Linux Powerpc Documentation

The kernel development community

Jul 14, 2020

CONTENTS

CHAPTER
ONE

THE POWERPC BOOT WRAPPER

Copyright (C) Secret Lab Technologies Ltd.

PowerPC image targets compresses and wraps the kernel image (vmlinux) with
a boot wrapper to make it usable by the system firmware. There is no standard
PowerPC firmware interface, so the boot wrapper is designed to be adaptable for
each kind of image that needs to be built.

The boot wrapper can be found in the arch/powerpc/boot/ directory. The Makefile
in that directory has targets for all the available image types. The different image
types are used to support all of the various firmware interfaces found on PowerPC
platforms. OpenFirmware is the most commonly used firmware type on general
purpose PowerPC systems from Apple, IBM and others. U-Boot is typically found
on embedded PowerPC hardware, but there are a handful of other firmware imple-
mentations which are also popular. Each firmware interface requires a different
image format.

The boot wrapper is built from the makefile in arch/powerpc/boot/Makefile and it
uses the wrapper script (arch/powerpc/boot/wrapper) to generate target image.
The details of the build system is discussed in the next section. Currently, the
following image format targets exist:

Linux Powerpc Documentation

culmBackwards compatible ulmage for older version of U-Boot (for
age |%ersions that don’ t understand the device tree). This image em-
beds a device tree blob inside the image. The boot wrapper, ker-
nel and device tree are all embedded inside the U-Boot ulmage
file format with boot wrapper code that extracts data from the old
bd info structure and loads the data into the device tree before
jumping into the kernel.

Because of the series of #ifdefs found in the bd info structure
used in the old U-Boot interfaces, culmages are platform spe-
cific. Each specific U-Boot platform has a different platform init
file which populates the embedded device tree with data from
the platform specific bd info file. The platform specific culmage
platform init code can be found in arch/powerpc/boot/cuboot.*.c.
Selection of the correct culmage init code for a specific board
can be found in the wrapper structure.

dt- | Similar to zImage, except device tree blob is embedded inside
bImt the image instead of provided by firmware. The output image
age/%ile can be either an elf file or a flat binary depending on the
platform.

dtbImages are used on systems which do not have an interface
for passing a device tree directly. dtbImages are similar to sim-
pleImages except that dtbImages have platform specific code for
extracting data from the board firmware, but simplelmages do
not talk to the firmware at all.

PlayStation 3 support uses dtbImage. So do Embedded
Planet boards using the PlanetCore firmware. Board spe-
cific initialization code is typically found in a file named
arch/powerpc/boot/<platform>.c; but this can be overridden by
the wrapper script.

sim4 Firmware independent compressed image that does not depend
pleImpn any particular firmware interface and embeds a device tree
age/%ilob. This image is a flat binary that can be loaded to any location
in RAM and jumped to. Firmware cannot pass any configuration
data to the kernel with this image type and it depends entirely
on the embedded device tree for all information.

treelimage format for used with OpenBIOS firmware found on some
age/%pcdxx hardware. This image embeds a device tree blob inside
the image.

ulmt Native image format used by U-Boot. The ulmage target does
age:; not add any boot code. It just wraps a compressed vmlinux in
the ulmage data structure. This image requires a version of U-
Boot that is able to pass a device tree to the kernel at boot. If
using an older version of U-Boot, then you need to use a culmage
instead.

zIm: Image format which does not embed a device tree. Used by
age/%penFirmware and other firmware interfaces which are able to
supply a device tree. This image expects firmware to provide
the device tree at boot. Typically, if you have general purpose
PowerPC hardware then you want this image format.

2 Chapter 1. The PowerPC boot wrapper

Linux Powerpc Documentation

Image types which embed a device tree blob (simplelmage, dtbImage, treelm-
age, and culmage) all generate the device tree blob from a file in the
arch/powerpc/boot/dts/ directory. = The Makefile selects the correct device
tree source based on the name of the target. Therefore, if the ker-
nel is built with ‘make treelmage.walnut’ , then the build system will use
arch/powerpc/boot/dts/walnut.dts to build treelmage.walnut.

Two special targets called ‘zlmage’ and ‘zImage.initrd’ also exist. These targets
build all the default images as selected by the kernel configuration. Default images
are selected by the boot wrapper Makefile (arch/powerpc/boot/Makefile) by adding
targets to the $image-y variable. Look at the Makefile to see which default image
targets are available.

1.1 How it is built

arch/powerpc is designed to support multiplatform kernels, which means that a
single vmlinux image can be booted on many different target boards. It also means
that the boot wrapper must be able to wrap for many kinds of images on a single
build. The design decision was made to not use any conditional compilation code
(#ifdef, etc) in the boot wrapper source code. All of the boot wrapper pieces are
buildable at any time regardless of the kernel configuration. Building all the wrap-
per bits on every kernel build also ensures that obscure parts of the wrapper are
at the very least compile tested in a large variety of environments.

The wrapper is adapted for different image types at link time by linking in just
the wrapper bits that are appropriate for the image type. The ‘wrapper script’
(found in arch/powerpc/boot/wrapper) is called by the Makefile and is responsible
for selecting the correct wrapper bits for the image type. The arguments are
well documented in the script’ s comment block, so they are not repeated here.
However, it is worth mentioning that the script uses the -p (platform) argument as
the main method of deciding which wrapper bits to compile in. Look for the large
‘case “$platform” in’ block in the middle of the script. This is also the place where
platform specific fixups can be selected by changing the link order.

In particular, care should be taken when working with culmages. culmage wrap-
per bits are very board specific and care should be taken to make sure the target
you are trying to build is supported by the wrapper bits.

1.1. How it is built 3

Linux Powerpc Documentation

4 Chapter 1. The PowerPC boot wrapper

CHAPTER
TWO

CPU FAMILIES

This document tries to summarise some of the different cpu families that exist and
are supported by arch/powerpc.

2.1 Book3S (aka sPAPR)

e Hash MMU
e Mix of 32 & 64 bit;:

e + o +
| 0ld POWER I > | RS64 (threads) |
e pepep—— + Fommem e mee e e +
I
I
Vv
Fom - + Fom e + +e----- +
601 | - > 603 ---> | e300 |
Fommmm e + L T + +emmm-- +
I I
I I
v v
Fom e + R + tommmm o +
604 | 750 (G3) | --->] 750CX |
Fommm e + Fommm e a - + +ommmm - +
I I |
I I |
v v v
e epep—— + Fommem e mee e e + Feemea-- +
| 620 (64 bit) | 7400 | 750CL |
Fommm e + Fomm e a - + +ommm - - +
I I |
I | |
v v v
Fommmm e + L T + temmmm-- +
| POWER3/630 | 7410 | 750FX |
Femmme e + T + Fommma- +
I I
I I
v v
Fommm e + Fommm e a - +
| POWER3+ 7450 |
e + R +

(continues on next page)

5

Linux Powerpc Documentation

(continued from previous page)

I
I
\Y
B RS +
| POWER4 |
oo +
I
I
\Y
B RS + Fo-moo-- +
| POWER4+ --> | 970 |
oo + S +
I I
I I
\Y \Y
B S + Fo-m--- +
| POWER5 | | 970FX |
oo + oo - +
I I
I I
\ \Y
oo + S +
| POWERS+ | 970MP |
e + oo - +
I
I
\
oo +
| POWERS++
S +
I
I
\Y
oo + -
| POWER6 | <-72-> | Cell
oo + Fo-mo--
I
I
\Y
e +
| POWER7 |
oo +
I
I
\Y
S +
| POWER7+
oo +
I
I
\Y
oo +
| POWERS |
Fom - +

Vv
________________ +
7455
................ +
|
|
\'%
................ +
7447
________________ +
|
|
\%
................ +
7448
________________ +
|
|
\
................ +
€600
________________ +

(continues on next page)

Chapter 2. CPU Families

Linux Powerpc Documentation

(continued from previous page)

2.2 IBM BookE

e Software loaded TLB.
e All 32 bit:

oo +
| 401
Fo - +
I
I
v
o +
403
e +
I
I
Vv
Fo - +
405
R L +
I
I
Vv
Fo - +
440
oo +
I
I
Vv
e + e +
450 --> BG/P
oo + oo +
I
I
Vv
R L +
460
oo +
I
I
v
oo +
476
o +

2.2. IBM BookE 7

Linux Powerpc Documentation

2.3 Motorola/Freescale 8xx

e Software loaded with hardware assist.
e All 32 bit:

2.4 Freescale BookE

e Software loaded TLB.
e ¢6500 adds HW loaded indirect TLB entries.
e Mix of 32 & 64 bit:

oo +
| e200 |
B +
o e e oo +
e500
B +
I
I
v
B e +
e500v2
B +
I
I
v
B L +
e500mc (Book3e)
o +
I
I
v
B e +
e5500 (64 bit)
o e e ie e +
I
I
v
B e +
| 6500 (HW TLB) (Multithreaded) |
o e e +

Chapter 2. CPU Families

Linux Powerpc Documentation

2.5 IBM A2 core

e Book3E, software loaded TLB + HW loaded indirect TLB entries.

* 64 bit:
oo T +
| A2 core | WSP
Fomm e I e +
I
I
v
o me e +
BG/Q
B +
2.5. IBM A2 core

Linux Powerpc Documentation

10 Chapter 2. CPU Families

CHAPTER
THREE

CPU FEATURES

Hollis Blanchard <hollis@austin.ibm.com> 5 Jun 2002

This document describes the system (including self-modifying code) used in the
PPC Linux kernel to support a variety of PowerPC CPUs without requiring compile-
time selection.

