the result and the
subsystem vendor/device ids. See Links and Addresses below.

Note: for the MPU401 on VIA823x, use snd-mpu401 driver additionally. The
mpu_port option is for VIA686 chips only.

The power-management is supported.

4.2.112 Module snd-via82xx-modem

Module for VIA82xx AC97 modem

ac97_clock AC’97 codec clock base (default 48000Hz)
This module supports one card and autoprobe.

Note: The default index value of this module is -2, i.e. the first slot is excluded.

The power-management is supported.

4.2.113 Module snd-virmidi

Module for virtual rawmidi devices. This module creates virtual rawmidi devices
which communicate to the corresponding ALSA sequencer ports.

midi_devs MIDI devices # (1-4, default=4)
This module supports multiple cards.

4.2. Module parameters 273

Linux Sound Documentation

4.2.114 Module snd-virtuoso

Module for sound cards based on the Asus AV66/AV100/AV200 chips, i.e., Xonar
D1, DX, D2, D2X, DS, DSX, Essence ST (Deluxe), Essence STX (II), HDAV1.3
(Deluxe), and HDAV1.3 Slim.

This module supports autoprobe and multiple cards.

4.2.115 Module snd-vx222

Module for Digigram VX-Pocket VX222, V222 v2 and Mic cards.

mic Enable Microphone on V222 Mic (NYI)
ibl Capture IBL size. (default = 0, minimum size)

This module supports multiple cards.

When the driver is compiled as a module and the hotplug firmware is supported,
the firmware data is loaded via hotplug automatically. Install the necessary
firmware files in alsa-firmware package. When no hotplug fw loader is available,
you need to load the firmware via vxloader utility in alsa-tools package. To invoke
vxloader automatically, add the following to /etc/modprobe.d/alsa.conf

install snd-vx222 /sbin/modprobe --first-time -i snd-vx222\
&& /usr/bin/vxloader

(for 2.2/2.4 kernels, add post-install /usr/bin/vxloader to /etc/modules.conf,
instead.) IBL size defines the interrupts period for PCM. The smaller size gives
smaller latency but leads to more CPU consumption, too. The size is usually
aligned to 126. As default (=0), the smallest size is chosen. The possible IBL
values can be found in /proc/asound/cardX/vx-status proc file.

The power-management is supported.

4.2.116 Module snd-vxpocket

Module for Digigram VX-Pocket VX2 and 440 PCMCIA cards.

ibl Capture IBL size. (default = 0, minimum size)

This module supports multiple cards. The module is compiled only when PCMCIA
is supported on kernel.

With the older 2.6.x kernel, to activate the driver via the card manager, you’ll need
to set up /etc/pcmcia/vxpocket.conf. See the sound/pcmcia/vx/vxpocket.c. 2.6.13
or later kernel requires no longer require a config file.

When the driver is compiled as a module and the hotplug firmware is supported,
the firmware data is loaded via hotplug automatically. Install the necessary
firmware files in alsa-firmware package. When no hotplug fw loader is available,
you need to load the firmware via vxloader utility in alsa-tools package.

About capture IBL, see the description of snd-vx222 module.

Note: snd-vxp440 driver is merged to snd-vxpocket driver since ALSA 1.0.10.

274Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

The power-management is supported.

4.2.117 Module snd-ymfpci

Module for Yamaha PCI chips (YMF72x, YMF74x & YMF75x).

mpu_port 0x300,0x330,0x332,0x334, 0 (disable) by default, 1 (auto-detect for
YMF744/754 only)

fm_port 0x388,0x398,0x3a0,0x3a8, 0 (disable) by default 1 (auto-detect for
YMF744/754 only)

joystick_port 0x201,0x202,0x204,0x205, 0 (disable) by default, 1 (auto-detect)
rear_switch enable shared rear/line-in switch (bool)

This module supports autoprobe and multiple chips.

The power-management is supported.

4.2.118 Module snd-pdaudiocf

Module for Sound Core PDAudioCF sound card.

The power-management is supported.

4.3 AC97 Quirk Option

The ac97_quirk option is used to enable/override the workaround for specific de-
vices on drivers for on-board AC’97 controllers like snd-intel8x0. Some hardware
have swapped output pins between Master and Headphone, or Surround (thanks
to confusion of AC’97 specifications from version to version :-)

The driver provides the auto-detection of known problematic devices, but some
might be unknown or wrongly detected. In such a case, pass the proper value
with this option.

The following strings are accepted:

default Don’t override the default setting
none Disable the quirk
hp_only Bind Master and Headphone controls as a single control
swap_hp Swap headphone and master controls
swap_surround Swap master and surround controls
ad_sharing For AD1985, turn on OMS bit and use headphone
alc_jack For ALC65x, turn on the jack sense mode
inv_eapd Inverted EAPD implementation
mute_led Bind EAPD bit for turning on/off mute LED

4.3. AC97 Quirk Option 275

Linux Sound Documentation

For backward compatibility, the corresponding integer value -1, 0,⋯are accepted,
too.

For example, if Master volume control has no effect on your device but only
Headphone does, pass ac97_quirk=hp_only module option.

4.4 Configuring Non-ISAPNP Cards

When the kernel is configured with ISA-PnP support, the modules supporting the
isapnp cards will have module options isapnp. If this option is set, only the ISA-
PnP devices will be probed. For probing the non ISA-PnP cards, you have to pass
isapnp=0 option together with the proper i/o and irq configuration.

When the kernel is configured without ISA-PnP support, isapnp option will be not
built in.

4.5 Module Autoloading Support

The ALSA drivers can be loaded automatically on demand by defining module
aliases. The string snd-card-%1 is requested for ALSA native devices where %i
is sound card number from zero to seven.

To auto-load an ALSA driver for OSS services, define the string sound-slot-%i
where %i means the slot number for OSS, which corresponds to the card index of
ALSA. Usually, define this as the same card module.

An example configuration for a single emu10k1 card is like below:

----- /etc/modprobe.d/alsa.conf
alias snd-card-0 snd-emu10k1
alias sound-slot-0 snd-emu10k1
----- /etc/modprobe.d/alsa.conf

The available number of auto-loaded sound cards depends on the module option
cards_limit of snd module. As default it’s set to 1. To enable the auto-loading
of multiple cards, specify the number of sound cards in that option.

When multiple cards are available, it’d better to specify the index number for each
card via module option, too, so that the order of cards is kept consistent.

An example configuration for two sound cards is like below:

----- /etc/modprobe.d/alsa.conf
ALSA portion
options snd cards_limit=2
alias snd-card-0 snd-interwave
alias snd-card-1 snd-ens1371
options snd-interwave index=0
options snd-ens1371 index=1
OSS/Free portion
alias sound-slot-0 snd-interwave
alias sound-slot-1 snd-ens1371
----- /etc/modprobe.d/alsa.conf

276Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

In this example, the interwave card is always loaded as the first card (index 0) and
ens1371 as the second (index 1).

Alternative (and new) way to fixate the slot assignment is to use slots option of
snd module. In the case above, specify like the following:

options snd slots=snd-interwave,snd-ens1371

Then, the first slot (#0) is reserved for snd-interwave driver, and the second (#1)
for snd-ens1371. You can omit index option in each driver if slots option is used
(although you can still have them at the same time as long as they don’t conflict).
The slots option is especially useful for avoiding the possible hot-plugging and the
resultant slot conflict. For example, in the case above again, the first two slots
are already reserved. If any other driver (e.g. snd-usb-audio) is loaded before
snd-interwave or snd-ens1371, it will be assigned to the third or later slot.

When a module name is given with ‘!’, the slot will be given for any modules
but that name. For example, slots=!snd-pcsp will reserve the first slot for any
modules but snd-pcsp.

4.6 ALSA PCM devices to OSS devices mapping

/dev/snd/pcmC0D0[c|p] -> /dev/audio0 (/dev/audio) -> minor 4
/dev/snd/pcmC0D0[c|p] -> /dev/dsp0 (/dev/dsp) -> minor 3
/dev/snd/pcmC0D1[c|p] -> /dev/adsp0 (/dev/adsp) -> minor 12
/dev/snd/pcmC1D0[c|p] -> /dev/audio1 -> minor 4+16 = 20
/dev/snd/pcmC1D0[c|p] -> /dev/dsp1 -> minor 3+16 = 19
/dev/snd/pcmC1D1[c|p] -> /dev/adsp1 -> minor 12+16 = 28
/dev/snd/pcmC2D0[c|p] -> /dev/audio2 -> minor 4+32 = 36
/dev/snd/pcmC2D0[c|p] -> /dev/dsp2 -> minor 3+32 = 39
/dev/snd/pcmC2D1[c|p] -> /dev/adsp2 -> minor 12+32 = 44

The first number from /dev/snd/pcmC{X}D{Y}[c|p] expression means sound card
number and second means device number. The ALSA devices have either c or p
suffix indicating the direction, capture and playback, respectively.

Please note that the device mapping above may be varied via the module options
of snd-pcm-oss module.

4.7 Proc interfaces (/proc/asound)

4.7.1 /proc/asound/card#/pcm#[cp]/oss

erase erase all additional information about OSS applications
<app_name> <fragments> <fragment_size> [<options>]

<app_name> name of application with (higher priority) or without path

<fragments> number of fragments or zero if auto

<fragment_size> size of fragment in bytes or zero if auto

4.6. ALSA PCM devices to OSS devices mapping 277

Linux Sound Documentation

<options> optional parameters

disable the application tries to open a pcm device for this channel but
does not want to use it. (Cause a bug or mmap needs) It’s good for
Quake etc⋯

direct don’t use plugins
block force block mode (rvplayer)
non-block force non-block mode
whole-frag write only whole fragments (optimization affecting playback

only)

no-silence do not fill silence ahead to avoid clicks
buggy-ptr Returns the whitespace blocks in GETOPTR ioctl instead of

filled blocks

Example:

echo "x11amp 128 16384" > /proc/asound/card0/pcm0p/oss
echo "squake 0 0 disable" > /proc/asound/card0/pcm0c/oss
echo "rvplayer 0 0 block" > /proc/asound/card0/pcm0p/oss

4.8 Early Buffer Allocation

Some drivers (e.g. hdsp) require the large contiguous buffers, and sometimes
it’s too late to find such spaces when the driver module is actually loaded due
to memory fragmentation. You can pre-allocate the PCM buffers by loading snd-
page-alloc module and write commands to its proc file in prior, for example, in the
early boot stage like /etc/init.d/*.local scripts.

Reading the proc file /proc/drivers/snd-page-alloc shows the current usage of page
allocation. In writing, you can send the following commands to the snd-page-alloc
driver:

• add VENDOR DEVICE MASK SIZE BUFFERS

VENDOR and DEVICE are PCI vendor and device IDs. They take integer numbers
(0x prefix is needed for the hex). MASK is the PCI DMA mask. Pass 0 if not
restricted. SIZE is the size of each buffer to allocate. You can pass k and m suffix
for KB and MB. The max number is 16MB. BUFFERS is the number of buffers to
allocate. It must be greater than 0. The max number is 4.

• erase

This will erase the all pre-allocated buffers which are not in use.

278Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

Linux Sound Documentation

4.9 Links and Addresses

ALSA project homepage http://www.alsa-project.org
Kernel Bugzilla http://bugzilla.kernel.org/
ALSA Developers ML mailto:alsa-devel@alsa-project.org
alsa-info.sh script http://www.alsa-project.org/alsa-info.sh

4.9. Links and Addresses 279

http://www.alsa-project.org
http://bugzilla.kernel.org/
mailto:alsa-devel@alsa-project.org
http://www.alsa-project.org/alsa-info.sh

Linux Sound Documentation

280Chapter 4. Advanced Linux Sound Architecture - Driver Configuration
guide

CHAPTER

FIVE

HD-AUDIO

5.1 More Notes on HD-Audio Driver

Takashi Iwai <tiwai@suse.de>

5.1.1 General

HD-audio is the new standard on-board audio component on modern PCs after
AC97. Although Linux has been supporting HD-audio since long time ago, there
are often problems with new machines. A part of the problem is broken BIOS, and
the rest is the driver implementation. This document explains the brief trouble-
shooting and debugging methods for the HD-audio hardware.

The HD-audio component consists of two parts: the controller chip and the codec
chips on the HD-audio bus. Linux provides a single driver for all controllers, snd-
hda-intel. Although the driver name contains a word of a well-known hardware
vendor, it’s not specific to it but for all controller chips by other companies.
Since the HD-audio controllers are supposed to be compatible, the single snd-
hda-driver should work in most cases. But, not surprisingly, there are known bugs
and issues specific to each controller type. The snd-hda-intel driver has a bunch
of workarounds for these as described below.

A controller may have multiple codecs. Usually you have one audio codec and
optionally one modem codec. In theory, there might be multiple audio codecs, e.g.
for analog and digital outputs, and the driver might not work properly because of
conflict of mixer elements. This should be fixed in future if such hardware really
exists.

The snd-hda-intel driver has several different codec parsers depending on the
codec. It has a generic parser as a fallback, but this functionality is fairly lim-
ited until now. Instead of the generic parser, usually the codec-specific parser
(coded in patch_*.c) is used for the codec-specific implementations. The details
about the codec-specific problems are explained in the later sections.

If you are interested in the deep debugging of HD-audio, read the HD-audio spec-
ification at first. The specification is found on Intel’s web page, for example:
• http://www.intel.com/standards/hdaudio/

281

mailto:tiwai@suse.de
http://www.intel.com/standards/hdaudio/

Linux Sound Documentation

5.1.2 HD-Audio Controller

DMA-Position Problem

The most common problem of the controller is the inaccurate DMA pointer report-
ing. The DMA pointer for playback and capture can be read in two ways, either
via a LPIB register or via a position-buffer map. As default the driver tries to read
from the io-mapped position-buffer, and falls back to LPIB if the position-buffer
appears dead. However, this detection isn’t perfect on some devices. In such a
case, you can change the default method via position_fix option.

position_fix=1 means to use LPIB method explicitly. position_fix=2 means
to use the position-buffer. position_fix=3 means to use a combination of both
methods, needed for some VIA controllers. The capture stream position is cor-
rected by comparing both LPIB and position-buffer values. position_fix=4 is
another combination available for all controllers, and uses LPIB for the playback
and the position-buffer for the capture streams. position_fix=5 is specific to In-
tel platforms, so far, for Skylake and onward. It applies the delay calculation for
the precise position reporting. position_fix=6 is to correct the position with the
fixed FIFO size, mainly targeted for the recent AMD controllers. 0 is the default
value for all other controllers, the automatic check and fallback to LPIB as de-
scribed in the above. If you get a problem of repeated sounds, this option might
help.

In addition to that, every controller is known to be broken regarding the wake-
up timing. It wakes up a few samples before actually processing the data on the
buffer. This caused a lot of problems, for example, with ALSA dmix or JACK. Since
2.6.27 kernel, the driver puts an artificial delay to the wake up timing. This delay
is controlled via bdl_pos_adj option.

When bdl_pos_adj is a negative value (as default), it’s assigned to an appropriate
value depending on the controller chip. For Intel chips, it’d be 1 while it’d be 32
for others. Usually this works. Only in case it doesn’t work and you get warning
messages, you should change this parameter to other values.

Codec-Probing Problem

A less often but a more severe problem is the codec probing. When BIOS reports
the available codec slots wrongly, the driver gets confused and tries to access the
non-existing codec slot. This often results in the total screw-up, and destructs
the further communication with the codec chips. The symptom appears usually as
error messages like:

hda_intel: azx_get_response timeout, switching to polling mode:
last cmd=0x12345678

hda_intel: azx_get_response timeout, switching to single_cmd mode:
last cmd=0x12345678

The first line is a warning, and this is usually relatively harmless. It means that the
codec response isn’t notified via an IRQ. The driver uses explicit polling method
to read the response. It gives very slight CPU overhead, but you’d unlikely notice
it.

282 Chapter 5. HD-Audio

Linux Sound Documentation

The second line is, however, a fatal error. If this happens, usually it means that
something is really wrong. Most likely you are accessing a non-existing codec slot.

Thus, if the second error message appears, try to narrow the probed codec slots
via probe_mask option. It’s a bitmask, and each bit corresponds to the codec slot.
For example, to probe only the first slot, pass probe_mask=1. For the first and the
third slots, pass probe_mask=5 (where 5 = 1 | 4), and so on.

Since 2.6.29 kernel, the driver has a more robust probing method, so this error
might happen rarely, though.

On a machine with a broken BIOS, sometimes you need to force the driver to probe
the codec slots the hardware doesn’t report for use. In such a case, turn the bit
8 (0x100) of probe_mask option on. Then the rest 8 bits are passed as the codec
slots to probe unconditionally. For example, probe_mask=0x103 will force to probe
the codec slots 0 and 1 no matter what the hardware reports.

Interrupt Handling

HD-audio driver uses MSI as default (if available) since 2.6.33 kernel as MSI works
better on some machines, and in general, it’s better for performance. However,
Nvidia controllers showed bad regressions with MSI (especially in a combination
with AMD chipset), thus we disabled MSI for them.

There seem also still other devices that don’t work withMSI. If you see a regression
wrt the sound quality (stuttering, etc) or a lock-up in the recent kernel, try to pass
enable_msi=0 option to disable MSI. If it works, you can add the known bad device
to the blacklist defined in hda_intel.c. In such a case, please report and give the
patch back to the upstream developer.

5.1.3 HD-Audio Codec

Model Option

The most common problem regarding the HD-audio driver is the unsupported
codec features or the mismatched device configuration. Most of codec-specific
code has several preset models, either to override the BIOS setup or to provide
more comprehensive features.

The driver checks PCI SSID and looks through the static configuration table until
any matching entry is found. If you have a new machine, you may see a message
like below:

hda_codec: ALC880: BIOS auto-probing.

Meanwhile, in the earlier versions, you would see a message like:

hda_codec: Unknown model for ALC880, trying auto-probe from BIOS...

Even if you see such a message, DON’T PANIC. Take a deep breath and keep
your towel. First of all, it’s an informational message, no warning, no error. This
means that the PCI SSID of your device isn’t listed in the known preset model

5.1. More Notes on HD-Audio Driver 283

Linux Sound Documentation

(white-)list. But, this doesn’t mean that the driver is broken. Many codec-drivers
provide the automatic configuration mechanism based on the BIOS setup.

The HD-audio codec has usually“pin”widgets, and BIOS sets the default config-
uration of each pin, which indicates the location, the connection type, the jack
color, etc. The HD-audio driver can guess the right connection judging from
these default configuration values. However – some codec-support codes, such
as patch_analog.c, don’t support the automatic probing (yet as of 2.6.28). And,
BIOS is often, yes, pretty often broken. It sets up wrong values and screws up the
driver.

The preset model (or recently called as“fix-up”) is provided basically to overcome
such a situation. When the matching preset model is found in the white-list, the
driver assumes the static configuration of that preset with the correct pin setup,
etc. Thus, if you have a newer machine with a slightly different PCI SSID (or
codec SSID) from the existing one, you may have a good chance to re-use the
same model. You can pass the model option to specify the preset model instead of
PCI (and codec-) SSID look-up.

What model option values are available depends on the codec chip. Check
your codec chip from the codec proc file (see “Codec Proc-File”section be-
low). It will show the vendor/product name of your codec chip. Then, see
Documentation/sound/hd-audio/models.rst file, the section of HD-audio driver.
You can find a list of codecs and model options belonging to each codec. For
example, for Realtek ALC262 codec chip, pass model=ultra for devices that are
compatible with Samsung Q1 Ultra.

Thus, the first thing you can do for any brand-new, unsupported and non-working
HD-audio hardware is to check HD-audio codec and several different model option
values. If you have any luck, some of them might suit with your device well.

There are a few special model option values:

• when‘nofixup’is passed, the device-specific fixups in the codec parser are
skipped.

• when generic is passed, the codec-specific parser is skipped and only the
generic parser is used.

Speaker and Headphone Output

One of the most frequent (and obvious) bugs with HD-audio is the silent output
from either or both of a built-in speaker and a headphone jack. In general, you
should try a headphone output at first. A speaker output often requires more
additional controls like the external amplifier bits. Thus a headphone output has
a slightly better chance.

Before making a bug report, double-check whether the mixer is set up correctly.
The recent version of snd-hda-intel driver provides mostly“Master”volume control
as well as“Front”volume (where Front indicates the front-channels). In addition,
there can be individual “Headphone”and “Speaker”controls.
Ditto for the speaker output. There can be “External Amplifier”switch on some
codecs. Turn on this if present.

