
Linux Scheduler Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

COMPLETIONS - “WAIT FOR COMPLETION”BARRIER
APIS

1.1 Introduction:

If you have one or more threads that must wait for some kernel activity to have
reached a point or a specific state, completions can provide a race-free solution to
this problem. Semantically they are somewhat like a pthread_barrier() and have
similar use-cases.

Completions are a code synchronization mechanism which is preferable to any
misuse of locks/semaphores and busy-loops. Any time you think of using yield() or
some quirky msleep(1) loop to allow something else to proceed, you probably want
to look into using one of the wait_for_completion*() calls and complete() instead.

The advantage of using completions is that they have a well defined, focused pur-
pose which makes it very easy to see the intent of the code, but they also result in
more efficient code as all threads can continue execution until the result is actually
needed, and both the waiting and the signalling is highly efficient using low level
scheduler sleep/wakeup facilities.

Completions are built on top of the waitqueue and wakeup infrastructure of the
Linux scheduler. The event the threads on the waitqueue are waiting for is reduced
to a simple flag in ‘struct completion’, appropriately called “done”.
As completions are scheduling related, the code can be found in ker-
nel/sched/completion.c.

1.2 Usage:

There are three main parts to using completions:

• the initialization of the ‘struct completion’synchronization object
• the waiting part through a call to one of the variants of wait_for_completion(),

• the signaling side through a call to complete() or complete_all().

There are also some helper functions for checking the state of completions. Note
that while initialization must happen first, the waiting and signaling part can hap-
pen in any order. I.e. it’s entirely normal for a thread to have marked a completion
as ‘done’before another thread checks whether it has to wait for it.

1

Linux Scheduler Documentation

To use completions you need to #include <linux/completion.h> and create a static
or dynamic variable of type ‘struct completion’, which has only two fields:
struct completion {

unsigned int done;
wait_queue_head_t wait;

};

This provides the ->wait waitqueue to place tasks on for waiting (if any), and the
->done completion flag for indicating whether it’s completed or not.
Completions should be named to refer to the event that is being synchronized on.
A good example is:

wait_for_completion(&early_console_added);

complete(&early_console_added);

Good, intuitive naming (as always) helps code readability. Naming a completion
‘complete’is not helpful unless the purpose is super obvious⋯

1.3 Initializing completions:

Dynamically allocated completion objects should preferably be embedded in data
structures that are assured to be alive for the life-time of the function/driver, to
prevent races with asynchronous complete() calls from occurring.

Particular care should be taken when using the _timeout() or _kill-
able()/_interruptible() variants of wait_for_completion(), as it must be assured
that memory de-allocation does not happen until all related activities (complete()
or reinit_completion()) have taken place, even if these wait functions return
prematurely due to a timeout or a signal triggering.

Initializing of dynamically allocated completion objects is done via a call to
init_completion():

init_completion(&dynamic_object->done);

In this call we initialize the waitqueue and set ->done to 0, i.e. “not completed”
or “not done”.
The re-initialization function, reinit_completion(), simply resets the ->done field
to 0 (“not done”), without touching the waitqueue. Callers of this function must
make sure that there are no racy wait_for_completion() calls going on in parallel.

Calling init_completion() on the same completion object twice is most likely a bug
as it re-initializes the queue to an empty queue and enqueued tasks could get“lost”
- use reinit_completion() in that case, but be aware of other races.

For static declaration and initialization, macros are available.

For static (or global) declarations in file scope you can use DE-
CLARE_COMPLETION():

2 Chapter 1. Completions - “wait for completion”barrier APIs

Linux Scheduler Documentation

static DECLARE_COMPLETION(setup_done);
DECLARE_COMPLETION(setup_done);

Note that in this case the completion is boot time (or module load time) initialized
to ‘not done’and doesn’t require an init_completion() call.
When a completion is declared as a local variable within a function, then the ini-
tialization should always use DECLARE_COMPLETION_ONSTACK() explicitly, not
just to make lockdep happy, but also to make it clear that limited scope had been
considered and is intentional:

DECLARE_COMPLETION_ONSTACK(setup_done)

Note that when using completion objects as local variables you must be acutely
aware of the short life time of the function stack: the function must not return to
a calling context until all activities (such as waiting threads) have ceased and the
completion object is completely unused.

To emphasise this again: in particular when using some of the waiting API vari-
ants with more complex outcomes, such as the timeout or signalling (_timeout(),
_killable() and _interruptible()) variants, the wait might complete prematurely
while the object might still be in use by another thread - and a return from the
wait_on_completion*() caller function will deallocate the function stack and cause
subtle data corruption if a complete() is done in some other thread. Simple testing
might not trigger these kinds of races.

If unsure, use dynamically allocated completion objects, preferably embedded in
some other long lived object that has a boringly long life time which exceeds the
life time of any helper threads using the completion object, or has a lock or other
synchronizationmechanism tomake sure complete() is not called on a freed object.

A naive DECLARE_COMPLETION() on the stack triggers a lockdep warning.

1.4 Waiting for completions:

For a thread to wait for some concurrent activity to finish, it calls
wait_for_completion() on the initialized completion structure:

void wait_for_completion(struct completion *done)

A typical usage scenario is:

CPU#1 CPU#2

struct completion setup_done;

init_completion(&setup_done);
initialize_work(...,&setup_done,...);

/* run non-dependent code */ /* do setup */

wait_for_completion(&setup_done); complete(setup_done);

1.4. Waiting for completions: 3

Linux Scheduler Documentation

This is not implying any particular order between wait_for_completion() and
the call to complete() - if the call to complete() happened before the call to
wait_for_completion() then the waiting side simply will continue immediately as
all dependencies are satisfied; if not, it will block until completion is signaled by
complete().

Note that wait_for_completion() is calling spin_lock_irq()/spin_unlock_irq(), so it
can only be called safely when you know that interrupts are enabled. Calling it
from IRQs-off atomic contexts will result in hard-to-detect spurious enabling of
interrupts.

The default behavior is to wait without a timeout and to mark the task as uninter-
ruptible. wait_for_completion() and its variants are only safe in process context (as
they can sleep) but not in atomic context, interrupt context, with disabled IRQs,
or preemption is disabled - see also try_wait_for_completion() below for handling
completion in atomic/interrupt context.

As all variants of wait_for_completion() can (obviously) block for a long time de-
pending on the nature of the activity they are waiting for, so in most cases you
probably don’t want to call this with held mutexes.

1.5 wait_for_completion*() variants available:

The below variants all return status and this status should be checked in most(/all)
cases - in cases where the status is deliberately not checked you probably want to
make a note explaining this (e.g. see arch/arm/kernel/smp.c:__cpu_up()).

A common problem that occurs is to have unclean assignment of return types, so
take care to assign return-values to variables of the proper type.

Checking for the specific meaning of return values also has been found to be quite
inaccurate, e.g. constructs like:

if (!wait_for_completion_interruptible_timeout(...))

⋯would execute the same code path for successful completion and for the inter-
rupted case - which is probably not what you want:

int wait_for_completion_interruptible(struct completion *done)

This function marks the task TASK_INTERRUPTIBLE while it is waiting. If a signal
was received while waiting it will return -ERESTARTSYS; 0 otherwise:

unsigned long wait_for_completion_timeout(struct completion *done,␣
↪→unsigned long timeout)

The task is marked as TASK_UNINTERRUPTIBLE and will wait at most‘timeout’
jiffies. If a timeout occurs it returns 0, else the remaining time in jiffies (but at
least 1).

Timeouts are preferably calculated with msecs_to_jiffies() or usecs_to_jiffies(), to
make the code largely HZ-invariant.

If the returned timeout value is deliberately ignored a comment should probably
explain why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc()):

4 Chapter 1. Completions - “wait for completion”barrier APIs

Linux Scheduler Documentation

long wait_for_completion_interruptible_timeout(struct completion *done,␣
↪→unsigned long timeout)

This function passes a timeout in jiffies and marks the task as
TASK_INTERRUPTIBLE. If a signal was received it will return -ERESTARTSYS;
otherwise it returns 0 if the completion timed out, or the remaining time in jiffies
if completion occurred.

Further variants include _killable which uses TASK_KILLABLE as the designated
tasks state and will return -ERESTARTSYS if it is interrupted, or 0 if completion
was achieved. There is a _timeout variant as well:

long wait_for_completion_killable(struct completion *done)
long wait_for_completion_killable_timeout(struct completion *done,␣
↪→unsigned long timeout)

The _io variants wait_for_completion_io() behave the same as the non-_io variants,
except for accounting waiting time as ‘waiting on IO’, which has an impact on
how the task is accounted in scheduling/IO stats:

void wait_for_completion_io(struct completion *done)
unsigned long wait_for_completion_io_timeout(struct completion *done,␣
↪→unsigned long timeout)

1.6 Signaling completions:

A thread that wants to signal that the conditions for continuation have been
achieved calls complete() to signal exactly one of the waiters that it can continue:

void complete(struct completion *done)

⋯or calls complete_all() to signal all current and future waiters:
void complete_all(struct completion *done)

The signaling will work as expected even if completions are signaled before a
thread starts waiting. This is achieved by the waiter“consuming”(decrementing)
the done field of‘struct completion’. Waiting threads wakeup order is the same
in which they were enqueued (FIFO order).

If complete() is called multiple times then this will allow for that number of waiters
to continue - each call to complete() will simply increment the done field. Calling
complete_all() multiple times is a bug though. Both complete() and complete_all()
can be called in IRQ/atomic context safely.

There can only be one thread calling complete() or complete_all() on a particular
‘struct completion’at any time - serialized through the wait queue spinlock. Any
such concurrent calls to complete() or complete_all() probably are a design bug.

Signaling completion from IRQ context is fine as it will appropriately lock with
spin_lock_irqsave()/spin_unlock_irqrestore() and it will never sleep.

1.6. Signaling completions: 5

Linux Scheduler Documentation

1.7 try_wait_for_completion()/completion_done():

The try_wait_for_completion() function will not put the thread on the wait queue
but rather returns false if it would need to enqueue (block) the thread, else it
consumes one posted completion and returns true:

bool try_wait_for_completion(struct completion *done)

Finally, to check the state of a completion without changing it in any way, call com-
pletion_done(), which returns false if there are no posted completions that were
not yet consumed by waiters (implying that there are waiters) and true otherwise:

bool completion_done(struct completion *done)

Both try_wait_for_completion() and completion_done() are safe to be called in IRQ
or atomic context.

6 Chapter 1. Completions - “wait for completion”barrier APIs

CHAPTER

TWO

CPU SCHEDULER IMPLEMENTATION HINTS FOR
ARCHITECTURE SPECIFIC CODE

Nick Piggin, 2005

2.1 Context switch

1. Runqueue locking By default, the switch_to arch function is called with the
runqueue locked. This is usually not a problem unless switch_to may need to take
the runqueue lock. This is usually due to a wake up operation in the context switch.
See arch/ia64/include/asm/switch_to.h for an example.

To request the scheduler call switch_to with the runqueue unlocked, you must
#define __ARCH_WANT_UNLOCKED_CTXSW in a header file (typically the one
where switch_to is defined).

Unlocked context switches introduce only a very minor performance penalty to the
core scheduler implementation in the CONFIG_SMP case.

2.2 CPU idle

Your cpu_idle routines need to obey the following rules:

1. Preempt should now disabled over idle routines. Should only be enabled to
call schedule() then disabled again.

2. need_resched/TIF_NEED_RESCHED is only ever set, and will never be
cleared until the running task has called schedule(). Idle threads need only
ever query need_resched, and may never set or clear it.

3. When cpu_idle finds (need_resched() == ‘true’), it should call schedule().
It should not call schedule() otherwise.

4. The only time interrupts need to be disabled when checking need_resched is
if we are about to sleep the processor until the next interrupt (this doesn’t
provide any protection of need_resched, it prevents losing an interrupt):

4a. Common problem with this type of sleep appears to be:

7

Linux Scheduler Documentation

local_irq_disable();
if (!need_resched()) {

local_irq_enable();
*** resched interrupt arrives here ***
__asm__("sleep until next interrupt");

}

5. TIF_POLLING_NRFLAG can be set by idle routines that do not need an inter-
rupt to wake them up when need_resched goes high. In other words, they
must be periodically polling need_resched, although it may be reasonable to
do some background work or enter a low CPU priority.

• 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter an inter-
rupt sleep, it needs to be cleared then a memory barrier issued (followed
by a test of need_resched with interrupts disabled, as explained in 3).

arch/x86/kernel/process.c has examples of both polling and sleeping idle functions.