Early in the boot process the ppc32 kernel detects the current CPU type and
chooses a set of features accordingly. Some examples include Altivec support,
split instruction and data caches, and if the CPU supports the DOZE and NAP
sleep modes.

Detection of the feature set is simple. A list of processors can be found in
arch/powerpc/kernel/cputable.c. The PVR register is masked and compared with
each value in the list. If a match is found, the cpu features of cur cpu spec is
assigned to the feature bitmask for this processor and a setup cpu function is
called.

C code may test ‘cur cpu_spec[smp processor id()]->cpu_features’for a particular
feature bit. This is done in quite a few places, for example in ppc setup 12cr().

Implementing cpufeatures in assembly is a little more involved. There are sev-
eral paths that are performance-critical and would suffer if an array index, struc-
ture dereference, and conditional branch were added. To avoid the performance
penalty but still allow for runtime (rather than compile-time) CPU selection, un-
used code is replaced by ‘nop’ instructions. This nop’ ing is based on CPU 0’
s capabilities, so a multi-processor system with non-identical processors will not
work (but such a system would likely have other problems anyways).

After detecting the processor type, the kernel patches out sections of code that
shouldn’ t be used by writing nop’ s over it. Using cpufeatures requires just 2
macros (found in arch/powerpc/include/asm/cputable.h), as seen in head.S trans-
fer to handler:

#ifdef CONFIG ALTIVEC
BEGIN FTR_SECTION

mfspr r22,SPRN_VRSAVE /* if G4, save vrsave register,
—value */
stw r22,THREAD VRSAVE(r23)

END FTR SECTION IFSET(CPU FTR ALTIVEC)
#endif /* CONFIG_ALTIVEC */

If CPU 0 supports Altivec, the code is left untouched. If it doesn’t, both instructions
are replaced with nop’ s.

11

mailto:hollis@austin.ibm.com

Linux Powerpc Documentation

The END FTR SECTION macro has two simpler variations:
END FTR SECTION IFSET and END FTR SECTION IFCLR. These simply
test if a flag is set (in cur _cpu_spec[0]->cpu _features) or is cleared, respectively.
These two macros should be used in the majority of cases.

The END FTR SECTION macros are implemented by storing information
about this code in the ° ftr fixup’ ELF section. When do cpu ftr fixups
(arch/powerpc/kernel/misc.S) is invoked, it will iterate over the records in
__ftr fixup, and if the required feature is not present it will loop writing nop’ s
from each BEGIN FTR SECTION to END FTR SECTION.

12 Chapter 3. CPU Features

CHAPTER
FOUR

COHERENT ACCELERATOR INTERFACE (CXL)

4.1 Introduction

The coherent accelerator interface is designed to allow the coherent con-
nection of accelerators (FPGAs and other devices) to a POWER system.
These devices need to adhere to the Coherent Accelerator Interface Ar-
chitecture (CAIA).

IBM refers to this as the Coherent Accelerator Processor Interface or
CAPI. In the kernel it’ s referred to by the name CXL to avoid confusion
with the ISDN CAPI subsystem.

Coherent in this context means that the accelerator and CPUs can both
access system memory directly and with the same effective addresses.

4.2 Hardware overview

POWER8/9 FPGA
R + R +
I I I I
| CPU | | AFU |
I I I I
I I I I
I I I I
R + R +
| PHB | I I
| +------ + | PSL |
| | CAPP |<------ >| |
R + PCIE +--------- +

The POWERS/9 chip has a Coherently Attached Processor Proxy (CAPP)
unit which is part of the PCle Host Bridge (PHB). This is managed by
Linux by calls into OPAL. Linux doesn’ t directly program the CAPP.

The FPGA (or coherently attached device) consists of two parts. The
POWER Service Layer (PSL) and the Accelerator Function Unit (AFU).
The AFU is used to implement specific functionality behind the PSL. The
PSL, among other things, provides memory address translation services
to allow each AFU direct access to userspace memory.

13

Linux Powerpc Documentation

The AFU is the core part of the accelerator (eg. the compression, crypto
etc function). The kernel has no knowledge of the function of the AFU.
Only userspace interacts directly with the AFU.

The PSL provides the translation and interrupt services that the AFU
needs. This is what the kernel interacts with. For example, if the AFU
needs to read a particular effective address, it sends that address to
the PSL, the PSL then translates it, fetches the data from memory and
returns it to the AFU. If the PSL has a translation miss, it interrupts the
kernel and the kernel services the fault. The context to which this fault
is serviced is based on who owns that acceleration function.

* POWERS and PSL Version 8 are compliant to the CAIA Version 1.0.

* POWERY9 and PSL Version 9 are compliant to the CAIA Version 2.0.
This PSL Version 9 provides new features such as:

* Interaction with the nest MMU on the P9 chip.

* Native DMA support.

* Supports sending ASB_Notify messages for host thread wakeup.

* Supports Atomic operations.

* etc.

Cards with a PSL9 won’ t work on a POWERS system and cards with a
PSL8 won’ t work on a POWERY system.

4.3 AFU Modes

There are two programming modes supported by the AFU. Dedicated
and AFU directed. AFU may support one or both modes.

When using dedicated mode only one MMU context is supported. In this
mode, only one userspace process can use the accelerator at time.

When using AFU directed mode, up to 16K simultaneous contexts can be
supported. This means up to 16K simultaneous userspace applications
may use the accelerator (although specific AFUs may support fewer). In
this mode, the AFU sends a 16 bit context ID with each of its requests.
This tells the PSL which context is associated with each operation. If
the PSL can’ t translate an operation, the ID can also be accessed by
the kernel so it can determine the userspace context associated with an
operation.

14 Chapter 4. Coherent Accelerator Interface (CXL)

Linux Powerpc Documentation

4.4 MMIO space

A portion of the accelerator MMIO space can be directly mapped from
the AFU to userspace. Either the whole space can be mapped or just a
per context portion. The hardware is self describing, hence the kernel
can determine the offset and size of the per context portion.

4.5 Interrupts

AFUs may generate interrupts that are destined for userspace. These
are received by the kernel as hardware interrupts and passed onto
userspace by a read syscall documented below.

Data storage faults and error interrupts are handled by the kernel driver.

4.6 Work Element Descriptor (WED)

The WED is a 64-bit parameter passed to the AFU when a context is
started. Its format is up to the AFU hence the kernel has no knowledge
of what it represents. Typically it will be the effective address of a work
queue or status block where the AFU and userspace can share control
and status information.

4.7 User API

4.7.1 1. AFU character devices

For AFUs operating in AFU directed mode, two character device files
will be created. /dev/cxl/afu0.0m will correspond to a master context
and /dev/cxl/afu0.0s will correspond to a slave context. Master contexts
have access to the full MMIO space an AFU provides. Slave contexts
have access to only the per process MMIO space an AFU provides.

For AFUs operating in dedicated process mode, the driver will only cre-
ate a single character device per AFU called /dev/cxl/afu0.0d. This will
have access to the entire MMIO space that the AFU provides (like master
contexts in AFU directed).

The types described below are defined in include/uapi/misc/cxl.h

The following file operations are supported on both slave and master
devices.

A userspace library libcxl is available here:
https://github.com/ibm-capi/libcxl

This provides a C interface to this kernel API.

4.4. MMIO space

15

https://github.com/ibm-capi/libcxl

Linux Powerpc Documentation

open

Opens the device and allocates a file descriptor to be used with the rest
of the API.

A dedicated mode AFU only has one context and only allows the device
to be opened once.

An AFU directed mode AFU can have many contexts, the device can be
opened once for each context that is available.

When all available contexts are allocated the open call will fail and return
-ENOSPC.

Note: IRQs need to be allocated for each context, which may limit the
number of contexts that can be created, and therefore how many
times the device can be opened. The POWERS8 CAPP supports 2040
IRQs and 3 are used by the kernel, so 2037 are left. If 1 IRQ is
needed per context, then only 2037 contexts can be allocated. If 4
IRQs are needed per context, then only 2037/4 = 509 contexts can
be allocated.

ioctl
CXL_IOCTL_START WORK: Starts the AFU context and associates it
with the current process. Once this ioctlis successfully executed, all
memory mapped into this process is accessible to this AFU context
using the same effective addresses. No additional calls are required
to map/unmap memory. The AFU memory context will be updated
as userspace allocates and frees memory. This ioctl returns once
the AFU context is started.
Takes a pointer to a struct cxl ioctl start work
struct cxl ioctl start work {
__ub4 flags;
__ub4 work element descriptor;
ub4 amr;
516 num_interrupts;
516 reservedl;
532 reserved?;
__ub4 reserved3;
__ub4 reserved4;
__ub4 reserved5;
__ub4 reserved6;
Y
flags: Indicates which optional fields in the structure are
valid.
work_element_descriptor: The Work Element Descriptor
(WED) is a 64-bit argument defined by the AFU. Typically
this is an effective address pointing to an AFU specific
structure describing what work to perform.
16 Chapter 4. Coherent Accelerator Interface (CXL)

Linux Powerpc Documentation

amr: Authority Mask Register (AMR), same as the powerpc
AMR. This field is only used by the kernel when the cor-
responding CXL START WORK AMR value is specified in
flags. If not specified the kernel will use a default value
of 0.

num_interrupts: Number of userspace interrupts to re-
quest. This field is only used by the kernel when the
corresponding CXL START WORK NUM IRQS value is
specified in flags. If not specified the minimum number
required by the AFU will be allocated. The min and max
number can be obtained from sysfs.

reserved fields: For ABI padding and future extensions

CXL_IOCTL_GET _PROCESS_ELEMENT: Get the current context id,
also known as the process element. The value is returned from the
kernel asa u32.

mmap

An AFU may have an MMIO space to facilitate communication with the
AFU. If it does, the MMIO space can be accessed via mmap. The size
and contents of this area are specific to the particular AFU. The size can
be discovered via sysfs.