284 Chapter 5. HD-Audio

Linux Sound Documentation

Another related problem is the automatic mute of speaker output by headphone
plugging. This feature is implemented inmost cases, but not on every preset model
or codec-support code.

In anyway, try a different model option if you have such a problem. Some other
models may match better and give you more matching functionality. If none of the
available models works, send a bug report. See the bug report section for details.

If you are masochistic enough to debug the driver problem, note the following:

• The speaker (and the headphone, too) output often requires the external
amplifier. This can be set usually via EAPD verb or a certain GPIO. If the
codec pin supports EAPD, you have a better chance via SET_EAPD_BTL verb
(0x70c). On others, GPIO pin (mostly it’s either GPIO0 or GPIO1) may turn
on/off EAPD.

• Some Realtek codecs require special vendor-specific coefficients to turn on
the amplifier. See patch_realtek.c.

• IDT codecs may have extra power-enable/disable controls on each analog pin.
See patch_sigmatel.c.

• Very rare but some devices don’t accept the pin-detection verb until triggered.
Issuing GET_PIN_SENSE verb (0xf09)may result in the codec-communication
stall. Some examples are found in patch_realtek.c.

Capture Problems

The capture problems are often because of missing setups of mixers. Thus, before
submitting a bug report, make sure that you set up the mixer correctly. For ex-
ample, both“Capture Volume”and“Capture Switch”have to be set properly in
addition to the right“Capture Source”or“Input Source”selection. Some devices
have “Mic Boost”volume or switch.
When the PCM device is opened via“default”PCM (without pulse-audio plugin),
you’ll likely have“Digital Capture Volume”control as well. This is provided for the
extra gain/attenuation of the signal in software, especially for the inputs without
the hardware volume control such as digital microphones. Unless really needed,
this should be set to exactly 50%, corresponding to 0dB – neither extra gain nor
attenuation. When you use “hw”PCM, i.e., a raw access PCM, this control will
have no influence, though.

It’s known that some codecs / devices have fairly bad analog circuits, and the
recorded sound contains a certain DC-offset. This is no bug of the driver.

Most of modern laptops have no analog CD-input connection. Thus, the recording
from CD input won’t work in many cases although the driver provides it as the
capture source. Use CDDA instead.

The automatic switching of the built-in and external mic per plugging is imple-
mented on some codec models but not on every model. Partly because of my lazi-
ness but mostly lack of testers. Feel free to submit the improvement patch to the
author.

5.1. More Notes on HD-Audio Driver 285

Linux Sound Documentation

Direct Debugging

If nomodel option gives you a better result, and you are a tough guy to fight against
evil, try debugging via hitting the raw HD-audio codec verbs to the device. Some
tools are available: hda-emu and hda-analyzer. The detailed description is found
in the sections below. You’d need to enable hwdep for using these tools. See
“Kernel Configuration”section.

5.1.4 Other Issues

Kernel Configuration

In general, I recommend you to enable the sound debug option,
CONFIG_SND_DEBUG=y, no matter whether you are debugging or not. This
enables snd_printd() macro and others, and you’ll get additional kernel messages
at probing.

In addition, you can enable CONFIG_SND_DEBUG_VERBOSE=y. But this will give you
far more messages. Thus turn this on only when you are sure to want it.

Don’t forget to turn on the appropriate CONFIG_SND_HDA_CODEC_* options. Note
that each of them corresponds to the codec chip, not the controller chip. Thus,
even if lspci shows the Nvidia controller, you may need to choose the option for
other vendors. If you are unsure, just select all yes.

CONFIG_SND_HDA_HWDEP is a useful option for debugging the driver. When this is
enabled, the driver creates hardware-dependent devices (one per each codec), and
you have a raw access to the device via these device files. For example, hwC0D2
will be created for the codec slot #2 of the first card (#0). For debug-tools such
as hda-verb and hda-analyzer, the hwdep device has to be enabled. Thus, it’d be
better to turn this on always.

CONFIG_SND_HDA_RECONFIG is a new option, and this depends on the hwdep option
above. When enabled, you’ll have some sysfs files under the corresponding hwdep
directory. See “HD-audio reconfiguration”section below.
CONFIG_SND_HDA_POWER_SAVE option enables the power-saving feature. See
“Power-saving”section below.

Codec Proc-File

The codec proc-file is a treasure-chest for debugging HD-audio. It shows most of
useful information of each codec widget.

The proc file is located in /proc/asound/card*/codec#*, one file per each codec slot.
You can know the codec vendor, product id and names, the type of each widget,
capabilities and so on. This file, however, doesn’t show the jack sensing state, so
far. This is because the jack-sensing might be depending on the trigger state.

This file will be picked up by the debug tools, and also it can be fed to the emulator
as the primary codec information. See the debug tools section below.

286 Chapter 5. HD-Audio

Linux Sound Documentation

This proc file can be also used to check whether the generic parser is used. When
the generic parser is used, the vendor/product ID name will appear as “Realtek
ID 0262”, instead of “Realtek ALC262”.

HD-Audio Reconfiguration

This is an experimental feature to allow you re-configure the HD-audio codec dy-
namically without reloading the driver. The following sysfs files are available un-
der each codec-hwdep device directory (e.g. /sys/class/sound/hwC0D0):

vendor_id Shows the 32bit codec vendor-id hex number. You can change the
vendor-id value by writing to this file.

subsystem_id Shows the 32bit codec subsystem-id hex number. You can change
the subsystem-id value by writing to this file.

revision_id Shows the 32bit codec revision-id hex number. You can change the
revision-id value by writing to this file.

afg Shows the AFG ID. This is read-only.
mfg Shows the MFG ID. This is read-only.
name Shows the codec name string. Can be changed by writing to this file.
modelname Shows the currently set model option. Can be changed by writing to

this file.

init_verbs The extra verbs to execute at initialization. You can add a verb by
writing to this file. Pass three numbers: nid, verb and parameter (separated
with a space).

hints Shows / stores hint strings for codec parsers for any use. Its format is key
= value. For example, passing jack_detect = no will disable the jack de-
tection of the machine completely.

init_pin_configs Shows the initial pin default config values set by BIOS.
driver_pin_configs Shows the pin default values set by the codec parser explic-

itly. This doesn’t show all pin values but only the changed values by the
parser. That is, if the parser doesn’t change the pin default config values by
itself, this will contain nothing.

user_pin_configs Shows the pin default config values to override the BIOS setup.
Writing this (with two numbers, NID and value) appends the new value. The
given will be used instead of the initial BIOS value at the next reconfiguration
time. Note that this config will override even the driver pin configs, too.

reconfig Triggers the codec re-configuration. When any value is written to this
file, the driver re-initialize and parses the codec tree again. All the changes
done by the sysfs entries above are taken into account.

clear Resets the codec, removes themixer elements and PCM stuff of the specified
codec, and clear all init verbs and hints.

For example, when you want to change the pin default configuration value of the
pin widget 0x14 to 0x9993013f, and let the driver re-configure based on that state,
run like below:

5.1. More Notes on HD-Audio Driver 287

Linux Sound Documentation

echo 0x14 0x9993013f > /sys/class/sound/hwC0D0/user_pin_configs
echo 1 > /sys/class/sound/hwC0D0/reconfig

Hint Strings

The codec parser have several switches and adjustment knobs for matching better
with the actual codec or device behavior. Many of them can be adjusted dynami-
cally via“hints”strings as mentioned in the section above. For example, by passing
jack_detect = no string via sysfs or a patch file, you can disable the jack detec-
tion, thus the codec parser will skip the features like auto-mute or mic auto-switch.
As a boolean value, either yes, no, true, false, 1 or 0 can be passed.

The generic parser supports the following hints:

jack_detect (bool) specify whether the jack detection is available at all on this
machine; default true

inv_jack_detect (bool) indicates that the jack detection logic is inverted
trigger_sense (bool) indicates that the jack detection needs the explicit call of

AC_VERB_SET_PIN_SENSE verb

inv_eapd (bool) indicates that the EAPD is implemented in the inverted logic
pcm_format_first (bool) sets the PCM format before the stream tag and channel

ID

sticky_stream (bool) keep the PCM format, stream tag and ID as long as possi-
ble; default true

spdif_status_reset (bool) reset the SPDIF status bits at each time the SPDIF
stream is set up

pin_amp_workaround (bool) the output pin may have multiple amp values
single_adc_amp (bool) ADCs can have only single input amps
auto_mute (bool) enable/disable the headphone auto-mute feature; default true
auto_mic (bool) enable/disable the mic auto-switch feature; default true
line_in_auto_switch (bool) enable/disable the line-in auto-switch feature; de-

fault false

need_dac_fix (bool) limits the DACs depending on the channel count
primary_hp (bool) probe headphone jacks as the primary outputs; default true
multi_io (bool) try probing multi-I/O config (e.g. shared line-in/surround,

mic/clfe jacks)

multi_cap_vol (bool) provide multiple capture volumes
inv_dmic_split (bool) provide split internal mic volume/switch for phase-

inverted digital mics

indep_hp (bool) provide the independent headphone PCM stream and the corre-
sponding mixer control, if available

288 Chapter 5. HD-Audio

Linux Sound Documentation

add_stereo_mix_input (bool) add the stereo mix (analog-loopback mix) to the
input mux if available

add_jack_modes (bool) add“xxx Jack Mode”enum controls to each I/O jack for
allowing to change the headphone amp and mic bias VREF capabilities

power_save_node (bool) advanced power management for each widget, control-
ling the power sate (D0/D3) of each widget node depending on the actual pin
and stream states

power_down_unused (bool) power down the unused widgets, a subset of
power_save_node, and will be dropped in future

add_hp_mic (bool) add the headphone to capture source if possible
hp_mic_detect (bool) enable/disable the hp/mic shared input for a single built-in

mic case; default true

vmaster (bool) enable/disable the virtual Master control; default true
mixer_nid (int) specifies the widget NID of the analog-loopback mixer

Early Patching

When CONFIG_SND_HDA_PATCH_LOADER=y is set, you can pass a “patch”as a
firmware file for modifying the HD-audio setup before initializing the codec. This
can work basically like the reconfiguration via sysfs in the above, but it does it
before the first codec configuration.

A patch file is a plain text file which looks like below:

[codec]
0x12345678 0xabcd1234 2

[model]
auto

[pincfg]
0x12 0x411111f0

[verb]
0x20 0x500 0x03
0x20 0x400 0xff

[hint]
jack_detect = no

The file needs to have a line [codec]. The next line should contain three numbers
indicating the codec vendor-id (0x12345678 in the example), the codec subsystem-
id (0xabcd1234) and the address (2) of the codec. The rest patch entries are ap-
plied to this specified codec until another codec entry is given. Passing 0 or a
negative number to the first or the second value will make the check of the cor-
responding field be skipped. It’ll be useful for really broken devices that don’t
initialize SSID properly.

The [model] line allows to change the model name of the each codec. In the
example above, it will be changed to model=auto. Note that this overrides the

5.1. More Notes on HD-Audio Driver 289

Linux Sound Documentation

module option.

After the [pincfg] line, the contents are parsed as the initial default pin-
configurations just like user_pin_configs sysfs above. The values can be shown
in user_pin_configs sysfs file, too.

Similarly, the lines after [verb] are parsed as init_verbs sysfs entries, and the
lines after [hint] are parsed as hints sysfs entries, respectively.

Another example to override the codec vendor id from 0x12345678 to 0xdeadbeef
is like below:

[codec]
0x12345678 0xabcd1234 2

[vendor_id]
0xdeadbeef

In the similar way, you can override the codec subsystem_id via [subsystem_id],
the revision id via [revision_id] line. Also, the codec chip name can be rewritten
via [chip_name] line.

[codec]
0x12345678 0xabcd1234 2

[subsystem_id]
0xffff1111

[revision_id]
0x10

[chip_name]
My-own NEWS-0002

The hd-audio driver reads the file via request_firmware(). Thus, a patch file has to
be located on the appropriate firmware path, typically, /lib/firmware. For example,
when you pass the option patch=hda-init.fw, the file /lib/firmware/hda-init.fw
must be present.

The patch module option is specific to each card instance, and you need to give
one file name for each instance, separated by commas. For example, if you have
two cards, one for an on-board analog and one for an HDMI video board, you may
pass patch option like below:

options snd-hda-intel patch=on-board-patch,hdmi-patch

290 Chapter 5. HD-Audio

Linux Sound Documentation

Power-Saving

The power-saving is a kind of auto-suspend of the device. When the device is
inactive for a certain time, the device is automatically turned off to save the power.
The time to go down is specified via power_save module option, and this option
can be changed dynamically via sysfs.

The power-saving won’t work when the analog loopback is enabled on some
codecs. Make sure that you mute all unneeded signal routes when you want the
power-saving.

The power-saving feature might cause audible click noises at each power-down/up
depending on the device. Some of them might be solvable, but some are hard, I’
m afraid. Some distros such as openSUSE enables the power-saving feature au-
tomatically when the power cable is unplugged. Thus, if you hear noises, suspect
first the power-saving. See /sys/module/snd_hda_intel/parameters/power_save to
check the current value. If it’s non-zero, the feature is turned on.
The recent kernel supports the runtime PM for the HD-audio controller chip, too.
It means that the HD-audio controller is also powered up / down dynamically. The
feature is enabled only for certain controller chips like Intel LynxPoint. You can en-
able/disable this feature forcibly by setting power_save_controller option, which
is also available at /sys/module/snd_hda_intel/parameters directory.

Tracepoints

The hd-audio driver gives a few basic tracepoints. hda:hda_send_cmd traces
each CORB write while hda:hda_get_response traces the response from RIRB
(only when read from the codec driver). hda:hda_bus_reset traces the bus-reset
due to fatal error, etc, hda:hda_unsol_event traces the unsolicited events, and
hda:hda_power_down and hda:hda_power_up trace the power down/up via power-
saving behavior.

Enabling all tracepoints can be done like

echo 1 > /sys/kernel/debug/tracing/events/hda/enable

then after some commands, you can traces from /sys/kernel/debug/tracing/trace
file. For example, when you want to trace what codec command is sent, enable
the tracepoint like:

cat /sys/kernel/debug/tracing/trace
tracer: nop
#
TASK-PID CPU# TIMESTAMP FUNCTION
| | | | |

<...>-7807 [002] 105147.774889: hda_send_cmd: [0:0] val=e3a019
<...>-7807 [002] 105147.774893: hda_send_cmd: [0:0] val=e39019
<...>-7807 [002] 105147.999542: hda_send_cmd: [0:0] val=e3a01a
<...>-7807 [002] 105147.999543: hda_send_cmd: [0:0] val=e3901a
<...>-26764 [001] 349222.837143: hda_send_cmd: [0:0] val=e3a019
<...>-26764 [001] 349222.837148: hda_send_cmd: [0:0] val=e39019
<...>-26764 [001] 349223.058539: hda_send_cmd: [0:0] val=e3a01a
<...>-26764 [001] 349223.058541: hda_send_cmd: [0:0] val=e3901a

5.1. More Notes on HD-Audio Driver 291

Linux Sound Documentation

Here [0:0] indicates the card number and the codec address, and val shows the
value sent to the codec, respectively. The value is a packed value, and you can
decode it via hda-decode-verb program included in hda-emu package below. For
example, the value e3a019 is to set the left output-amp value to 25.

% hda-decode-verb 0xe3a019
raw value = 0x00e3a019
cid = 0, nid = 0x0e, verb = 0x3a0, parm = 0x19
raw value: verb = 0x3a0, parm = 0x19
verbname = set_amp_gain_mute
amp raw val = 0xa019
output, left, idx=0, mute=0, val=25

Development Tree

The latest development codes for HD-audio are found on sound git tree:

• git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound.git

The master branch or for-next branches can be used as the main development
branches in general while the development for the current and next kernels are
found in for-linus and for-next branches, respectively.

Sending a Bug Report

If any model or module options don’t work for your device, it’s time to send a
bug report to the developers. Give the following in your bug report:

• Hardware vendor, product and model names

• Kernel version (and ALSA-driver version if you built externally)

• alsa-info.sh output; run with --no-upload option. See the section below
about alsa-info

If it’s a regression, at best, send alsa-info outputs of both working and non-working
kernels. This is really helpful because we can compare the codec registers directly.

Send a bug report either the following:

kernel-bugzilla https://bugzilla.kernel.org/
alsa-devel ML alsa-devel@alsa-project.org

5.1.5 Debug Tools

This section describes some tools available for debugging HD-audio problems.

292 Chapter 5. HD-Audio

https://bugzilla.kernel.org/
mailto:alsa-devel@alsa-project.org

Linux Sound Documentation

alsa-info

The script alsa-info.sh is a very useful tool to gather the audio device informa-
tion. It’s included in alsa-utils package. The latest version can be found on git
repository:

• git://git.alsa-project.org/alsa-utils.git

The script can be fetched directly from the following URL, too:

• http://www.alsa-project.org/alsa-info.sh

Run this script as root, and it will gather the important information such as the
module lists, module parameters, proc file contents including the codec proc files,
mixer outputs and the control elements. As default, it will store the information
onto a web server on alsa-project.org. But, if you send a bug report, it’d be better
to run with --no-upload option, and attach the generated file.

There are some other useful options. See --help option output for details.

When a probe error occurs or when the driver obviously assigns a mismatched
model, it’d be helpful to load the driver with probe_only=1 option (at best after
the cold reboot) and run alsa-info at this state. With this option, the driver won’t
configure the mixer and PCM but just tries to probe the codec slot. After probing,
the proc file is available, so you can get the raw codec information before modified
by the driver. Of course, the driver isn’t usable with probe_only=1. But you can
continue the configuration via hwdep sysfs file if hda-reconfig option is enabled.
Using probe_only mask 2 skips the reset of HDA codecs (use probe_only=3 as
module option). The hwdep interface can be used to determine the BIOS codec
initialization.

hda-verb

hda-verb is a tiny program that allows you to access the HD-audio codec directly.
You can execute a raw HD-audio codec verb with this. This program accesses the
hwdep device, thus you need to enable the kernel config CONFIG_SND_HDA_HWDEP=y
beforehand.

The hda-verb program takes four arguments: the hwdep device file, the widget
NID, the verb and the parameter. When you access to the codec on the slot 2 of
the card 0, pass /dev/snd/hwC0D2 to the first argument, typically. (However, the
real path name depends on the system.)

The second parameter is the widget number-id to access. The third parameter can
be either a hex/digit number or a string corresponding to a verb. Similarly, the last
parameter is the value to write, or can be a string for the parameter type.

% hda-verb /dev/snd/hwC0D0 0x12 0x701 2
nid = 0x12, verb = 0x701, param = 0x2
value = 0x0

% hda-verb /dev/snd/hwC0D0 0x0 PARAMETERS VENDOR_ID
nid = 0x0, verb = 0xf00, param = 0x0
value = 0x10ec0262

(continues on next page)

5.1. More Notes on HD-Audio Driver 293

http://www.alsa-project.org/alsa-info.sh

Linux Sound Documentation

(continued from previous page)
% hda-verb /dev/snd/hwC0D0 2 set_a 0xb080
nid = 0x2, verb = 0x300, param = 0xb080
value = 0x0

Although you can issue any verbs with this program, the driver state won’t be
always updated. For example, the volume values are usually cached in the driver,
and thus changing the widget amp value directly via hda-verb won’t change the
mixer value.

The hda-verb program is included now in alsa-tools:

• git://git.alsa-project.org/alsa-tools.git

Also, the old stand-alone package is found in the ftp directory:

• ftp://ftp.suse.com/pub/people/tiwai/misc/

Also a git repository is available:

• git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-verb.git

See README file in the tarball for more details about hda-verb program.

hda-analyzer

hda-analyzer provides a graphical interface to access the raw HD-audio control,
based on pyGTK2 binding. It’s a more powerful version of hda-verb. The pro-
gram gives you an easy-to-use GUI stuff for showing the widget information and
adjusting the amp values, as well as the proc-compatible output.

The hda-analyzer:

• http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer

is a part of alsa.git repository in alsa-project.org:

• git://git.alsa-project.org/alsa.git

Codecgraph

Codecgraph is a utility program to generate a graph and visualizes the codec-node
connection of a codec chip. It’s especially useful when you analyze or debug a
codec without a proper datasheet. The program parses the given codec proc file
and converts to SVG via graphiz program.