2.3 Possible arch/ problems

Possible arch problems I found (and either tried to fix or didn’t):
ia64 - is safe_halt call racy vs interrupts? (does it sleep?) (See #4a)

sh64 - Is sleeping racy vs interrupts? (See #4a)

sparc - IRQs on at this point(?), change local_irq_save to _disable.
• TODO: needs secondary CPUs to disable preempt (See #1)

8Chapter 2. CPU Scheduler implementation hints for architecture specific
code

CHAPTER

THREE

CFS BANDWIDTH CONTROL

[This document only discusses CPU bandwidth control for SCHED_NORMAL.
The SCHED_RT case is covered in Documentation/scheduler/sched-rt-
group.rst]

CFS bandwidth control is a CONFIG_FAIR_GROUP_SCHED extension which al-
lows the specification of the maximum CPU bandwidth available to a group or
hierarchy.

The bandwidth allowed for a group is specified using a quota and period. Within
each given“period”(microseconds), a task group is allocated up to“quota”mi-
croseconds of CPU time. That quota is assigned to per-cpu run queues in slices
as threads in the cgroup become runnable. Once all quota has been assigned any
additional requests for quota will result in those threads being throttled. Throt-
tled threads will not be able to run again until the next period when the quota is
replenished.

A group’s unassigned quota is globally tracked, being refreshed back to cfs_quota
units at each period boundary. As threads consume this bandwidth it is transferred
to cpu-local“silos”on a demand basis. The amount transferred within each of these
updates is tunable and described as the “slice”.

3.1 Management

Quota and period are managed within the cpu subsystem via cgroupfs.

cpu.cfs_quota_us: the total available run-time within a period (in microseconds)
cpu.cfs_period_us: the length of a period (inmicroseconds) cpu.stat: exports throt-
tling statistics [explained further below]

The default values are:

cpu.cfs_period_us=100ms
cpu.cfs_quota=-1

A value of -1 for cpu.cfs_quota_us indicates that the group does not have any band-
width restriction in place, such a group is described as an unconstrained band-
width group. This represents the traditional work-conserving behavior for CFS.

Writing any (valid) positive value(s) will enact the specified bandwidth limit. The
minimum quota allowed for the quota or period is 1ms. There is also an upper

9

Linux Scheduler Documentation

bound on the period length of 1s. Additional restrictions exist when bandwidth
limits are used in a hierarchical fashion, these are explained in more detail below.

Writing any negative value to cpu.cfs_quota_us will remove the bandwidth limit
and return the group to an unconstrained state once more.

Any updates to a group’s bandwidth specification will result in it becoming un-
throttled if it is in a constrained state.

3.2 System wide settings

For efficiency run-time is transferred between the global pool and CPU local“silos”
in a batch fashion. This greatly reduces global accounting pressure on large sys-
tems. The amount transferred each time such an update is required is described
as the “slice”.
This is tunable via procfs:

/proc/sys/kernel/sched_cfs_bandwidth_slice_us (default=5ms)

Larger slice values will reduce transfer overheads, while smaller values allow for
more fine-grained consumption.

3.3 Statistics

A group’s bandwidth statistics are exported via 3 fields in cpu.stat.
cpu.stat:

• nr_periods: Number of enforcement intervals that have elapsed.

• nr_throttled: Number of times the group has been throttled/limited.

• throttled_time: The total time duration (in nanoseconds) for which entities of
the group have been throttled.

This interface is read-only.

3.4 Hierarchical considerations

The interface enforces that an individual entity’s bandwidth is always attainable,
that is: max(c_i) <= C. However, over-subscription in the aggregate case is ex-
plicitly allowed to enable work-conserving semantics within a hierarchy:

e.g. Sum (c_i) may exceed C

[Where C is the parent’s bandwidth, and c_i its children]
There are two ways in which a group may become throttled:

a. it fully consumes its own quota within a period

b. a parent’s quota is fully consumed within its period

10 Chapter 3. CFS Bandwidth Control

Linux Scheduler Documentation

In case b) above, even though the child may have runtime remaining it will not be
allowed to until the parent’s runtime is refreshed.

3.5 CFS Bandwidth Quota Caveats

Once a slice is assigned to a cpu it does not expire. However all but 1ms of the slice
may be returned to the global pool if all threads on that cpu become unrunnable.
This is configured at compile time by the min_cfs_rq_runtime variable. This is a
performance tweak that helps prevent added contention on the global lock.

The fact that cpu-local slices do not expire results in some interesting corner cases
that should be understood.

For cgroup cpu constrained applications that are cpu limited this is a relatively
moot point because they will naturally consume the entirety of their quota as well
as the entirety of each cpu-local slice in each period. As a result it is expected
that nr_periods roughly equal nr_throttled, and that cpuacct.usage will increase
roughly equal to cfs_quota_us in each period.

For highly-threaded, non-cpu bound applications this non-expiration nuance allows
applications to briefly burst past their quota limits by the amount of unused slice
on each cpu that the task group is running on (typically at most 1ms per cpu or as
defined by min_cfs_rq_runtime). This slight burst only applies if quota had been
assigned to a cpu and then not fully used or returned in previous periods. This
burst amount will not be transferred between cores. As a result, this mechanism
still strictly limits the task group to quota average usage, albeit over a longer time
window than a single period. This also limits the burst ability to no more than
1ms per cpu. This provides better more predictable user experience for highly
threaded applications with small quota limits on high core count machines. It also
eliminates the propensity to throttle these applications while simultanously using
less than quota amounts of cpu. Another way to say this, is that by allowing the
unused portion of a slice to remain valid across periods we have decreased the
possibility of wastefully expiring quota on cpu-local silos that don’t need a full
slice’s amount of cpu time.
The interaction between cpu-bound and non-cpu-bound-interactive applications
should also be considered, especially when single core usage hits 100%. If you
gave each of these applications half of a cpu-core and they both got scheduled on
the same CPU it is theoretically possible that the non-cpu bound application will
use up to 1ms additional quota in some periods, thereby preventing the cpu-bound
application from fully using its quota by that same amount. In these instances it
will be up to the CFS algorithm (see sched-design-CFS.rst) to decide which appli-
cation is chosen to run, as they will both be runnable and have remaining quota.
This runtime discrepancy will be made up in the following periods when the inter-
active application idles.

3.5. CFS Bandwidth Quota Caveats 11

Linux Scheduler Documentation

3.6 Examples

1. Limit a group to 1 CPU worth of runtime:

If period is 250ms and quota is also 250ms, the group will get
1 CPU worth of runtime every 250ms.

echo 250000 > cpu.cfs_quota_us /* quota = 250ms */
echo 250000 > cpu.cfs_period_us /* period = 250ms */

2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine

With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
runtime every 500ms:

echo 1000000 > cpu.cfs_quota_us /* quota = 1000ms */
echo 500000 > cpu.cfs_period_us /* period = 500ms */

The larger period here allows for increased burst capacity.

3. Limit a group to 20% of 1 CPU.

With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU:

echo 10000 > cpu.cfs_quota_us /* quota = 10ms */
echo 50000 > cpu.cfs_period_us /* period = 50ms */

By using a small period here we are ensuring a consistent latency response
at the expense of burst capacity.

12 Chapter 3. CFS Bandwidth Control

CHAPTER

FOUR

DEADLINE TASK SCHEDULING

4.1 0. WARNING

Fiddling with these settings can result in an unpredictable or even un-
stable system behavior. As for -rt (group) scheduling, it is assumed that
root users know what they’re doing.

4.2 1. Overview

The SCHED_DEADLINE policy contained inside the sched_dl scheduling
class is basically an implementation of the Earliest Deadline First (EDF)
scheduling algorithm, augmented with a mechanism (called Constant
Bandwidth Server, CBS) that makes it possible to isolate the behavior of
tasks between each other.

4.3 2. Scheduling algorithm

4.3.1 2.1 Main algorithm

SCHED_DEADLINE [18] uses three parameters, named“runtime”,“pe-
riod”, and “deadline”, to schedule tasks. A SCHED_DEADLINE task
should receive“runtime”microseconds of execution time every“period”
microseconds, and these “runtime”microseconds are available within
“deadline”microseconds from the beginning of the period. In order to
implement this behavior, every time the task wakes up, the scheduler
computes a “scheduling deadline”consistent with the guarantee (us-
ing the CBS[2,3] algorithm). Tasks are then scheduled using EDF[1] on
these scheduling deadlines (the task with the earliest scheduling dead-
line is selected for execution). Notice that the task actually receives
“runtime”time units within“deadline”if a proper“admission control”
strategy (see Section “4. Bandwidth management”) is used (clearly, if
the system is overloaded this guarantee cannot be respected).

Summing up, the CBS[2,3] algorithm assigns scheduling deadlines to
tasks so that each task runs for at most its runtime every period, avoiding
any interference between different tasks (bandwidth isolation), while the
EDF[1] algorithm selects the task with the earliest scheduling deadline

13

Linux Scheduler Documentation

as the one to be executed next. Thanks to this feature, tasks that do not
strictly comply with the“traditional”real-time task model (see Section
3) can effectively use the new policy.

In more details, the CBS algorithm assigns scheduling deadlines to tasks
in the following way:

• Each SCHED_DEADLINE task is characterized by the “runtime”,
“deadline”, and “period”parameters;
• The state of the task is described by a“scheduling deadline”, and
a “remaining runtime”. These two parameters are initially set to
0;

• When a SCHED_DEADLINE task wakes up (becomes ready for exe-
cution), the scheduler checks if:

remaining runtime runtime
---------------------------------- > ---------
scheduling deadline - current time period

then, if the scheduling deadline is smaller than the current time, or
this condition is verified, the scheduling deadline and the remaining
runtime are re-initialized as

scheduling deadline = current time + deadline remaining
runtime = runtime

otherwise, the scheduling deadline and the remaining runtime are
left unchanged;

• When a SCHED_DEADLINE task executes for an amount of time t,
its remaining runtime is decreased as:

remaining runtime = remaining runtime - t

(technically, the runtime is decreased at every tick, or when the task
is descheduled / preempted);

• When the remaining runtime becomes less or equal than 0, the task
is said to be “throttled”(also known as “depleted”in real-time
literature) and cannot be scheduled until its scheduling deadline.
The “replenishment time”for this task (see next item) is set to be
equal to the current value of the scheduling deadline;

• When the current time is equal to the replenishment time of a throt-
tled task, the scheduling deadline and the remaining runtime are
updated as:

scheduling deadline = scheduling deadline + period
remaining runtime = remaining runtime + runtime

The SCHED_FLAG_DL_OVERRUN flag in sched_attr’s sched_flags field
allows a task to get informed about runtime overruns through the deliv-
ery of SIGXCPU signals.

14 Chapter 4. Deadline Task Scheduling

Linux Scheduler Documentation

4.3.2 2.2 Bandwidth reclaiming

Bandwidth reclaiming for deadline tasks is based on the GRUB (Greedy
Reclamation of Unused Bandwidth) algorithm [15, 16, 17] and it is en-
abled when flag SCHED_FLAG_RECLAIM is set.

The following diagram illustrates the state names for tasks handled by
GRUB:

(d) | Active |

------------->| |
| | Contending |
| ------------
| A |

---------- | |
| | | |
| Inactive | |(b) | (a)
| | | |
---------- | |

A | V
| ------------
| | Active |
--------------| Non |

(c) | Contending |

A task can be in one of the following states:

• ActiveContending: if it is ready for execution (or executing);

• ActiveNonContending: if it just blocked and has not yet surpassed
the 0-lag time;

• Inactive: if it is blocked and has surpassed the 0-lag time.

State transitions:

(a) When a task blocks, it does not become immediately inactive since
its bandwidth cannot be immediately reclaimed without breaking
the real-time guarantees. It therefore enters a transitional state
called ActiveNonContending. The scheduler arms the “inactive
timer”to fire at the 0-lag time, when the task’s bandwidth can
be reclaimed without breaking the real-time guarantees.

The 0-lag time for a task entering the ActiveNonContending state is
computed as:

(runtime * dl_period)
deadline - ---------------------

dl_runtime

where runtime is the remaining runtime, while dl_runtime and
dl_period are the reservation parameters.

(b) If the task wakes up before the inactive timer fires, the task re-enters
the ActiveContending state and the “inactive timer”is canceled.
In addition, if the task wakes up on a different runqueue, then the

4.3. 2. Scheduling algorithm 15

Linux Scheduler Documentation

task’s utilization must be removed from the previous runqueue’s
active utilization and must be added to the new runqueue’s active
utilization. In order to avoid races between a task waking up on a
runqueue while the“inactive timer”is running on a different CPU,
the“dl_non_contending”flag is used to indicate that a task is not on
a runqueue but is active (so, the flag is set when the task blocks and
is cleared when the “inactive timer”fires or when the task wakes
up).

(c) When the “inactive timer”fires, the task enters the Inactive state
and its utilization is removed from the runqueue’s active utilization.

(d) When an inactive task wakes up, it enters the ActiveContending
state and its utilization is added to the active utilization of the run-
queue where it has been enqueued.

For each runqueue, the algorithm GRUB keeps track of two different
bandwidths:

• Active bandwidth (running_bw): this is the sum of the bandwidths
of all tasks in active state (i.e., ActiveContending or ActiveNonCon-
tending);

• Total bandwidth (this_bw): this is the sum of all tasks “belonging”
to the runqueue, including the tasks in Inactive state.