In AFU directed mode, master contexts are allowed to map all of the
MMIO space and slave contexts are allowed to only map the per process
MMIO space associated with the context. In dedicated process mode the
entire MMIO space can always be mapped.

This mmap call must be done after the START WORK ioctl.

Care should be taken when accessing MMIO space. Only 32 and 64-bit
accesses are supported by POWERS. Also, the AFU will be designed
with a specific endianness, so all MMIO accesses should consider endi-
anness (recommend endian(3) variants like: le64toh(), be64toh() etc).
These endian issues equally apply to shared memory queues the WED
may describe.

read

Reads events from the AFU. Blocks if no events are pending (unless
O NONBLOCK is supplied). Returns -EIO in the case of an unrecov-
erable error or if the card is removed.

read() will always return an integral number of events.
The buffer passed to read() must be at least 4K bytes.

The result of the read will be a buffer of one or more events, each event
is of type struct cxl event, of varying size:

4.7. User API 17

Linux Powerpc Documentation

struct cxl _event {
struct cx1 event header header;
union {
struct cx1 event afu interrupt irq;
struct cxl event data storage fault;
struct cxl event afu error afu error;
b
I

The struct cxl event header is defined as

struct cx1 event header {
__ul6 type;
~ul6 size;
__ul6 process element;
__ul6 reservedl;

}

type: This defines the type of event. The type determines how
the rest of the event is structured. These types are de-
scribed below and defined by enum cxl event type.

size: This is the size of the event in bytes including the struct
cxl event header. The start of the next event can be found
at this offset from the start of the current event.

process_element: Context ID of the event.
reserved field: For future extensions and padding.

If the event type is CXLL EVENT AFU INTERRUPT then the event struc-
ture is defined as

struct cxl event afu interrupt {
__ulée flags;
_ul6 irq; /* Raised AFU interrupt number */
__u32 reservedl;

}

flags: These flags indicate which optional fields are present in
this struct. Currently all fields are mandatory.

irq: The IRQ number sent by the AFU.
reserved field: For future extensions and padding.

If the event type is CXLL EVENT DATA STORAGE then the event struc-
ture is defined as

struct cxl event data storage {

~_ulé
__ulé
_u32
__uo4
_ub4
__uo4

flags;
reservedl;
reserved?2;
addr;
dsisr;
reserved3;

18

Chapter 4. Coherent Accelerator Interface (CXL)

Linux Powerpc Documentation

flags: These flags indicate which optional fields are present in
this struct. Currently all fields are mandatory.

address: The address that the AFU unsuccessfully attempted
to access. Valid accesses will be handled transparently by
the kernel but invalid accesses will generate this event.

dsisr: This field gives information on the type of fault. It is a
copy of the DSISR from the PSL hardware when the address
fault occurred. The form of the DSISR is as defined in the
CAIA.

reserved fields: For future extensions

If the event type is CXLL EVENT AFU ERROR then the event structure
is defined as

struct cx1 event afu error {
__ule flags;
__ul6 reservedl;
~u32 reserved?;
__ub4 error;

};

flags: These flags indicate which optional fields are present in
this struct. Currently all fields are Mandatory.

error: Error status from the AFU. Defined by the AFU.

reserved fields: For future extensions and padding

4.7.2 2. Card character device (powerVM guest only)

In a powerVM guest, an extra character device is created for the card.
The device is only used to write (flash) a new image on the FPGA acceler-
ator. Once the image is written and verified, the device tree is updated
and the card is reset to reload the updated image.

open

Opens the device and allocates a file descriptor to be used with the rest
of the API. The device can only be opened once.

ioctl

CXL_IOCTL_DOWNLOAD_IMAGE / CXL_IOCTL_VALIDATE_IMAGE: Starts
and controls flashing a new FPGA image. Partial reconfiguration is not
supported (yet), so the image must contain a copy of the PSL and AFU(s).
Since an image can be quite large, the caller may have to iterate, splitting
the image in smaller chunks.

Takes a pointer to a struct cxl adapter image:

4.7. User API 19

Linux Powerpc Documentation

struct cxl adapter image {

__ub4 flags;

___ub4 data;

__ub4 len data;
~_u64 len image;
__ub4 reservedl;
__ub4 reserved?;
__ub4 reserved3;
__ub4 reserved4;

b

flags: These flags indicate which optional fields are present in this struct.
Currently all fields are mandatory:.

data: Pointer to a buffer with part of the image to write to the card.
len_data: Size of the buffer pointed to by data.

len_image: Full size of the image.

4.8 Sysfs Class

A cxl sysfs class is added under /sys/class/cxl to facilitate enumer-
ation and tuning of the accelerators. Its layout is described in
Documentation/ABI/testing/sysfs-class-cxl

4.9 Udev rules

The following udev rules could be used to create a symlink to the most
logical chardev to use in any programming mode (afuX.Yd for dedicated,
afuX.Ys for afu directed), since the API is virtually identical for each:

SUBSYSTEM=="cx1", ATTRS{mode}=="dedicated process", SYMLINK="cxl/

~%b"

SUBSYSTEM=="cx1", ATTRS{mode}=="afu directed", \
KERNEL=="afu[0-9]*.[0-9]*s", SYMLINK="cx1l/%b"

20

Chapter 4. Coherent Accelerator Interface (CXL)

CHAPTER
FIVE

COHERENT ACCELERATOR (CXL) FLASH

5.1 Introduction

The IBM Power architecture provides support for CAPI (Coherent Ac-
celerator Power Interface), which is available to certain PCle slots on
Power 8 systems. CAPI can be thought of as a special tunneling proto-
col through PClIe that allow PCle adapters to look like special purpose
co-processors which can read or write an application’ s memory and gen-
erate page faults. As a result, the host interface to an adapter running in
CAPI mode does not require the data buffers to be mapped to the device’
s memory (IOMMU bypass) nor does it require memory to be pinned.

On Linux, Coherent Accelerator (CXL) kernel services present CAPI de-
vices as a PCI device by implementing a virtual PCI host bridge. This ab-
straction simplifies the infrastructure and programming model, allowing
for drivers to look similar to other native PCI device drivers.

CXL provides a mechanism by which user space applications can directly
talk to a device (network or storage) bypassing the typical kernel/device
driver stack. The CXL Flash Adapter Driver enables a user space appli-
cation direct access to Flash storage.

The CXL Flash Adapter Driver is a kernel module that sits in the SCSI
stack as a low level device driver (below the SCSI disk and protocol
drivers) for the IBM CXL Flash Adapter. This driver is responsible for the
initialization of the adapter, setting up the special path for user space
access, and performing error recovery. It communicates directly the
Flash Accelerator Functional Unit (AFU) as described in Documenta-
tion/powerpc/cxl.rst.

The cxlflash driver supports two, mutually exclusive, modes of operation
at the device (LUN) level:

* Any flash device (LUN) can be configured to be accessed as a regular
disk device (i.e.: /dev/sdc). This is the default mode.

* Any flash device (LUN) can be configured to be accessed from user
space with a special block library. This mode further specifies the
means of accessing the device and provides for either raw access
to the entire LUN (referred to as direct or physical LUN access)
or access to a kernel/AFU-mediated partition of the LUN (referred
to as virtual LUN access). The segmentation of a disk device into

21

Linux Powerpc Documentation

virtual LUNSs is assisted by special translation services provided by
the Flash AFU.

5.2 Overview

The Coherent Accelerator Interface Architecture (CAIA) introduces a
concept of a master context. A master typically has special privileges
granted to it by the kernel or hypervisor allowing it to perform AFU
wide management and control. The master may or may not be involved
directly in each user I/O, but at the minimum is involved in the initial
setup before the user application is allowed to send requests directly to
the AFU.

The CXL Flash Adapter Driver establishes a master context with the
AFU. It uses memory mapped I/O (MMIO) for this control and setup.
The Adapter Problem Space Memory Map looks like this:

| 512 * 64 KB User MMIO |
| (per context) |
| User Accessible |

| 512 * 128 B per context |
| Provisioning and Control [
| Trusted Process accessible |

| 64 KB Global |
| Trusted Process accessible |

This driver configures itself into the SCSI software stack as an adapter
driver. The driver is the only entity that is considered a Trusted Pro-
cess to program the Provisioning and Control and Global areas in the
MMIO Space shown above. The master context driver discovers all LUNs
attached to the CXL Flash adapter and instantiates scsi block devices
(/dev/sdb, /dev/sdc etc.) for each unique LUN seen from each path.

Once these scsi block devices are instantiated, an application written to
a specification provided by the block library may get access to the Flash
from user space (without requiring a system call).

This master context driver also provides a series of ioctls for this block
library to enable this user space access. The driver supports two modes
for accessing the block device.

The first mode is called a virtual mode. In this mode a single scsi block
device (/dev/sdb) may be carved up into any number of distinct virtual
LUNSs. The virtual LUNs may be resized as long as the sum of the sizes
of all the virtual LUNSs, along with the meta-data associated with it does
not exceed the physical capacity.

The second mode is called the physical mode. In this mode a single
block device (/dev/sdb) may be opened directly by the block library and
the entire space for the LUN is available to the application.

22 Chapter 5. Coherent Accelerator (CXL) Flash

Linux Powerpc Documentation

Only the physical mode provides persistence of the data. i.e. The data
written to the block device will survive application exit and restart and
also reboot. The virtual LUNs do not persist (i.e. do not survive after the
application terminates or the system reboots).