The tarball and GIT trees are found in the web page at:

• http://helllabs.org/codecgraph/

294 Chapter 5. HD-Audio

ftp://ftp.suse.com/pub/people/tiwai/misc/
http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer
http://helllabs.org/codecgraph/

Linux Sound Documentation

hda-emu

hda-emu is an HD-audio emulator. Themain purpose of this program is to debug an
HD-audio codec without the real hardware. Thus, it doesn’t emulate the behavior
with the real audio I/O, but it just dumps the codec register changes and the ALSA-
driver internal changes at probing and operating the HD-audio driver.

The program requires a codec proc-file to simulate. Get a proc file for the target
codec beforehand, or pick up an example codec from the codec proc collections in
the tarball. Then, run the program with the proc file, and the hda-emu program
will start parsing the codec file and simulates the HD-audio driver:

% hda-emu codecs/stac9200-dell-d820-laptop
Parsing..
hda_codec: Unknown model for STAC9200, using BIOS defaults
hda_codec: pin nid 08 bios pin config 40c003fa
....

The program gives you only a very dumb command-line interface. You can get a
proc-file dump at the current state, get a list of control (mixer) elements, set/get
the control element value, simulate the PCM operation, the jack plugging simula-
tion, etc.

The program is found in the git repository below:

• git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-emu.git

See README file in the repository for more details about hda-emu program.

hda-jack-retask

hda-jack-retask is a user-friendly GUI program to manipulate the HD-audio pin
control for jack retasking. If you have a problem about the jack assignment, try
this program and check whether you can get useful results. Once when you figure
out the proper pin assignment, it can be fixed either in the driver code statically
or via passing a firmware patch file (see “Early Patching”section).
The program is included in alsa-tools now:

• git://git.alsa-project.org/alsa-tools.git

5.2 HD-Audio Codec-Specific Models

5.2.1 ALC880

3stack 3-jack in back and a headphone out
3stack-digout 3-jack in back, a HP out and a SPDIF out
5stack 5-jack in back, 2-jack in front
5stack-digout 5-jack in back, 2-jack in front, a SPDIF out
6stack 6-jack in back, 2-jack in front

5.2. HD-Audio Codec-Specific Models 295

Linux Sound Documentation

6stack-digout 6-jack with a SPDIF out
6stack-automute 6-jack with headphone jack detection

5.2.2 ALC260

gpio1 Enable GPIO1
coef Enable EAPD via COEF table
fujitsu Quirk for FSC S7020

fujitsu-jwse Quirk for FSC S7020 with jack modes and HP mic support

5.2.3 ALC262

inv-dmic Inverted internal mic workaround
fsc-h270 Fixups for Fujitsu-Siemens Celsius H270
fsc-s7110 Fixups for Fujitsu-Siemens Lifebook S7110
hp-z200 Fixups for HP Z200
tyan Fixups for Tyan Thunder n6650W

lenovo-3000 Fixups for Lenovo 3000
benq Fixups for Benq ED8
benq-t31 Fixups for Benq T31
bayleybay Fixups for Intel BayleyBay

5.2.4 ALC267/268

inv-dmic Inverted internal mic workaround
hp-eapd Disable HP EAPD on NID 0x15
spdif Enable SPDIF output on NID 0x1e

5.2.5 ALC22x/23x/25x/269/27x/28x/29x (and vendor-specific
ALC3xxx models)

laptop-amic Laptops with analog-mic input
laptop-dmic Laptops with digital-mic input
alc269-dmic Enable ALC269(VA) digital mic workaround
alc271-dmic Enable ALC271X digital mic workaround
inv-dmic Inverted internal mic workaround
headset-mic Indicates a combined headset (headphone+mic) jack
headset-mode More comprehensive headset support for ALC269 & co

296 Chapter 5. HD-Audio

Linux Sound Documentation

headset-mode-no-hp-mic Headset mode support without headphone mic
lenovo-dock Enables docking station I/O for some Lenovos
hp-gpio-led GPIO LED support on HP laptops
hp-dock-gpio-mic1-led HP dock with mic LED support
dell-headset-multi Headset jack, which can also be used as mic-in
dell-headset-dock Headset jack (without mic-in), and also dock I/O
dell-headset3 Headset jack (without mic-in), and also dock I/O, variant 3
dell-headset4 Headset jack (without mic-in), and also dock I/O, variant 4
alc283-dac-wcaps Fixups for Chromebook with ALC283
alc283-sense-combo Combo jack sensing on ALC283
tpt440-dock Pin configs for Lenovo Thinkpad Dock support
tpt440 Lenovo Thinkpad T440s setup
tpt460 Lenovo Thinkpad T460/560 setup
tpt470-dock Lenovo Thinkpad T470 dock setup
dual-codecs Lenovo laptops with dual codecs
alc700-ref Intel reference board with ALC700 codec
vaio Pin fixups for Sony VAIO laptops
dell-m101z COEF setup for Dell M101z
asus-g73jw Subwoofer pin fixup for ASUS G73JW

lenovo-eapd Inversed EAPD setup for Lenovo laptops
sony-hweq H/W EQ COEF setup for Sony laptops

pcm44k Fixed PCM 44kHz constraints (for buggy devices)

lifebook Dock pin fixups for Fujitsu Lifebook
lifebook-extmic Headset mic fixup for Fujitsu Lifebook
lifebook-hp-pin Headphone pin fixup for Fujitsu Lifebook

lifebook-u7x7 Lifebook U7x7 fixups
alc269vb-amic ALC269VB analog mic pin fixups
alc269vb-dmic ALC269VB digital mic pin fixups
hp-mute-led-mic1 Mute LED via Mic1 pin on HP
hp-mute-led-mic2 Mute LED via Mic2 pin on HP
hp-mute-led-mic3 Mute LED via Mic3 pin on HP
hp-gpio-mic1 GPIO + Mic1 pin LED on HP
hp-line1-mic1 Mute LED via Line1 + Mic1 pins on HP
noshutup Skip shutup callback

5.2. HD-Audio Codec-Specific Models 297

Linux Sound Documentation

sony-nomic Headset mic fixup for Sony laptops
aspire-headset-mic Headset pin fixup for Acer Aspire
asus-x101 ASUS X101 fixups
acer-ao7xx Acer AO7xx fixups
acer-aspire-e1 Acer Aspire E1 fixups
acer-ac700 Acer AC700 fixups
limit-mic-boost Limit internal mic boost on Lenovo machines
asus-zenbook ASUS Zenbook fixups
asus-zenbook-ux31a ASUS Zenbook UX31A fixups
ordissimo Ordissimo EVE2 (or Malata PC-B1303) fixups
asus-tx300 ASUS TX300 fixups
alc283-int-mic ALC283 COEF setup for Lenovo machines
mono-speakers Subwoofer and headset fixupes for Dell Inspiron
alc290-subwoofer Subwoofer fixups for Dell Vostro
thinkpad Binding with thinkpad_acpi driver for Lenovo machines
dmic-thinkpad thinkpad_acpi binding + digital mic support
alc255-acer ALC255 fixups on Acer machines
alc255-asus ALC255 fixups on ASUS machines
alc255-dell1 ALC255 fixups on Dell machines
alc255-dell2 ALC255 fixups on Dell machines, variant 2
alc293-dell1 ALC293 fixups on Dell machines
alc283-headset Headset pin fixups on ALC283
aspire-v5 Acer Aspire V5 fixups
hp-gpio4 GPIO and Mic1 pin mute LED fixups for HP
hp-gpio-led GPIO mute LEDs on HP
hp-gpio2-hotkey GPIO mute LED with hot key handling on HP
hp-dock-pins GPIO mute LEDs and dock support on HP
hp-dock-gpio-mic GPIO, Mic mute LED and dock support on HP
hp-9480m HP 9480m fixups

alc288-dell1 ALC288 fixups on Dell machines
alc288-dell-xps13 ALC288 fixups on Dell XPS13
dell-e7x Dell E7x fixups
alc293-dell ALC293 fixups on Dell machines
alc298-dell1 ALC298 fixups on Dell machines

298 Chapter 5. HD-Audio

Linux Sound Documentation

alc298-dell-aio ALC298 fixups on Dell AIO machines
alc275-dell-xps ALC275 fixups on Dell XPS models
lenovo-spk-noise Workaround for speaker noise on Lenovo machines
lenovo-hotkey Hot-key support via Mic2 pin on Lenovo machines
dell-spk-noise Workaround for speaker noise on Dell machines
alc255-dell1 ALC255 fixups on Dell machines
alc295-disable-dac3 Disable DAC3 routing on ALC295
alc280-hp-headset HP Elitebook fixups
alc221-hp-mic Front mic pin fixup on HP machines
alc298-spk-volume Speaker pin routing workaround on ALC298
dell-inspiron-7559 Dell Inspiron 7559 fixups
ativ-book Samsung Ativ book 8 fixups
alc221-hp-mic ALC221 headset fixups on HP machines
alc256-asus-mic ALC256 fixups on ASUS machines
alc256-asus-aio ALC256 fixups on ASUS AIO machines
alc233-eapd ALC233 fixups on ASUS machines
alc294-lenovo-mic ALC294 Mic pin fixup for Lenovo AIO machines
alc225-wyse Dell Wyse fixups
alc274-dell-aio ALC274 fixups on Dell AIO machines
alc255-dummy-lineout Dell Precision 3930 fixups
alc255-dell-headset Dell Precision 3630 fixups
alc295-hp-x360 HP Spectre X360 fixups
alc-sense-combo Headset button support for Chrome platform
huawei-mbx-stereo Enable initialization verbs for Huawei MBX stereo speakers;

might be risky, try this at your own risk

5.2.6 ALC66x/67x/892

aspire Subwoofer pin fixup for Aspire laptops
ideapad Subwoofer pin fixup for Ideapad laptops
mario Chromebook mario model fixup
hp-rp5800 Headphone pin fixup for HP RP5800
asus-mode1 ASUS
asus-mode2 ASUS
asus-mode3 ASUS
asus-mode4 ASUS

5.2. HD-Audio Codec-Specific Models 299

Linux Sound Documentation

asus-mode5 ASUS
asus-mode6 ASUS
asus-mode7 ASUS
asus-mode8 ASUS
zotac-z68 Front HP fixup for Zotac Z68
inv-dmic Inverted internal mic workaround
alc662-headset-multi Dell headset jack, which can also be used as mic-in

(ALC662)

dell-headset-multi Headset jack, which can also be used as mic-in
alc662-headset Headset mode support on ALC662
alc668-headset Headset mode support on ALC668
bass16 Bass speaker fixup on pin 0x16
bass1a Bass speaker fixup on pin 0x1a
automute Auto-mute fixups for ALC668
dell-xps13 Dell XPS13 fixups
asus-nx50 ASUS Nx50 fixups
asus-nx51 ASUS Nx51 fixups
asus-g751 ASUS G751 fixups
alc891-headset Headset mode support on ALC891
alc891-headset-multi Dell headset jack, which can also be used as mic-in

(ALC891)

acer-veriton Acer Veriton speaker pin fixup

asrock-mobo Fix invalid 0x15 / 0x16 pins
usi-headset Headset support on USI machines
dual-codecs Lenovo laptops with dual codecs

5.2.7 ALC680

N/A

300 Chapter 5. HD-Audio

Linux Sound Documentation

5.2.8 ALC88x/898/1150/1220

abit-aw9d Pin fixups for Abit AW9D-MAX
lenovo-y530 Pin fixups for Lenovo Y530
acer-aspire-7736 Fixup for Acer Aspire 7736
asus-w90v Pin fixup for ASUS W90V
cd Enable audio CD pin NID 0x1c
no-front-hp Disable front HP pin NID 0x1b
vaio-tt Pin fixup for VAIO TT
eee1601 COEF setups for ASUS Eee 1601
alc882-eapd Change EAPD COEF mode on ALC882
alc883-eapd Change EAPD COEF mode on ALC883
gpio1 Enable GPIO1
gpio2 Enable GPIO2
gpio3 Enable GPIO3
alc889-coef Setup ALC889 COEF
asus-w2jc Fixups for ASUS W2JC
acer-aspire-4930g Acer Aspire 4930G/5930G/6530G/6930G/7730G
acer-aspire-8930g Acer Aspire 8330G/6935G
acer-aspire Acer Aspire others
macpro-gpio GPIO setup for Mac Pro
dac-route Workaround for DAC routing on Acer Aspire
mbp-vref Vref setup for Macbook Pro
imac91-vref Vref setup for iMac 9,1
mba11-vref Vref setup for MacBook Air 1,1
mba21-vref Vref setup for MacBook Air 2,1
mp11-vref Vref setup for Mac Pro 1,1
mp41-vref Vref setup for Mac Pro 4,1
inv-dmic Inverted internal mic workaround
no-primary-hp VAIO Z/VGC-LN51JGB workaround (for fixed speaker DAC)
asus-bass Bass speaker setup for ASUS ET2700
dual-codecs ALC1220 dual codecs for Gaming mobos
clevo-p950 Fixups for Clevo P950

5.2. HD-Audio Codec-Specific Models 301

Linux Sound Documentation

5.2.9 ALC861/660

N/A

5.2.10 ALC861VD/660VD

N/A

5.2.11 CMI9880

minimal 3-jack in back
min_fp 3-jack in back, 2-jack in front
full 6-jack in back, 2-jack in front
full_dig 6-jack in back, 2-jack in front, SPDIF I/O
allout 5-jack in back, 2-jack in front, SPDIF out
auto auto-config reading BIOS (default)

5.2.12 AD1882 / AD1882A

3stack 3-stack mode
3stack-automute 3-stack with automute front HP (default)
6stack 6-stack mode

5.2.13 AD1884A / AD1883 / AD1984A / AD1984B

desktop 3-stack desktop (default) laptop laptop with HP jack sensing mobile mo-
bile devices with HP jack sensing thinkpad Lenovo Thinkpad X300 touchsmart HP
Touchsmart

5.2.14 AD1884

N/A

5.2.15 AD1981

basic 3-jack (default) hp HP nx6320 thinkpad Lenovo Thinkpad T60/X60/Z60
toshiba Toshiba U205

302 Chapter 5. HD-Audio

Linux Sound Documentation

5.2.16 AD1983

N/A

5.2.17 AD1984

basic default configuration thinkpad Lenovo Thinkpad T61/X61 dell_desktop Dell
T3400

5.2.18 AD1986A

3stack 3-stack, shared surrounds
laptop 2-channel only (FSC V2060, Samsung M50)
laptop-imic 2-channel with built-in mic
eapd Turn on EAPD constantly

5.2.19 AD1988/AD1988B/AD1989A/AD1989B

6stack 6-jack
6stack-dig ditto with SPDIF
3stack 3-jack
3stack-dig ditto with SPDIF
laptop 3-jack with hp-jack automute
laptop-dig ditto with SPDIF
auto auto-config reading BIOS (default)

5.2.20 Conexant 5045

cap-mix-amp Fix max input level on mixer widget
toshiba-p105 Toshiba P105 quirk
hp-530 HP 530 quirk

5.2.21 Conexant 5047

cap-mix-amp Fix max input level on mixer widget

5.2. HD-Audio Codec-Specific Models 303

Linux Sound Documentation

5.2.22 Conexant 5051

lenovo-x200 Lenovo X200 quirk

5.2.23 Conexant 5066

stereo-dmic Workaround for inverted stereo digital mic
gpio1 Enable GPIO1 pin
headphone-mic-pin Enable headphone mic NID 0x18 without detection

tp410 Thinkpad T400 & co quirks
thinkpad Thinkpad mute/mic LED quirk
lemote-a1004 Lemote A1004 quirk
lemote-a1205 Lemote A1205 quirk
olpc-xo OLPC XO quirk
mute-led-eapd Mute LED control via EAPD
hp-dock HP dock support
mute-led-gpio Mute LED control via GPIO
hp-mic-fix Fix for headset mic pin on HP boxes

5.2.24 STAC9200

ref Reference board
oqo OQO Model 2
dell-d21 Dell (unknown)
dell-d22 Dell (unknown)
dell-d23 Dell (unknown)
dell-m21 Dell Inspiron 630m, Dell Inspiron 640m
dell-m22 Dell Latitude D620, Dell Latitude D820
dell-m23 Dell XPS M1710, Dell Precision M90
dell-m24 Dell Latitude 120L
dell-m25 Dell Inspiron E1505n
dell-m26 Dell Inspiron 1501
dell-m27 Dell Inspiron E1705/9400
gateway-m4 Gateway laptops with EAPD control
gateway-m4-2 Gateway laptops with EAPD control
panasonic Panasonic CF-74
auto BIOS setup (default)

304 Chapter 5. HD-Audio

Linux Sound Documentation

5.2.25 STAC9205/9254

ref Reference board
dell-m42 Dell (unknown)
dell-m43 Dell Precision
dell-m44 Dell Inspiron
eapd Keep EAPD on (e.g. Gateway T1616)
auto BIOS setup (default)

5.2.26 STAC9220/9221

ref Reference board
3stack D945 3stack
5stack D945 5stack + SPDIF
intel-mac-v1 Intel Mac Type 1
intel-mac-v2 Intel Mac Type 2
intel-mac-v3 Intel Mac Type 3
intel-mac-v4 Intel Mac Type 4
intel-mac-v5 Intel Mac Type 5
intel-mac-auto Intel Mac (detect type according to subsystem id)

macmini Intel Mac Mini (equivalent with type 3)
macbook Intel Mac Book (eq. type 5)
macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)
macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3)
imac-intel Intel iMac (eq. type 2)
imac-intel-20 Intel iMac (newer version) (eq. type 3)
ecs202 ECS/PC chips
dell-d81 Dell (unknown)
dell-d82 Dell (unknown)
dell-m81 Dell (unknown)
dell-m82 Dell XPS M1210
auto BIOS setup (default)

5.2. HD-Audio Codec-Specific Models 305

Linux Sound Documentation

5.2.27 STAC9202/9250/9251

ref Reference board, base config
m1 Some Gateway MX series laptops (NX560XL)
m1-2 Some Gateway MX series laptops (MX6453)
m2 Some Gateway MX series laptops (M255)
m2-2 Some Gateway MX series laptops
m3 Some Gateway MX series laptops
m5 Some Gateway MX series laptops (MP6954)
m6 Some Gateway NX series laptops
auto BIOS setup (default)

5.2.28 STAC9227/9228/9229/927x

ref Reference board
ref-no-jd Reference board without HP/Mic jack detection
3stack D965 3stack
5stack D965 5stack + SPDIF
5stack-no-fp D965 5stack without front panel
dell-3stack Dell Dimension E520
dell-bios Fixes with Dell BIOS setup
dell-bios-amic Fixes with Dell BIOS setup including analog mic
volknob Fixes with volume-knob widget 0x24
auto BIOS setup (default)

5.2.29 STAC92HD71B*

ref Reference board
dell-m4-1 Dell desktops
dell-m4-2 Dell desktops
dell-m4-3 Dell desktops
hp-m4 HP mini 1000
hp-dv5 HP dv series
hp-hdx HP HDX series
hp-dv4-1222nr HP dv4-1222nr (with LED support)
auto BIOS setup (default)

306 Chapter 5. HD-Audio

Linux Sound Documentation

5.2.30 STAC92HD73*

ref Reference board
no-jd BIOS setup but without jack-detection
intel Intel DG45* mobos
dell-m6-amic Dell desktops/laptops with analog mics
dell-m6-dmic Dell desktops/laptops with digital mics
dell-m6 Dell desktops/laptops with both type of mics
dell-eq Dell desktops/laptops
alienware Alienware M17x
asus-mobo Pin configs for ASUS mobo with 5.1/SPDIF out
auto BIOS setup (default)

5.2.31 STAC92HD83*

ref Reference board
mic-ref Reference board with power management for ports
dell-s14 Dell laptop
dell-vostro-3500 Dell Vostro 3500 laptop
hp-dv7-4000 HP dv-7 4000
hp_cNB11_intquad HP CNB models with 4 speakers
hp-zephyr HP Zephyr
hp-led HP with broken BIOS for mute LED
hp-inv-led HP with broken BIOS for inverted mute LED
hp-mic-led HP with mic-mute LED
headset-jack Dell Latitude with a 4-pin headset jack
hp-envy-bass Pin fixup for HP Envy bass speaker (NID 0x0f)
hp-envy-ts-bass Pin fixup for HP Envy TS bass speaker (NID 0x10)
hp-bnb13-eq Hardware equalizer setup for HP laptops
hp-envy-ts-bass HP Envy TS bass support
auto BIOS setup (default)

5.2. HD-Audio Codec-Specific Models 307

Linux Sound Documentation

5.2.32 STAC92HD95

hp-led LED support for HP laptops
hp-bass Bass HPF setup for HP Spectre 13

5.2.33 STAC9872

vaio VAIO laptop without SPDIF
auto BIOS setup (default)

5.2.34 Cirrus Logic CS4206/4207

mbp53 MacBook Pro 5,3
mbp55 MacBook Pro 5,5
imac27 IMac 27 Inch
imac27_122 iMac 12,2
apple Generic Apple quirk
mbp101 MacBookPro 10,1
mbp81 MacBookPro 8,1
mba42 MacBookAir 4,2
auto BIOS setup (default)

5.2.35 Cirrus Logic CS4208

mba6 MacBook Air 6,1 and 6,2
gpio0 Enable GPIO 0 amp
mbp11 MacBookPro 11,2
macmini MacMini 7,1
auto BIOS setup (default)

5.2.36 VIA VT17xx/VT18xx/VT20xx

auto BIOS setup (default)

308 Chapter 5. HD-Audio

Linux Sound Documentation

5.3 HD-Audio Codec-Specific Mixer Controls

This file explains the codec-specific mixer controls.