The algorithm reclaims the bandwidth of the tasks in Inactive state. It
does so by decrementing the runtime of the executing task Ti at a pace
equal to

dq = -max{ Ui / Umax, (1 - Uinact - Uextra) } dt

where:

• Ui is the bandwidth of task Ti;

• Umax is the maximum reclaimable utilization (subjected to RT throt-
tling limits);

• Uinact is the (per runqueue) inactive utilization, computed as
(this_bq - running_bw);

• Uextra is the (per runqueue) extra reclaimable utilization (subjected
to RT throttling limits).

Let’s now see a trivial example of two deadline tasks with runtime equal
to 4 and period equal to 8 (i.e., bandwidth equal to 0.5):

A Task T1
|
| |
| |
|-------- |----
| | V
|---|---|---|---|---|---|---|---|--------->t
0 1 2 3 4 5 6 7 8

(continues on next page)

16 Chapter 4. Deadline Task Scheduling

Linux Scheduler Documentation

(continued from previous page)
A Task T2
|
| |

0 1 2 3 4 5 6 7 8

A running_bw
|

1 ----------------- ------
| | |

0.5- -----------------
| |
|---|---|---|---|---|---|---|---|--------->t
0 1 2 3 4 5 6 7 8

- Time t = 0:

Both tasks are ready for execution and therefore in␣
↪→ActiveContending state.
Suppose Task T1 is the first task to start execution.
Since there are no inactive tasks, its runtime is decreased as␣

↪→dq = -1 dt.

- Time t = 2:

Suppose that task T1 blocks
Task T1 therefore enters the ActiveNonContending state. Since␣

↪→its remaining
runtime is equal to 2, its 0-lag time is equal to t = 4.
Task T2 start execution, with runtime still decreased as dq = -

↪→1 dt since
there are no inactive tasks.

- Time t = 4:

This is the 0-lag time for Task T1. Since it didn't woken up in␣
↪→the
meantime, it enters the Inactive state. Its bandwidth is␣

↪→removed from
running_bw.
Task T2 continues its execution. However, its runtime is now␣

↪→decreased as
dq = - 0.5 dt because Uinact = 0.5.
Task T2 therefore reclaims the bandwidth unused by Task T1.

- Time t = 8:

Task T1 wakes up. It enters the ActiveContending state again,␣
↪→and the
running_bw is incremented.

4.3. 2. Scheduling algorithm 17

Linux Scheduler Documentation

4.3.3 2.3 Energy-aware scheduling

When cpufreq’s schedutil governor is selected, SCHED_DEADLINE im-
plements the GRUB-PA [19] algorithm, reducing the CPU operating fre-
quency to the minimum value that still allows to meet the deadlines. This
behavior is currently implemented only for ARM architectures.

A particular care must be taken in case the time needed for changing
frequency is of the same order of magnitude of the reservation period.
In such cases, setting a fixed CPU frequency results in a lower amount
of deadline misses.

4.4 3. Scheduling Real-Time Tasks

Warning: This section contains a (not-thorough) summary
on classical deadline scheduling theory, and how it applies to
SCHED_DEADLINE. The reader can“safely”skip to Section 4 if only
interested in seeing how the scheduling policy can be used. Any-
way, we strongly recommend to come back here and continue reading
(once the urge for testing is satisfied :P) to be sure of fully understand-
ing all technical details.

There are no limitations on what kind of task can exploit this new
scheduling discipline, even if it must be said that it is particularly suited
for periodic or sporadic real-time tasks that need guarantees on their
timing behavior, e.g., multimedia, streaming, control applications, etc.

4.4.1 3.1 Definitions

A typical real-time task is composed of a repetition of computation
phases (task instances, or jobs) which are activated on a periodic or
sporadic fashion. Each job J_j (where J_j is the j^th job of the task)
is characterized by an arrival time r_j (the time when the job starts),
an amount of computation time c_j needed to finish the job, and a job
absolute deadline d_j, which is the time within which the job should be
finished. The maximum execution time max{c_j} is called “Worst Case
Execution Time”(WCET) for the task. A real-time task can be periodic
with period P if r_{j+1} = r_j + P, or sporadic with minimum inter-arrival
time P is r_{j+1} >= r_j + P. Finally, d_j = r_j + D, where D is the task’
s relative deadline. Summing up, a real-time task can be described as

Task = (WCET, D, P)

The utilization of a real-time task is defined as the ratio between its
WCET and its period (or minimum inter-arrival time), and represents
the fraction of CPU time needed to execute the task.

If the total utilization U=sum(WCET_i/P_i) is larger thanM (withM equal
to the number of CPUs), then the scheduler is unable to respect all the

18 Chapter 4. Deadline Task Scheduling

Linux Scheduler Documentation

deadlines. Note that total utilization is defined as the sum of the uti-
lizations WCET_i/P_i over all the real-time tasks in the system. When
considering multiple real-time tasks, the parameters of the i-th task are
indicated with the“_i”suffix. Moreover, if the total utilization is larger
than M, then we risk starving non- real-time tasks by real-time tasks.
If, instead, the total utilization is smaller than M, then non real-time
tasks will not be starved and the system might be able to respect all the
deadlines. As a matter of fact, in this case it is possible to provide an
upper bound for tardiness (defined as the maximum between 0 and the
difference between the finishing time of a job and its absolute deadline).
More precisely, it can be proven that using a global EDF scheduler the
maximum tardiness of each task is smaller or equal than

((M − 1)・WCET_max − WCET_min)/(M − (M − 2)・U_max) +
WCET_max

where WCET_max = max{WCET_i} is the maximum WCET,
WCET_min=min{WCET_i} is the minimum WCET, and U_max =
max{WCET_i/P_i} is the maximum utilization[12].

4.4.2 3.2 Schedulability Analysis for Uniprocessor Systems

If M=1 (uniprocessor system), or in case of partitioned scheduling (each
real-time task is statically assigned to one and only one CPU), it is pos-
sible to formally check if all the deadlines are respected. If D_i = P_i
for all tasks, then EDF is able to respect all the deadlines of all the tasks
executing on a CPU if and only if the total utilization of the tasks running
on such a CPU is smaller or equal than 1. If D_i != P_i for some task, then
it is possible to define the density of a task as WCET_i/min{D_i,P_i}, and
EDF is able to respect all the deadlines of all the tasks running on a CPU
if the sum of the densities of the tasks running on such a CPU is smaller
or equal than 1:

sum(WCET_i / min{D_i, P_i}) <= 1

It is important to notice that this condition is only sufficient,
and not necessary: there are task sets that are schedulable, but
do not respect the condition. For example, consider the task
set {Task_1,Task_2} composed by Task_1=(50ms,50ms,100ms) and
Task_2=(10ms,100ms,100ms). EDF is clearly able to schedule the two
tasks without missing any deadline (Task_1 is scheduled as soon as it
is released, and finishes just in time to respect its deadline; Task_2 is
scheduled immediately after Task_1, hence its response time cannot be
larger than 50ms + 10ms = 60ms) even if

50 / min{50,100} + 10 / min{100, 100} = 50 / 50 + 10 / 100 =
1.1

Of course it is possible to test the exact schedulability of tasks with D_i
!= P_i (checking a condition that is both sufficient and necessary), but
this cannot be done by comparing the total utilization or density with
a constant. Instead, the so called “processor demand”approach can
be used, computing the total amount of CPU time h(t) needed by all the
tasks to respect all of their deadlines in a time interval of size t, and

4.4. 3. Scheduling Real-Time Tasks 19

Linux Scheduler Documentation

comparing such a time with the interval size t. If h(t) is smaller than t
(that is, the amount of time needed by the tasks in a time interval of size
t is smaller than the size of the interval) for all the possible values of t,
then EDF is able to schedule the tasks respecting all of their deadlines.
Since performing this check for all possible values of t is impossible, it
has been proven[4,5,6] that it is sufficient to perform the test for values
of t between 0 and a maximum value L. The cited papers contain all of
the mathematical details and explain how to compute h(t) and L. In any
case, this kind of analysis is too complex as well as too time-consuming
to be performed on-line. Hence, as explained in Section 4 Linux uses an
admission test based on the tasks’utilizations.

4.4.3 3.3 Schedulability Analysis for Multiprocessor Systems

On multiprocessor systems with global EDF scheduling (non partitioned
systems), a sufficient test for schedulability can not be based on the uti-
lizations or densities: it can be shown that even if D_i = P_i task sets
with utilizations slightly larger than 1 can miss deadlines regardless of
the number of CPUs.

Consider a set {Task_1,⋯Task_{M+1}} ofM+1 tasks on a systemwithM
CPUs, with the first task Task_1=(P,P,P) having period, relative deadline
and WCET equal to P. The remaining M tasks Task_i=(e,P-1,P-1) have an
arbitrarily small worst case execution time (indicated as“e”here) and
a period smaller than the one of the first task. Hence, if all the tasks
activate at the same time t, global EDF schedules these M tasks first
(because their absolute deadlines are equal to t + P - 1, hence they are
smaller than the absolute deadline of Task_1, which is t + P). As a result,
Task_1 can be scheduled only at time t + e, and will finish at time t + e
+ P, after its absolute deadline. The total utilization of the task set is U
= M・e / (P - 1) + P / P = M・e / (P - 1) + 1, and for small values of e this
can become very close to 1. This is known as“Dhall’s effect”[7]. Note:
the example in the original paper by Dhall has been slightly simplified
here (for example, Dhall more correctly computed lim_{e->0}U).

More complex schedulability tests for global EDF have been developed in
real-time literature[8,9], but they are not based on a simple comparison
between total utilization (or density) and a fixed constant. If all tasks
have D_i = P_i, a sufficient schedulability condition can be expressed in
a simple way:

sum(WCET_i / P_i) <= M - (M - 1) ・U_max
where U_max = max{WCET_i / P_i}[10]. Notice that for U_max = 1, M -
(M - 1)・U_max becomes M - M + 1 = 1 and this schedulability condition
just confirms the Dhall’s effect. A more complete survey of the literature
about schedulability tests for multi-processor real-time scheduling can
be found in [11].

As seen, enforcing that the total utilization is smaller than M does not
guarantee that global EDF schedules the tasks withoutmissing any dead-
line (in other words, global EDF is not an optimal scheduling algorithm).
However, a total utilization smaller than M is enough to guarantee that

20 Chapter 4. Deadline Task Scheduling

Linux Scheduler Documentation

non real-time tasks are not starved and that the tardiness of real-time
tasks has an upper bound[12] (as previously noted). Different bounds
on the maximum tardiness experienced by real-time tasks have been de-
veloped in various papers[13,14], but the theoretical result that is im-
portant for SCHED_DEADLINE is that if the total utilization is smaller
or equal than M then the response times of the tasks are limited.

4.4.4 3.4 Relationship with SCHED_DEADLINE Parameters

Finally, it is important to understand the relationship between the
SCHED_DEADLINE scheduling parameters described in Section 2 (run-
time, deadline and period) and the real-time task parameters (WCET, D,
P) described in this section. Note that the tasks’temporal constraints
are represented by its absolute deadlines d_j = r_j + D described above,
while SCHED_DEADLINE schedules the tasks according to scheduling
deadlines (see Section 2). If an admission test is used to guarantee that
the scheduling deadlines are respected, then SCHED_DEADLINE can be
used to schedule real-time tasks guaranteeing that all the jobs’deadlines
of a task are respected. In order to do this, a task must be scheduled by
setting:

• runtime >= WCET

• deadline = D

• period <= P

IOW, if runtime >= WCET and if period is <= P, then the scheduling
deadlines and the absolute deadlines (d_j) coincide, so a proper admis-
sion control allows to respect the jobs’absolute deadlines for this task
(this is what is called“hard schedulability property”and is an extension
of Lemma 1 of [2]). Notice that if runtime > deadline the admission con-
trol will surely reject this task, as it is not possible to respect its temporal
constraints.

References:

1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Asso-
ciation for Computing Machinery, 20(1), 1973.

2 - L. Abeni , G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. Proceedings of the 19th IEEE Real-time
Systems Symposium, 1998. http://retis.sssup.it/~giorgio/
paps/1998/rtss98-cbs.pdf

3 - L. Abeni. Server Mechanisms for Multimedia Applications. ReTiS Lab
Technical Report. http://disi.unitn.it/~abeni/tr-98-01.pdf

4 - J. Y. Leung and M.L. Merril. A Note on Preemptive Scheduling of
Periodic, Real-Time Tasks. Information Processing Letters,
vol. 11, no. 3, pp. 115-118, 1980.

5 - S. K. Baruah, A. K. Mok and L. E. Rosier. Preemptively Scheduling
Hard-Real-Time Sporadic Tasks on One Processor. Pro-

4.4. 3. Scheduling Real-Time Tasks 21

http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
http://disi.unitn.it/~abeni/tr-98-01.pdf

Linux Scheduler Documentation

ceedings of the 11th IEEE Real-time Systems Symposium,
1990.