5.3 Block library API

Applications intending to get access to the CXL Flash from user space
should use the block library, as it abstracts the details of interfacing
directly with the cxlflash driver that are necessary for performing ad-
ministrative actions (i.e.: setup, tear down, resize). The block library
can be thought of as a ‘user’ of services, implemented as IOCTLs, that
are provided by the cxlflash driver specifically for devices (LUNSs) op-
erating in user space access mode. While it is not a requirement that
applications understand the interface between the block library and the
cxlflash driver, a high-level overview of each supported service (I0CTL)
is provided below.

The block library can be found on GitHub: http://github.com/
open-power/capiflash

5.4 CXL Flash Driver LUN IOCTLs

5.4.

Users, such as the block library, that wish to interface with a flash de-
vice (LUN) via user space access need to use the services provided by
the cxlflash driver. As these services are implemented as ioctls, a file
descriptor handle must first be obtained in order to establish the com-
munication channel between a user and the kernel. This file descriptor
is obtained by opening the device special file associated with the scsi
disk device (/dev/sdb) that was created during LUN discovery. As per
the location of the cxlflash driver within the SCSI protocol stack, this
open is actually not seen by the cxlflash driver. Upon successful open,
the user receives a file descriptor (herein referred to as fd1) that should
be used for issuing the subsequent ioctls listed below.

The structure definitions for these IOCTLs are available in:
uapi/scsi/cxlflash _ioctl.h

1 DK _CXLFLASH_ATTACH

This ioctl obtains, initializes, and starts a context using the CXL kernel
services. These services specify a context id (u16) by which to uniquely
identify the context and its allocated resources. The services addition-
ally provide a second file descriptor (herein referred to as fd2) that is
used by the block library to initiate memory mapped I/O (via mmap()) to
the CXL flash device and poll for completion events. This file descriptor
is intentionally installed by this driver and not the CXL kernel services to

5.3.

Block library API

23

http://github.com/open-power/capiflash
http://github.com/open-power/capiflash

Linux Powerpc Documentation

allow for intermediary notification and access in the event of a non-user-
initiated close(), such as a killed process. This design point is described
in further detail in the description for the DK CXLFLASH DETACH ioctl.

There are a few important aspects regarding the “tokens” (context id
and fd2) that are provided back to the user:

* These tokens are only valid for the process under which they
were created. The child of a forked process cannot continue to
use the context id or file descriptor created by its parent (see
DK CXLFLASH VLUN CLONE for further details).

» These tokens are only valid for the lifetime of the context and the
process under which they were created. Once either is destroyed,
the tokens are to be considered stale and subsequent usage will
result in errors.

* A valid adapter file descriptor (fd2 >= 0) is only returned on the
initial attach for a context. Subsequent attaches to an existing con-
text (DK CXLFLASH ATTACH REUSE CONTEXT flag present) do
not provide the adapter file descriptor as it was previously made
known to the application.

* When a context is no longer needed, the user shall detach from
the context via the DK CXLFLASH DETACH ioctl. When this ioctl
returns with a valid adapter file descriptor and the return flag
DK CXLFLASH APP CLOSE ADAP FD is present, the application
~must close the adapter file descriptor following a successful de-
tach.

* When this ioctl returns with a valid fd2 and the return flag
DK CXLFLASH APP CLOSE ADAP FD is present, the application
~must close fd2 in the following circumstances:

- Following a successful detach of the last user of the context
- Following a successful recovery on the context’ s original fd2

- In the child process of a fork(), following a clone ioctl, on the fd2
associated with the source context

* At any time, a close on fd2 will invalidate the tokens. Applications
should exercise caution to only close fd2 when appropriate (outlined
in the previous bullet) to avoid premature loss of I/0.

5.4.2 DK_CXLFLASH_USER_DIRECT

This ioctl is responsible for transitioning the LUN to direct (physical)
mode access and configuring the AFU for direct access from user space
on a per-context basis. Additionally, the block size and last logical block
address (LBA) are returned to the user.

As mentioned previously, when operating in user space access mode,
LUNs may be accessed in whole or in part. Only one mode is allowed at
a time and if one mode is active (outstanding references exist), requests
to use the LUN in a different mode are denied.

24 Chapter 5. Coherent Accelerator (CXL) Flash

Linux Powerpc Documentation

The AFU is configured for direct access from user space by adding an
entry to the AFU’ s resource handle table. The index of the entry is
treated as a resource handle that is returned to the user. The user is
then able to use the handle to reference the LUN during I/0.

5.4.3 DK_CXLFLASH_USER_VIRTUAL

This ioctl is responsible for transitioning the LUN to virtual mode of ac-
cess and configuring the AFU for virtual access from user space on a
per-context basis. Additionally, the block size and last logical block ad-
dress (LBA) are returned to the user.

As mentioned previously, when operating in user space access mode,
LUNs may be accessed in whole or in part. Only one mode is allowed at
a time and if one mode is active (outstanding references exist), requests
to use the LUN in a different mode are denied.

The AFU is configured for virtual access from user space by adding an
entry to the AFU’ s resource handle table. The index of the entry is
treated as a resource handle that is returned to the user. The user is
then able to use the handle to reference the LUN during I/O.

By default, the virtual LUN is created with a size of 0. The user would
need to use the DK CXLFLASH VLUN RESIZE ioctl to adjust the grow
the virtual LUN to a desired size. To avoid having to perform this re-
size for the initial creation of the virtual LUN, the user has the option
of specifying a size as part of the DK CXLFLASH USER VIRTUAL ioctl,
such that when success is returned to the user, the resource handle that
is provided is already referencing provisioned storage. This is reflected
by the last LBA being a non-zero value.

When a LUN is accessible from more than one port, this ioctl will return
with the DK CXLFLASH ALL PORTS ACTIVE return flag set. This pro-
vides the user with a hint that I/O can be retried in the event of an I/O
error as the LUN can be reached over multiple paths.

5.4.4 DK_CXLFLASH_VLUN_RESIZE

This ioctl is responsible for resizing a previously created virtual LUN and
will fail if invoked upon a LUN that is not in virtual mode. Upon success,
an updated last LBA is returned to the user indicating the new size of
the virtual LUN associated with the resource handle.

The partitioning of virtual LUNSs is jointly mediated by the cxlflash driver
and the AFU. An allocation table is kept for each LUN that is operating
in the virtual mode and used to program a LUN translation table that the
AFU references when provided with a resource handle.

This ioctl can return -EAGAIN if an AFU sync operation takes too long.
In addition to returning a failure to user, cxlflash will also schedule an
asynchronous AFU reset. Should the user choose to retry the operation,
it is expected to succeed. If this ioctl fails with -EAGAIN, the user can
either retry the operation or treat it as a failure.

5.4. CXL Flash Driver LUN IOCTLs 25

Linux Powerpc Documentation

5.4.5 DK_CXLFLASH_RELEASE

This ioctl is responsible for releasing a previously obtained reference to
either a physical or virtual LUN. This can be thought of as the inverse of
the DK CXLFLASH USER DIRECT or DK CXLFLASH USER VIRTUAL
ioctls. Upon success, the resource handle is no longer valid and the entry
in the resource handle table is made available to be used again.

As part of the release process for virtual LUNSs, the virtual LUN is first
resized to O to clear out and free the translation tables associated with
the virtual LUN reference.

5.4.6 DK_CXLFLASH_DETACH

This ioctl is responsible for unregistering a context with the cxlflash
driver and release outstanding resources that were not explic-
itly released via the DK CXLFLASH RELEASE ioctl. Upon suc-
cess, all “tokens” which had been provided to the user from the
DK CXLFLASH ATTACH onward are no longer valid.

When the DK CXLFLASH APP CLOSE ADAP FD flag was returned on
a successful attach, the application must close the fd2 associated with
the context following the detach of the final user of the context.

5.4.7 DK_CXLFLASH_VLUN_CLONE

This ioctl is responsible for cloning a previously created context to a
more recently created context. It exists solely to support maintaining
user space access to storage after a process forks. Upon success, the
child process (which invoked the ioctl) will have access to the same LUNs
via the same resource handle(s) as the parent, but under a different con-
text.

Context sharing across processes is not supported with CXL and there-
fore each fork must be met with establishing a new context for the
child process. This ioctl simplifies the state management and playback
required by a user in such a scenario. When a process forks, child
process can clone the parents context by first creating a context (via
DK CXLFLASH ATTACH) and then using this ioctl to perform the clone
from the parent to the child.

The clone itself is fairly simple. The resource handle and lun translation
tables are copied from the parent context to the child’ s and then synced
with the AFU.

When the DK CXLFLASH APP CLOSE ADAP FD flag was returned on
a successful attach, the application must close the fd2 associated with
the source context (still resident/accessible in the parent process) fol-
lowing the clone. This is to avoid a stale entry in the file descriptor table
of the child process.

This ioctl can return -EAGAIN if an AFU sync operation takes too long.
In addition to returning a failure to user, cxlflash will also schedule an

26 Chapter 5. Coherent Accelerator (CXL) Flash

Linux Powerpc Documentation

asynchronous AFU reset. Should the user choose to retry the operation,
it is expected to succeed. If this ioctl fails with -EAGAIN, the user can
either retry the operation or treat it as a failure.

5.4.8 DK_CXLFLASH_VERIFY

This ioctl is used to detect various changes such as the capacity of the
disk changing, the number of LUNSs visible changing, etc. In cases where
the changes affect the application (such as a LUN resize), the cxlflash
driver will report the changed state to the application.

The user calls in when they want to validate that a LUN hasn’ t been
changed in response to a check condition. As the user is operating out
of band from the kernel, they will see these types of events without the
kernel’ s knowledge. When encountered, the user’ s architected be-
havior is to call in to this ioctl, indicating what they want to verify and
passing along any appropriate information. For now, only verifying a
LUN change (ie: size different) with sense data is supported.