5.3.1 Realtek codecs

Channel Mode This is an enum control to change the surround-channel setup,
appears only when the surround channels are available. It gives the number
of channels to be used, “2ch”, “4ch”, “6ch”, and “8ch”. According to
the configuration, this also controls the jack-retasking of multi-I/O jacks.

Auto-Mute Mode This is an enum control to change the auto-mute behavior of
the headphone and line-out jacks. If built-in speakers and headphone and/or
line-out jacks are available on a machine, this controls appears. When there
are only either headphones or line-out jacks, it gives “Disabled”and “En-
abled”state. When enabled, the speaker is muted automatically when a jack
is plugged.

When both headphone and line-out jacks are present, it gives “Disabled”,
“Speaker Only”and “Line-Out+Speaker”. When speaker-only is chosen,
plugging into a headphone or a line-out jack mutes the speakers, but not line-
outs. When line-out+speaker is selected, plugging to a headphone jack mutes
both speakers and line-outs.

5.3.2 IDT/Sigmatel codecs

Analog Loopback This control enables/disables the analog-loopback circuit.
This appears only when “loopback”is set to true in a codec hint (see HD-
Audio.txt). Note that on some codecs the analog-loopback and the normal
PCM playback are exclusive, i.e. when this is on, you won’t hear any PCM
stream.

Swap Center/LFE Swaps the center and LFE channel order. Normally, the left
corresponds to the center and the right to the LFE. When this is ON, the left
to the LFE and the right to the center.

Headphone as Line Out When this control is ON, treat the headphone jacks as
line-out jacks. That is, the headphone won’t auto-mute the other line-outs,
and no HP-amp is set to the pins.

Mic Jack Mode, Line Jack Mode, etc These enum controls the direction and
the bias of the input jack pins. Depending on the jack type, it can set as
“Mic In”and “Line In”, for determining the input bias, or it can be set to
“Line Out”when the pin is a multi-I/O jack for surround channels.

5.3. HD-Audio Codec-Specific Mixer Controls 309

Linux Sound Documentation

5.3.3 VIA codecs

Smart 5.1 An enum control to re-task the multi-I/O jacks for surround outputs.
When it’s ON, the corresponding input jacks (usually a line-in and a mic-in)
are switched as the surround and the CLFE output jacks.

Independent HP When this enum control is enabled, the headphone output is
routed from an individual stream (the third PCM such as hw:0,2) instead of
the primary stream. In the case the headphone DAC is shared with a side or
a CLFE-channel DAC, the DAC is switched to the headphone automatically.

Loopback Mixing An enum control to determine whether the analog-loopback
route is enabled or not. When it’s enabled, the analog-loopback is mixed to
the front-channel. Also, the same route is used for the headphone and speaker
outputs. As a side-effect, when this mode is set, the individual volume controls
will be no longer available for headphones and speakers because there is only
one DAC connected to a mixer widget.

Dynamic Power-Control This control determines whether the dynamic power-
control per jack detection is enabled or not. When enabled, the widgets power
state (D0/D3) are changed dynamically depending on the jack plugging state
for saving power consumptions. However, if your system doesn’t provide a
proper jack-detection, this won’t work; in such a case, turn this control OFF.

Jack Detect This control is provided only for VT1708 codec which gives no proper
unsolicited event per jack plug. When this is on, the driver polls the jack
detection so that the headphone auto-mute can work, while turning this off
would reduce the power consumption.

5.3.4 Conexant codecs

Auto-Mute Mode See Reatek codecs.

5.3.5 Analog codecs

Channel Mode This is an enum control to change the surround-channel setup,
appears only when the surround channels are available. It gives the number
of channels to be used,“2ch”,“4ch”and“6ch”. According to the configuration,
this also controls the jack-retasking of multi-I/O jacks.

Independent HP When this enum control is enabled, the headphone output is
routed from an individual stream (the third PCM such as hw:0,2) instead of
the primary stream.

310 Chapter 5. HD-Audio

Linux Sound Documentation

5.4 HD-Audio DP-MST Support

To support DP MST audio, HD Audio hdmi codec driver introduces virtual pin and
dynamic pcm assignment.

Virtual pin is an extension of per_pin. Themost difference of DPMST from legacy is
that DP MST introduces device entry. Each pin can contain several device entries.
Each device entry behaves as a pin.

As each pin may contain several device entries and each codec may contain several
pins, if we use one pcm per per_pin, there will be many PCMs. The new solution
is to create a few PCMs and to dynamically bind pcm to per_pin. Driver uses spec-
>dyn_pcm_assign flag to indicate whether to use the new solution.

5.4.1 PCM

To be added

5.4.2 Pin Initialization

Each pin may have several device entries (virtual pins). On Intel platform, the
device entries number is dynamically changed. If DP MST hub is connected, it
is in DP MST mode, and the device entries number is 3. Otherwise, the device
entries number is 1.

To simplify the implementation, all the device entries will be initialized when
bootup no matter whether it is in DP MST mode or not.

5.4.3 Connection list

DP MST reuses connection list code. The code can be reused because device en-
tries on the same pin have the same connection list.

This means DP MST gets the device entry connection list without the device entry
setting.

5.4.4 Jack

Presume:
• MST must be dyn_pcm_assign, and it is acomp (for Intel scenario);

• NON-MST may or may not be dyn_pcm_assign, it can be acomp or
!acomp;

So there are the following scenarios:
a. MST (&& dyn_pcm_assign && acomp)

b. NON-MST && dyn_pcm_assign && acomp

c. NON-MST && !dyn_pcm_assign && !acomp

5.4. HD-Audio DP-MST Support 311

Linux Sound Documentation

Below discussion will ignore MST and NON-MST difference as it doesn’t impact
on jack handling too much.

Driver uses struct hdmi_pcm pcm[] array in hdmi_spec and snd_jack is a member
of hdmi_pcm. Each pin has one struct hdmi_pcm * pcm pointer.

For !dyn_pcm_assign, per_pin->pcm will assigned to spec->pcm[n] statically.

For dyn_pcm_assign, per_pin->pcm will assigned to spec->pcm[n] when monitor
is hotplugged.

Build Jack

• dyn_pcm_assign

Will not use hda_jack but use snd_jack in spec->pcm_rec[pcm_idx].jack di-
rectly.

• !dyn_pcm_assign

Use hda_jack and assign spec->pcm_rec[pcm_idx].jack = jack->jack stati-
cally.

Unsolicited Event Enabling

Enable unsolicited event if !acomp.

Monitor Hotplug Event Handling

• acomp

pin_eld_notify() -> check_presence_and_report() -> hdmi_present_sense() ->
sync_eld_via_acomp().

Use directly snd_jack_report() on spec->pcm_rec[pcm_idx].jack for both
dyn_pcm_assign and !dyn_pcm_assign

• !acomp

hdmi_unsol_event() -> hdmi_intrinsic_event() ->
check_presence_and_report() -> hdmi_present_sense() ->
hdmi_prepsent_sense_via_verbs()

Use directly snd_jack_report() on spec->pcm_rec[pcm_idx].jack for
dyn_pcm_assign. Use hda_jack mechanism to handle jack events.

312 Chapter 5. HD-Audio

Linux Sound Documentation

5.4.5 Others to be added later

5.5 Realtek PC Beep Hidden Register

This file documents the “PC Beep Hidden Register”, which is present in certain
Realtek HDA codecs and controls a muxer and pair of passthrough mixers that can
route audio between pins but aren’t themselves exposed as HDA widgets. As far
as I can tell, these hidden routes are designed to allow flexible PC Beep output for
codecs that don’t have mixer widgets in their output paths. Why it’s easier to
hide a mixer behind an undocumented vendor register than to just expose it as a
widget, I have no idea.

5.5.1 Register Description

The register is accessed via processing coefficient 0x36 on NID 20h. Bits not
identified below have no discernible effect on my machine, a Dell XPS 13 9350:

MSB LSB
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |h|S|L| | B |R| | Known bits
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|0|0|1|1| 0x7 |0|0x0|1| 0x7 | Reset value
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1Ah input select (B): 2 bits When zero, expose the PC Beep line (from the in-
ternal beep generator, when enabled with the Set Beep Generation verb on
NID 01h, or else from the external PCBEEP pin) on the 1Ah pin node. When
nonzero, expose the headphone jack (or possibly Line In on some machines)
input instead. If PC Beep is selected, the 1Ah boost control has no effect.

Amplify 1Ah loopback, left (L): 1 bit Amplify the left channel of 1Ah before
mixing it into outputs as specified by h and S bits. Does not affect the level
of 1Ah exposed to other widgets.

Amplify 1Ah loopback, right (R): 1 bit Amplify the right channel of 1Ah before
mixing it into outputs as specified by h and S bits. Does not affect the level
of 1Ah exposed to other widgets.

Loopback 1Ah to 21h [active low] (h): 1 bit When zero, mix 1Ah (possibly
with amplification, depending on L and R bits) into 21h (headphone jack on
my machine). Mixed signal respects the mute setting on 21h.

Loopback 1Ah to 14h (S): 1 bit When one, mix 1Ah (possibly with amplifica-
tion, depending on L and R bits) into 14h (internal speaker on my machine).
Mixed signal ignores the mute setting on 14h and is present whenever 14h
is configured as an output.

5.5. Realtek PC Beep Hidden Register 313

Linux Sound Documentation

5.5.2 Path diagrams

1Ah input selection (DIV is the PC Beep divider set on NID 01h):

<Beep generator> <PCBEEP pin> <Headphone jack>
| | |
+--DIV--+--!DIV--+ {1Ah boost control}

| |
+--(b == 0)--+--(b != 0)--+

|
>1Ah (Beep/Headphone Mic/Line In)<

Loopback of 1Ah to 21h/14h:

<1Ah (Beep/Headphone Mic/Line In)>
|

{amplify if L/R}
|

+-----!h-----+-----S-----+
| |

{21h mute control} |
| |

>21h (Headphone)< >14h (Internal Speaker)<

5.5.3 Background

All Realtek HDA codecs have a vendor-defined widget with node ID 20h which pro-
vides access to a bank of registers that control various codec functions. Registers
are read and written via the standard HDA processing coefficient verbs (Set/Get
Coefficient Index, Set/Get Processing Coefficient). The node is named “Realtek
Vendor Registers”in public datasheets’verb listings and, apart from that, is entirely
undocumented.

This particular register, exposed at coefficient 0x36 and named in commits from
Realtek, is of note: unlike most registers, which seem to control detailed amplifier
parameters not in scope of the HDA specification, it controls audio routing which
could just as easily have been defined using standard HDA mixer and selector
widgets.

Specifically, it selects between two sources for the input pin widget with Node
ID (NID) 1Ah: the widget’s signal can come either from an audio jack (on my
laptop, a Dell XPS 13 9350, it’s the headphone jack, but comments in Realtek
commits indicate that it might be a Line In on some machines) or from the PC Beep
line (which is itself multiplexed between the codec’s internal beep generator and
external PCBEEP pin, depending on if the beep generator is enabled via verbs on
NID 01h). Additionally, it can mix (with optional amplification) that signal onto the
21h and/or 14h output pins.

The register’s reset value is 0x3717, corresponding to PC Beep on 1Ah that is then
amplified and mixed into both the headphones and the speakers. Not only does
this violate the HDA specification, which says that“[a vendor defined beep input
pin] connection may be maintained only while the Link reset (RST#) is asserted”
, it means that we cannot ignore the register if we care about the input that 1Ah

314 Chapter 5. HD-Audio

Linux Sound Documentation

would otherwise expose or if the PCBEEP trace is poorly shielded and picks up
chassis noise (both of which are the case on my machine).

Unfortunately, there are lots of ways to get this register configuration wrong.
Linux, it seems, has gone through most of them. For one, the register resets after
S3 suspend: judging by existing code, this isn’t the case for all vendor registers,
and it’s led to some fixes that improve behavior on cold boot but don’t last after
suspend. Other fixes have successfully switched the 1Ah input away from PC Beep
but have failed to disable both loopback paths. On my machine, this means that
the headphone input is amplified and looped back to the headphone output, which
uses the exact same pins! As you might expect, this causes terrible headphone
noise, the character of which is controlled by the 1Ah boost control. (If you’ve
seen instructions online to fix XPS 13 headphone noise by changing“Headphone
Mic Boost”in ALSA, now you know why.)
The information here has been obtained through black-box reverse engineering of
the ALC256 codec’s behavior and is not guaranteed to be correct. It likely also
applies for the ALC255, ALC257, ALC235, and ALC236, since those codecs seem
to be close relatives of the ALC256. (They all share one initialization function.)
Additionally, other codecs like the ALC225 and ALC285 also have this register,
judging by existing fixups in patch_realtek.c, but specific data (e.g. node IDs,
bit positions, pin mappings) for those codecs may differ from what I’ve described
here.

5.5. Realtek PC Beep Hidden Register 315

Linux Sound Documentation

316 Chapter 5. HD-Audio

CHAPTER

SIX

CARD-SPECIFIC INFORMATION

6.1 Analog Joystick Support on ALSA Drivers

Oct. 14, 2003

Takashi Iwai <tiwai@suse.de>

6.1.1 General

First of all, you need to enable GAMEPORT support on Linux kernel for using
a joystick with the ALSA driver. For the details of gameport support, refer to
Documentation/input/joydev/joystick.rst.

The joystick support of ALSA drivers is different between ISA and PCI cards. In the
case of ISA (PnP) cards, it’s usually handled by the independent module (ns558).
Meanwhile, the ALSA PCI drivers have the built-in gameport support. Hence,
when the ALSA PCI driver is built in the kernel, CONFIG_GAMEPORT must be
‘y’, too. Otherwise, the gameport support on that card will be (silently) disabled.
Some adapter modules probe the physical connection of the device at the load
time. It’d be safer to plug in the joystick device before loading the module.

6.1.2 PCI Cards

For PCI cards, the joystick is enabled when the appropriate module option is spec-
ified. Some drivers don’t need options, and the joystick support is always enabled.
In the former ALSA version, there was a dynamic control API for the joystick ac-
tivation. It was changed, however, to the static module options because of the
system stability and the resource management.

The following PCI drivers support the joystick natively.

317

mailto:tiwai@suse.de

Linux Sound Documentation

Driver Module
Option

Available Values

als4000 joy-
stick_port

0 = disable (default), 1 = auto-detect, manual: any ad-
dress (e.g. 0x200)

au88x0 N/A N/A
azf3328 joystick 0 = disable, 1 = enable, -1 = auto (default)
ens1370 joystick 0 = disable (default), 1 = enable
ens1371 joy-

stick_port
0 = disable (default), 1 = auto-detect, manual: 0x200,
0x208, 0x210, 0x218

cmipci joy-
stick_port

0 = disable (default), 1 = auto-detect, manual: any ad-
dress (e.g. 0x200)

cs4281 N/A N/A
cs46xx N/A N/A
es1938 N/A N/A
es1968 joystick 0 = disable (default), 1 = enable
son-
icvibes

N/A N/A

trident N/A N/A
via82xx1 joystick 0 = disable (default), 1 = enable
ymfpci joy-

stick_port
0 = disable (default), 1 = auto-detect, manual: 0x201,
0x202, 0x204, 0x2052

The following drivers don’t support gameport natively, but there are additional
modules. Load the corresponding module to add the gameport support.

Driver Additional Module
emu10k1 emu10k1-gp
fm801 fm801-gp

Note: the“pcigame”and“cs461x”modules are for the OSS drivers only. These
ALSA drivers (cs46xx, trident and au88x0) have the built-in gameport support.

As mentioned above, ALSA PCI drivers have the built-in gameport support, so you
don’t have to load ns558 module. Just load“joydev”and the appropriate adapter
module (e.g. “analog”).

6.1.3 ISA Cards

ALSA ISA drivers don’t have the built-in gameport support. Instead, you need to
load“ns558”module in addition to“joydev”and the adapter module (e.g.“analog”
).

1 VIA686A/B only
2 With YMF744/754 chips, the port address can be chosen arbitrarily

318 Chapter 6. Card-Specific Information

Linux Sound Documentation

6.2 Brief Notes on C-Media 8338/8738/8768/8770 Driver

Takashi Iwai <tiwai@suse.de>

6.2.1 Front/Rear Multi-channel Playback

CM8x38 chip can use ADC as the second DAC so that two different stereo channels
can be used for front/rear playbacks. Since there are two DACs, both streams are
handled independently unlike the 4/6ch multi- channel playbacks in the section
below.

As default, ALSA driver assigns the first PCM device (i.e. hw:0,0 for card#0) for
front and 4/6ch playbacks, while the second PCM device (hw:0,1) is assigned to
the second DAC for rear playback.

There are slight differences between the two DACs:

• The first DAC supports U8 and S16LE formats, while the second DAC supports
only S16LE.

• The second DAC supports only two channel stereo.

Please note that the CM8x38 DAC doesn’t support continuous playback rate but
only fixed rates: 5512, 8000, 11025, 16000, 22050, 32000, 44100 and 48000 Hz.

The rear output can be heard only when“Four Channel Mode”switch is disabled.
Otherwise no signal will be routed to the rear speakers. As default it’s turned on.

Warning: When “Four Channel Mode”switch is off, the output from rear
speakers will be FULL VOLUME regardless of Master and PCM volumes1. This
might damage your audio equipment. Please disconnect speakers before your
turn off this switch.

If your card has an extra output jack for the rear output, the rear playback should
be routed there as default. If not, there is a control switch in the driver“Line-In As
Rear”, which you can change via alsamixer or somewhat else. When this switch
is on, line-in jack is used as rear output.

There are two more controls regarding to the rear output. The “Exchange DAC”
switch is used to exchange front and rear playback routes, i.e. the 2nd DAC is
output from front output.

1 Well.. I once got the output with correct volume (i.e. same with the front one) and was so
excited. It was even with “Four Channel”bit on and “double DAC”mode. Actually I could hear
separate 4 channels from front and rear speakers! But.. after reboot, all was gone. It’s a very pity
that I didn’t save the register dump at that time.. Maybe there is an unknown register to achieve
this⋯

6.2. Brief Notes on C-Media 8338/8738/8768/8770 Driver 319

mailto:tiwai@suse.de

Linux Sound Documentation

6.2.2 4/6 Multi-Channel Playback

The recent CM8738 chips support for the 4/6 multi-channel playback function.
This is useful especially for AC3 decoding.

When the multi-channel is supported, the driver name has a suffix“-MC”such like
“CMI8738-MC6”. You can check this name from /proc/asound/cards.

When the 4/6-ch output is enabled, the second DAC accepts up to 6 (or 4) channels.
While the dual DAC supports two different rates or formats, the 4/6-ch playback
supports only the same condition for all channels. Since the multi-channel play-
back mode uses both DACs, you cannot operate with full-duplex.