6 - S. K. Baruah, L. E. Rosier and R. R. Howell. Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic Real-
Time tasks on One Processor. Real-Time Systems Journal,
vol. 4, no. 2, pp 301-324, 1990.

7 - S. J. Dhall and C. L. Liu. On a real-time scheduling problem. Operations
research, vol. 26, no. 1, pp 127-140, 1978.

8 - T. Baker. Multiprocessor EDF and Deadline Monotonic Schedulability
Analysis. Proceedings of the 24th IEEE Real-Time Systems
Symposium, 2003.

9 - T. Baker. An Analysis of EDF Schedulability on a Multiprocessor.
IEEE Transactions on Parallel and Distributed Systems, vol.
16, no. 8, pp 760-768, 2005.

10 - J. Goossens, S. Funk and S. Baruah, Priority-Driven Scheduling of
Periodic Task Systems on Multiprocessors. Real-Time Sys-
tems Journal, vol. 25, no. 2–3, pp. 187–205, 2003.

11 - R. Davis and A. Burns. A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems. ACM Computing Surveys, vol.
43, no. 4, 2011. http://www-users.cs.york.ac.uk/~robdavis/
papers/MPSurveyv5.0.pdf

12 - U. C. Devi and J. H. Anderson. Tardiness Bounds under Global EDF
Scheduling on a Multiprocessor. Real-Time Systems Jour-
nal, vol. 32, no. 2, pp 133-189, 2008.

13 - P. Valente and G. Lipari. An Upper Bound to the Lateness of Soft
Real-Time Tasks Scheduled by EDF on Multiprocessors.
Proceedings of the 26th IEEE Real-Time Systems Sympo-
sium, 2005.

14 - J. Erickson, U. Devi and S. Baruah. Improved tardiness bounds for
Global EDF. Proceedings of the 22nd Euromicro Conference
on Real-Time Systems, 2010.

15 - G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in
constant-bandwidth servers, 12th IEEE Euromicro Confer-
ence on Real-Time Systems, 2000.

16 - L. Abeni, J. Lelli, C. Scordino, L. Palopoli, Greedy CPU reclaiming for
SCHED DEADLINE. In Proceedings of the Real-Time Linux
Workshop (RTLWS), Dusseldorf, Germany, 2014.

17 - L. Abeni, G. Lipari, A. Parri, Y. Sun, Multicore CPU reclaiming: parallel
or sequential?. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, 2016.

18 - J. Lelli, C. Scordino, L. Abeni, D. Faggioli, Deadline scheduling in the
Linux kernel, Software: Practice and Experience, 46(6):
821-839, June 2016.

22 Chapter 4. Deadline Task Scheduling

http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf

Linux Scheduler Documentation

19 - C. Scordino, L. Abeni, J. Lelli, Energy-Aware Real-Time Scheduling in
the Linux Kernel, 33rd ACM/SIGAPP SymposiumOn Applied
Computing (SAC 2018), Pau, France, April 2018.

4.5 4. Bandwidth management

As previously mentioned, in order for -deadline scheduling to be effective
and useful (that is, to be able to provide “runtime”time units within
“deadline”), it is important to have some method to keep the allocation
of the available fractions of CPU time to the various tasks under control.
This is usually called “admission control”and if it is not performed,
then no guarantee can be given on the actual scheduling of the -deadline
tasks.

As already stated in Section 3, a necessary condition to be respected to
correctly schedule a set of real-time tasks is that the total utilization is
smaller than M. When talking about -deadline tasks, this requires that
the sum of the ratio between runtime and period for all tasks is smaller
than M. Notice that the ratio runtime/period is equivalent to the utiliza-
tion of a “traditional”real-time task, and is also often referred to as
“bandwidth”. The interface used to control the CPU bandwidth that
can be allocated to -deadline tasks is similar to the one already used
for -rt tasks with real-time group scheduling (a.k.a. RT-throttling - see
Documentation/scheduler/sched-rt-group.rst), and is based on readable/
writable control files located in procfs (for system wide settings). No-
tice that per-group settings (controlled through cgroupfs) are still not
defined for -deadline tasks, because more discussion is needed in order
to figure out how we want to manage SCHED_DEADLINE bandwidth at
the task group level.

A main difference between deadline bandwidth management and RT-
throttling is that -deadline tasks have bandwidth on their own (while
-rt ones don’t!), and thus we don’t need a higher level throttling mech-
anism to enforce the desired bandwidth. In other words, this means
that interface parameters are only used at admission control time (i.e.,
when the user calls sched_setattr()). Scheduling is then performed con-
sidering actual tasks’parameters, so that CPU bandwidth is allocated
to SCHED_DEADLINE tasks respecting their needs in terms of gran-
ularity. Therefore, using this simple interface we can put a cap on
total utilization of -deadline tasks (i.e., Sum (runtime_i / period_i) <
global_dl_utilization_cap).

4.5. 4. Bandwidth management 23

Linux Scheduler Documentation

4.5.1 4.1 System wide settings

The system wide settings are configured under the /proc virtual file sys-
tem.

For now the -rt knobs are used for -deadline admission control and the
-deadline runtime is accounted against the -rt runtime. We realize that
this isn’t entirely desirable; however, it is better to have a small interface
for now, and be able to change it easily later. The ideal situation (see 5.)
is to run -rt tasks from a -deadline server; in which case the -rt bandwidth
is a direct subset of dl_bw.

This means that, for a root_domain comprising M CPUs, -deadline tasks
can be created while the sum of their bandwidths stays below:

M * (sched_rt_runtime_us / sched_rt_period_us)

It is also possible to disable this bandwidth management logic, and be
thus free of oversubscribing the system up to any arbitrary level. This is
done by writing -1 in /proc/sys/kernel/sched_rt_runtime_us.

4.5.2 4.2 Task interface

Specifying a periodic/sporadic task that executes for a given amount of
runtime at each instance, and that is scheduled according to the urgency
of its own timing constraints needs, in general, a way of declaring:

• a (maximum/typical) instance execution time,

• a minimum interval between consecutive instances,

• a time constraint by which each instance must be completed.

Therefore:

• a new struct sched_attr, containing all the necessary fields is pro-
vided;

• the new scheduling related syscalls that manipulate it, i.e.,
sched_setattr() and sched_getattr() are implemented.

For debugging purposes, the leftover runtime and absolute deadline of
a SCHED_DEADLINE task can be retrieved through /proc/<pid>/sched
(entries dl.runtime and dl.deadline, both values in ns). A programmatic
way to retrieve these values from production code is under discussion.

4.5.3 4.3 Default behavior

The default value for SCHED_DEADLINE bandwidth is to have
rt_runtime equal to 950000. With rt_period equal to 1000000, by de-
fault, it means that -deadline tasks can use atmost 95%, multiplied by the
number of CPUs that compose the root_domain, for each root_domain.
This means that non -deadline tasks will receive at least 5% of the CPU
time, and that -deadline tasks will receive their runtime with a guaran-
teed worst-case delay respect to the“deadline”parameter. If“deadline”

24 Chapter 4. Deadline Task Scheduling

Linux Scheduler Documentation

=“period”and the cpuset mechanism is used to implement partitioned
scheduling (see Section 5), then this simple setting of the bandwidth
management is able to deterministically guarantee that -deadline tasks
will receive their runtime in a period.

Finally, notice that in order not to jeopardize the admission control a
-deadline task cannot fork.

4.5.4 4.4 Behavior of sched_yield()

When a SCHED_DEADLINE task calls sched_yield(), it gives up its re-
maining runtime and is immediately throttled, until the next period,
when its runtime will be replenished (a special flag dl_yielded is set and
used to handle correctly throttling and runtime replenishment after a
call to sched_yield()).

This behavior of sched_yield() allows the task to wake-up exactly at the
beginning of the next period. Also, this may be useful in the future with
bandwidth reclaiming mechanisms, where sched_yield() will make the
leftoever runtime available for reclamation by other SCHED_DEADLINE
tasks.

4.6 5. Tasks CPU affinity

-deadline tasks cannot have an affinity mask smaller that the entire
root_domain they are created on. However, affinities can be spec-
ified through the cpuset facility (Documentation/admin-guide/cgroup-
v1/cpusets.rst).

4.6.1 5.1 SCHED_DEADLINE and cpusets HOWTO

An example of a simple configuration (pin a -deadline task to CPU0) fol-
lows (rt-app is used to create a -deadline task):

mkdir /dev/cpuset
mount -t cgroup -o cpuset cpuset /dev/cpuset
cd /dev/cpuset
mkdir cpu0
echo 0 > cpu0/cpuset.cpus
echo 0 > cpu0/cpuset.mems
echo 1 > cpuset.cpu_exclusive
echo 0 > cpuset.sched_load_balance
echo 1 > cpu0/cpuset.cpu_exclusive
echo 1 > cpu0/cpuset.mem_exclusive
echo $$ > cpu0/tasks
rt-app -t 100000:10000:d:0 -D5 # it is now actually superfluous␣
↪→to specify

task affinity

4.6. 5. Tasks CPU affinity 25

Linux Scheduler Documentation

4.7 6. Future plans

Still missing:

• programmatic way to retrieve current runtime and absolute dead-
line

• refinements to deadline inheritance, especially regarding the possi-
bility of retaining bandwidth isolation among non-interacting tasks.
This is being studied from both theoretical and practical points of
view, and hopefully we should be able to produce some demonstra-
tive code soon;

• (c)group based bandwidth management, and maybe scheduling;

• access control for non-root users (and related security concerns to
address), which is the best way to allow unprivileged use of the
mechanisms and how to prevent non-root users“cheat”the system?

As already discussed, we are planning also to merge this work with the
EDF throttling patches [https://lkml.org/lkml/2010/2/23/239] but we still
are in the preliminary phases of the merge and we really seek feedback
that would help us decide on the direction it should take.

4.8 Appendix A. Test suite

The SCHED_DEADLINE policy can be easily tested using two applica-
tions that are part of a wider Linux Scheduler validation suite. The suite
is available as a GitHub repository: https://github.com/scheduler-tools.

The first testing application is called rt-app and can be used to
start multiple threads with specific parameters. rt-app supports
SCHED_{OTHER,FIFO,RR,DEADLINE} scheduling policies and their re-
lated parameters (e.g., niceness, priority, runtime/deadline/period). rt-
app is a valuable tool, as it can be used to synthetically recreate cer-
tain workloads (maybe mimicking real use-cases) and evaluate how the
scheduler behaves under such workloads. In this way, results are easily
reproducible. rt-app is available at: https://github.com/scheduler-tools/
rt-app.

Thread parameters can be specified from the command line, with some-
thing like this:

rt-app -t 100000:10000:d -t 150000:20000:f:10 -D5

The above creates 2 threads. The first one, scheduled by
SCHED_DEADLINE, executes for 10ms every 100ms. The second one,
scheduled at SCHED_FIFO priority 10, executes for 20ms every 150ms.
The test will run for a total of 5 seconds.

More interestingly, configurations can be described with a json file that
can be passed as input to rt-app with something like this:

26 Chapter 4. Deadline Task Scheduling

https://lkml.org/lkml/2010/2/23/239
https://github.com/scheduler-tools
https://github.com/scheduler-tools/rt-app
https://github.com/scheduler-tools/rt-app

Linux Scheduler Documentation

rt-app my_config.json

The parameters that can be specified with the second method are a su-
perset of the command line options. Please refer to rt-app documenta-
tion for more details (<rt-app-sources>/doc/*.json).

The second testing application is a modification of schedtool, called
schedtool-dl, which can be used to setup SCHED_DEADLINE param-
eters for a certain pid/application. schedtool-dl is available at: https:
//github.com/scheduler-tools/schedtool-dl.git.