5.4.9 DK_CXLFLASH_RECOVER_AFU

This ioctl is used to drive recovery (if such an action is warranted) of
a specified user context. Any state associated with the user context is
re-established upon successful recovery.

User contexts are put into an error condition when the device needs
to be reset or is terminating. Users are notified of this error condition
by seeing all OxF’ s on an MMIO read. Upon encountering this, the
architected behavior for a user is to call into this ioctl to recover their
context. A user may also call into this ioctl at any time to check if the
device is operating normally. If a failure is returned from this ioctl, the
user is expected to gracefully clean up their context via release/detach
ioctls. Until they do, the context they hold is not relinquished. The user
may also optionally exit the process at which time the context/resources
they held will be freed as part of the release fop.

When the DK CXLFLASH APP CLOSE ADAP FD flag was returned
on a successful attach, the application must unmap and close
the fd2 associated with the original context following this ioctl
returning success and indicating that the context was recovered
(DK CXLFLASH RECOVER AFU CONTEXT RESET).

5.4. CXL Flash Driver LUN IOCTLs 27

Linux Powerpc Documentation

5.4.10 DK_CXLFLASH_MANAGE_LUN

This ioctl is used to switch a LUN from a mode where it is available for
file-system access (legacy), to a mode where it is set aside for exclusive
user space access (superpipe). In case a LUN is visible across multiple
ports and adapters, this ioctl is used to uniquely identify each LUN by
its World Wide Node Name (WWNN).

5.5 CXL Flash Driver Host IOCTLs

Each host adapter instance that is supported by the cxlflash driver has
a special character device associated with it to enable a set of host man-
agement function. These character devices are hosted in a class dedi-
cated for cxlflash and can be accessed via /dev/cxlflash/*.

Applications can be written to perform various functions using the host
ioctl APIs below.

The structure definitions for these IOCTLs are available in:
uapi/scsi/cxlflash ioctl.h

5.5.1 HT_CXLFLASH_LUN_PROVISION

This ioctl is used to create and delete persistent LUNs on cxlflash devices
that lack an external LUN management interface. It is only valid when
used with AFUs that support the LUN provision capability.

When sufficient space is available, LUNs can be created by specifying
the target port to host the LUN and a desired size in 4K blocks. Upon
success, the LUN ID and WWID of the created LUN will be returned and
the SCSI bus can be scanned to detect the change in LUN topology. Note
that partial allocations are not supported. Should a creation fail due to a
space issue, the target port can be queried for its current LUN geometry.

To remove a LUN, the device must first be disassociated from the Linux
SCSI subsystem. The LUN deletion can then be initiated by specifying
a target port and LUN ID. Upon success, the LUN geometry associated
with the port will be updated to reflect new number of provisioned LUNSs
and available capacity.

To query the LUN geometry of a port, the target port is specified and
upon success, the following information is presented:

* Maximum number of provisioned LUNs allowed for the port

* Current number of provisioned LUNSs for the port

* Maximum total capacity of provisioned LUNSs for the port (4K blocks)
» Current total capacity of provisioned LUNs for the port (4K blocks)

With this information, the number of available LUNs and capacity can
be can be calculated.

28 Chapter 5. Coherent Accelerator (CXL) Flash

Linux Powerpc Documentation

5.5.2 HT_CXLFLASH _AFU DEBUG

This ioctl is used to debug AFUs by supporting a command pass-through
interface. It is only valid when used with AFUs that support the AFU
debug capability.

With exception of buffer management, AFU debug commands are
opaque to cxlflash and treated as pass-through. For debug commands
that do require data transfer, the user supplies an adequately sized data
buffer and must specify the data transfer direction with respect to the
host. There is a maximum transfer size of 256K imposed. Note that par-
tial read completions are not supported - when errors are experienced
with a host read data transfer, the data buffer is not copied back to the
user.

5.5.

CXL Flash Driver Host IOCTLs

29

Linux Powerpc Documentation

30 Chapter 5. Coherent Accelerator (CXL) Flash

CHAPTER
SIX

DAWR ISSUES ON POWER9

On POWERO9 the Data Address Watchpoint Register (DAWR) can cause a checkstop
if it points to cache inhibited (CI) memory. Currently Linux has no way to disinguish
CI memory when configuring the DAWR, so (for now) the DAWR is disabled by this
commit:

commit 9654153158d3e0684albdb76dbababdb7111d5a0
Author: Michael Neuling <mikey@neuling.org>

Date: Tue Mar 27 15:37:24 2018 +1100

powerpc: Disable DAWR in the base POWER9 CPU features

6.1 Technical Details:

DAWR has 6 different ways of being set. 1) ptrace 2) h set mode(DAWR) 3)
h set dabr() 4) kvmppc set one reg() 5) xmon

For ptrace, we now advertise zero breakpoints on POWER9 via the
PPC PTRACE GETHWDBGINFO call. This results in GDB falling back to
software emulation of the watchpoint (which is slow).

h set mode(DAWR) and h set dabr() will now return an error to the guest on a
POWERS9 host. Current Linux guests ignore this error, so they will silently not get
the DAWR.

kvmppc set one reg() will store the value in the vcpu but won’ t actually set it on
POWER9 hardware. This is done so we don’ t break migration from POWERS to
POWERDY, at the cost of silently losing the DAWR on the migration.

For xmon, the ‘bd’ command will return an error on P9.

6.2 Consequences for users

For GDB watchpoints (ie ‘watch’ command) on POWER9 bare metal , GDB will
accept the command. Unfortunately since there is no hardware support for the
watchpoint, GDB will software emulate the watchpoint making it run very slowly.

The same will also be true for any guests started on a POWER9 host. The watch-
point will fail and GDB will fall back to software emulation.

If a guest is started on a POWERS host, GDB will accept the watchpoint and config-
ure the hardware to use the DAWR. This will run at full speed since it can use the

31

Linux Powerpc Documentation

hardware emulation. Unfortunately if this guest is migrated to a POWERO9 host,
the watchpoint will be lost on the POWER9. Loads and stores to the watchpoint lo-
cations will not be trapped in GDB. The watchpoint is remembered, so if the guest
is migrated back to the POWERS host, it will start working again.

6.3 Force enabling the DAWR

Kernels (since ~v5.2) have an option to force enable the DAWR via:

echo Y > /sys/kernel/debug/powerpc/dawr _enable dangerous

This enables the DAWR even on POWERO.
This is a dangerous setting, USE AT YOUR OWN RISK.

Some users may not care about a bad user crashing their box (ie. single
user/desktop systems) and really want the DAWR. This allows them to force en-
able DAWR.

This flag can also be used to disable DAWR access. Once this is cleared, all DAWR
access should be cleared immediately and your machine once again safe from
crashing.

Userspace may get confused by toggling this. If DAWR is force enabled/disabled
between getting the number of breakpoints (via PTRACE GETHWDBGINFO) and
setting the breakpoint, userspace will get an inconsistent view of what’ s available.
Similarly for guests.

For the DAWR to be enabled in a KVM guest, the DAWR needs to be force enabled
in the host AND the guest. For this reason, this won’ t work on POWERVM as it
doesn’ t allow the HCALL to work. Writes of ‘Y’ to the dawr enable dangerous
file will fail if the hypervisor doesn’ t support writing the DAWR.

To double check the DAWR is working, run this kernel selftest:
tools/testing/selftests/powerpc/ptrace/ptrace-hwbreak.c

Any errors/failures/skips mean something is wrong.

32 Chapter 6. DAWR issues on POWER9

CHAPTER
SEVEN

DSCR (DATA STREAM CONTROL REGISTER)

DSCR register in powerpc allows user to have some control of prefetch of data
stream in the processor. Please refer to the ISA documents or related manual for
more detailed information regarding how to use this DSCR to attain this control
of the prefetches . This document here provides an overview of kernel support for
DSCR, related kernel objects, it’ s functionalities and exported user interface.

(A) Data Structures:
(1) thread struct:

dscr /* Thread DSCR value */
dscr _inherit /* Thread has changed default DSCR */

(2) PACA:

dscr default /* per-CPU DSCR default value */

(3) sysfs.c:

dscr default /* System DSCR default value */

(B) Scheduler Changes:

Scheduler will write the per-CPU DSCR default which is stored in
the CPU’ s PACA value into the register if the thread has dscr_inherit
value cleared which means that it has not changed the default DSCR
till now. If the dscr inherit value is set which means that it has
changed the default DSCR value, scheduler will write the changed
value which will now be contained in thread struct’ s dscr into the
register instead of the per-CPU default PACA based DSCR value.

NOTE: Please note here that the system wide global DSCR value
never gets used directly in the scheduler process context switch at
all.

(C) SYSFS Interface:
* Global DSCR default: /sys/devices/system/cpu/dscr default
* CPU specific DSCR default: /sys/devices/system/cpu/cpulN/dscr

Changing the global DSCR default in the sysfs will change all the CPU
specific DSCR defaults immediately in their PACA structures. Again
if the current process has the dscr inherit clear, it also writes the

33

Linux Powerpc Documentation

new value into every CPU’ s DSCR register right away and updates
the current thread’ s DSCR value as well.

Changing the CPU specific DSCR default value in the sysfs does ex-
actly the same thing as above but unlike the global one above, it just
changes stuff for that particular CPU instead for all the CPUs on the
system.

(D) User Space Instructions:

The DSCR register can be accessed in the user space using any of
these two SPR numbers available for that purpose.