The 4.0 and 5.1 modes are defined as the pcm “surround40”and “surround51”
in alsa-lib. For example, you can play a WAV file with 6 channels like

% aplay -Dsurround51 sixchannels.wav

For programming the 4/6 channel playback, you need to specify the PCM channels
as you like and set the format S16LE. For example, for playback with 4 channels,

snd_pcm_hw_params_set_access(pcm, hw, SND_PCM_ACCESS_RW_INTERLEAVED);
// or mmap if you like

snd_pcm_hw_params_set_format(pcm, hw, SND_PCM_FORMAT_S16_LE);
snd_pcm_hw_params_set_channels(pcm, hw, 4);

and use the interleaved 4 channel data.

There are some control switches affecting to the speaker connections:

Line-In Mode an enum control to change the behavior of line-in jack. Either
“Line-In”, “Rear Output”or “Bass Output”can be selected. The last item
is available only with model 039 or newer. When “Rear Output”is chosen,
the surround channels 3 and 4 are output to line-in jack.

Mic-In Mode an enum control to change the behavior of mic-in jack. Either“Mic-
In”or“Center/LFE Output”can be selected. When“Center/LFE Output”is
chosen, the center and bass channels (channels 5 and 6) are output to mic-in
jack.

6.2.3 Digital I/O

The CM8x38 provides the excellent SPDIF capability with very cheap price (yes,
that’s the reason I bought the card :)
The SPDIF playback and capture are done via the third PCM device (hw:0,2). Usu-
ally this is assigned to the PCM device“spdif”. The available rates are 44100 and
48000 Hz. For playback with aplay, you can run like below:

% aplay -Dhw:0,2 foo.wav

or

% aplay -Dspdif foo.wav

320 Chapter 6. Card-Specific Information

Linux Sound Documentation

24bit format is also supported experimentally.

The playback and capture over SPDIF use normal DAC and ADC, respectively, so
you cannot playback both analog and digital streams simultaneously.

To enable SPDIF output, you need to turn on“IEC958 Output Switch”control via
mixer or alsactl (“IEC958”is the official name of so-called S/PDIF). Then you’ll
see the red light on from the card so you know that’s working obviously :) The
SPDIF input is always enabled, so you can hear SPDIF input data from line-out
with “IEC958 In Monitor”switch at any time (see below).
You can play via SPDIF even with the first device (hw:0,0), but SPDIF is enabled
only when the proper format (S16LE), sample rate (441100 or 48000) and channels
(2) are used. Otherwise it’s turned off. (Also don’t forget to turn on “IEC958
Output Switch”, too.)
Additionally there are relevant control switches:

IEC958 Mix Analog Mix analog PCM playback and FM-OPL/3 streams and out-
put through SPDIF. This switch appears only on old chip models (CM8738
033 and 037).

Note: without this control you can output PCM to SPDIF. This is“mixing”of
streams, so e.g. it’s not for AC3 output (see the next section).

IEC958 In Select Select SPDIF input, the internal CD-in (false) and the external
input (true).

IEC958 Loop SPDIF input data is loop back into SPDIF output (aka bypass)
IEC958 Copyright Set the copyright bit.
IEC958 5V Select 0.5V (coax) or 5V (optical) interface. On some cards this doesn’

t work and you need to change the configuration with hardware dip-switch.

IEC958 In Monitor SPDIF input is routed to DAC.
IEC958 In Phase Inverse Set SPDIF input format as inverse. [FIXME: this

doesn’t work on all chips..]
IEC958 In Valid Set input validity flag detection.
Note: When“PCM Playback Switch”is on, you’ll hear the digital output stream
through analog line-out.

6.2.4 The AC3 (RAW DIGITAL) OUTPUT

The driver supports raw digital (typically AC3) i/o over SPDIF. This can be toggled
via IEC958 playback control, but usually you need to access it via alsa-lib. See
alsa-lib documents for more details.

On the raw digital mode, the “PCM Playback Switch”is automatically turned off
so that non-audio data is heard from the analog line-out. Similarly the following
switches are off: “IEC958 Mix Analog”and “IEC958 Loop”. The switches are
resumed after closing the SPDIF PCM device automatically to the previous state.

On the model 033, AC3 is implemented by the software conversion in the alsa-
lib. If you need to bypass the software conversion of IEC958 subframes, pass the
“soft_ac3=0”module option. This doesn’t matter on the newer models.

6.2. Brief Notes on C-Media 8338/8738/8768/8770 Driver 321

Linux Sound Documentation

6.2.5 ANALOG MIXER INTERFACE

The mixer interface on CM8x38 is similar to SB16. There are Master, PCM, Synth,
CD, Line, Mic and PC Speaker playback volumes. Synth, CD, Line and Mic have
playback and capture switches, too, as well as SB16.

In addition to the standard SB mixer, CM8x38 provides more functions. - PCM
playback switch - PCM capture switch (to capture the data sent to DAC) - Mic Boost
switch - Mic capture volume - Aux playback volume/switch and capture switch -
3D control switch

6.2.6 MIDI CONTROLLER

With CMI8338 chips, the MPU401-UART interface is disabled as default. You need
to set the module option “mpu_port”to a valid I/O port address to enable MIDI
support. Valid I/O ports are 0x300, 0x310, 0x320 and 0x330. Choose a value that
doesn’t conflict with other cards.
With CMI8738 and newer chips, the MIDI interface is enabled by default and the
driver automatically chooses a port address.

There is no hardware wavetable function on this chip (except for OPL3 synth be-
low). What’s said as MIDI synth on Windows is a software synthesizer emulation.
On Linux use TiMidity or other softsynth program for playing MIDI music.

6.2.7 FM OPL/3 Synth

The FM OPL/3 is also enabled as default only for the first card. Set “fm_port”
module option for more cards.

The output quality of FM OPL/3 is, however, very weird. I don’t know why..
CMI8768 and newer chips do not have the FM synth.

6.2.8 Joystick and Modem

The legacy joystick is supported. To enable the joystick support, pass joy-
stick_port=1 module option. The value 1 means the auto-detection. If the auto-
detection fails, try to pass the exact I/O address.

The modem is enabled dynamically via a card control switch “Modem”.

6.2.9 Debugging Information

The registers are shown in /proc/asound/cardX/cmipci. If you have any problem
(especially unexpected behavior of mixer), please attach the output of this proc
file together with the bug report.

322 Chapter 6. Card-Specific Information

Linux Sound Documentation

6.3 Sound Blaster Live mixer / default DSP code

The EMU10K1 chips have a DSP part which can be programmed to support various
ways of sample processing, which is described here. (This article does not deal
with the overall functionality of the EMU10K1 chips. See the manuals section for
further details.)

The ALSA driver programs this portion of chip by default code (can be altered
later) which offers the following functionality:

6.3.1 IEC958 (S/PDIF) raw PCM

This PCM device (it’s the 4th PCM device (index 3!) and first subdevice (index
0) for a given card) allows to forward 48kHz, stereo, 16-bit little endian streams
without any modifications to the digital output (coaxial or optical). The universal
interface allows the creation of up to 8 raw PCM devices operating at 48kHz, 16-
bit little endian. It would be easy to add support for multichannel devices to the
current code, but the conversion routines exist only for stereo (2-channel streams)
at the time.

Look to tram_poke routines in lowlevel/emu10k1/emufx.c for more details.

6.3.2 Digital mixer controls

These controls are built using the DSP instructions. They offer extended function-
ality. Only the default build-in code in the ALSA driver is described here. Note
that the controls work as attenuators: the maximum value is the neutral position
leaving the signal unchanged. Note that if the same destination is mentioned in
multiple controls, the signal is accumulated and can be wrapped (set to maximal
or minimal value without checking of overflow).

Explanation of used abbreviations:

DAC digital to analog converter

ADC analog to digital converter

I2S one-way three wire serial bus for digital sound by Philips Semiconductors
(this standard is used for connecting standalone DAC and ADC converters)

LFE low frequency effects (subwoofer signal)

AC97 a chip containing an analog mixer, DAC and ADC converters
IEC958 S/PDIF
FX-bus the EMU10K1 chip has an effect bus containing 16 accumulators. Each

of the synthesizer voices can feed its output to these accumulators and the
DSP microcontroller can operate with the resulting sum.

6.3. Sound Blaster Live mixer / default DSP code 323

Linux Sound Documentation

name='Wave Playback Volume',index=0

This control is used to attenuate samples for left and right PCM FX-bus accumula-
tors. ALSA uses accumulators 0 and 1 for left and right PCM samples. The result
samples are forwarded to the front DAC PCM slots of the AC97 codec.

name='Wave Surround Playback Volume',index=0

This control is used to attenuate samples for left and right PCM FX-bus accumula-
tors. ALSA uses accumulators 0 and 1 for left and right PCM samples. The result
samples are forwarded to the rear I2S DACs. These DACs operates separately
(they are not inside the AC97 codec).

name='Wave Center Playback Volume',index=0

This control is used to attenuate samples for left and right PCM FX-bus accumula-
tors. ALSA uses accumulators 0 and 1 for left and right PCM samples. The result
is mixed to mono signal (single channel) and forwarded to the ??rear?? right DAC
PCM slot of the AC97 codec.

name='Wave LFE Playback Volume',index=0

This control is used to attenuate samples for left and right PCM FX-bus accumula-
tors. ALSA uses accumulators 0 and 1 for left and right PCM. The result is mixed
to mono signal (single channel) and forwarded to the ??rear?? left DAC PCM slot
of the AC97 codec.

name='Wave Capture Volume',index=0, name='Wave Capture Switch',
index=0

These controls are used to attenuate samples for left and right PCM FX-bus ac-
cumulator. ALSA uses accumulators 0 and 1 for left and right PCM. The result is
forwarded to the ADC capture FIFO (thus to the standard capture PCM device).

name='Synth Playback Volume',index=0

This control is used to attenuate samples for left and right MIDI FX-bus accumula-
tors. ALSA uses accumulators 4 and 5 for left and right MIDI samples. The result
samples are forwarded to the front DAC PCM slots of the AC97 codec.

324 Chapter 6. Card-Specific Information

Linux Sound Documentation

name='Synth Capture Volume',index=0, name='Synth Capture Switch',
index=0

These controls are used to attenuate samples for left and right MIDI FX-bus ac-
cumulator. ALSA uses accumulators 4 and 5 for left and right PCM. The result is
forwarded to the ADC capture FIFO (thus to the standard capture PCM device).

name='Surround Playback Volume',index=0

This control is used to attenuate samples for left and right rear PCM FX-bus accu-
mulators. ALSA uses accumulators 2 and 3 for left and right rear PCM samples.
The result samples are forwarded to the rear I2S DACs. These DACs operate sep-
arately (they are not inside the AC97 codec).

name='Surround Capture Volume',index=0, name='Surround Capture
Switch',index=0

These controls are used to attenuate samples for left and right rear PCMFX-bus ac-
cumulators. ALSA uses accumulators 2 and 3 for left and right rear PCM samples.
The result is forwarded to the ADC capture FIFO (thus to the standard capture
PCM device).

name='Center Playback Volume',index=0

This control is used to attenuate sample for center PCMFX-bus accumulator. ALSA
uses accumulator 6 for center PCM sample. The result sample is forwarded to the
??rear?? right DAC PCM slot of the AC97 codec.

name='LFE Playback Volume',index=0

This control is used to attenuate sample for center PCMFX-bus accumulator. ALSA
uses accumulator 6 for center PCM sample. The result sample is forwarded to the
??rear?? left DAC PCM slot of the AC97 codec.

name='AC97 Playback Volume',index=0

This control is used to attenuate samples for left and right front ADC PCM slots of
the AC97 codec. The result samples are forwarded to the front DAC PCM slots of
the AC97 codec.

Note: This control should be zero for the standard operations, otherwise a digital
loopback is activated.

6.3. Sound Blaster Live mixer / default DSP code 325

Linux Sound Documentation

name='AC97 Capture Volume',index=0

This control is used to attenuate samples for left and right front ADC PCM slots
of the AC97 codec. The result is forwarded to the ADC capture FIFO (thus to the
standard capture PCM device).

Note: This control should be 100 (maximal value), otherwise no analog inputs of
the AC97 codec can be captured (recorded).

name='IEC958 TTL Playback Volume',index=0

This control is used to attenuate samples from left and right IEC958 TTL digital
inputs (usually used by a CDROM drive). The result samples are forwarded to the
front DAC PCM slots of the AC97 codec.

name='IEC958 TTL Capture Volume',index=0

This control is used to attenuate samples from left and right IEC958 TTL digital
inputs (usually used by a CDROM drive). The result samples are forwarded to the
ADC capture FIFO (thus to the standard capture PCM device).

name='Zoom Video Playback Volume',index=0

This control is used to attenuate samples from left and right zoom video digital
inputs (usually used by a CDROM drive). The result samples are forwarded to the
front DAC PCM slots of the AC97 codec.

name='Zoom Video Capture Volume',index=0

This control is used to attenuate samples from left and right zoom video digital
inputs (usually used by a CDROM drive). The result samples are forwarded to the
ADC capture FIFO (thus to the standard capture PCM device).

name='IEC958 LiveDrive Playback Volume',index=0

This control is used to attenuate samples from left and right IEC958 optical digital
input. The result samples are forwarded to the front DAC PCM slots of the AC97
codec.

326 Chapter 6. Card-Specific Information

Linux Sound Documentation

name='IEC958 LiveDrive Capture Volume',index=0

This control is used to attenuate samples from left and right IEC958 optical digital
inputs. The result samples are forwarded to the ADC capture FIFO (thus to the
standard capture PCM device).

name='IEC958 Coaxial Playback Volume',index=0

This control is used to attenuate samples from left and right IEC958 coaxial digital
inputs. The result samples are forwarded to the front DAC PCM slots of the AC97
codec.

name='IEC958 Coaxial Capture Volume',index=0

This control is used to attenuate samples from left and right IEC958 coaxial digital
inputs. The result samples are forwarded to the ADC capture FIFO (thus to the
standard capture PCM device).

name='Line LiveDrive Playback Volume',index=0, name='Line LiveDrive
Playback Volume',index=1

This control is used to attenuate samples from left and right I2S ADC inputs (on
the LiveDrive). The result samples are forwarded to the front DAC PCM slots of
the AC97 codec.

name='Line LiveDrive Capture Volume',index=1, name='Line LiveDrive
Capture Volume',index=1

This control is used to attenuate samples from left and right I2S ADC inputs (on
the LiveDrive). The result samples are forwarded to the ADC capture FIFO (thus
to the standard capture PCM device).

name='Tone Control - Switch',index=0

This control turns the tone control on or off. The samples for front, rear and center
/ LFE outputs are affected.

name='Tone Control - Bass',index=0

This control sets the bass intensity. There is no neutral value!! When the tone
control code is activated, the samples are always modified. The closest value to
pure signal is 20.

6.3. Sound Blaster Live mixer / default DSP code 327

Linux Sound Documentation

name='Tone Control - Treble',index=0

This control sets the treble intensity. There is no neutral value!! When the tone
control code is activated, the samples are always modified. The closest value to
pure signal is 20.

name='IEC958 Optical Raw Playback Switch',index=0

If this switch is on, then the samples for the IEC958 (S/PDIF) digital output are
taken only from the raw FX8010 PCM, otherwise standard front PCM samples are
taken.

name='Headphone Playback Volume',index=1

This control attenuates the samples for the headphone output.

name='Headphone Center Playback Switch',index=1

If this switch is on, then the sample for the center PCM is put to the left headphone
output (useful for SB Live cards without separate center/LFE output).

name='Headphone LFE Playback Switch',index=1

If this switch is on, then the sample for the center PCM is put to the right head-
phone output (useful for SB Live cards without separate center/LFE output).

6.3.3 PCM stream related controls

name='EMU10K1 PCM Volume',index 0-31

Channel volume attenuation in range 0-0xffff. Themaximum value (no attenuation)
is default. The channel mapping for three values is as follows:

• 0 - mono, default 0xffff (no attenuation)

• 1 - left, default 0xffff (no attenuation)

• 2 - right, default 0xffff (no attenuation)

name='EMU10K1 PCM Send Routing',index 0-31

This control specifies the destination - FX-bus accumulators. There are twelve
values with this mapping:

• 0 - mono, A destination (FX-bus 0-15), default 0

• 1 - mono, B destination (FX-bus 0-15), default 1

• 2 - mono, C destination (FX-bus 0-15), default 2

• 3 - mono, D destination (FX-bus 0-15), default 3

328 Chapter 6. Card-Specific Information

Linux Sound Documentation

• 4 - left, A destination (FX-bus 0-15), default 0

• 5 - left, B destination (FX-bus 0-15), default 1

• 6 - left, C destination (FX-bus 0-15), default 2

• 7 - left, D destination (FX-bus 0-15), default 3

• 8 - right, A destination (FX-bus 0-15), default 0

• 9 - right, B destination (FX-bus 0-15), default 1

• 10 - right, C destination (FX-bus 0-15), default 2

• 11 - right, D destination (FX-bus 0-15), default 3

Don’t forget that it’s illegal to assign a channel to the same FX-bus accumulator
more than once (it means 0=0 && 1=0 is an invalid combination).

name='EMU10K1 PCM Send Volume',index 0-31

It specifies the attenuation (amount) for given destination in range 0-255. The
channel mapping is following:

• 0 - mono, A destination attn, default 255 (no attenuation)

• 1 - mono, B destination attn, default 255 (no attenuation)

• 2 - mono, C destination attn, default 0 (mute)

• 3 - mono, D destination attn, default 0 (mute)

• 4 - left, A destination attn, default 255 (no attenuation)

• 5 - left, B destination attn, default 0 (mute)

• 6 - left, C destination attn, default 0 (mute)

• 7 - left, D destination attn, default 0 (mute)

• 8 - right, A destination attn, default 0 (mute)

• 9 - right, B destination attn, default 255 (no attenuation)

• 10 - right, C destination attn, default 0 (mute)

• 11 - right, D destination attn, default 0 (mute)

6.3.4 MANUALS/PATENTS

ftp://opensource.creative.com/pub/doc

LM4545.pdf AC97 Codec
m2049.pdf The EMU10K1 Digital Audio Processor
hog63.ps FX8010 - A DSP Chip Architecture for Audio Effects

6.3. Sound Blaster Live mixer / default DSP code 329

Linux Sound Documentation

WIPO Patents

WO 9901813 (A1) Audio Effects Processor with multiple asynchronous streams
(Jan. 14, 1999)

WO 9901814 (A1) Processor with Instruction Set for Audio Effects (Jan. 14,
1999)

WO 9901953 (A1) Audio Effects Processor having Decoupled Instruction Execu-
tion and Audio Data Sequencing (Jan. 14, 1999)

US Patents (http://www.uspto.gov/)

US 5925841 Digital Sampling Instrument employing cache memory (Jul. 20,
1999)

US 5928342 Audio Effects Processor integrated on a single chip with a multi-
port memory onto which multiple asynchronous digital sound samples can be
concurrently loaded (Jul. 27, 1999)

US 5930158 Processor with Instruction Set for Audio Effects (Jul. 27, 1999)
US 6032235 Memory initialization circuit (Tram) (Feb. 29, 2000)
US 6138207 Interpolation looping of audio samples in cache connected to system

bus with prioritization and modification of bus transfers in accordance with
loop ends and minimum block sizes (Oct. 24, 2000)

US 6151670 Method for conserving memory storage using a pool of short term
memory registers (Nov. 21, 2000)

US 6195715 Interrupt control for multiple programs communicating with a com-
mon interrupt by associating programs to GP registers, defining interrupt
register, polling GP registers, and invoking callback routine associated with
defined interrupt register (Feb. 27, 2001)

6.4 Sound Blaster Audigy mixer / default DSP code

This is based on sb-live-mixer.rst.

The EMU10K2 chips have a DSP part which can be programmed to support various
ways of sample processing, which is described here. (This article does not deal
with the overall functionality of the EMU10K2 chips. See the manuals section for
further details.)

The ALSA driver programs this portion of chip by default code (can be altered
later) which offers the following functionality:

330 Chapter 6. Card-Specific Information

Linux Sound Documentation

6.4.1 Digital mixer controls

These controls are built using the DSP instructions. They offer extended function-
ality. Only the default build-in code in the ALSA driver is described here. Note
that the controls work as attenuators: the maximum value is the neutral position
leaving the signal unchanged. Note that if the same destination is mentioned in
multiple controls, the signal is accumulated and can be wrapped (set to maximal
or minimal value without checking of overflow).

