
Linux Riscv Documentation

The kernel development community

Jul 14, 2020





CONTENTS

i



ii



CHAPTER

ONE

BOOT IMAGE HEADER IN RISC-V LINUX

Author Atish Patra <atish.patra@wdc.com>

Date 20 May 2019

This document only describes the boot image header details for RISC-V Linux.

TODO: Write a complete booting guide.

The following 64-byte header is present in decompressed Linux kernel image:

u32 code0; /* Executable code */
u32 code1; /* Executable code */
u64 text_offset; /* Image load offset, little endian */
u64 image_size; /* Effective Image size, little endian */
u64 flags; /* kernel flags, little endian */
u32 version; /* Version of this header */
u32 res1 = 0; /* Reserved */
u64 res2 = 0; /* Reserved */
u64 magic = 0x5643534952; /* Magic number, little endian, "RISCV" */
u32 magic2 = 0x05435352; /* Magic number 2, little endian, "RSC\x05" */
u32 res3; /* Reserved for PE COFF offset */

This header format is compliant with PE/COFF header and largely inspired from
ARM64 header. Thus, both ARM64 & RISC-V header can be combined into one
common header in future.

1.1 Notes

• This header can also be reused to support EFI stub for RISC-V in future. EFI
specification needs PE/COFF image header in the beginning of the kernel
image in order to load it as an EFI application. In order to support EFI stub,
code0 should be replaced with “MZ”magic string and res3(at offset 0x3c)
should point to the rest of the PE/COFF header.

• version field indicate header version number

Bits 0:15 Minor version
Bits 16:31 Major version

This preserves compatibility across newer and older version of the header.
The current version is defined as 0.2.

1

mailto:atish.patra@wdc.com


Linux Riscv Documentation

• The“magic”field is deprecated as of version 0.2. In a future release, it may
be removed. This originally should have matched up with the ARM64 header
“magic”field, but unfortunately does not. The “magic2”field replaces it,
matching up with the ARM64 header.

• In current header, the flags field has only one field.

Bit 0 Kernel endianness. 1 if BE, 0 if LE.

• Image size is mandatory for boot loader to load kernel image. Booting will
fail otherwise.

2 Chapter 1. Boot image header in RISC-V Linux



CHAPTER

TWO

SUPPORTING PMUS ON RISC-V PLATFORMS

Alan Kao <alankao@andestech.com>, Mar 2018

2.1 Introduction

As of this writing, perf_event-related features mentioned in The RISC-V ISA Privi-
leged Version 1.10 are as follows: (please check the manual for more details)

• [m|s]counteren

• mcycle[h], cycle[h]

• minstret[h], instret[h]

• mhpeventx, mhpcounterx[h]

With such function set only, porting perf would require a lot of work, due to the
lack of the following general architectural performance monitoring features:

• Enabling/Disabling counters Counters are just free-running all the time in our
case.

• Interrupt caused by counter overflow No such feature in the spec.

• Interrupt indicator It is not possible to have many interrupt ports for all coun-
ters, so an interrupt indicator is required for software to tell which counter
has just overflowed.

• Writing to counters There will be an SBI to support this since the kernel can-
not modify the counters [1]. Alternatively, some vendor considers to imple-
ment hardware-extension for M-S-U model machines to write counters di-
rectly.

This document aims to provide developers a quick guide on supporting their PMUs
in the kernel. The following sections briefly explain perf’mechanism and todos.

You may check previous discussions here [1][2]. Also, it might be helpful to check
the appendix for related kernel structures.

3

mailto:alankao@andestech.com


Linux Riscv Documentation

2.2 1. Initialization

riscv_pmu is a global pointer of type struct riscv_pmu, which contains various
methods according to perf’s internal convention and PMU-specific parameters.
One should declare such instance to represent the PMU. By default, riscv_pmu
points to a constant structure riscv_base_pmu, which has very basic support to a
baseline QEMU model.

Then he/she can either assign the instance’s pointer to riscv_pmu so that the
minimal and already-implemented logic can be leveraged, or invent his/her own
riscv_init_platform_pmu implementation.