(1) Problem state SPR: 0x03 (Un-privileged, POWERS only)
(2) Privileged state SPR: 0x11 (Privileged)

Accessing DSCR through privileged SPR number (0x11) from user
space works, as it is emulated following an illegal instruction ex-
ception inside the kernel. Both mfspr and mtspr instructions are
emulated.

Accessing DSCR through user level SPR (0x03) from user space will
first create a facility unavailable exception. Inside this exception
handler all mfspr instruction based read attempts will get emulated
and returned where as the first mtspr instruction based write at-
tempts will enable the DSCR facility for the next time around (both
for read and write) by setting DSCR facility in the FSCR register.

(E) Specifics about ‘dscr inherit’ :

The thread struct element ‘dscr inherit’ represents whether the
thread in question has attempted and changed the DSCR itself using
any of the following methods. This element signifies whether the
thread wants to use the CPU default DSCR value or its own changed
DSCR value in the kernel.

(1) mtspr instruction (SPR number 0x03)
(2) mtspr instruction (SPR number 0x11)
(3) ptrace interface (Explicitly set user DSCR value)

Any child of the process created after this event in the process in-
herits this same behaviour as well.

34

Chapter 7. DSCR (Data Stream Control Register)

CHAPTER
EIGHT

PCI BUS EEH ERROR RECOVERY

Linas Vepstas <linas@austin.ibm.com>

12 January 2005

8.1 Overview:

The IBM POWER-based pSeries and iSeries computers include PCI bus controller
chips that have extended capabilities for detecting and reporting a large variety
of PCI bus error conditions. These features go under the name of “EEH” , for
“Enhanced Error Handling” . The EEH hardware features allow PCI bus errors to
be cleared and a PCI card to be “rebooted” , without also having to reboot the
operating system.

This is in contrast to traditional PCI error handling, where the PCI chip is wired
directly to the CPU, and an error would cause a CPU machine-check/check-stop
condition, halting the CPU entirely. Another “traditional” technique is to ignore
such errors, which can lead to data corruption, both of user data or of kernel data,
hung/unresponsive adapters, or system crashes/lockups. Thus, the idea behind
EEH is that the operating system can become more reliable and robust by protect-
ing it from PCI errors, and giving the OS the ability to “reboot” /recover individual
PCI devices.

Future systems from other vendors, based on the PCI-E specification, may contain
similar features.

8.2 Causes of EEH Errors

EEH was originally designed to guard against hardware failure, such as PCI cards
dying from heat, humidity, dust, vibration and bad electrical connections. The vast
majority of EEH errors seen in “real life” are due to either poorly seated PCI cards,
or, unfortunately quite commonly, due to device driver bugs, device firmware bugs,
and sometimes PCI card hardware bugs.

The most common software bug, is one that causes the device to attempt to DMA
to a location in system memory that has not been reserved for DMA access for
that card. This is a powerful feature, as it prevents what; otherwise, would have
been silent memory corruption caused by the bad DMA. A number of device driver

35

mailto:linas@austin.ibm.com

Linux Powerpc Documentation

bugs have been found and fixed in this way over the past few years. Other pos-
sible causes of EEH errors include data or address line parity errors (for exam-
ple, due to poor electrical connectivity due to a poorly seated card), and PCI-X
split-completion errors (due to software, device firmware, or device PCI hardware
bugs). The vast majority of “true hardware failures” can be cured by physically
removing and re-seating the PCI card.

8.3 Detection and Recovery

In the following discussion, a generic overview of how to detect and recover from
EEH errors will be presented. This is followed by an overview of how the current
implementation in the Linux kernel does it. The actual implementation is subject
to change, and some of the finer points are still being debated. These may in turn
be swayed if or when other architectures implement similar functionality.

When a PCI Host Bridge (PHB, the bus controller connecting the PCI bus to the
system CPU electronics complex) detects a PCI error condition, it will “isolate”
the affected PCI card. Isolation will block all writes (either to the card from the
system, or from the card to the system), and it will cause all reads to return all-ff’
s (Oxff, Oxffff, Oxffffffff for 8/16/32-bit reads). This value was chosen because it is
the same value you would get if the device was physically unplugged from the slot.
This includes access to PCI memory, I/O space, and PCI config space. Interrupts;
however, will continued to be delivered.

Detection and recovery are performed with the aid of ppc64 firmware. The pro-
gramming interfaces in the Linux kernel into the firmware are referred to as RTAS
(Run-Time Abstraction Services). The Linux kernel does not (should not) access
the EEH function in the PCI chipsets directly, primarily because there are a num-
ber of different chipsets out there, each with different interfaces and quirks. The
firmware provides a uniform abstraction layer that will work with all pSeries and
iSeries hardware (and be forwards-compatible).

If the OS or device driver suspects that a PCI slot has been EEH-isolated, there
is a firmware call it can make to determine if this is the case. If so, then the de-
vice driver should put itself into a consistent state (given that it won’ t be able
to complete any pending work) and start recovery of the card. Recovery normally
would consist of resetting the PCI device (holding the PCI #RST line high for two
seconds), followed by setting up the device config space (the base address reg-
isters (BAR’ s), latency timer, cache line size, interrupt line, and so on). This is
followed by a reinitialization of the device driver. In a worst-case scenario, the
power to the card can be toggled, at least on hot-plug-capable slots. In princi-
ple, layers far above the device driver probably do not need to know that the PCI
card has been “rebooted” in this way; ideally, there should be at most a pause in
Ethernet/disk/USB I/O while the card is being reset.

If the card cannot be recovered after three or four resets, the kernel/device driver
should assume the worst-case scenario, that the card has died completely, and
report this error to the sysadmin. In addition, error messages are reported through
RTAS and also through syslogd (/var/log/messages) to alert the sysadmin of PCI
resets. The correct way to deal with failed adapters is to use the standard PCI
hotplug tools to remove and replace the dead card.

36 Chapter 8. PCI Bus EEH Error Recovery

Linux Powerpc Documentation

8.4 Current PPC64 Linux EEH Implementation

At this time, a generic EEH recovery mechanism has been implemented, so that
individual device drivers do not need to be modified to support EEH recovery. This
generic mechanism piggy-backs on the PCI hotplug infrastructure, and percolates
events up through the userspace/udev infrastructure. Following is a detailed de-
scription of how this is accomplished.

EEH must be enabled in the PHB’ s very early during the boot pro-
cess, and if a PCI slot is hot-plugged. The former is performed by
eeh init() in arch/powerpc/platforms/pseries/eeh.c, and the later by
drivers/pci/hotplug/pSeries pci.c calling in to the eeh.c code. EEH must be
enabled before a PCI scan of the device can proceed. Current Power5 hardware
will not work unless EEH is enabled; although older Power4 can run with it
disabled. Effectively, EEH can no longer be turned off. PCI devices must be
registered with the EEH code; the EEH code needs to know about the I/O address
ranges of the PCI device in order to detect an error. Given an arbitrary address,
the routine pci get device by addr() will find the pci device associated with that
address (if any).

The default arch/powerpc/include/asm/io.h macros readb(), inb(), insb(), etc. in-
clude a check to see if the i/o read returned all-Oxff’ s. If so, these make a call to
eeh dn check failure(), which in turn asks the firmware if the all-ff' s value is the
sign of a true EEH error. If it is not, processing continues as normal. The grand to-
tal number of these false alarms or “false positives” can be seen in /proc/ppc64/eeh
(subject to change). Normally, almost all of these occur during boot, when the PCI
bus is scanned, where a large number of Oxff reads are part of the bus scan pro-
cedure.

If a frozen slot is detected, code in arch/powerpc/platforms/pseries/eeh.c will print
a stack trace to syslog (/var/log/messages). This stack trace has proven to be very
useful to device-driver authors for finding out at what point the EEH error was
detected, as the error itself usually occurs slightly beforehand.

Next, it uses the Linux kernel notifier chain/work queue mechanism to allow any
interested parties to find out about the failure. Device drivers, or other parts of
the kernel, can use eeh register notifier(struct notifier block *) to find out about
EEH events. The event will include a pointer to the pci device, the device node
and some state info. Receivers of the event can “do as they wish” ; the default
handler will be described further in this section.

To assist in the recovery of the device, eeh.c exports the following functions:
rtas_set_slot_reset() assert the PCI #RST line for 1/8th of a second

rtas_configure_bridge() ask firmware to configure any PCI bridges located topo-
logically under the pci slot.

eeh_save bars() and eeh_restore_bars(): save and restore the PCI config-
space info for a device and any devices under it.

A handler for the EEH notifier block events 1is implemented in
drivers/pci/hotplug/pSeries pci.c, called handle eeh events(). It saves the
device BAR’ s and then calls rpaphp unconfig pci adapter(). This last call causes
the device driver for the card to be stopped, which causes uevents to go out to

8.4. Current PPC64 Linux EEH Implementation 37

Linux Powerpc Documentation

user space. This triggers user-space scripts that might issue commands such as
“ifdown eth0” for ethernet cards, and so on. This handler then sleeps for 5 seconds,
hoping to give the user-space scripts enough time to complete. It then resets the
PCI card, reconfigures the device BAR’ s, and any bridges underneath. It then
calls rpaphp enable pci slot(), which restarts the device driver and triggers more
user-space events (for example, calling “ifup eth0” for ethernet cards).

8.5 Device Shutdown and User-Space Events

This section documents what happens when a pci slot is unconfigured, focusing
on how the device driver gets shut down, and on how the events get delivered to
user-space scripts.