Explanation of used abbreviations:

DAC digital to analog converter

ADC analog to digital converter

I2S one-way three wire serial bus for digital sound by Philips Semiconductors
(this standard is used for connecting standalone DAC and ADC converters)

LFE low frequency effects (subwoofer signal)

AC97 a chip containing an analog mixer, DAC and ADC converters
IEC958 S/PDIF
FX-bus the EMU10K2 chip has an effect bus containing 64 accumulators. Each

of the synthesizer voices can feed its output to these accumulators and the
DSP microcontroller can operate with the resulting sum.

name=’PCM Front Playback Volume’,index=0

This control is used to attenuate samples for left and right front PCM FX-bus ac-
cumulators. ALSA uses accumulators 8 and 9 for left and right front PCM samples
for 5.1 playback. The result samples are forwarded to the front DAC PCM slots of
the Philips DAC.

name=’PCM Surround Playback Volume’,index=0

This control is used to attenuate samples for left and right surround PCM FX-bus
accumulators. ALSA uses accumulators 2 and 3 for left and right surround PCM
samples for 5.1 playback. The result samples are forwarded to the surround DAC
PCM slots of the Philips DAC.

name=’PCM Center Playback Volume’,index=0

This control is used to attenuate samples for center PCM FX-bus accumulator.
ALSA uses accumulator 6 for center PCM sample for 5.1 playback. The result
sample is forwarded to the center DAC PCM slot of the Philips DAC.

6.4. Sound Blaster Audigy mixer / default DSP code 331

Linux Sound Documentation

name=’PCM LFE Playback Volume’,index=0

This control is used to attenuate sample for LFE PCM FX-bus accumulator. ALSA
uses accumulator 7 for LFE PCM sample for 5.1 playback. The result sample is
forwarded to the LFE DAC PCM slot of the Philips DAC.

name=’PCM Playback Volume’,index=0

This control is used to attenuate samples for left and right PCM FX-bus accumu-
lators. ALSA uses accumulators 0 and 1 for left and right PCM samples for stereo
playback. The result samples are forwarded to the front DAC PCM slots of the
Philips DAC.

name=’PCM Capture Volume’,index=0

This control is used to attenuate samples for left and right PCM FX-bus accumu-
lator. ALSA uses accumulators 0 and 1 for left and right PCM. The result is for-
warded to the ADC capture FIFO (thus to the standard capture PCM device).

name=’Music Playback Volume’,index=0

This control is used to attenuate samples for left and right MIDI FX-bus accumula-
tors. ALSA uses accumulators 4 and 5 for left and right MIDI samples. The result
samples are forwarded to the front DAC PCM slots of the AC97 codec.

name=’Music Capture Volume’,index=0

These controls are used to attenuate samples for left and right MIDI FX-bus ac-
cumulator. ALSA uses accumulators 4 and 5 for left and right PCM. The result is
forwarded to the ADC capture FIFO (thus to the standard capture PCM device).

name=’Mic Playback Volume’,index=0

This control is used to attenuate samples for left and right Mic input. For Mic
input is used AC97 codec. The result samples are forwarded to the front DAC
PCM slots of the Philips DAC. Samples are forwarded to Mic capture FIFO (device
1 - 16bit/8KHz mono) too without volume control.

name=’Mic Capture Volume’,index=0

This control is used to attenuate samples for left and right Mic input. The result
is forwarded to the ADC capture FIFO (thus to the standard capture PCM device).

332 Chapter 6. Card-Specific Information

Linux Sound Documentation

name=’Audigy CD Playback Volume’,index=0

This control is used to attenuate samples from left and right IEC958 TTL digital
inputs (usually used by a CDROM drive). The result samples are forwarded to the
front DAC PCM slots of the Philips DAC.

name=’Audigy CD Capture Volume’,index=0

This control is used to attenuate samples from left and right IEC958 TTL digital
inputs (usually used by a CDROM drive). The result samples are forwarded to the
ADC capture FIFO (thus to the standard capture PCM device).

name=’IEC958 Optical Playback Volume’,index=0

This control is used to attenuate samples from left and right IEC958 optical digital
input. The result samples are forwarded to the front DAC PCM slots of the Philips
DAC.

name=’IEC958 Optical Capture Volume’,index=0

This control is used to attenuate samples from left and right IEC958 optical digital
inputs. The result samples are forwarded to the ADC capture FIFO (thus to the
standard capture PCM device).

name=’Line2 Playback Volume’,index=0

This control is used to attenuate samples from left and right I2S ADC inputs (on
the AudigyDrive). The result samples are forwarded to the front DAC PCM slots
of the Philips DAC.

name=’Line2 Capture Volume’,index=1

This control is used to attenuate samples from left and right I2S ADC inputs (on the
AudigyDrive). The result samples are forwarded to the ADC capture FIFO (thus to
the standard capture PCM device).

name=’Analog Mix Playback Volume’,index=0

This control is used to attenuate samples from left and right I2S ADC inputs from
Philips ADC. The result samples are forwarded to the front DAC PCM slots of the
Philips DAC. This contains mix from analog sources like CD, Line In, Aux, ⋯.

6.4. Sound Blaster Audigy mixer / default DSP code 333

Linux Sound Documentation

name=’Analog Mix Capture Volume’,index=1

This control is used to attenuate samples from left and right I2S ADC inputs Philips
ADC. The result samples are forwarded to the ADC capture FIFO (thus to the stan-
dard capture PCM device).

name=’Aux2 Playback Volume’,index=0

This control is used to attenuate samples from left and right I2S ADC inputs (on
the AudigyDrive). The result samples are forwarded to the front DAC PCM slots
of the Philips DAC.

name=’Aux2 Capture Volume’,index=1

This control is used to attenuate samples from left and right I2S ADC inputs (on the
AudigyDrive). The result samples are forwarded to the ADC capture FIFO (thus to
the standard capture PCM device).

name=’Front Playback Volume’,index=0

All stereo signals are mixed together and mirrored to surround, center and LFE.
This control is used to attenuate samples for left and right front speakers of this
mix.

name=’Surround Playback Volume’,index=0

All stereo signals are mixed together and mirrored to surround, center and LFE.
This control is used to attenuate samples for left and right surround speakers of
this mix.

name=’Center Playback Volume’,index=0

All stereo signals are mixed together and mirrored to surround, center and LFE.
This control is used to attenuate sample for center speaker of this mix.

name=’LFE Playback Volume’,index=0

All stereo signals are mixed together and mirrored to surround, center and LFE.
This control is used to attenuate sample for LFE speaker of this mix.

334 Chapter 6. Card-Specific Information

Linux Sound Documentation

name=’Tone Control - Switch’,index=0

This control turns the tone control on or off. The samples for front, rear and center
/ LFE outputs are affected.

name=’Tone Control - Bass’,index=0

This control sets the bass intensity. There is no neutral value!! When the tone
control code is activated, the samples are always modified. The closest value to
pure signal is 20.

name=’Tone Control - Treble’,index=0

This control sets the treble intensity. There is no neutral value!! When the tone
control code is activated, the samples are always modified. The closest value to
pure signal is 20.

name=’Master Playback Volume’,index=0

This control is used to attenuate samples for front, surround, center and LFE out-
puts.

name=’IEC958 Optical Raw Playback Switch’,index=0

If this switch is on, then the samples for the IEC958 (S/PDIF) digital output are
taken only from the raw FX8010 PCM, otherwise standard front PCM samples are
taken.

6.4.2 PCM stream related controls

name=’EMU10K1 PCM Volume’,index 0-31

Channel volume attenuation in range 0-0xffff. Themaximum value (no attenuation)
is default. The channel mapping for three values is as follows:

• 0 - mono, default 0xffff (no attenuation)

• 1 - left, default 0xffff (no attenuation)

• 2 - right, default 0xffff (no attenuation)

6.4. Sound Blaster Audigy mixer / default DSP code 335

Linux Sound Documentation

name=’EMU10K1 PCM Send Routing’,index 0-31

This control specifies the destination - FX-bus accumulators. There 24 values with
this mapping:

• 0 - mono, A destination (FX-bus 0-63), default 0

• 1 - mono, B destination (FX-bus 0-63), default 1

• 2 - mono, C destination (FX-bus 0-63), default 2

• 3 - mono, D destination (FX-bus 0-63), default 3

• 4 - mono, E destination (FX-bus 0-63), default 0

• 5 - mono, F destination (FX-bus 0-63), default 0

• 6 - mono, G destination (FX-bus 0-63), default 0

• 7 - mono, H destination (FX-bus 0-63), default 0

• 8 - left, A destination (FX-bus 0-63), default 0

• 9 - left, B destination (FX-bus 0-63), default 1

• 10 - left, C destination (FX-bus 0-63), default 2

• 11 - left, D destination (FX-bus 0-63), default 3

• 12 - left, E destination (FX-bus 0-63), default 0

• 13 - left, F destination (FX-bus 0-63), default 0

• 14 - left, G destination (FX-bus 0-63), default 0

• 15 - left, H destination (FX-bus 0-63), default 0

• 16 - right, A destination (FX-bus 0-63), default 0

• 17 - right, B destination (FX-bus 0-63), default 1

• 18 - right, C destination (FX-bus 0-63), default 2

• 19 - right, D destination (FX-bus 0-63), default 3

• 20 - right, E destination (FX-bus 0-63), default 0

• 21 - right, F destination (FX-bus 0-63), default 0

• 22 - right, G destination (FX-bus 0-63), default 0

• 23 - right, H destination (FX-bus 0-63), default 0

Don’t forget that it’s illegal to assign a channel to the same FX-bus accumulator
more than once (it means 0=0 && 1=0 is an invalid combination).

336 Chapter 6. Card-Specific Information

Linux Sound Documentation

name=’EMU10K1 PCM Send Volume’,index 0-31

It specifies the attenuation (amount) for given destination in range 0-255. The
channel mapping is following:

• 0 - mono, A destination attn, default 255 (no attenuation)

• 1 - mono, B destination attn, default 255 (no attenuation)

• 2 - mono, C destination attn, default 0 (mute)

• 3 - mono, D destination attn, default 0 (mute)

• 4 - mono, E destination attn, default 0 (mute)

• 5 - mono, F destination attn, default 0 (mute)

• 6 - mono, G destination attn, default 0 (mute)

• 7 - mono, H destination attn, default 0 (mute)

• 8 - left, A destination attn, default 255 (no attenuation)

• 9 - left, B destination attn, default 0 (mute)

• 10 - left, C destination attn, default 0 (mute)

• 11 - left, D destination attn, default 0 (mute)

• 12 - left, E destination attn, default 0 (mute)

• 13 - left, F destination attn, default 0 (mute)

• 14 - left, G destination attn, default 0 (mute)

• 15 - left, H destination attn, default 0 (mute)

• 16 - right, A destination attn, default 0 (mute)

• 17 - right, B destination attn, default 255 (no attenuation)

• 18 - right, C destination attn, default 0 (mute)

• 19 - right, D destination attn, default 0 (mute)

• 20 - right, E destination attn, default 0 (mute)

• 21 - right, F destination attn, default 0 (mute)

• 22 - right, G destination attn, default 0 (mute)

• 23 - right, H destination attn, default 0 (mute)

6.4.3 MANUALS/PATENTS

ftp://opensource.creative.com/pub/doc

LM4545.pdf AC97 Codec
m2049.pdf The EMU10K1 Digital Audio Processor
hog63.ps FX8010 - A DSP Chip Architecture for Audio Effects

6.4. Sound Blaster Audigy mixer / default DSP code 337

Linux Sound Documentation

WIPO Patents

WO 9901813 (A1) Audio Effects Processor with multiple asynchronous streams
(Jan. 14, 1999)

WO 9901814 (A1) Processor with Instruction Set for Audio Effects (Jan. 14,
1999)

WO 9901953 (A1) Audio Effects Processor having Decoupled Instruction Execu-
tion and Audio Data Sequencing (Jan. 14, 1999)

US Patents (http://www.uspto.gov/)

US 5925841 Digital Sampling Instrument employing cache memory (Jul. 20,
1999)

US 5928342 Audio Effects Processor integrated on a single chip with a multi-
port memory onto which multiple asynchronous digital sound samples can be
concurrently loaded (Jul. 27, 1999)

US 5930158 Processor with Instruction Set for Audio Effects (Jul. 27, 1999)
US 6032235 Memory initialization circuit (Tram) (Feb. 29, 2000)
US 6138207 Interpolation looping of audio samples in cache connected to system

bus with prioritization and modification of bus transfers in accordance with
loop ends and minimum block sizes (Oct. 24, 2000)

US 6151670 Method for conserving memory storage using a pool of short term
memory registers (Nov. 21, 2000)

US 6195715 Interrupt control for multiple programs communicating with a com-
mon interrupt by associating programs to GP registers, defining interrupt
register, polling GP registers, and invoking callback routine associated with
defined interrupt register (Feb. 27, 2001)

6.5 Low latency, multichannel audio with JACK and the
emu10k1/emu10k2

This document is a guide to using the emu10k1 based devices with JACK for low
latency, multichannel recording functionality. All of my recent work to allow Linux
users to use the full capabilities of their hardware has been inspired by the kX
Project. Without their work I never would have discovered the true power of this
hardware.

http://www.kxproject.com
• Lee Revell, 2005.03.30

Until recently, emu10k1 users on Linux did not have access to the same low latency,
multichannel features offered by the “kX ASIO”feature of their Windows driver.
As of ALSA 1.0.9 this is no more!

338 Chapter 6. Card-Specific Information

http://www.kxproject.com

Linux Sound Documentation

For those unfamiliar with kX ASIO, this consists of 16 capture and 16 playback
channels. With a post 2.6.9 Linux kernel, latencies down to 64 (1.33 ms) or even
32 (0.66ms) frames should work well.

The configuration is slightly more involved than on Windows, as you have to select
the correct device for JACK to use. Actually, for qjackctl users it’s fairly self
explanatory - select Duplex, then for capture and playback select the multichannel
devices, set the in and out channels to 16, and the sample rate to 48000Hz. The
command line looks like this:

/usr/local/bin/jackd -R -dalsa -r48000 -p64 -n2 -D -Chw:0,2 -Phw:0,3 -S

This will give you 16 input ports and 16 output ports.

The 16 output ports map onto the 16 FX buses (or the first 16 of 64, for the Audigy).
The mapping from FX bus to physical output is described in sb-live-mixer.rst (or
audigy-mixer.rst).

The 16 input ports are connected to the 16 physical inputs. Contrary to popular
belief, all emu10k1 cards are multichannel cards. Which of these input channels
have physical inputs connected to them depends on the card model. Trial and er-
ror is highly recommended; the pinout diagrams for the card have been reverse
engineered by some enterprising kX users and are available on the internet. Me-
terbridge is helpful here, and the kX forums are packed with useful information.

Each input port will either correspond to a digital (SPDIF) input, an analog input,
or nothing. The one exception is the SBLive! 5.1. On these devices, the second
and third input ports are wired to the center/LFE output. You will still see 16
capture channels, but only 14 are available for recording inputs.

This chart, borrowed from kxfxlib/da_asio51.cpp, describes the mapping of JACK
ports to FXBUS2 (multitrack recording input) and EXTOUT (physical output) chan-
nels.

JACK (& ASIO) mappings on 10k1 5.1 SBLive cards:

JACK Epilog FXBUS2(nr)
capture_1 asio14 FXBUS2(0xe)
capture_2 asio15 FXBUS2(0xf)
capture_3 asio0 FXBUS2(0x0)
~capture_4 Center EXTOUT(0x11) // mapped to by Center
~capture_5 LFE EXTOUT(0x12) // mapped to by LFE
capture_6 asio3 FXBUS2(0x3)
capture_7 asio4 FXBUS2(0x4)
capture_8 asio5 FXBUS2(0x5)
capture_9 asio6 FXBUS2(0x6)
capture_10 asio7 FXBUS2(0x7)
capture_11 asio8 FXBUS2(0x8)
capture_12 asio9 FXBUS2(0x9)
capture_13 asio10 FXBUS2(0xa)
capture_14 asio11 FXBUS2(0xb)
capture_15 asio12 FXBUS2(0xc)
capture_16 asio13 FXBUS2(0xd)

6.5. Low latency, multichannel audio with JACK and the
emu10k1/emu10k2

339

Linux Sound Documentation

TODO: describe use of ld10k1/qlo10k1 in conjunction with JACK

6.6 VIA82xx mixer

On many VIA82xx boards, the Input Source Selectmixer control does not work.
Setting it to Input2 on such boards will cause recording to hang, or fail with EIO
(input/output error) via OSS emulation. This control should be left at Input1 for
such cards.

6.7 Guide to using M-Audio Audiophile USB with ALSA
and Jack

v1.5

Thibault Le Meur <Thibault.LeMeur@supelec.fr>

This document is a guide to using the M-Audio Audiophile USB (tm) device with
ALSA and JACK.

6.7.1 History

• v1.4 - Thibault Le Meur (2007-07-11)

– Added LowEndianness nature of 16bits-modes found byHakan Lennestal
<Hakan.Lennestal@brfsodrahamn.se>

– Modifying document structure
• v1.5 - Thibault Le Meur (2007-07-12) - Added AC3/DTS passthru info

6.7.2 Audiophile USB Specs and correct usage

This part is a reminder of important facts about the functions and limitations of
the device.

The device has 4 audio interfaces, and 2 MIDI ports:

• Analog Stereo Input (Ai)

– This port supports 2 pairs of line-level audio inputs (1/4”TS and RCA)
– When the 1/4”TS (jack) connectors are connected, the RCA connectors
are disabled

• Analog Stereo Output (Ao)

• Digital Stereo Input (Di)

• Digital Stereo Output (Do)

• Midi In (Mi)

• Midi Out (Mo)

340 Chapter 6. Card-Specific Information

mailto:Thibault.LeMeur@supelec.fr
mailto:Hakan.Lennestal@brfsodrahamn.se

Linux Sound Documentation

The internal DAC/ADC has the following characteristics:

• sample depth of 16 or 24 bits

• sample rate from 8kHz to 96kHz

• Two interfaces can’t use different sample depths at the same time.
Moreover, the Audiophile USB documentation gives the following Warning:

Please exit any audio application running before switching between bit depths

Due to the USB 1.1 bandwidth limitation, a limited number of interfaces can be
activated at the same time depending on the audio mode selected:

• 16-bit/48kHz ==> 4 channels in + 4 channels out

– Ai+Ao+Di+Do
• 24-bit/48kHz ==> 4 channels in + 2 channels out, or 2 channels in + 4 chan-
nels out

– Ai+Ao+Do or Ai+Di+Ao or Ai+Di+Do or Di+Ao+Do
• 24-bit/96kHz ==> 2 channels in _or_ 2 channels out (half duplex only)

– Ai or Ao or Di or Do

Important facts about the Digital interface:

• The Do port additionally supports surround-encoded AC-3 and DTS
passthrough, though I haven’t tested it under Linux
– Note that in this setup only the Do interface can be enabled

• Apart from recording an audio digital stream, enabling the Di port is a way
to synchronize the device to an external sample clock

– As a consequence, the Di port must be enable only if an active Digital
source is connected

– Enabling Di when no digital source is connected can result in a synchro-
nization error (for instance sound played at an odd sample rate)

6.7.3 Audiophile USB MIDI support in ALSA

The Audiophile USBMIDI ports will be automatically supported once the following
modules have been loaded:

• snd-usb-audio

• snd-seq-midi

No additional setting is required.

6.7. Guide to using M-Audio Audiophile USB with ALSA and Jack 341

Linux Sound Documentation

6.7.4 Audiophile USB Audio support in ALSA

Audio functions of the Audiophile USB device are handled by the snd-usb-audio
module. This module can work in a default mode (without any device-specific
parameter), or in an“advanced”mode with the device-specific parameter called
device_setup.

Default Alsa driver mode

The default behavior of the snd-usb-audio driver is to list the device capabilities
at startup and activate the required mode when required by the applications: for
instance if the user is recording in a 24bit-depth-mode and immediately after wants
to switch to a 16bit-depth mode, the snd-usb-audio module will reconfigure the
device on the fly.

This approach has the advantage to let the driver automatically switch from sample
rates/depths automatically according to the user’s needs. However, those who are
using the device under windows know that this is not how the device is meant to
work: under windows applicationsmust be closed before using them-audio control
panel to switch the device working mode. Thus as we’ll see in next section, this
Default Alsa driver mode can lead to device misconfigurations.