The usage is straightforward:

schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app

With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE
reservation of 10ms every 100ms (note that parameters are expressed
in microseconds). You can also use schedtool to create a reservation for
an already running application, given that you know its pid:

schedtool -E -t 10000000:100000000 my_app_pid

4.9 Appendix B. Minimal main()

We provide in what follows a simple (ugly) self-contained code snippet
showing how SCHED_DEADLINE reservations can be created by a real-
time application developer:

#define _GNU_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <linux/unistd.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <sys/syscall.h>
#include <pthread.h>

#define gettid() syscall(__NR_gettid)

#define SCHED_DEADLINE 6

/* XXX use the proper syscall numbers */
#ifdef __x86_64__
#define __NR_sched_setattr 314
#define __NR_sched_getattr 315
#endif

#ifdef __i386__
#define __NR_sched_setattr 351
#define __NR_sched_getattr 352

(continues on next page)

4.9. Appendix B. Minimal main() 27

https://github.com/scheduler-tools/schedtool-dl.git
https://github.com/scheduler-tools/schedtool-dl.git

Linux Scheduler Documentation

(continued from previous page)
#endif

#ifdef __arm__
#define __NR_sched_setattr 380
#define __NR_sched_getattr 381
#endif

static volatile int done;

struct sched_attr {
__u32 size;

__u32 sched_policy;
__u64 sched_flags;

/* SCHED_NORMAL, SCHED_BATCH */
__s32 sched_nice;

/* SCHED_FIFO, SCHED_RR */
__u32 sched_priority;

/* SCHED_DEADLINE (nsec) */
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;

};

int sched_setattr(pid_t pid,
const struct sched_attr *attr,
unsigned int flags)

{
return syscall(__NR_sched_setattr, pid, attr, flags);

}

int sched_getattr(pid_t pid,
struct sched_attr *attr,
unsigned int size,
unsigned int flags)

{
return syscall(__NR_sched_getattr, pid, attr, size, flags);

}

void *run_deadline(void *data)
{

struct sched_attr attr;
int x = 0;
int ret;
unsigned int flags = 0;

printf("deadline thread started [%ld]\n", gettid());

attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;

(continues on next page)

28 Chapter 4. Deadline Task Scheduling

Linux Scheduler Documentation

(continued from previous page)
/* This creates a 10ms/30ms reservation */
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 10 * 1000 * 1000;
attr.sched_period = attr.sched_deadline = 30 * 1000 * 1000;

ret = sched_setattr(0, &attr, flags);
if (ret < 0) {

done = 0;
perror("sched_setattr");
exit(-1);

}

while (!done) {
x++;

}

printf("deadline thread dies [%ld]\n", gettid());
return NULL;

}

int main (int argc, char **argv)
{

pthread_t thread;

printf("main thread [%ld]\n", gettid());

pthread_create(&thread, NULL, run_deadline, NULL);

sleep(10);

done = 1;
pthread_join(thread, NULL);

printf("main dies [%ld]\n", gettid());
return 0;

}

4.9. Appendix B. Minimal main() 29

Linux Scheduler Documentation

30 Chapter 4. Deadline Task Scheduling

CHAPTER

FIVE

CFS SCHEDULER

5.1 1. OVERVIEW

CFS stands for “Completely Fair Scheduler,”and is the new “desktop”process
scheduler implemented by Ingo Molnar and merged in Linux 2.6.23. It is the re-
placement for the previous vanilla scheduler’s SCHED_OTHER interactivity code.
80% of CFS’s design can be summed up in a single sentence: CFS basically models
an “ideal, precise multi-tasking CPU”on real hardware.
“Ideal multi-tasking CPU”is a (non-existent :-)) CPU that has 100% physical
power and which can run each task at precise equal speed, in parallel, each at
1/nr_running speed. For example: if there are 2 tasks running, then it runs each
at 50% physical power —i.e., actually in parallel.
On real hardware, we can run only a single task at once, so we have to introduce
the concept of “virtual runtime.”The virtual runtime of a task specifies when
its next timeslice would start execution on the ideal multi-tasking CPU described
above. In practice, the virtual runtime of a task is its actual runtime normalized
to the total number of running tasks.

5.2 2. FEW IMPLEMENTATION DETAILS

In CFS the virtual runtime is expressed and tracked via the per-task p-
>se.vruntime (nanosec-unit) value. This way, it’s possible to accurately timestamp
and measure the “expected CPU time”a task should have gotten.
[small detail: on “ideal”hardware, at any time all tasks would have the same

p->se.vruntime value —i.e., tasks would execute simultaneously and no task
would ever get “out of balance”from the “ideal”share of CPU time.]

CFS’s task picking logic is based on this p->se.vruntime value and it is thus very
simple: it always tries to run the task with the smallest p->se.vruntime value (i.e.,
the task which executed least so far). CFS always tries to split up CPU time be-
tween runnable tasks as close to “ideal multitasking hardware”as possible.
Most of the rest of CFS’s design just falls out of this really simple concept, with a
few add-on embellishments like nice levels, multiprocessing and various algorithm
variants to recognize sleepers.

31

Linux Scheduler Documentation

5.3 3. THE RBTREE

CFS’s design is quite radical: it does not use the old data structures for the
runqueues, but it uses a time-ordered rbtree to build a “timeline”of future task
execution, and thus has no “array switch”artifacts (by which both the previous
vanilla scheduler and RSDL/SD are affected).

CFS also maintains the rq->cfs.min_vruntime value, which is a monotonic increas-
ing value tracking the smallest vruntime among all tasks in the runqueue. The to-
tal amount of work done by the system is tracked using min_vruntime; that value
is used to place newly activated entities on the left side of the tree as much as
possible.

The total number of running tasks in the runqueue is accounted through the rq-
>cfs.load value, which is the sum of the weights of the tasks queued on the run-
queue.

CFS maintains a time-ordered rbtree, where all runnable tasks are sorted by the
p->se.vruntime key. CFS picks the“leftmost”task from this tree and sticks to it.
As the system progresses forwards, the executed tasks are put into the tree more
and more to the right —slowly but surely giving a chance for every task to become
the“leftmost task”and thus get on the CPU within a deterministic amount of time.
Summing up, CFS works like this: it runs a task a bit, and when the task schedules
(or a scheduler tick happens) the task’s CPU usage is“accounted for”: the (small)
time it just spent using the physical CPU is added to p->se.vruntime. Once p-
>se.vruntime gets high enough so that another task becomes the“leftmost task”of
the time-ordered rbtree it maintains (plus a small amount of“granularity”distance
relative to the leftmost task so that we do not over-schedule tasks and trash the
cache), then the new leftmost task is picked and the current task is preempted.

5.4 4. SOME FEATURES OF CFS

CFS uses nanosecond granularity accounting and does not rely on any jiffies or
other HZ detail. Thus the CFS scheduler has no notion of“timeslices”in the way
the previous scheduler had, and has no heuristics whatsoever. There is only one
central tunable (you have to switch on CONFIG_SCHED_DEBUG):

/proc/sys/kernel/sched_min_granularity_ns

which can be used to tune the scheduler from “desktop”(i.e., low latencies) to
“server”(i.e., good batching) workloads. It defaults to a setting suitable for desktop
workloads. SCHED_BATCH is handled by the CFS scheduler module too.

Due to its design, the CFS scheduler is not prone to any of the“attacks”that exist
today against the heuristics of the stock scheduler: fiftyp.c, thud.c, chew.c, ring-
test.c, massive_intr.c all work fine and do not impact interactivity and produce the
expected behavior.

The CFS scheduler has a much stronger handling of nice levels and
SCHED_BATCH than the previous vanilla scheduler: both types of workloads are
isolated much more aggressively.

32 Chapter 5. CFS Scheduler

Linux Scheduler Documentation

SMP load-balancing has been reworked/sanitized: the runqueue-walking assump-
tions are gone from the load-balancing code now, and iterators of the scheduling
modules are used. The balancing code got quite a bit simpler as a result.

5.5 5. Scheduling policies

CFS implements three scheduling policies:

• SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling pol-
icy that is used for regular tasks.

• SCHED_BATCH: Does not preempt nearly as often as regular tasks would,
thereby allowing tasks to run longer and make better use of caches but at the
cost of interactivity. This is well suited for batch jobs.

• SCHED_IDLE: This is even weaker than nice 19, but its not a true idle timer
scheduler in order to avoid to get into priority inversion problems which
would deadlock the machine.

SCHED_FIFO/_RR are implemented in sched/rt.c and are as specified by POSIX.

The command chrt from util-linux-ng 2.13.1.1 can set all of these except
SCHED_IDLE.

5.6 6. SCHEDULING CLASSES

The new CFS scheduler has been designed in such a way to introduce“Scheduling
Classes,”an extensible hierarchy of scheduler modules. These modules encapsu-
late scheduling policy details and are handled by the scheduler core without the
core code assuming too much about them.

sched/fair.c implements the CFS scheduler described above.

sched/rt.c implements SCHED_FIFO and SCHED_RR semantics, in a simpler way
than the previous vanilla scheduler did. It uses 100 runqueues (for all 100 RT
priority levels, instead of 140 in the previous scheduler) and it needs no expired
array.

Scheduling classes are implemented through the sched_class structure, which
contains hooks to functions that must be called whenever an interesting event
occurs.

This is the (partial) list of the hooks:

• enqueue_task(⋯)
Called when a task enters a runnable state. It puts the scheduling entity
(task) into the red-black tree and increments the nr_running variable.

• dequeue_task(⋯)
When a task is no longer runnable, this function is called to keep the cor-
responding scheduling entity out of the red-black tree. It decrements the
nr_running variable.

5.5. 5. Scheduling policies 33

Linux Scheduler Documentation

• yield_task(⋯)
This function is basically just a dequeue followed by an enqueue, unless the
compat_yield sysctl is turned on; in that case, it places the scheduling entity
at the right-most end of the red-black tree.

• check_preempt_curr(⋯)
This function checks if a task that entered the runnable state should preempt
the currently running task.

• pick_next_task(⋯)
This function chooses the most appropriate task eligible to run next.

• set_curr_task(⋯)
This function is called when a task changes its scheduling class or changes
its task group.

• task_tick(⋯)
This function is mostly called from time tick functions; it might lead to process
switch. This drives the running preemption.

5.7 7. GROUP SCHEDULER EXTENSIONS TO CFS

Normally, the scheduler operates on individual tasks and strives to provide fair
CPU time to each task. Sometimes, it may be desirable to group tasks and provide
fair CPU time to each such task group. For example, it may be desirable to first
provide fair CPU time to each user on the system and then to each task belonging
to a user.

CONFIG_CGROUP_SCHED strives to achieve exactly that. It lets tasks to be
grouped and divides CPU time fairly among such groups.

CONFIG_RT_GROUP_SCHED permits to group real-time (i.e., SCHED_FIFO and
SCHED_RR) tasks.

CONFIG_FAIR_GROUP_SCHED permits to group CFS (i.e., SCHED_NORMAL and
SCHED_BATCH) tasks.

These options need CONFIG_CGROUPS to be defined, and let the ad-
ministrator create arbitrary groups of tasks, using the“cgroup”pseudo
filesystem. See Documentation/admin-guide/cgroup-v1/cgroups.rst for
more information about this filesystem.

When CONFIG_FAIR_GROUP_SCHED is defined, a “cpu.shares”file is created
for each group created using the pseudo filesystem. See example steps below
to create task groups and modify their CPU share using the “cgroups”pseudo
filesystem:

mount -t tmpfs cgroup_root /sys/fs/cgroup
mkdir /sys/fs/cgroup/cpu
mount -t cgroup -ocpu none /sys/fs/cgroup/cpu
cd /sys/fs/cgroup/cpu

(continues on next page)

34 Chapter 5. CFS Scheduler

Linux Scheduler Documentation

(continued from previous page)
mkdir multimedia # create "multimedia" group of tasks
mkdir browser # create "browser" group of tasks

#Configure the multimedia group to receive twice the CPU bandwidth
#that of browser group

echo 2048 > multimedia/cpu.shares
echo 1024 > browser/cpu.shares

firefox & # Launch firefox and move it to "browser" group
echo <firefox_pid> > browser/tasks

#Launch gmplayer (or your favourite movie player)
echo <movie_player_pid> > multimedia/tasks

5.7. 7. GROUP SCHEDULER EXTENSIONS TO CFS 35

Linux Scheduler Documentation

36 Chapter 5. CFS Scheduler

CHAPTER

SIX

SCHEDULER DOMAINS

Each CPU has a “base”scheduling domain (struct sched_domain). The domain
hierarchy is built from these base domains via the ->parent pointer. ->parent
MUST be NULL terminated, and domain structures should be per-CPU as they are
locklessly updated.

Each scheduling domain spans a number of CPUs (stored in the ->span field). A
domain’s span MUST be a superset of it child’s span (this restriction could be
relaxed if the need arises), and a base domain for CPU i MUST span at least i.
The top domain for each CPU will generally span all CPUs in the system although
strictly it doesn’t have to, but this could lead to a case where some CPUs will
never be given tasks to run unless the CPUs allowed mask is explicitly set. A
sched domain’s span means “balance process load among these CPUs”.
Each scheduling domain must have one or more CPU groups (struct sched_group)
which are organised as a circular one way linked list from the ->groups pointer.
The union of cpumasks of these groups MUST be the same as the domain’s span.
The group pointed to by the ->groups pointer MUST contain the CPU to which the
domain belongs. Groups may be shared among CPUs as they contain read only
data after they have been set up. The intersection of cpumasks from any two of
these groups may be non empty. If this is the case the SD_OVERLAP flag is set on
the corresponding scheduling domain and its groups may not be shared between
CPUs.

Balancing within a sched domain occurs between groups. That is, each group is
treated as one entity. The load of a group is defined as the sum of the load of each
of its member CPUs, and only when the load of a group becomes out of balance
are tasks moved between groups.

In kernel/sched/core.c, trigger_load_balance() is run periodically on each CPU
through scheduler_tick(). It raises a softirq after the next regularly scheduled re-
balancing event for the current runqueue has arrived. The actual load balancing
workhorse, run_rebalance_domains()->rebalance_domains(), is then run in softirq
context (SCHED_SOFTIRQ).