Following is an example sequence of events that cause a device driver close func-
tion to be called during the first phase of an EEH reset. The following sequence is
an example of the pcnet32 device driver:

rpa_php unconfig pci adapter (struct slot *) // in rpaphp pci.c

calls
pci remove bus device (struct pci dev *) // in /drivers/pci/remove.c
{
calls
pci destroy dev (struct pci dev *)
{
calls
device unregister (&dev->dev) // in /drivers/base/core.c
{
calls
device del (struct device *)
{
calls
bus_remove device() // in /drivers/base/bus.c
{
calls
device release driver()
{
calls
struct device driver->remove() which is just
pci_device remove() // in /drivers/pci/pci_driver.c
{
calls
struct pci driver->remove() which is just
pcnet32 remove one() // in /drivers/net/pcnet32.c

{
calls
unregister netdev() // in /net/core/dev.c
{
calls
dev _close() // in /net/core/dev.c
{

calls dev->stop();
which is just pcnet32 close() // in pcnet32.c

{

(continues on next page)

38 Chapter 8. PCI Bus EEH Error Recovery

Linux Powerpc Documentation

(continued from previous page)

which does what you wanted
to stop the device

}
}
}
which
frees pcnet32 device driver memory
}
I3y
in drivers/pci/pci_driver.c, struct device driver->remove() is just

pci device remove() which calls struct pci driver->remove() which is pc-
net32 remove one() which calls unregister netdev() (in net/core/dev.c) which calls
dev close() (in net/core/dev.c) which calls dev->stop() which is pcnet32 close()
which then does the appropriate shutdown.

Following is the analogous stack trace for events sent to user-space when the pci
device is unconfigured:

rpa_php unconfig pci adapter() { // in rpaphp pci.c
calls
pci_remove bus device (struct pci dev *) { // in /drivers/pci/remove.c
calls
pci destroy dev (struct pci dev *) {
calls
device unregister (&dev->dev) { // in /drivers/base/core.c
calls
device del(struct device * dev) { // in /drivers/base/core.c
calls
kobject del() { //in /libs/kobject.c
calls
kobject uevent() { // in /libs/kobject.c
calls
kset uevent() { // in /lib/kobject.c
calls
kset->uevent ops->uevent() // which is really just
a call to
dev_uevent() { // in /drivers/base/core.c
calls
dev->bus->uevent() which is really just a call to
pci uevent () { // in drivers/pci/hotplug.c

which prints device name, etc....

}
}

then kobject uevent() sends a netlink uevent to userspace
--> userspace uevent
(during early boot, nobody listens to netlink events and
kobject uevent() executes uevent helper[], which runs the
event process /sbin/hotplug)
}

}

kobject del() then calls sysfs remove dir(), which would

trigger any user-space daemon that was watching /sysfs,

and notice the delete event.

8.5. Device Shutdown and User-Space Events 39

Linux Powerpc Documentation

8.6 Pro’ s and Con’ s of the Current Design

There are several issues with the current EEH software recovery design, which
may be addressed in future revisions. But first, note that the big plus of the current
design is that no changes need to be made to individual device drivers, so that
the current design throws a wide net. The biggest negative of the design is that
it potentially disturbs network daemons and file systems that didn’ t need to be
disturbed.

* A minor complaint is that resetting the network card causes user-space back-

to-back ifdown/ifup burps that potentially disturb network daemons, that
didn’ t need to even know that the pci card was being rebooted.

¢ A more serious concern is that the same reset, for SCSI devices, causes havoc

to mounted file systems. Scripts cannot post-facto unmount a file system with-
out flushing pending buffers, but this is impossible, because I/O has already
been stopped. Thus, ideally, the reset should happen at or below the block
layer, so that the file systems are not disturbed.

Reiserfs does not tolerate errors returned from the block device. Ext3fs
seems to be tolerant, retrying reads/writes until it does succeed. Both have
been only lightly tested in this scenario.

The SCSI-generic subsystem already has built-in code for performing SCSI
device resets, SCSI bus resets, and SCSI host-bus-adapter (HBA) resets.
These are cascaded into a chain of attempted resets if a SCSI command fails.
These are completely hidden from the block layer. It would be very natural
to add an EEH reset into this chain of events.

If a SCSI error occurs for the root device, all is lost unless the sysadmin had
the foresight to run /bin, /sbin, /etc, /var and so on, out of ramdisk/tmpfs.

8.7 Conclusions

There’ s forward progress -

40

Chapter 8. PCI Bus EEH Error Recovery

CHAPTER
NINE

ELF NOTE POWERPC NAMESPACE

The PowerPC namespace in an ELF Note of the kernel binary is used to store
capabilities and information which can be used by a bootloader or userland.

9.1 Types and Descriptors

The types to be used with the “PowerPC” namesapce are defined in'.
1) PPC ELFNOTE CAPABILITIES

Define the capabilities supported/required by the kernel. This type uses a bitmap
as “descriptor” field. Each bit is described below:

» Ultravisor-capable bit (PowerNV only).

#define PPCCAP_ULTRAVISOR BIT (1 << 0)

Indicate that the powerpc kernel binary knows how to run in an ultravisor-enabled
system.

In an ultravisor-enabled system, some machine resources are now controlled by
the ultravisor. If the kernel is not ultravisor-capable, but it ends up being run on a
machine with ultravisor, the kernel will probably crash trying to access ultravisor
resources. For instance, it may crash in early boot trying to set the partition table
entry 0.

In an ultravisor-enabled system, a bootloader could warn the user or prevent the
kernel from being run if the PowerPC ultravisor capability doesn’ t exist or the
Ultravisor-capable bit is not set.

9.2 References

! arch/powerpc/include/asm/elfnote.h

41

Linux Powerpc Documentation

42

Chapter 9. ELF Note PowerPC Namespace

CHAPTER
TEN

FIRMWARE-ASSISTED DUMP

July 2011

The goal of firmware-assisted dump is to enable the dump of a crashed system,
and to do so from a fully-reset system, and to minimize the total elapsed time until
the system is back in production use.

* Firmware-Assisted Dump (FADump) infrastructure is intended to replace the
existing phyp assisted dump.

e Fadump uses the same firmware interfaces and memory reservation model
as phyp assisted dump.

* Unlike phyp dump, FADump exports the memory dump through /proc/vmcore
in the ELF format in the same way as kdump. This helps us reuse the kdump
infrastructure for dump capture and filtering.

* Unlike phyp dump, userspace tool does not need to refer any sysfs interface
while reading /proc/vmcore.

* Unlike phyp dump, FADump allows user to release all the mem-
ory reserved for dump, with a single operation of echo 1 >
/sys/kernel/fadump release mem.

* Once enabled through kernel boot parameter, FADump can be
started/stopped through /sys/kernel/fadump registered interface (see
sysfs files section below) and can be easily integrated with kdump service
start/stop init scripts.

Comparing with kdump or other strategies, firmware-assisted dump offers several
strong, practical advantages:

* Unlike kdump, the system has been reset, and loaded with a fresh copy of the
kernel. In particular, PCI and I/O devices have been reinitialized and are in a
clean, consistent state.

* Once the dump is copied out, the memory that held the dump is immediately
available to the running kernel. And therefore, unlike kdump, FADump doesn’
t need a 2nd reboot to get back the system to the production configuration.

The above can only be accomplished by coordination with, and assistance from the
Power firmware. The procedure is as follows:

* The first kernel registers the sections of memory with the Power firmware
for dump preservation during OS initialization. These registered sections of
memory are reserved by the first kernel during early boot.

43

Linux Powerpc Documentation

* When system crashes, the Power firmware will copy the registered low mem-
ory regions (boot memory) from source to destination area. It will also save
hardware PTE’ s.

NOTE: The term ‘boot memory means size of the low memory chunk that
is required for a kernel to boot successfully when booted with restricted
memory. By default, the boot memory size will be the larger of 5% of
system RAM or 256MB. Alternatively, user can also specify boot memory
size through boot parameter ‘crashkernel=" which will override the de-
fault calculated size. Use this option if default boot memory size is not
sufficient for second kernel to boot successfully. For syntax of crashker-
nel= parameter, refer to Documentation/admin-guide/kdump/kdump.rst.
If any offset is provided in crashkernel= parameter, it will be ignored as
FADump uses a predefined offset to reserve memory for boot memory
dump preservation in case of a crash.

* After the low memory (boot memory) area has been saved, the firmware will
reset PCI and other hardware state. It will not clear the RAM. It will then
launch the bootloader, as normal.

* The freshly booted kernel will notice that there is a new node (rtas/ibm,kernel-
dump on pSeries or ibm,opal/dump/mpipl-boot on OPAL platform) in the de-
vice tree, indicating that there is crash data available from a previous boot.
During the early boot OS will reserve rest of the memory above boot mem-
ory size effectively booting with restricted memory size. This will make sure
that this kernel (also, referred to as second kernel or capture kernel) will not
touch any of the dump memory area.

* User-space tools will read /proc/vmcore to obtain the contents of memory,
which holds the previous crashed kernel dump in ELF format. The userspace
tools may copy this info to disk, or network, nas, san, iscsi, etc. as desired.

* Once the userspace tool is done saving dump, it will echo ‘1’ to
/sys/kernel/fadump release mem to release the reserved memory back to
general use, except the memory required for next firmware-assisted dump
registration.

e.g.:

echo 1 > /sys/kernel/fadump release mem

Please note that the firmware-assisted dump feature is only available on POWERG
and above systems on pSeries (PowerVM) platform and POWER9 and above sys-
tems with OP940 or later firmware versions on PowerNV (OPAL) platform. Note
that, OPAL firmware exports ibm,opal/dump node when FADump is supported on
PowerNV platform.

On OPAL based machines, system first boots into an intermittent kernel (re-
ferred to as petitboot kernel) before booting into the capture kernel. This kernel
would have minimal kernel and/or userspace support to process crash data. Such
kernel needs to preserve previously crash’ ed kernel’ s memory for the subse-
quent capture kernel boot to process this crash data. Kernel config option CON-
FIG PRESERVE FA DUMP has to be enabled on such kernel to ensure that crash
data is preserved to process later.