Let’s get back to the Default Alsa driver mode for now. In this case the Audiophile
interfaces are mapped to alsa pcm devices in the following way (I suppose the
device’s index is 1):
• hw:1,0 is Ao in playback and Di in capture

• hw:1,1 is Do in playback and Ai in capture

• hw:1,2 is Do in AC3/DTS passthrough mode

In this mode, the device uses Big Endian byte-encoding so that supported audio
format are S16_BE for 16-bit depth modes and S24_3BE for 24-bits depth mode.

One exception is the hw:1,2 port which was reported to be Little Endian compliant
(supposedly supporting S16_LE) but processes in fact only S16_BE streams. This
has been fixed in kernel 2.6.23 and above and now the hw:1,2 interface is reported
to be big endian in this default driver mode.

Examples:

• playing a S24_3BE encoded raw file to the Ao port:

% aplay -D hw:1,0 -c2 -t raw -r48000 -fS24_3BE test.raw

• recording a S24_3BE encoded raw file from the Ai port:

% arecord -D hw:1,1 -c2 -t raw -r48000 -fS24_3BE test.raw

• playing a S16_BE encoded raw file to the Do port:

% aplay -D hw:1,1 -c2 -t raw -r48000 -fS16_BE test.raw

• playing an ac3 sample file to the Do port:

342 Chapter 6. Card-Specific Information

Linux Sound Documentation

% aplay -D hw:1,2 --channels=6 ac3_S16_BE_encoded_file.raw

If you’re happy with the default Alsa driver mode and don’t experience any issue
with this mode, then you can skip the following chapter.

Advanced module setup

Due to the hardware constraints described above, the device initialization made
by the Alsa driver in default mode may result in a corrupted state of the device.
For instance, a particularly annoying issue is that the sound captured from the Ai
interface sounds distorted (as if boosted with an excessive high volume gain).

For people having this problem, the snd-usb-audio module has a new module pa-
rameter called device_setup (this parameter was introduced in kernel release
2.6.17)

Initializing the working mode of the Audiophile USB

As far as the Audiophile USB device is concerned, this value let the user specify:

• the sample depth

• the sample rate

• whether the Di port is used or not

When initialized with device_setup=0x00, the snd-usb-audio module has the same
behaviour as when the parameter is omitted (see paragraph“Default Alsa driver
mode”above)
Others modes are described in the following subsections.

16-bit modes

The two supported modes are:

• device_setup=0x01

– 16bits 48kHz mode with Di disabled
– Ai,Ao,Do can be used at the same time
– hw:1,0 is not available in capture mode
– hw:1,2 is not available

• device_setup=0x11

– 16bits 48kHz mode with Di enabled
– Ai,Ao,Di,Do can be used at the same time
– hw:1,0 is available in capture mode
– hw:1,2 is not available

6.7. Guide to using M-Audio Audiophile USB with ALSA and Jack 343

Linux Sound Documentation

In this modes the device operates only at 16bits-modes. Before kernel 2.6.23, the
devices where reported to be Big-Endian when in fact they were Little-Endian so
that playing a file was a matter of using:

% aplay -D hw:1,1 -c2 -t raw -r48000 -fS16_BE test_S16_LE.raw

where “test_S16_LE.raw”was in fact a little-endian sample file.
Thanks to Hakan Lennestal (who discovered the Little-Endiannes of the device in
these modes) a fix has been committed (expected in kernel 2.6.23) and Alsa now
reports Little-Endian interfaces. Thus playing a file now is as simple as using:

% aplay -D hw:1,1 -c2 -t raw -r48000 -fS16_LE test_S16_LE.raw

24-bit modes

The three supported modes are:

• device_setup=0x09

– 24bits 48kHz mode with Di disabled
– Ai,Ao,Do can be used at the same time
– hw:1,0 is not available in capture mode
– hw:1,2 is not available

• device_setup=0x19

– 24bits 48kHz mode with Di enabled
– 3 ports from {Ai,Ao,Di,Do} can be used at the same time

– hw:1,0 is available in capture mode and an active digital source must be
connected to Di

– hw:1,2 is not available
• device_setup=0x0D or 0x10

– 24bits 96kHz mode
– Di is enabled by default for this mode but does not need to be connected
to an active source

– Only 1 port from {Ai,Ao,Di,Do} can be used at the same time

– hw:1,0 is available in captured mode
– hw:1,2 is not available

In these modes the device is only Big-Endian compliant (see“Default Alsa driver
mode”above for an aplay command example)

344 Chapter 6. Card-Specific Information

Linux Sound Documentation

AC3 w/ DTS passthru mode

Thanks to Hakan Lennestal, I now have a report saying that this mode works.

• device_setup=0x03

– 16bits 48kHz mode with only the Do port enabled
– AC3 with DTS passthru
– Caution with this setup the Do port is mapped to the pcm device hw:1,0

The command line used to playback the AC3/DTS encoded .wav-files in this mode:

% aplay -D hw:1,0 --channels=6 ac3_S16_LE_encoded_file.raw

How to use the device_setup parameter

The parameter can be given:

• By manually probing the device (as root)::

modprobe -r snd-usb-audio
modprobe snd-usb-audio index=1 device_setup=0x09

• Or while configuring the modules options in your modules configuration file
(typically a .conf file in /etc/modprobe.d/ directory::

alias snd-card-1 snd-usb-audio
options snd-usb-audio index=1 device_setup=0x09

CAUTION when initializing the device

• Correct initialization on the device requires that device_setup is given to the
module BEFORE the device is turned on. So, if you use the “manual prob-
ing”method described above, take care to power-on the device AFTER this
initialization.

• Failing to respect this will lead to a misconfiguration of the device. In this
case turn off the device, unprobe the snd-usb-audio module, then probe it
again with correct device_setup parameter and then (and only then) turn on
the device again.

• If you’ve correctly initialized the device in a valid mode and then want to
switch to another mode (possibly with another sample-depth), please use also
the following procedure:

– first turn off the device
– de-register the snd-usb-audio module (modprobe -r)
– change the device_setup parameter by changing the device_setup option
in /etc/modprobe.d/*.conf

– turn on the device

6.7. Guide to using M-Audio Audiophile USB with ALSA and Jack 345

Linux Sound Documentation

• A workaround for this last issue has been applied to kernel 2.6.23, but it may
not be enough to ensure the ‘stability’of the device initialization.

Technical details for hackers

This section is for hackers, wanting to understand details about the device inter-
nals and how Alsa supports it.

Audiophile USB’s device_setup structure

If you want to understand the device_setupmagic numbers for the Audiophile USB,
you need some very basic understanding of binary computation. However, this is
not required to use the parameter and you may skip this section.

The device_setup is one byte long and its structure is the following:

+---+---+---+---+---+---+---+---+
| b7| b6| b5| b4| b3| b2| b1| b0|
+---+---+---+---+---+---+---+---+
| 0 | 0 | 0 | Di|24B|96K|DTS|SET|
+---+---+---+---+---+---+---+---+

Where:

• b0 is the SET bit

– it MUST be set if device_setup is initialized
• b1 is the DTS bit

– it is set only for Digital output with DTS/AC3
– this setup is not tested

• b2 is the Rate selection flag

– When set to 1 the rate range is 48.1-96kHz
– Otherwise the sample rate range is 8-48kHz

• b3 is the bit depth selection flag

– When set to 1 samples are 24bits long
– Otherwise they are 16bits long
– Note that b2 implies b3 as the 96kHz mode is only supported for 24 bits
samples

• b4 is the Digital input flag

– When set to 1 the device assumes that an active digital source is con-
nected

– You shouldn’t enable Di if no source is seen on the port (this leads to
synchronization issues)

– b4 is implied by b2 (since only one port is enabled at a time no synch
error can occur)

346 Chapter 6. Card-Specific Information

Linux Sound Documentation

• b5 to b7 are reserved for future uses, and must be set to 0

– might become Ao, Do, Ai, for b7, b6, b4 respectively
Caution:

• there is no check on the value you will give to device_setup

– for instance choosing 0x05 (16bits 96kHz) will fail back to 0x09 since b2
implies b3. But _there_will_be_no_warning_ in /var/log/messages

• Hardware constraints due to the USB bus limitation aren’t checked
– choosing b2 will prepare all interfaces for 24bits/96kHz but you’ll only
be able to use one at the same time

USB implementation details for this device

You may safely skip this section if you’re not interested in driver hacking.
This section describes some internal aspects of the device and summarizes the
data I got by usb-snooping the windows and Linux drivers.

The M-Audio Audiophile USB has 7 USB Interfaces: a “USB interface”:
• USB Interface nb.0

• USB Interface nb.1

– Audio Control function
• USB Interface nb.2

– Analog Output
• USB Interface nb.3

– Digital Output
• USB Interface nb.4

– Analog Input
• USB Interface nb.5

– Digital Input
• USB Interface nb.6

– MIDI interface compliant with the MIDIMAN quirk
Each interface has 5 altsettings (AltSet 1,2,3,4,5) except:

• Interface 3 (Digital Out) has an extra Alset nb.6

• Interface 5 (Digital In) does not have Alset nb.3 and 5

Here is a short description of the AltSettings capabilities:

• AltSettings 1 corresponds to

– 24-bit depth, 48.1-96kHz sample mode

6.7. Guide to using M-Audio Audiophile USB with ALSA and Jack 347

Linux Sound Documentation

– Adaptive playback (Ao and Do), Synch capture (Ai), or Asynch capture
(Di)

• AltSettings 2 corresponds to

– 24-bit depth, 8-48kHz sample mode
– Asynch capture and playback (Ao,Ai,Do,Di)

• AltSettings 3 corresponds to

– 24-bit depth, 8-48kHz sample mode
– Synch capture (Ai) and Adaptive playback (Ao,Do)

• AltSettings 4 corresponds to

– 16-bit depth, 8-48kHz sample mode
– Asynch capture and playback (Ao,Ai,Do,Di)

• AltSettings 5 corresponds to

– 16-bit depth, 8-48kHz sample mode
– Synch capture (Ai) and Adaptive playback (Ao,Do)

• AltSettings 6 corresponds to

– 16-bit depth, 8-48kHz sample mode
– Synch playback (Do), audio format type III IEC1937_AC-3

In order to ensure a correct initialization of the device, the driver must know how
the device will be used:

• if DTS is chosen, only Interface 2 with AltSet nb.6 must be registered

• if 96KHz only AltSets nb.1 of each interface must be selected

• if samples are using 24bits/48KHz then AltSet 2 must me used if Digital input
is connected, and only AltSet nb.3 if Digital input is not connected

• if samples are using 16bits/48KHz then AltSet 4 must me used if Digital input
is connected, and only AltSet nb.5 if Digital input is not connected

When device_setup is given as a parameter to the snd-usb-audio
module, the parse_audio_endpoints function uses a quirk called
audiophile_skip_setting_quirk in order to prevent AltSettings not corre-
sponding to device_setup from being registered in the driver.

6.7.5 Audiophile USB and Jack support

This section deals with support of the Audiophile USB device in Jack.

There are 2 main potential issues when using Jackd with the device:

• support for Big-Endian devices in 24-bit modes

• support for 4-in / 4-out channels

348 Chapter 6. Card-Specific Information

Linux Sound Documentation

Direct support in Jackd

Jack supports big endian devices only in recent versions (thanks to Andreas Stein-
metz for his first big-endian patch). I can’t remember exactly when this support
was released into jackd, let’s just say that with jackd version 0.103.0 it’s al-
most ok (just a small bug is affecting 16bits Big-Endian devices, but since you’ve
read carefully the above paragraphs, you’re now using kernel >= 2.6.23 and your
16bits devices are now Little Endians ;-)).

You can run jackd with the following command for playback with Ao and record
with Ai:

% jackd -R -dalsa -Phw:1,0 -r48000 -p128 -n2 -D -Chw:1,1

Using Alsa plughw

If you don’t have a recent Jackd installed, you can downgrade to using the Alsa
plug converter.

For instance here is one way to run Jack with 2 playback channels on Ao and 2
capture channels from Ai:

% jackd -R -dalsa -dplughw:1 -r48000 -p256 -n2 -D -Cplughw:1,1

However you may see the following warning message: You appear to be us-
ing the ALSA software“plug”layer, probably a result of using the“default”
ALSA device. This is less efficient than it could be. Consider using a hardware
device instead rather than using the plug layer.

Getting 2 input and/or output interfaces in Jack

As you can see, starting the Jack server this way will only enable 1 stereo input
(Di or Ai) and 1 stereo output (Ao or Do).

This is due to the following restrictions:

• Jack can only open one capture device and one playback device at a time

• The Audiophile USB is seen as 2 (or three) Alsa devices: hw:1,0, hw:1,1 (and
optionally hw:1,2)

If you want to get Ai+Di and/or Ao+Do support with Jack, you would need to com-
bine the Alsa devices into one logical “complex”device.
If you want to give it a try, I recommend reading the information from this page:
http://www.sound-man.co.uk/linuxaudio/ice1712multi.html It is related to another
device (ice1712) but can be adapted to suit the Audiophile USB.

Enabling multiple Audiophile USB interfaces for Jackd will certainly require:

• Making sure your Jackd version has the MMAP_COMPLEX patch (see the
ice1712 page)

• (maybe) patching the alsa-lib/src/pcm/pcm_multi.c file (see the ice1712 page)

6.7. Guide to using M-Audio Audiophile USB with ALSA and Jack 349

http://www.sound-man.co.uk/linuxaudio/ice1712multi.html

Linux Sound Documentation

• define a multi device (combination of hw:1,0 and hw:1,1) in your .asoundrc
file

• start jackd with this device

I had no success in testing this for now, if you have any success with this kind of
setup, please drop me an email.

6.8 Alsa driver for Digigram miXart8 and
miXart8AES/EBU soundcards

Digigram <alsa@digigram.com>

6.8.1 GENERAL

The miXart8 is a multichannel audio processing and mixing soundcard that has 4
stereo audio inputs and 4 stereo audio outputs. The miXart8AES/EBU is the same
with a add-on card that offers further 4 digital stereo audio inputs and outputs.
Furthermore the add-on card offers external clock synchronisation (AES/EBU,
Word Clock, Time Code and Video Synchro)

The mainboard has a PowerPC that offers onboard mpeg encoding and decoding,
samplerate conversions and various effects.

The driver don’t work properly at all until the certain firmwares are loaded, i.e.
no PCM nor mixer devices will appear. Use the mixartloader that can be found in
the alsa-tools package.

6.8.2 VERSION 0.1.0

One miXart8 board will be represented as 4 alsa cards, each with 1 stereo ana-
log capture ‘pcm0c’and 1 stereo analog playback ‘pcm0p’device. With a
miXart8AES/EBU there is in addition 1 stereo digital input‘pcm1c’and 1 stereo
digital output ‘pcm1p’per card.

Formats

U8, S16_LE, S16_BE, S24_3LE, S24_3BE, FLOAT_LE, FLOAT_BE Sample rates :
8000 - 48000 Hz continuously

350 Chapter 6. Card-Specific Information

mailto:alsa@digigram.com

Linux Sound Documentation

Playback

For instance the playback devices are configured to have max. 4 substreams per-
forming hardware mixing. This could be changed to a maximum of 24 substreams
if wished. Mono files will be played on the left and right channel. Each channel
can be muted for each stream to use 8 analog/digital outputs separately.

Capture

There is one substream per capture device. For instance only stereo formats are
supported.

Mixer

<Master> and <Master Capture> analog volume control of playback and cap-
ture PCM.

<PCM 0-3> and <PCM Capture> digital volume control of each analog sub-
stream.

<AES 0-3> and <AES Capture> digital volume control of each AES/EBU sub-
stream.

<Monitoring> Loopback from‘pcm0c’to‘pcm0p’with digital volume and mute
control.

Rem : for best audio quality try to keep a 0 attenuation on the PCM and AES
volume controls which is set by 219 in the range from 0 to 255 (about 86% with
alsamixer)

6.8.3 NOT YET IMPLEMENTED

• external clock support (AES/EBU, Word Clock, Time Code, Video Sync)

• MPEG audio formats

• mono record

• on-board effects and samplerate conversions

• linked streams

6.8.4 FIRMWARE

[As of 2.6.11, the firmware can be loaded automatically with hotplug
when CONFIG_FW_LOADER is set. The mixartloader is necessary only for
older versions or when you build the driver into kernel.]

For loading the firmware automatically after the module is loaded, use a install
command. For example, add the following entry to /etc/modprobe.d/mixart.conf
for miXart driver:

6.8. Alsa driver for Digigram miXart8 and miXart8AES/EBU soundcards351

Linux Sound Documentation

install snd-mixart /sbin/modprobe --first-time -i snd-mixart && \
/usr/bin/mixartloader

(for 2.2/2.4 kernels, add “post-install snd-mixart /usr/bin/vxloader”to
/etc/modules.conf, instead.)

The firmware binaries are installed on /usr/share/alsa/firmware (or
/usr/local/share/alsa/firmware, depending to the prefix option of configure).
There will be a miXart.conf file, which define the dsp image files.

The firmware files are copyright by Digigram SA

6.8.5 COPYRIGHT

Copyright (c) 2003 Digigram SA <alsa@digigram.com> Distributable under GPL.

6.9 ALSA BT87x Driver

6.9.1 Intro

You might have noticed that the bt878 grabber cards have actually two PCI func-
tions:

$ lspci
[...]
00:0a.0 Multimedia video controller: Brooktree Corporation Bt878 (rev 02)
00:0a.1 Multimedia controller: Brooktree Corporation Bt878 (rev 02)
[...]

The first does video, it is backward compatible to the bt848. The second does
audio. snd-bt87x is a driver for the second function. It’s a sound driver which can
be used for recording sound (and only recording, no playback). As most TV cards
come with a short cable which can be plugged into your sound card’s line-in you
probably don’t need this driver if all you want to do is just watching TV⋯
Some cards do not bother to connect anything to the audio input pins of the chip,
and some other cards use the audio function to transport MPEG video data, so it’
s quite possible that audio recording may not work with your card.

6.9.2 Driver Status

The driver is now stable. However, it doesn’t know about many TV cards, and it
refuses to load for cards it doesn’t know.
If the driver complains (“Unknown TV card found, the audio driver will not load”
), you can specify the load_all=1 option to force the driver to try to use the audio
capture function of your card. If the frequency of recorded data is not right, try to
specify the digital_rate option with other values than the default 32000 (often
it’s 44100 or 64000).

352 Chapter 6. Card-Specific Information

mailto:alsa@digigram.com

Linux Sound Documentation

If you have an unknown card, please mail the ID and board name to <alsa-
devel@alsa-project.org>, regardless of whether audio capture works or not, so
that future versions of this driver know about your card.

6.9.3 Audio modes

The chip knows two different modes (digital/analog). snd-bt87x registers two PCM
devices, one for each mode. They cannot be used at the same time.

6.9.4 Digital audio mode

The first device (hw:X,0) gives you 16 bit stereo sound. The sample rate depends
on the external source which feeds the Bt87x with digital sound via I2S interface.

6.9.5 Analog audio mode (A/D)

The second device (hw:X,1) gives you 8 or 16 bit mono sound. Supported sample
rates are between 119466 and 448000 Hz (yes, these numbers are that high). If
you’ve set the CONFIG_SND_BT87X_OVERCLOCK option, the maximum sample
rate is 1792000 Hz, but audio data becomes unusable beyond 896000 Hz on my
card.

The chip has three analog inputs. Consequently you’ll get a mixer device to control
these.

Have fun,

Clemens

Written by Clemens Ladisch <clemens@ladisch.de> big parts copied from btau-
dio.txt by Gerd Knorr <kraxel@bytesex.org>

6.10 Notes on Maya44 USB Audio Support

Note: The following is the original document of Rainer’s patch that the current
maya44 code based on. Some contents might be obsoleted, but I keep here as
reference – tiwai

Feb 14, 2008

Rainer Zimmermann <mail@lightshed.de>

6.10. Notes on Maya44 USB Audio Support 353

mailto:alsa-devel@alsa-project.org
mailto:alsa-devel@alsa-project.org
mailto:clemens@ladisch.de
mailto:kraxel@bytesex.org
mailto:mail@lightshed.de

Linux Sound Documentation

6.10.1 STATE OF DEVELOPMENT

This driver is being developed on the initiative of Piotr Makowski
(oponek@gmail.com) and financed by Lars Bergmann. Development is car-
ried out by Rainer Zimmermann (mail@lightshed.de).