The latter function takes two arguments: the current CPU and whether it was idle
at the time the scheduler_tick() happened and iterates over all sched domains our
CPU is on, starting from its base domain and going up the ->parent chain. While
doing that, it checks to see if the current domain has exhausted its rebalance
interval. If so, it runs load_balance() on that domain. It then checks the parent
sched_domain (if it exists), and the parent of the parent and so forth.

Initially, load_balance() finds the busiest group in the current sched domain. If it

37

Linux Scheduler Documentation

succeeds, it looks for the busiest runqueue of all the CPUs’runqueues in that group.
If it manages to find such a runqueue, it locks both our initial CPU’s runqueue
and the newly found busiest one and starts moving tasks from it to our runqueue.
The exact number of tasks amounts to an imbalance previously computed while
iterating over this sched domain’s groups.

6.1 Implementing sched domains

The“base”domain will“span”the first level of the hierarchy. In the case of SMT,
you’ll span all siblings of the physical CPU, with each group being a single virtual
CPU.

In SMP, the parent of the base domain will span all physical CPUs in the node.
Each group being a single physical CPU. Then with NUMA, the parent of the SMP
domain will span the entire machine, with each group having the cpumask of a
node. Or, you could do multi-level NUMA or Opteron, for example, might have
just one domain covering its one NUMA level.

The implementor should read comments in include/linux/sched.h: struct
sched_domain fields, SD_FLAG_*, SD_*_INIT to get an idea of the specifics and
what to tune.

Architectures may retain the regular override the default SD_*_INIT flags while
using the generic domain builder in kernel/sched/core.c if they wish to retain the
traditional SMT->SMP->NUMA topology (or some subset of that). This can be
done by #define’ing ARCH_HASH_SCHED_TUNE.
Alternatively, the architecture may completely override the generic domain
builder by #define’ing ARCH_HASH_SCHED_DOMAIN, and exporting your
arch_init_sched_domains function. This function will attach domains to all CPUs
using cpu_attach_domain.

The sched-domains debugging infrastructure can be enabled by enabling CON-
FIG_SCHED_DEBUG. This enables an error checking parse of the sched domains
which should catch most possible errors (described above). It also prints out the
domain structure in a visual format.

38 Chapter 6. Scheduler Domains

CHAPTER

SEVEN

ENERGY AWARE SCHEDULING

7.1 1. Introduction

Energy Aware Scheduling (or EAS) gives the scheduler the ability to predict the
impact of its decisions on the energy consumed by CPUs. EAS relies on an Energy
Model (EM) of the CPUs to select an energy efficient CPU for each task, with a
minimal impact on throughput. This document aims at providing an introduction
on how EAS works, what are the main design decisions behind it, and details what
is needed to get it to run.

Before going any further, please note that at the time of writing:

/!\ EAS does not support platforms with symmetric CPU topologies /!\

EAS operates only on heterogeneous CPU topologies (such as Arm big.LITTLE)
because this is where the potential for saving energy through scheduling is the
highest.

The actual EM used by EAS is _not_ maintained by the scheduler, but by a dedi-
cated framework. For details about this framework and what it provides, please
refer to its documentation (see Documentation/power/energy-model.rst).

7.2 2. Background and Terminology

To make it clear from the start:
• energy = [joule] (resource like a battery on powered devices)

• power = energy/time = [joule/second] = [watt]

The goal of EAS is to minimize energy, while still getting the job done. That is, we
want to maximize:

performance [inst/s]

power [W]

which is equivalent to minimizing:

energy [J]

instruction

39

Linux Scheduler Documentation

while still getting ‘good’performance. It is essentially an alternative optimiza-
tion objective to the current performance-only objective for the scheduler. This
alternative considers two objectives: energy-efficiency and performance.

The idea behind introducing an EM is to allow the scheduler to evaluate the impli-
cations of its decisions rather than blindly applying energy-saving techniques that
may have positive effects only on some platforms. At the same time, the EM must
be as simple as possible to minimize the scheduler latency impact.

In short, EAS changes the way CFS tasks are assigned to CPUs. When it is time
for the scheduler to decide where a task should run (during wake-up), the EM is
used to break the tie between several good CPU candidates and pick the one that
is predicted to yield the best energy consumption without harming the system’s
throughput. The predictions made by EAS rely on specific elements of knowledge
about the platform’s topology, which include the ‘capacity’of CPUs, and their
respective energy costs.

7.3 3. Topology information

EAS (as well as the rest of the scheduler) uses the notion of ‘capacity’to differ-
entiate CPUs with different computing throughput. The‘capacity’of a CPU rep-
resents the amount of work it can absorb when running at its highest frequency
compared to the most capable CPU of the system. Capacity values are normal-
ized in a 1024 range, and are comparable with the utilization signals of tasks and
CPUs computed by the Per-Entity Load Tracking (PELT) mechanism. Thanks to
capacity and utilization values, EAS is able to estimate how big/busy a task/CPU
is, and to take this into consideration when evaluating performance vs energy
trade-offs. The capacity of CPUs is provided via arch-specific code through the
arch_scale_cpu_capacity() callback.

The rest of platform knowledge used by EAS is directly read from the EnergyModel
(EM) framework. The EM of a platform is composed of a power cost table per
‘performance domain’in the system (see Documentation/power/energy-model.rst
for futher details about performance domains).

The schedulermanages references to the EMobjects in the topology codewhen the
scheduling domains are built, or re-built. For each root domain (rd), the scheduler
maintains a singly linked list of all performance domains intersecting the current
rd->span. Each node in the list contains a pointer to a struct em_perf_domain as
provided by the EM framework.

The lists are attached to the root domains in order to cope with exclusive cpuset
configurations. Since the boundaries of exclusive cpusets do not necessarily match
those of performance domains, the lists of different root domains can contain du-
plicate elements.

Example 1. Let us consider a platform with 12 CPUs, split in 3 performance do-
mains (pd0, pd4 and pd8), organized as follows:

CPUs: 0 1 2 3 4 5 6 7 8 9 10 11
PDs: |--pd0--|--pd4--|---pd8---|
RDs: |----rd1----|-----rd2-----|

40 Chapter 7. Energy Aware Scheduling

Linux Scheduler Documentation

Now, consider that userspace decided to split the system with two exclusive
cpusets, hence creating two independent root domains, each containing 6
CPUs. The two root domains are denoted rd1 and rd2 in the above figure.
Since pd4 intersects with both rd1 and rd2, it will be present in the linked list
‘->pd’attached to each of them:

• rd1->pd: pd0 -> pd4

• rd2->pd: pd4 -> pd8

Please note that the scheduler will create two duplicate list nodes for pd4
(one for each list). However, both just hold a pointer to the same shared data
structure of the EM framework.

Since the access to these lists can happen concurrently with hotplug and other
things, they are protected by RCU, like the rest of topology structures manipulated
by the scheduler.

EAS also maintains a static key (sched_energy_present) which is enabled when at
least one root domain meets all conditions for EAS to start. Those conditions are
summarized in Section 6.

7.4 4. Energy-Aware task placement

EAS overrides the CFS task wake-up balancing code. It uses the EMof the platform
and the PELT signals to choose an energy-efficient target CPU during wake-up bal-
ance. When EAS is enabled, select_task_rq_fair() calls find_energy_efficient_cpu()
to do the placement decision. This function looks for the CPU with the highest
spare capacity (CPU capacity - CPU utilization) in each performance domain since
it is the one which will allow us to keep the frequency the lowest. Then, the func-
tion checks if placing the task there could save energy compared to leaving it on
prev_cpu, i.e. the CPU where the task ran in its previous activation.

find_energy_efficient_cpu() uses compute_energy() to estimate what will be the en-
ergy consumed by the system if the waking task was migrated. compute_energy()
looks at the current utilization landscape of the CPUs and adjusts it to‘simulate’
the task migration. The EM framework provides the em_pd_energy() API which
computes the expected energy consumption of each performance domain for the
given utilization landscape.

An example of energy-optimized task placement decision is detailed below.

Example 2. Let us consider a (fake) platform with 2 independent performance
domains composed of two CPUs each. CPU0 and CPU1 are little CPUs; CPU2
and CPU3 are big.

The scheduler must decide where to place a task P whose util_avg = 200 and
prev_cpu = 0.

The current utilization landscape of the CPUs is depicted on the graph be-
low. CPUs 0-3 have a util_avg of 400, 100, 600 and 500 respectively Each
performance domain has three Operating Performance Points (OPPs). The
CPU capacity and power cost associated with each OPP is listed in the En-
ergy Model table. The util_avg of P is shown on the figures below as ‘PP’
:

7.4. 4. Energy-Aware task placement 41

Linux Scheduler Documentation

CPU util.
1024 - - - - - - - Energy Model

+-----------+-------------+
| Little | Big |

768 ============= +-----+-----+------+------+
| Cap | Pwr | Cap | Pwr |
+-----+-----+------+------+

512 =========== - ##- - - - - | 170 | 50 | 512 | 400 |
| 341 | 150 | 768 | 800 |

341 -PP - - - - ## ## | 512 | 300 | 1024 | 1700 |
PP ## ## +-----+-----+------+------+

170 -## - - - - ## ##
##

------------ -------------
CPU0 CPU1 CPU2 CPU3

Current OPP: ===== Other OPP: - - - util_avg (100 each): ##

find_energy_efficient_cpu() will first look for the CPUs with the maximum
spare capacity in the two performance domains. In this example, CPU1 and
CPU3. Then it will estimate the energy of the system if P was placed on either
of them, and check if that would save some energy compared to leaving P on
CPU0. EAS assumes that OPPs follow utilization (which is coherent with the
behaviour of the schedutil CPUFreq governor, see Section 6. for more details
on this topic).

Case 1. P is migrated to CPU1:

1024 - - - - - - -

Energy calculation:
768 ============= * CPU0: 200 / 341 * 150 = 88

* CPU1: 300 / 341 * 150 = 131
* CPU2: 600 / 768 * 800 = 625

512 - - - - - - - ##- - - - - * CPU3: 500 / 768 * 800 = 520
=> total_energy = 1364

341 =========== ## ##
PP ## ##

170 -## - - PP- ## ##
##

------------ -------------
CPU0 CPU1 CPU2 CPU3

Case 2. P is migrated to CPU3:

1024 - - - - - - -

Energy calculation:
768 ============= * CPU0: 200 / 341 * 150 = 88

* CPU1: 100 / 341 * 150 = 43
PP * CPU2: 600 / 768 * 800 = 625

512 - - - - - - - ##- - -PP - * CPU3: 700 / 768 * 800 = 729
=> total_energy = 1485

341 =========== ## ##
##

170 -## - - - - ## ##
(continues on next page)

42 Chapter 7. Energy Aware Scheduling

Linux Scheduler Documentation

(continued from previous page)
##

------------ -------------
CPU0 CPU1 CPU2 CPU3

Case 3. P stays on prev_cpu / CPU 0:

1024 - - - - - - -

Energy calculation:
768 ============= * CPU0: 400 / 512 * 300 = 234

* CPU1: 100 / 512 * 300 = 58
* CPU2: 600 / 768 * 800 = 625

512 =========== - ##- - - - - * CPU3: 500 / 768 * 800 = 520
=> total_energy = 1437

341 -PP - - - - ## ##
PP ## ##

170 -## - - - - ## ##
##

------------ -------------
CPU0 CPU1 CPU2 CPU3

From these calculations, the Case 1 has the lowest total energy. So CPU 1 is
be the best candidate from an energy-efficiency standpoint.

Big CPUs are generally more power hungry than the little ones and are thus used
mainly when a task doesn’t fit the littles. However, little CPUs aren’t always
necessarily more energy-efficient than big CPUs. For some systems, the high OPPs
of the little CPUs can be less energy-efficient than the lowest OPPs of the bigs, for
example. So, if the little CPUs happen to have enough utilization at a specific point
in time, a small task waking up at that moment could be better of executing on the
big side in order to save energy, even though it would fit on the little side.

And even in the case where all OPPs of the big CPUs are less energy-efficient than
those of the little, using the big CPUs for a small task might still, under specific
conditions, save energy. Indeed, placing a task on a little CPU can result in raising
the OPP of the entire performance domain, and that will increase the cost of the
tasks already running there. If the waking task is placed on a big CPU, its own
execution cost might be higher than if it was running on a little, but it won’t impact
the other tasks of the little CPUs which will keep running at a lower OPP. So, when
considering the total energy consumed by CPUs, the extra cost of running that
one task on a big core can be smaller than the cost of raising the OPP on the little
CPUs for all the other tasks.

The examples above would be nearly impossible to get right in a generic way,
and for all platforms, without knowing the cost of running at different OPPs on
all CPUs of the system. Thanks to its EM-based design, EAS should cope with
them correctly without too many troubles. However, in order to ensure a minimal
impact on throughput for high-utilization scenarios, EAS also implements another
mechanism called ‘over-utilization’.