In other words, existing sources of riscv_base_pmu merely provide a reference
implementation. Developers can flexibly decide howmany parts they can leverage,
and in the most extreme case, they can customize every function according to their
needs.

2.3 2. Event Initialization

When a user launches a perf command to monitor some events, it is first inter-
preted by the userspace perf tool into multiple perf_event_open system calls, and
then each of them calls to the body of event_init member function that was as-
signed in the previous step. In riscv_base_pmu’s case, it is riscv_event_init.
The main purpose of this function is to translate the event provided by user
into bitmap, so that HW-related control registers or counters can directly be ma-
nipulated. The translation is based on the mappings and methods provided in
riscv_pmu.

Note that some features can be done in this stage as well:

(1) interrupt setting, which is stated in the next section;

(2) privilege level setting (user space only, kernel space only, both);

(3) destructor setting. Normally it is sufficient to apply riscv_destroy_event;

(4) tweaks for non-sampling events, which will be utilized by functions such as
perf_adjust_period, usually something like the follows:

if (!is_sampling_event(event)) {
hwc->sample_period = x86_pmu.max_period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);

}

In the case of riscv_base_pmu, only (3) is provided for now.

4 Chapter 2. Supporting PMUs on RISC-V platforms



Linux Riscv Documentation

2.4 3. Interrupt

3.1. Interrupt Initialization

This often occurs at the beginning of the event_init method. In common practice,
this should be a code segment like:

int x86_reserve_hardware(void)
{

int err = 0;

if (!atomic_inc_not_zero(&pmc_refcount)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&pmc_refcount) == 0) {

if (!reserve_pmc_hardware())
err = -EBUSY;

else
reserve_ds_buffers();

}
if (!err)

atomic_inc(&pmc_refcount);
mutex_unlock(&pmc_reserve_mutex);

}

return err;
}

And the magic is in reserve_pmc_hardware, which usually does atomic opera-
tions to make implemented IRQ accessible from some global function pointer.
release_pmc_hardware serves the opposite purpose, and it is used in event de-
structors mentioned in previous section.

(Note: From the implementations in all the architectures, the reserve/release pair
are always IRQ settings, so the pmc_hardware seems somehowmisleading. It does
NOT deal with the binding between an event and a physical counter, which will be
introduced in the next section.)

3.2. IRQ Structure

Basically, a IRQ runs the following pseudo code:

for each hardware counter that triggered this overflow

get the event of this counter

// following two steps are defined as *read()*,
// check the section Reading/Writing Counters for details.
count the delta value since previous interrupt
update the event->count (# event occurs) by adding delta, and

event->hw.period_left by subtracting delta

if the event overflows
sample data
set the counter appropriately for the next overflow

if the event overflows again
(continues on next page)

2.4. 3. Interrupt 5



Linux Riscv Documentation

(continued from previous page)
too frequently, throttle this event

fi
fi

end for

However as of this writing, none of the RISC-V implementations have designed an
interrupt for perf, so the details are to be completed in the future.

2.5 4. Reading/Writing Counters

They seem symmetric but perf treats them quite differently. For reading, there is a
read interface in struct pmu, but it serves more than just reading. According to the
context, the read function not only reads the content of the counter (event->count),
but also updates the left period to the next interrupt (event->hw.period_left).

But the core of perf does not need direct write to counters. Writing counters is
hidden behind the abstraction of 1) pmu->start, literally start counting so one has
to set the counter to a good value for the next interrupt; 2) inside the IRQ it should
set the counter to the same resonable value.

Reading is not a problem in RISC-V but writing would need some effort, since
counters are not allowed to be written by S-mode.

2.6 5. add()/del()/start()/stop()

Basic idea: add()/del() adds/deletes events to/from a PMU, and start()/stop()
starts/stop the counter of some event in the PMU. All of them take the same argu-
ments: struct perf_event *event and int flag.