ESI provided a sample Maya44 card for the development work.

However, unfortunately it has turned out difficult to get detailed programming
information, so I (Rainer Zimmermann) had to find out some card-specific infor-
mation by experiment and conjecture. Some information (in particular, several
GPIO bits) is still missing.

This is the first testing version of the Maya44 driver released to the alsa-devel
mailing list (Feb 5, 2008).

The following functions work, as tested by Rainer Zimmermann and Piotr
Makowski:

• playback and capture at all sampling rates

• input/output level

• crossmixing

• line/mic switch

• phantom power switch

• analogue monitor a.k.a bypass

The following functions should work, but are not fully tested:

• Channel 3+4 analogue - S/PDIF input switching

• S/PDIF output

• all inputs/outputs on the M/IO/DIO extension card

• internal/external clock selection

In particular, we would appreciate testing of these functions by anyone who has
access to an M/IO/DIO extension card.

Things that do not seem to work:

• The level meters (“multi track”) in‘alsamixer’do not seem to react to signals
in (if this is a bug, it would probably be in the existing ICE1724 code).

• Ardour 2.1 seems to work only via JACK, not using ALSA directly or via OSS.
This still needs to be tracked down.

354 Chapter 6. Card-Specific Information

mailto:oponek@gmail.com
mailto:mail@lightshed.de

Linux Sound Documentation

6.10.2 DRIVER DETAILS

the following files were added:

• pci/ice1724/maya44.c - Maya44 specific code

• pci/ice1724/maya44.h

• pci/ice1724/ice1724.patch

• pci/ice1724/ice1724.h.patch - PROPOSED patch to ice1724.h (see SAM-
PLING RATES)

• i2c/other/wm8776.c - low-level access routines for Wolfson WM8776 codecs

• include/wm8776.h

Note that the wm8776.c code is meant to be card-independent and does not ac-
tually register the codec with the ALSA infrastructure. This is done in maya44.c,
mainly because some of the WM8776 controls are used in Maya44-specific ways,
and should be named appropriately.

the following files were created in pci/ice1724, simply #including the correspond-
ing file from the alsa-kernel tree:

• wtm.h

• vt1720_mobo.h

• revo.h

• prodigy192.h

• pontis.h

• phase.h

• maya44.h

• juli.h

• aureon.h

• amp.h

• envy24ht.h

• se.h

• prodigy_hifi.h

I hope this is the correct way to do things.

6.10. Notes on Maya44 USB Audio Support 355

Linux Sound Documentation

6.10.3 SAMPLING RATES

TheMaya44 card (or more exactly, the WolfsonWM8776 codecs) allow a maximum
sampling rate of 192 kHz for playback and 92 kHz for capture.

As the ICE1724 chip only allows one global sampling rate, this is handled as fol-
lows:

• setting the sampling rate on any open PCM device on the maya44 card will
always set the global sampling rate for all playback and capture channels.

• In the current state of the driver, setting rates of up to 192 kHz is permitted
even for capture devices.

AVOID CAPTURING AT RATES ABOVE 96kHz, even though it may appear to work.
The codec cannot actually capture at such rates, meaning poor quality.

I propose some additional code for limiting the sampling rate when setting on a
capture pcm device. However because of the global sampling rate, this logic would
be somewhat problematic.

The proposed code (currently deactivated) is in ice1712.h.patch, ice1724.c and
maya44.c (in pci/ice1712).

6.10.4 SOUND DEVICES

PCM devices correspond to inputs/outputs as follows (assuming Maya44 is card
#0):

• hw:0,0 input - stereo, analog input 1+2

• hw:0,0 output - stereo, analog output 1+2

• hw:0,1 input - stereo, analog input 3+4 OR S/PDIF input

• hw:0,1 output - stereo, analog output 3+4 (and SPDIF out)

6.10.5 NAMING OF MIXER CONTROLS

(for more information about the signal flow, please refer to the block diagram on
p.24 of the ESI Maya44 manual, or in the ESI windows software).

PCM (digital) output level for channel 1+2

PCM 1 same for channel 3+4
Mic Phantom+48V switch for +48V phantom power for electrostatic micro-

phones on input 1/2.

Make sure this is not turned on while any other source is connected to input
1/2. It might damage the source and/or the maya44 card.

Mic/Line input if switch is on, input jack 1/2 is microphone input (mono), other-
wise line input (stereo).

Bypass analogue bypass from ADC input to output for channel 1+2. Same as
“Monitor”in the windows driver.

356 Chapter 6. Card-Specific Information

Linux Sound Documentation

Bypass 1 same for channel 3+4.
Crossmix cross-mixer from channels 1+2 to channels 3+4

Crossmix 1 cross-mixer from channels 3+4 to channels 1+2

IEC958 Output switch for S/PDIF output.
This is not supported by the ESI windows driver. S/PDIF should output the
same signal as channel 3+4. [untested!]

Digitial output selectors These switches allow a direct digital routing from the
ADCs to the DACs. Each switch determines where the digital input data to
one of the DACs comes from. They are not supported by the ESI windows
driver. For normal operation, they should all be set to “PCM out”.

H/W Output source channel 1

H/W 1 Output source channel 2
H/W 2 Output source channel 3
H/W 3 Output source channel 4
H/W 4 ⋯H/W 9 unknown function, left in to enable testing.

Possibly some of these control S/PDIF output(s). If these turn out to be un-
used, they will go away in later driver versions.

Selectable values for each of the digital output selectors are:

PCM out DAC output of the corresponding channel (default setting)
Input 1 ⋯Input 4 direct routing from ADC output of the selected input channel

6.11 Software Interface ALSA-DSP MADI Driver

(translated from German, so no good English ;-),

2004 - winfried ritsch

Full functionality has been added to the driver. Since some of the Controls and
startup-options are ALSA-Standard and only the special Controls are described
and discussed below.

6.11.1 Hardware functionality

Audio transmission

• number of channels – depends on transmission mode

The number of channels chosen is from 1..Nmax. The reason to use
for a lower number of channels is only resource allocation, since
unused DMA channels are disabled and less memory is allocated. So
also the throughput of the PCI system can be scaled. (Only important
for low performance boards).

• Single Speed – 1..64 channels

6.11. Software Interface ALSA-DSP MADI Driver 357

Linux Sound Documentation

Note: (Note: Choosing the 56channel mode for transmission or as receiver, only
56 are transmitted/received over the MADI, but all 64 channels are available for
the mixer, so channel count for the driver)

• Double Speed – 1..32 channels

Note: Note: Choosing the 56-channel mode for transmission/receive-mode , only
28 are transmitted/received over the MADI, but all 32 channels are available for
the mixer, so channel count for the driver

• Quad Speed – 1..16 channels

Note: Choosing the 56-channel mode for transmission/receive-mode , only 14
are transmitted/received over the MADI, but all 16 channels are available for the
mixer, so channel count for the driver

• Format – signed 32 Bit Little Endian (SNDRV_PCM_FMTBIT_S32_LE)

• Sample Rates –

Single Speed – 32000, 44100, 48000

Double Speed – 64000, 88200, 96000 (untested)

Quad Speed – 128000, 176400, 192000 (untested)

• access-mode – MMAP (memory mapped), Not interleaved (PCM_NON-
INTERLEAVED)

• buffer-sizes – 64,128,256,512,1024,2048,8192 Samples

• fragments – 2

• Hardware-pointer – 2 Modi

The Card supports the readout of the actual Buffer-pointer, where
DMA reads/writes. Since of the bulk mode of PCI it is only 64 Byte
accurate. SO it is not really usable for the ALSA-mid-level functions
(here the buffer-ID gives a better result), but if MMAP is used by
the application. Therefore it can be configured at load-time with the
parameter precise-pointer.

Hint:
(Hint: Experimenting I found that the pointer is maximum 64 to large
never to small. So if you subtract 64 you always have a safe pointer
for writing, which is used on this mode inside ALSA. In theory now you
can get now a latency as low as 16 Samples, which is a quarter of the
interrupt possibilities.)

• Precise Pointer – off interrupt used for pointer-calculation

• Precise Pointer – on hardware pointer used.

358 Chapter 6. Card-Specific Information

Linux Sound Documentation

Controller

Since DSP-MADI-Mixer has 8152 Fader, it does not make sense to use the standard
mixer-controls, since this would break most of (especially graphic) ALSA-Mixer
GUIs. So Mixer control has be provided by a 2-dimensional controller using the
hwdep-interface.

Also all 128+256 Peak and RMS-Meter can be accessed via the hwdep-interface.
Since it could be a performance problem always copying and converting Peak and
RMS-Levels even if you just need one, I decided to export the hardware structure,
so that of needed some driver-guru can implement a memory-mapping of mixer
or peak-meters over ioctl, or also to do only copying and no conversion. A test-
application shows the usage of the controller.

• Latency Controls —not implemented !!!

Note: Note: Within the windows-driver the latency is accessible of a control-
panel, but buffer-sizes are controlled with ALSA from hwparams-calls and should
not be changed in run-state, I did not implement it here.

• System Clock – suspended !!!!

– Name – “System Clock Mode”
– Access – Read Write
– Values – “Master”“Slave”

Note: !!!! This is a hardware-function but is in conflict with the Clock-source
controller, which is a kind of ALSA-standard. I makes sense to set the card to a
special mode (master at some frequency or slave), since even not using an Audio-
application a studio should have working synchronisations setup. So use Clock-
source-controller instead !!!!

• Clock Source

– Name – “Sample Clock Source”
– Access – Read Write
– Values –“AutoSync”,“Internal 32.0 kHz”,“Internal 44.1 kHz”,“Internal
48.0 kHz”,“Internal 64.0 kHz”,“Internal 88.2 kHz”,“Internal 96.0
kHz”

Choose between Master at a specific Frequency and so also the
Speed-mode or Slave (Autosync). Also see “Preferred Sync Ref”

Warning: !!!! This is no pure hardware function but was implemented by
ALSA by some ALSA-drivers before, so I use it also. !!!

6.11. Software Interface ALSA-DSP MADI Driver 359

Linux Sound Documentation

• Preferred Sync Ref

– Name – “Preferred Sync Reference”
– Access – Read Write
– Values – “Word”“MADI”

Within the Auto-sync-Mode the preferred Sync Source can be cho-
sen. If it is not available another is used if possible.

Note: Note: Since MADI has a much higher bit-rate than word-clock, the card
should synchronise better in MADI Mode. But since the RME-PLL is very good,
there are almost no problems with word-clock too. I never found a difference.

• TX 64 channel

– Name – “TX 64 channels mode”
– Access – Read Write
– Values – 0 1

Using 64-channel-modus (1) or 56-channel-modus for MADI-
transmission (0).

Note: Note: This control is for output only. Input-mode is detected automatically
from hardware sending MADI.

• Clear TMS

– Name – “Clear Track Marker”
– Access – Read Write
– Values – 0 1

Don’t use to lower 5 Audio-bits on AES as additional Bits.
• Safe Mode oder Auto Input

– Name – “Safe Mode”
– Access – Read Write
– Values – 0 1 (default on)

If on (1), then if either the optical or coaxial connection has a fail-
ure, there is a takeover to the working one, with no sample failure.
Its only useful if you use the second as a backup connection.

• Input

– Name – “Input Select”
– Access – Read Write
– Values – optical coaxial

360 Chapter 6. Card-Specific Information

Linux Sound Documentation

Choosing the Input, optical or coaxial. If Safe-mode is active, this
is the preferred Input.

Mixer

• Mixer

– Name – “Mixer”
– Access – Read Write
– Values - <channel-number 0-127> <Value 0-65535>

Here as a first value the channel-index is taken to get/set the cor-
responding mixer channel, where 0-63 are the input to output
fader and 64-127 the playback to outputs fader. Value 0 is chan-
nel muted 0 and 32768 an amplification of 1.

• Chn 1-64

fast mixer for the ALSA-mixer utils. The diagonal of the mixer-matrix
is implemented from playback to output.

• Line Out

– Name – “Line Out”
– Access – Read Write
– Values – 0 1

Switching on and off the analog out, which has nothing to do with
mixing or routing. the analog outs reflects channel 63,64.

Information (only read access)

• Sample Rate

– Name – “System Sample Rate”
– Access – Read-only

getting the sample rate.

• External Rate measured

– Name – “External Rate”
– Access – Read only

Should be “Autosync Rate”, but Name used is ALSA-Scheme.
External Sample frequency liked used on Autosync is reported.

• MADI Sync Status

– Name – “MADI Sync Lock Status”
– Access – Read
– Values – 0,1,2

6.11. Software Interface ALSA-DSP MADI Driver 361

Linux Sound Documentation

MADI-Input is 0=Unlocked, 1=Locked, or 2=Synced.

• Word Clock Sync Status

– Name – “Word Clock Lock Status”
– Access – Read
– Values – 0,1,2

Word Clock Input is 0=Unlocked, 1=Locked, or 2=Synced.

• AutoSync

– Name – “AutoSync Reference”
– Access – Read
– Values – “WordClock”, “MADI”, “None”

Sync-Reference is either “WordClock”, “MADI”or none.
• RX 64ch —noch nicht implementiert

MADI-Receiver is in 64 channel mode oder 56 channel mode.

• AB_inp —not tested
Used input for Auto-Input.

• actual Buffer Position —not implemented
!!! this is a ALSA internal function, so no control is used !!!

6.11.2 Calling Parameter

• index int array (min = 1, max = 8)

Index value for RME HDSPM interface. card-index within ALSA

note: ALSA-standard

• id string array (min = 1, max = 8)

ID string for RME HDSPM interface.

note: ALSA-standard

• enable int array (min = 1, max = 8)

Enable/disable specific HDSPM sound-cards.

note: ALSA-standard

• precise_ptr int array (min = 1, max = 8)

Enable precise pointer, or disable.

Note: note: Use only when the application supports this (which is a special case).

• line_outs_monitor int array (min = 1, max = 8)

Send playback streams to analog outs by default.

362 Chapter 6. Card-Specific Information

Linux Sound Documentation

Note: note: each playback channel is mixed to the same numbered output chan-
nel (routed). This is against the ALSA-convention, where all channels have to be
muted on after loading the driver, but was used before on other cards, so i histor-
ically use it again)

• enable_monitor int array (min = 1, max = 8)

Enable Analog Out on Channel 63/64 by default.

Note: note: here the analog output is enabled (but not routed).

6.12 Serial UART 16450/16550 MIDI driver

The adaptor module parameter allows you to select either:

• 0 - Roland Soundcanvas support (default)

• 1 - Midiator MS-124T support (1)

• 2 - Midiator MS-124W S/A mode (2)

• 3 - MS-124W M/B mode support (3)

• 4 - Generic device with multiple input support (4)

For the Midiator MS-124W, you must set the physical M-S and A-B switches on the
Midiator to match the driver mode you select.

In Roland Soundcanvas mode, multiple ALSA raw MIDI substreams are supported
(midiCnD0-midiCnD15). Whenever you write to a different substream, the driver
sends the nonstandard MIDI command sequence F5 NN, where NN is the sub-
stream number plus 1. Roland modules use this command to switch between dif-
ferent “parts”, so this feature lets you treat each part as a distinct raw MIDI
substream. The driver provides no way to send F5 00 (no selection) or to not send
the F5 NN command sequence at all; perhaps it ought to.

Usage example for simple serial converter:

/sbin/setserial /dev/ttyS0 uart none
/sbin/modprobe snd-serial-u16550 port=0x3f8 irq=4 speed=115200

Usage example for Roland SoundCanvas with 4 MIDI ports:

/sbin/setserial /dev/ttyS0 uart none
/sbin/modprobe snd-serial-u16550 port=0x3f8 irq=4 outs=4

In MS-124T mode, one raw MIDI substream is supported (midiCnD0); the outs
module parameter is automatically set to 1. The driver sends the same data to all
four MIDI Out connectors. Set the A-B switch and the speed module parameter to
match (A=19200, B=9600).

Usage example for MS-124T, with A-B switch in A position:

6.12. Serial UART 16450/16550 MIDI driver 363

Linux Sound Documentation

/sbin/setserial /dev/ttyS0 uart none
/sbin/modprobe snd-serial-u16550 port=0x3f8 irq=4 adaptor=1 \

speed=19200

In MS-124W S/A mode, one raw MIDI substream is supported (midiCnD0); the
outs module parameter is automatically set to 1. The driver sends the same data
to all four MIDI Out connectors at full MIDI speed.

Usage example for S/A mode:

/sbin/setserial /dev/ttyS0 uart none
/sbin/modprobe snd-serial-u16550 port=0x3f8 irq=4 adaptor=2

In MS-124W M/B mode, the driver supports 16 ALSA raw MIDI substreams; the
outs module parameter is automatically set to 16. The substream number gives a
bitmask of which MIDI Out connectors the data should be sent to, with midiCnD1
sending to Out 1, midiCnD2 to Out 2, midiCnD4 to Out 3, and midiCnD8 to Out 4.
Thus midiCnD15 sends the data to all 4 ports. As a special case, midiCnD0 also
sends to all ports, since it is not useful to send the data to no ports. M/B mode has
extra overhead to select the MIDI Out for each byte, so the aggregate data rate
across all four MIDI Outs is at most one byte every 520 us, as compared with the
full MIDI data rate of one byte every 320 us per port.

Usage example for M/B mode:

/sbin/setserial /dev/ttyS0 uart none
/sbin/modprobe snd-serial-u16550 port=0x3f8 irq=4 adaptor=3

The MS-124W hardware’s M/A mode is currently not supported. This mode allows
the MIDI Outs to act independently at double the aggregate throughput of M/B,
but does not allow sending the same byte simultaneously to multiple MIDI Outs.
The M/A protocol requires the driver to twiddle the modem control lines under
timing constraints, so it would be a bit more complicated to implement than the
other modes.

Midiator models other than MS-124W and MS-124T are currently not supported.
Note that the suffix letter is significant; the MS-124 and MS-124B are not compat-
ible, nor are the other known models MS-101, MS-101B, MS-103, and MS-114. I
do have documentation (tim.mann@compaq.com) that partially covers these mod-
els, but no units to experiment with. The MS-124W support is tested with a real
unit. The MS-124T support is untested, but should work.

The Generic driver supports multiple input and output substreams over a single
serial port. Similar to Roland Soundcanvas mode, F5 NN is used to select the
appropriate input or output stream (depending on the data direction). Additionally,
the CTS signal is used to regulate the data flow. The number of inputs is specified
by the ins parameter.

364 Chapter 6. Card-Specific Information

mailto:tim.mann@compaq.com

Linux Sound Documentation

6.13 Imagination Technologies SPDIF Input Controllers

The Imagination Technologies SPDIF Input controller contains the following con-
trols:

• name=’IEC958 Capture Mask’,index=0
This control returns a mask that shows which of the IEC958 status bits can be read
using the ‘IEC958 Capture Default’control.
• name=’IEC958 Capture Default’,index=0

This control returns the status bits contained within the SPDIF stream that is being
received. The ‘IEC958 Capture Mask’shows which bits can be read from this
control.

• name=’SPDIF In Multi Frequency Acquire’,index=0
• name=’SPDIF In Multi Frequency Acquire’,index=1
• name=’SPDIF In Multi Frequency Acquire’,index=2
• name=’SPDIF In Multi Frequency Acquire’,index=3

This control is used to attempt acquisition of up to four different sample rates. The
active rate can be obtained by reading the ‘SPDIF In Lock Frequency’control.
When the value of this control is set to {0,0,0,0}, the rate given to hw_params will
determine the single rate the block will capture. Else, the rate given to hw_params
will be ignored, and the block will attempt capture for each of the four sample rates
set here.

If less than four rates are required, the same rate can be specified more than once

• name=’SPDIF In Lock Frequency’,index=0
This control returns the active capture rate, or 0 if a lock has not been acquired

• name=’SPDIF In Lock TRK’,index=0
This control is used to modify the locking/jitter rejection characteristics of the
block. Larger values increase the locking range, but reduce jitter rejection.

• name=’SPDIF In Lock Acquire Threshold’,index=0
This control is used to change the threshold at which a lock is acquired.

• name=’SPDIF In Lock Release Threshold’,index=0
This control is used to change the threshold at which a lock is released.

6.13. Imagination Technologies SPDIF Input Controllers 365