7.4. 4. Energy-Aware task placement 43

Linux Scheduler Documentation

7.5 5. Over-utilization

From a general standpoint, the use-cases where EAS can help the most are those
involving a light/medium CPU utilization. Whenever long CPU-bound tasks are
being run, they will require all of the available CPU capacity, and there isn’t
much that can be done by the scheduler to save energy without severly harming
throughput. In order to avoid hurting performance with EAS, CPUs are flagged
as ‘over-utilized’as soon as they are used at more than 80% of their compute
capacity. As long as no CPUs are over-utilized in a root domain, load balancing
is disabled and EAS overridess the wake-up balancing code. EAS is likely to load
the most energy efficient CPUs of the system more than the others if that can be
done without harming throughput. So, the load-balancer is disabled to prevent it
from breaking the energy-efficient task placement found by EAS. It is safe to do
so when the system isn’t overutilized since being below the 80% tipping point
implies that:

a. there is some idle time on all CPUs, so the utilization signals used by EAS are
likely to accurately represent the ‘size’of the various tasks in the system;

b. all tasks should already be provided with enough CPU capacity, regardless of
their nice values;

c. since there is spare capacity all tasks must be blocking/sleeping regularly and
balancing at wake-up is sufficient.

As soon as one CPU goes above the 80% tipping point, at least one of the three
assumptions above becomes incorrect. In this scenario, the ‘overutilized’flag
is raised for the entire root domain, EAS is disabled, and the load-balancer is re-
enabled. By doing so, the scheduler falls back onto load-based algorithms for
wake-up and load balance under CPU-bound conditions. This provides a better
respect of the nice values of tasks.

Since the notion of overutilization largely relies on detecting whether or not there
is some idle time in the system, the CPU capacity ‘stolen’by higher (than CFS)
scheduling classes (as well as IRQ) must be taken into account. As such, the de-
tection of overutilization accounts for the capacity used not only by CFS tasks, but
also by the other scheduling classes and IRQ.

44 Chapter 7. Energy Aware Scheduling

Linux Scheduler Documentation

7.6 6. Dependencies and requirements for EAS

Energy Aware Scheduling depends on the CPUs of the system having specific hard-
ware properties and on other features of the kernel being enabled. This section
lists these dependencies and provides hints as to how they can be met.

7.6.1 6.1 - Asymmetric CPU topology

As mentioned in the introduction, EAS is only supported on platforms with asym-
metric CPU topologies for now. This requirement is checked at run-time by look-
ing for the presence of the SD_ASYM_CPUCAPACITY flag when the scheduling
domains are built.

The flag is set/cleared automatically by the scheduler topology code whenever
there are CPUs with different capacities in a root domain. The capacities of CPUs
are provided by arch-specific code through the arch_scale_cpu_capacity() callback.
As an example, arm and arm64 share an implementation of this callback which
uses a combination of CPUFreq data and device-tree bindings to compute the ca-
pacity of CPUs (see drivers/base/arch_topology.c for more details).

So, in order to use EAS on your platform your architecture must implement the
arch_scale_cpu_capacity() callback, and some of the CPUs must have a lower ca-
pacity than others.

Please note that EAS is not fundamentally incompatible with SMP, but no signifi-
cant savings on SMP platforms have been observed yet. This restriction could be
amended in the future if proven otherwise.

7.6.2 6.2 - Energy Model presence

EAS uses the EM of a platform to estimate the impact of scheduling decisions on
energy. So, your platform must provide power cost tables to the EM framework in
order to make EAS start. To do so, please refer to documentation of the indepen-
dent EM framework in Documentation/power/energy-model.rst.

Please also note that the scheduling domains need to be re-built after the EM has
been registered in order to start EAS.

7.6.3 6.3 - Energy Model complexity

The task wake-up path is very latency-sensitive. When the EM of a platform is too
complex (too many CPUs, too many performance domains, too many performance
states, ⋯), the cost of using it in the wake-up path can become prohibitive. The
energy-aware wake-up algorithm has a complexity of:

C = Nd * (Nc + Ns)

with: Nd the number of performance domains; Nc the number of CPUs; and Ns
the total number of OPPs (ex: for two perf. domains with 4 OPPs each, Ns = 8).

A complexity check is performed at the root domain level, when scheduling do-
mains are built. EAS will not start on a root domain if its C happens to be higher

7.6. 6. Dependencies and requirements for EAS 45

Linux Scheduler Documentation

than the completely arbitrary EM_MAX_COMPLEXITY threshold (2048 at the time
of writing).

If you really want to use EAS but the complexity of your platform’s Energy Model
is too high to be used with a single root domain, you’re left with only two possible
options:

1. split your system into separate, smaller, root domains using exclusive cpusets
and enable EAS locally on each of them. This option has the benefit to work
out of the box but the drawback of preventing load balance between root
domains, which can result in an unbalanced system overall;

2. submit patches to reduce the complexity of the EASwake-up algorithm, hence
enabling it to cope with larger EMs in reasonable time.

7.6.4 6.4 - Schedutil governor

EAS tries to predict at which OPP will the CPUs be running in the close future in
order to estimate their energy consumption. To do so, it is assumed that OPPs of
CPUs follow their utilization.

Although it is very difficult to provide hard guarantees regarding the accuracy of
this assumption in practice (because the hardware might not do what it is told
to do, for example), schedutil as opposed to other CPUFreq governors at least
requests frequencies calculated using the utilization signals. Consequently, the
only sane governor to use together with EAS is schedutil, because it is the only
one providing some degree of consistency between frequency requests and energy
predictions.

Using EAS with any other governor than schedutil is not supported.

7.6.5 6.5 Scale-invariant utilization signals

In order to make accurate prediction across CPUs and for all performance states,
EAS needs frequency-invariant and CPU-invariant PELT signals. These can be ob-
tained using the architecture-defined arch_scale{cpu,freq}_capacity() callbacks.

Using EAS on a platform that doesn’t implement these two callbacks is not sup-
ported.

7.6.6 6.6 Multithreading (SMT)

EAS in its current form is SMT unaware and is not able to leverage multithreaded
hardware to save energy. EAS considers threads as independent CPUs, which can
actually be counter-productive for both performance and energy.

EAS on SMT is not supported.

46 Chapter 7. Energy Aware Scheduling

CHAPTER

EIGHT

SCHEDULER NICE DESIGN

This document explains the thinking about the revamped and streamlined nice-
levels implementation in the new Linux scheduler.

Nice levels were always pretty weak under Linux and people continuously pestered
us to make nice +19 tasks use up much less CPU time.

Unfortunately that was not that easy to implement under the old scheduler, (oth-
erwise we’d have done it long ago) because nice level support was historically
coupled to timeslice length, and timeslice units were driven by the HZ tick, so the
smallest timeslice was 1/HZ.

In the O(1) scheduler (in 2003) we changed negative nice levels to be much
stronger than they were before in 2.4 (and people were happy about that change),
and we also intentionally calibrated the linear timeslice rule so that nice +19 level
would be _exactly_ 1 jiffy. To better understand it, the timeslice graph went like
this (cheesy ASCII art alert!):

A
\ | [timeslice length]
\ |
\ |
\ |
\ |
\|___100msecs
|^ . _
| ^ . _
| ^ . _

-*----------------------------------*-----> [nice level]
-20 | +19

|
|

So that if someone wanted to really renice tasks, +19 would give a much bigger hit
than the normal linear rule would do. (The solution of changing the ABI to extend
priorities was discarded early on.)

This approach worked to some degree for some time, but later on with HZ=1000
it caused 1 jiffy to be 1 msec, which meant 0.1% CPU usage which we felt to be
a bit excessive. Excessive _not_ because it’s too small of a CPU utilization, but
because it causes too frequent (once per millisec) rescheduling. (and would thus
trash the cache, etc. Remember, this was long ago when hardware was weaker
and caches were smaller, and people were running number crunching apps at nice
+19.)

47

Linux Scheduler Documentation

So for HZ=1000 we changed nice +19 to 5msecs, because that felt like the right
minimal granularity - and this translates to 5% CPU utilization. But the fundamen-
tal HZ-sensitive property for nice+19 still remained, and we never got a single
complaint about nice +19 being too _weak_ in terms of CPU utilization, we only
got complaints about it (still) being too _strong_ :-)

To sum it up: we always wanted to make nice levels more consistent, but within
the constraints of HZ and jiffies and their nasty design level coupling to timeslices
and granularity it was not really viable.

The second (less frequent but still periodically occurring) complaint about Linux’
s nice level support was its assymetry around the origo (which you can see demon-
strated in the picture above), or more accurately: the fact that nice level behavior
depended on the _absolute_ nice level as well, while the nice API itself is funda-
mentally “relative”:

int nice(int inc);

asmlinkage long sys_nice(int increment)

(the first one is the glibc API, the second one is the syscall API.) Note that the‘inc’
is relative to the current nice level. Tools like bash’s“nice”command mirror this
relative API.

With the old scheduler, if you for example started a niced task with +1 and another
task with +2, the CPU split between the two tasks would depend on the nice level
of the parent shell - if it was at nice -10 the CPU split was different than if it was
at +5 or +10.

A third complaint against Linux’s nice level support was that negative nice levels
were not‘punchy enough’, so lots of people had to resort to run audio (and other
multimedia) apps under RT priorities such as SCHED_FIFO. But this caused other
problems: SCHED_FIFO is not starvation proof, and a buggy SCHED_FIFO app
can also lock up the system for good.

The new scheduler in v2.6.23 addresses all three types of complaints:

To address the first complaint (of nice levels being not “punchy”enough), the
scheduler was decoupled from‘time slice’and HZ concepts (and granularity was
made a separate concept from nice levels) and thus it was possible to implement
better and more consistent nice +19 support: with the new scheduler nice +19
tasks get a HZ-independent 1.5%, instead of the variable 3%-5%-9% range they
got in the old scheduler.

To address the second complaint (of nice levels not being consistent), the new
scheduler makes nice(1) have the same CPU utilization effect on tasks, regardless
of their absolute nice levels. So on the new scheduler, running a nice +10 and a
nice 11 task has the same CPU utilization“split”between them as running a nice
-5 and a nice -4 task. (one will get 55% of the CPU, the other 45%.) That is why
nice levels were changed to be“multiplicative”(or exponential) - that way it does
not matter which nice level you start out from, the‘relative result’will always be
the same.

The third complaint (of negative nice levels not being“punchy”enough and forc-
ing audio apps to run under the more dangerous SCHED_FIFO scheduling policy)
is addressed by the new scheduler almost automatically: stronger negative nice
levels are an automatic side-effect of the recalibrated dynamic range of nice levels.

48 Chapter 8. Scheduler Nice Design

CHAPTER

NINE

REAL-TIME GROUP SCHEDULING

9.1 0. WARNING

Fiddling with these settings can result in an unstable system, the knobs
are root only and assumes root knows what he is doing.

Most notable:

• very small values in sched_rt_period_us can result in an unstable systemwhen
the period is smaller than either the available hrtimer resolution, or the time
it takes to handle the budget refresh itself.

• very small values in sched_rt_runtime_us can result in an unstable system
when the runtime is so small the system has difficulty making forward
progress (NOTE: the migration thread and kstopmachine both are real-time
processes).

9.2 1. Overview

9.2.1 1.1 The problem

Realtime scheduling is all about determinism, a group has to be able to rely on the
amount of bandwidth (eg. CPU time) being constant. In order to schedule multiple
groups of realtime tasks, each group must be assigned a fixed portion of the CPU
time available. Without a minimum guarantee a realtime group can obviously fall
short. A fuzzy upper limit is of no use since it cannot be relied upon. Which leaves
us with just the single fixed portion.

9.2.2 1.2 The solution

CPU time is divided by means of specifying how much time can be spent running
in a given period. We allocate this “run time”for each realtime group which the
other realtime groups will not be permitted to use.

Any time not allocated to a realtime group will be used to run normal priority
tasks (SCHED_OTHER). Any allocated run time not used will also be picked up by
SCHED_OTHER.

Let’s consider an example: a frame fixed realtime renderer must deliver 25 frames
a second, which yields a period of 0.04s per frame. Now say it will also have to play

49

Linux Scheduler Documentation

some music and respond to input, leaving it with around 80% CPU time dedicated
for the graphics. We can then give this group a run time of 0.8 * 0.04s = 0.032s.

This way the graphics group will have a 0.04s period with a 0.032s run time limit.
Now if the audio thread needs to refill the DMA buffer every 0.005s, but needs
only about 3% CPU time to do so, it can do with a 0.03 * 0.005s = 0.00015s. So
this group can be scheduled with a period of 0.005s and a run time of 0.00015s.

The remaining CPU time will be used for user input and other tasks. Because
realtime tasks have explicitly allocated the CPU time they need to perform their
tasks, buffer underruns in the graphics or audio can be eliminated.