Consider perf as a state machine, then you will find that these functions serve as
the state transition process between those states. Three states (event->hw.state)
are defined:

• PERF_HES_STOPPED: the counter is stopped

• PERF_HES_UPTODATE: the event->count is up-to-date

• PERF_HES_ARCH: arch-dependent usage ⋯we don’t need this for now

A normal flow of these state transitions are as follows:

• A user launches a perf event, resulting in calling to event_init.

• When being context-switched in, add is called by the perf core, with a flag
PERF_EF_START, which means that the event should be started after it is
added. At this stage, a general event is bound to a physical counter, if any. The
state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, because
it is now stopped, and the (software) event count does not need updating.

– start is then called, and the counter is enabled. With flag
PERF_EF_RELOAD, it writes an appropriate value to the counter (check
previous section for detail). Nothing is written if the flag does not contain

6 Chapter 2. Supporting PMUs on RISC-V platforms



Linux Riscv Documentation

PERF_EF_RELOAD. The state now is reset to none, because it is neither
stopped nor updated (the counting already started)

• When being context-switched out, del is called. It then checks out all the
events in the PMU and calls stop to update their counts.

– stop is called by del and the perf core with flag PERF_EF_UPDATE, and it
often shares the same subroutine as read with the same logic. The state
changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.

– Life cycle of these two pairs: add and del are called repeatedly as tasks
switch in-and-out; start and stop is also called when the perf core needs
a quick stop-and-start, for instance, when the interrupt period is being
adjusted.

Current implementation is sufficient for now and can be easily extended to features
in the future.

2.7 A. Related Structures

• struct pmu: include/linux/perf_event.h

• struct riscv_pmu: arch/riscv/include/asm/perf_event.h

Both structures are designed to be read-only.

struct pmu defines some function pointer interfaces, and most of them take
struct perf_event as a main argument, dealing with perf events according to
perf’s internal state machine (check kernel/events/core.c for details).

struct riscv_pmu defines PMU-specific parameters. The naming follows the
convention of all other architectures.

• struct perf_event: include/linux/perf_event.h

• struct hw_perf_event

The generic structure that represents perf events, and the hardware-related
details.

• struct riscv_hw_events: arch/riscv/include/asm/perf_event.h

The structure that holds the status of events, has two fixed members: the
number of events and the array of the events.

2.8 References

[1] https://github.com/riscv/riscv-linux/pull/124

[2] https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/
f19TmCNP6yA

2.7. A. Related Structures 7

https://github.com/riscv/riscv-linux/pull/124
https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/f19TmCNP6yA
https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/f19TmCNP6yA


Linux Riscv Documentation

8 Chapter 2. Supporting PMUs on RISC-V platforms



CHAPTER

THREE

ARCH/RISCV MAINTENANCE GUIDELINES FOR
DEVELOPERS

3.1 Overview

The RISC-V instruction set architecture is developed in the open: in-progress
drafts are available for all to review and to experiment with implementations.
New module or extension drafts can change during the development process -
sometimes in ways that are incompatible with previous drafts. This flexibility can
present a challenge for RISC-V Linux maintenance. Linux maintainers disapprove
of churn, and the Linux development process prefers well-reviewed and tested
code over experimental code. We wish to extend these same principles to the
RISC-V-related code that will be accepted for inclusion in the kernel.

3.2 Submit Checklist Addendum

We’ll only accept patches for new modules or extensions if the specifications for
those modules or extensions are listed as being “Frozen”or “Ratified”by the
RISC-V Foundation. (Developers may, of course, maintain their own Linux kernel
trees that contain code for any draft extensions that they wish.)

Additionally, the RISC-V specification allows implementors to create their own cus-
tom extensions. These custom extensions aren’t required to go through any review
or ratification process by the RISC-V Foundation. To avoid the maintenance com-
plexity and potential performance impact of adding kernel code for implementor-
specific RISC-V extensions, we’ll only to accept patches for extensions that have
been officially frozen or ratified by the RISC-V Foundation. (Implementors, may,
of course, maintain their own Linux kernel trees containing code for any custom
extensions that they wish.)

9