NOTE: the above example is not fully implemented yet. We still lack an EDF sched-
uler to make non-uniform periods usable.

9.3 2. The Interface

9.3.1 2.1 System wide settings

The system wide settings are configured under the /proc virtual file system:

/proc/sys/kernel/sched_rt_period_us: The scheduling period that is equivalent
to 100% CPU bandwidth

/proc/sys/kernel/sched_rt_runtime_us: A global limit on how much time real-
time scheduling may use. Even without CONFIG_RT_GROUP_SCHED en-
abled, this will limit time reserved to realtime processes. With CON-
FIG_RT_GROUP_SCHED it signifies the total bandwidth available to all re-
altime groups.

• Time is specified in us because the interface is s32. This gives an oper-
ating range from 1us to about 35 minutes.

• sched_rt_period_us takes values from 1 to INT_MAX.

• sched_rt_runtime_us takes values from -1 to (INT_MAX - 1).

• A run time of -1 specifies runtime == period, ie. no limit.

9.3.2 2.2 Default behaviour

The default values for sched_rt_period_us (1000000 or 1s) and
sched_rt_runtime_us (950000 or 0.95s). This gives 0.05s to be used by
SCHED_OTHER (non-RT tasks). These defaults were chosen so that a run-
away realtime tasks will not lock up the machine but leave a little time to recover
it. By setting runtime to -1 you’d get the old behaviour back.
By default all bandwidth is assigned to the root group and new groups get the
period from /proc/sys/kernel/sched_rt_period_us and a run time of 0. If you want
to assign bandwidth to another group, reduce the root group’s bandwidth and
assign some or all of the difference to another group.

Realtime group scheduling means you have to assign a portion of total CPU band-
width to the group before it will accept realtime tasks. Therefore you will not be

50 Chapter 9. Real-Time group scheduling

Linux Scheduler Documentation

able to run realtime tasks as any user other than root until you have done that,
even if the user has the rights to run processes with realtime priority!

9.3.3 2.3 Basis for grouping tasks

Enabling CONFIG_RT_GROUP_SCHED lets you explicitly allocate real CPU band-
width to task groups.

This uses the cgroup virtual file system and “<cgroup>/cpu.rt_runtime_us”to
control the CPU time reserved for each control group.

For more information on working with control groups, you should read
Documentation/admin-guide/cgroup-v1/cgroups.rst as well.

Group settings are checked against the following limits in order to keep the con-
figuration schedulable:

Sum_{i} runtime_{i} / global_period <= global_runtime / global_period

For now, this can be simplified to just the following (but see Future plans):

Sum_{i} runtime_{i} <= global_runtime

9.4 3. Future plans

There is work in progress to make the scheduling period for each group (
“<cgroup>/cpu.rt_period_us”) configurable as well.
The constraint on the period is that a subgroupmust have a smaller or equal period
to its parent. But realistically its not very useful _yet_ as its prone to starvation
without deadline scheduling.

Consider two sibling groups A and B; both have 50% bandwidth, but A’s period
is twice the length of B’s.
• group A: period=100000us, runtime=50000us

– this runs for 0.05s once every 0.1s
• group B: period= 50000us, runtime=25000us

– this runs for 0.025s twice every 0.1s (or once every 0.05 sec).
This means that currently a while (1) loop in A will run for the full period of B and
can starve B’s tasks (assuming they are of lower priority) for a whole period.
The next project will be SCHED_EDF (Earliest Deadline First scheduling) to bring
full deadline scheduling to the linux kernel. Deadline scheduling the above groups
and treating end of the period as a deadline will ensure that they both get their
allocated time.

Implementing SCHED_EDF might take a while to complete. Priority Inheritance
is the biggest challenge as the current linux PI infrastructure is geared towards
the limited static priority levels 0-99. With deadline scheduling you need to do
deadline inheritance (since priority is inversely proportional to the deadline delta
(deadline - now)).

9.4. 3. Future plans 51

Linux Scheduler Documentation

This means the whole PI machinery will have to be reworked - and that is one of
the most complex pieces of code we have.

52 Chapter 9. Real-Time group scheduling

CHAPTER

TEN

SCHEDULER STATISTICS

Version 15 of schedstats dropped counters for some sched_yield: yld_exp_empty,
yld_act_empty and yld_both_empty. Otherwise, it is identical to version 14.

Version 14 of schedstats includes support for sched_domains, which hit the main-
line kernel in 2.6.20 although it is identical to the stats from version 12 which was
in the kernel from 2.6.13-2.6.19 (version 13 never saw a kernel release). Some
counters make more sense to be per-runqueue; other to be per-domain. Note that
domains (and their associated information) will only be pertinent and available on
machines utilizing CONFIG_SMP.

In version 14 of schedstat, there is at least one level of domain statistics for each
cpu listed, and there may well be more than one domain. Domains have no par-
ticular names in this implementation, but the highest numbered one typically ar-
bitrates balancing across all the cpus on the machine, while domain0 is the most
tightly focused domain, sometimes balancing only between pairs of cpus. At this
time, there are no architectures which need more than three domain levels. The
first field in the domain stats is a bit map indicating which cpus are affected by
that domain.

These fields are counters, and only increment. Programs which make use of these
will need to start with a baseline observation and then calculate the change in the
counters at each subsequent observation. A perl script which does this for many
of the fields is available at

http://eaglet.pdxhosts.com/rick/linux/schedstat/

Note that any such script will necessarily be version-specific, as the main reason
to change versions is changes in the output format. For those wishing to write
their own scripts, the fields are described here.

10.1 CPU statistics

cpu<N> 1 2 3 4 5 6 7 8 9

First field is a sched_yield() statistic:

1) # of times sched_yield() was called

Next three are schedule() statistics:

2) This field is a legacy array expiration count field used in the O(1) scheduler.
We kept it for ABI compatibility, but it is always set to zero.

53

http://eaglet.pdxhosts.com/rick/linux/schedstat/

Linux Scheduler Documentation

3) # of times schedule() was called

4) # of times schedule() left the processor idle

Next two are try_to_wake_up() statistics:

5) # of times try_to_wake_up() was called

6) # of times try_to_wake_up() was called to wake up the local cpu

Next three are statistics describing scheduling latency:

7) sum of all time spent running by tasks on this processor (in jiffies)

8) sum of all time spent waiting to run by tasks on this processor (in jiffies)

9) # of timeslices run on this cpu

10.2 Domain statistics

One of these is produced per domain for each cpu described. (Note that if CON-
FIG_SMP is not defined, no domains are utilized and these lines will not appear in
the output.)

domain<N> <cpumask> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36

The first field is a bit mask indicating what cpus this domain operates over.

The next 24 are a variety of load_balance() statistics in grouped into types of idle-
ness (idle, busy, and newly idle):

1) # of times in this domain load_balance() was called when the cpu
was idle

2) # of times in this domain load_balance() checked but found the load
did not require balancing when the cpu was idle

3) # of times in this domain load_balance() tried to move one or more
tasks and failed, when the cpu was idle

4) sum of imbalances discovered (if any) with each call to
load_balance() in this domain when the cpu was idle

5) # of times in this domain pull_task() was called when the cpu was
idle

6) # of times in this domain pull_task() was called even though the
target task was cache-hot when idle

7) # of times in this domain load_balance() was called but did not find
a busier queue while the cpu was idle

8) # of times in this domain a busier queue was found while the cpu
was idle but no busier group was found

9) # of times in this domain load_balance() was called when the cpu
was busy

54 Chapter 10. Scheduler Statistics

Linux Scheduler Documentation

10) # of times in this domain load_balance() checked but found the load
did not require balancing when busy

11) # of times in this domain load_balance() tried to move one or more
tasks and failed, when the cpu was busy

12) sum of imbalances discovered (if any) with each call to
load_balance() in this domain when the cpu was busy

13) # of times in this domain pull_task() was called when busy

14) # of times in this domain pull_task() was called even though the
target task was cache-hot when busy

15) # of times in this domain load_balance() was called but did not find
a busier queue while the cpu was busy

16) # of times in this domain a busier queue was found while the cpu
was busy but no busier group was found

17) # of times in this domain load_balance() was called when the cpu
was just becoming idle

18) # of times in this domain load_balance() checked but found the load
did not require balancing when the cpu was just becoming idle

19) # of times in this domain load_balance() tried to move one or more
tasks and failed, when the cpu was just becoming idle

20) sum of imbalances discovered (if any) with each call to
load_balance() in this domain when the cpu was just becoming
idle

21) # of times in this domain pull_task() was called when newly idle

22) # of times in this domain pull_task() was called even though the
target task was cache-hot when just becoming idle

23) # of times in this domain load_balance() was called but did not find
a busier queue while the cpu was just becoming idle

24) # of times in this domain a busier queue was found while the cpu
was just becoming idle but no busier group was found

Next three are active_load_balance() statistics:

25) # of times active_load_balance() was called

26) # of times active_load_balance() tried to move a task and failed

27) # of times active_load_balance() successfully moved a task

Next three are sched_balance_exec() statistics:

28) sbe_cnt is not used

29) sbe_balanced is not used

30) sbe_pushed is not used

Next three are sched_balance_fork() statistics:

31) sbf_cnt is not used

10.2. Domain statistics 55

Linux Scheduler Documentation

32) sbf_balanced is not used

33) sbf_pushed is not used

Next three are try_to_wake_up() statistics:

34) # of times in this domain try_to_wake_up() awoke a task that last
ran on a different cpu in this domain

35) # of times in this domain try_to_wake_up() moved a task to the wak-
ing cpu because it was cache-cold on its own cpu anyway

36) # of times in this domain try_to_wake_up() started passive balancing

10.3 /proc/<pid>/schedstat

schedstats also adds a new /proc/<pid>/schedstat file to include some of the same
information on a per-process level. There are three fields in this file correlating
for that process to:

1) time spent on the cpu

2) time spent waiting on a runqueue

3) # of timeslices run on this cpu

A program could be easily written to make use of these extra fields to report on
how well a particular process or set of processes is faring under the scheduler’s
policies. A simple version of such a program is available at

http://eaglet.pdxhosts.com/rick/linux/schedstat/v12/latency.c

56 Chapter 10. Scheduler Statistics

http://eaglet.pdxhosts.com/rick/linux/schedstat/v12/latency.c

CHAPTER

ELEVEN

SCHEDULER PELT C PROGRAM

/*
* The following program is used to generate the constants for
* computing sched averages.
*
* ==
* C program (compile with -lm)
* ==
*/

#include <math.h>
#include <stdio.h>

#define HALFLIFE 32
#define SHIFT 32

double y;

void calc_runnable_avg_yN_inv(void)
{

int i;
unsigned int x;

/* To silence -Wunused-but-set-variable warnings. */
printf("static const u32 runnable_avg_yN_inv[] __maybe_unused = {

↪→");
for (i = 0; i < HALFLIFE; i++) {

x = ((1UL<<32)-1)*pow(y, i);

if (i % 6 == 0) printf("\n\t");
printf("0x%8x, ", x);

}
printf("\n};\n\n");

}

int sum = 1024;

void calc_runnable_avg_yN_sum(void)
{

int i;

printf("static const u32 runnable_avg_yN_sum[] = {\n\t 0,");
for (i = 1; i <= HALFLIFE; i++) {

if (i == 1)
(continues on next page)

57

Linux Scheduler Documentation

(continued from previous page)
sum *= y;

else
sum = sum*y + 1024*y;

if (i % 11 == 0)
printf("\n\t");

printf("%5d,", sum);
}
printf("\n};\n\n");

}

int n = -1;
/* first period */
long max = 1024;

void calc_converged_max(void)
{

long last = 0, y_inv = ((1UL<<32)-1)*y;

for (; ; n++) {
if (n > -1)

max = ((max*y_inv)>>SHIFT) + 1024;
/*
* This is the same as:
* max = max*y + 1024;
*/

if (last == max)
break;

last = max;
}
n--;
printf("#define LOAD_AVG_PERIOD %d\n", HALFLIFE);
printf("#define LOAD_AVG_MAX %ld\n", max);

// printf("#define LOAD_AVG_MAX_N %d\n\n", n);
}

void calc_accumulated_sum_32(void)
{

int i, x = sum;

printf("static const u32 __accumulated_sum_N32[] = {\n\t 0,");
for (i = 1; i <= n/HALFLIFE+1; i++) {

if (i > 1)
x = x/2 + sum;

if (i % 6 == 0)
printf("\n\t");

printf("%6d,", x);
}
printf("\n};\n\n");

}

(continues on next page)

58 Chapter 11. Scheduler pelt c program

Linux Scheduler Documentation

(continued from previous page)
void main(void)
{

printf("/* Generated by Documentation/scheduler/sched-pelt; do not␣
↪→modify. */\n\n");

y = pow(0.5, 1/(double)HALFLIFE);

calc_runnable_avg_yN_inv();
// calc_runnable_avg_yN_sum();

calc_converged_max();
// calc_accumulated_sum_32();
}

59