44 Chapter 10. Firmware-Assisted Dump

Linux Powerpc Documentation

- On OPAL based machines (PowerNYV), if the kernel is build with
CONFIG OPAL CORE=y, OPAL memory at the time of crash is also exported
as /sys/firmware/opal/mpipl/core file. This procfs file is helpful in debugging
OPAL crashes with GDB. The kernel memory used for exporting this procfs
file can be released by echo’ ing ‘1’ to /sys/firmware/opal/mpipl/release core
node.

e.g. # echo 1 > /sys/firmware/opal/mpipl/release core

10.1 Implementation details:

During boot, a check is made to see if firmware supports this feature on that par-
ticular machine. If it does, then we check to see if an active dump is waiting for
us. If yes then everything but boot memory size of RAM is reserved during early
boot (See Fig. 2). This area is released once we finish collecting the dump from
user land scripts (e.g. kdump scripts) that are run. If there is dump data, then the
/sys/kernel/fadump release mem file is created, and the reserved memory is held.

If there is no waiting dump data, then only the memory required to hold CPU state,
HPTE region, boot memory dump, FADump header and elfcore header, is usually
reserved at an offset greater than boot memory size (see Fig. 1). This area is
not released: this region will be kept permanently reserved, so that it can act as
a receptacle for a copy of the boot memory content in addition to CPU state and
HPTE region, in the case a crash does occur.

Since this reserved memory area is used only after the system crash, there is no
point in blocking this significant chunk of memory from production kernel. Hence,
the implementation uses the Linux kernel’ s Contiguous Memory Allocator (CMA)
for memory reservation if CMA is configured for kernel. With CMA reservation this
memory will be available for applications to use it, while kernel is prevented from
using it. With this FADump will still be able to capture all of the kernel memory
and most of the user space memory except the user pages that were present in
CMA region:

0 Memory Reservation during first kernel

Low memory Top of memory
0 boot memory size |<--- Reserved dump area --->| |
| | | Permanent Reservation | |
v v | | V
R +----- VA R R e I +----- +----- +----+--+
| | |///|////| DUMP | HDR | ELF |////| |
Fo-mm - +----- /] /-t - +----- +----- +----t- -+
| N N N
| I I I

Boot memory content gets transferred
to reserved area by firmware at the
time of crash. |
FADump Header
(meta area)

I
\ CPU HPTE / |
I
I
I

N

(continues on next page)

10.1. Implementation details: 45

Linux Powerpc Documentation

(continued from previous page)

Metadata: This area holds a metadata struture whose
address is registered with f/w and retrieved in the
second kernel after crash, on platforms that support
tags (OPAL). Having such structure with info needed
to process the crashdump eases dump capture process.

Fig. 1

0 Memory Reservation during second kernel after crash

Low memory Top of memory
0 boot memory size |
| |<----mmmem-- Crash preserved area ------------ >|
v v |<--- Reserved dump area --->|
R +----- / /-t +----- +----- +--- - -+
| | |///1////] DUMP | HDR | ELF |////] |
R +----- VA R R T i +----- +----- +----+--+
| I
v v
Used by second /proc/vmcore

kernel to boot

+---+

|///| -> Regions (CPU, HPTE & Metadata) marked like this in the above

+---+ figures are not always present. For example, OPAL platform
does not have CPU & HPTE regions while Metadata region is
not supported on pSeries currently.

Fig. 2

Currently the dump will be copied from /proc/vincore to a new file upon user in-
tervention. The dump data available through /proc/vmcore will be in ELF format.
Hence the existing kdump infrastructure (kdump scripts) to save the dump works
fine with minor modifications. KDump scripts on major Distro releases have al-
ready been modified to work seemlessly (no user intervention in saving the dump)
when FADump is used, instead of KDump, as dump mechanism.

The tools to examine the dump will be same as the ones used for kdump.

10.2 How to enable firmware-assisted dump (FADump):

1. Set config option CONFIG_FA DUMP=y and build kernel.

2. Boot into linux kernel with ‘fadump=on’ kernel cmdline option. By default,
FADump reserved memory will be initialized as CMA area. Alternatively, user
can boot linux kernel with ‘fadump=nocma’ to prevent FADump to use CMA.

3. Optionally, user can also set ‘crashkernel=" kernel cmdline to specify size
of the memory to reserve for boot memory dump preservation.

NOTE:

46 Chapter 10. Firmware-Assisted Dump

Linux Powerpc Documentation

1. fadump reserve mem=’" parameter has been deprecated. Instead use
‘crashkernel=" to specify size of the memory to reserve for boot memory
dump preservation.

2. If firmware-assisted dump fails to reserve memory then it will fallback
to existing kdump mechanism if ‘crashkernel=" option is set at kernel
cmdline.

3. if user wants to capture all of user space memory and ok with reserved
memory not available to production system, then ‘fadump=nocma’kernel
parameter can be used to fallback to old behaviour.

10.3 Sysfs/debugfs files:

Firmware-assisted dump feature uses sysfs file system to hold the control files and
debugfs file to display memory reserved region.

Here is the list of files under kernel sysfs:

/sys/kernel/fadump_enabled This is used to display the FADump sta-
tus.

* 0 = FADump is disabled
* 1 = FADump is enabled

This interface can be used by kdump init scripts to identify if FAD-
ump is enabled in the kernel and act accordingly.

/sys/kernel/fadump_registered This is used to display the FADump
registration status as well as to control (start/stop) the FADump reg-
istration.

* 0 = FADump is not registered.
* 1 = FADump is registered and ready to handle system crash.

To register FADump echo 1 > /sys/kernel/fadump registered and
echo 0 > /sys/kernel/fadump registered for un-register and stop the
FADump. Once the FADump is un-registered, the system crash will
not be handled and vimcore will not be captured. This interface can
be easily integrated with kdump service start/stop.

/sys/kernel/fadump/mem reserved

This is used to display the memory reserved by FADump for
saving the crash dump.

/sys/kernel/fadump_release_mem This file is available only when
FADump is active during second kernel. This is used to release the
reserved memory region that are held for saving crash dump. To
release the reserved memory echo 1 to it:

echo 1 > /sys/kernel/fadump release mem

After echo 1, the content of the /sys/kernel/debug/powerpc/fadump region
file will change to reflect the new memory reservations.

10.3. Sysfs/debugfs files: 47

Linux Powerpc Documentation

The existing userspace tools (kdump infrastructure) can be easily
enhanced to use this interface to release the memory reserved for
dump and continue without 2nd reboot.

Note: /sys/kernel/fadump_release_opalcore sysfs has moved to
/sys/firmware/opal/mpipl/release core
/sys/firmware/opal/mpipl/release core

This file is available only on OPAL based machines when FADump
is active during capture kernel. This is used to release the memory
used by the kernel to export /sys/firmware/opal/mpipl/core file. To
release this memory, echo ‘1’ to it:

echo 1 > /sys/firmware/opal/mpipl/release core

Note: The following FADump sysfs files are deprecated.

Deprecated Alternative

/sys/kernel/fadump enabled /sys/kernel/fadump/enabled
/sys/kernel/fadump registered /sys/kernel/fadump/registered
/sys/kernel/fadump release mem | /sys/kernel/fadump/release mem

Here is the list of files under powerpc debugfs: (Assuming debugfs is mounted on
/sys/kernel/debug directory.)

/sys/kernel/debug/powerpc/fadump _region This file shows the re-
served memory regions if FADump is enabled otherwise this file is
empty. The output format is:

<region>: [<start>-<end>] <reserved-size> bytes, Dumped:
—<dump-size>

and for kernel DUMP region is:

DUMP: Src: <src-addr>, Dest: <dest-addr>, Size: <size>,
Dumped: # bytes

e.g. Contents when FADump is registered during first kernel:

cat /sys/kernel/debug/powerpc/fadump region

CPU : [0x0000006ffb0000-0x0000006FfffOOLT] 0x40020 bytes,
—Dumped: 0Ox0

HPTE: [0x0000006fff0020-0x0000006fffl01f] 0x1000 bytes,
—Dumped: 0x0

DUMP: [0x0000006fff1020-0x0000007fffl0lf] 0x10000000 bytes,
—Dumped: 0x0

Contents when FADump is active during second kernel:

cat /sys/kernel/debug/powerpc/fadump region

CPU : [0x0000006ffbOOOO-0x0000006fffOO1f] 0x40020 bytes,
—Dumped: 0x40020

HPTE: [0x0000006fff0020-0x0000006fffl01f] 0x1000 bytes,
—Dumped: 0x1000

(continues on next page)

48 Chapter 10. Firmware-Assisted Dump

Linux Powerpc Documentation

(continued from previous page)

DUMP: [0x0000006fff1020-0x0000007fffl01f] 0x10000000 bytes,
—Dumped: 0x10000000

: [0x00000010000000-0x0000006ffaffff] Ox5ffbOOOO bytes,
—Dumped: Ox5ffb000O

NOTE: Please refer to Documentation/filesystems/debugfs.rst on how to mount
the debugfs filesystem.

10.4 TODO:

* Need to come up with the better approach to find out more accurate boot
memory size that is required for a kernel to boot successfully when booted
with restricted memory.

* The FADump implementation introduces a FADump crash info structure in
the scratch area before the ELF core header. The idea of introducing this
structure is to pass some important crash info data to the second kernel which
will help second kernel to populate ELF core header with correct data before
it gets exported through /proc/vmcore. The current design implementation
does not address a possibility of introducing additional fields (in future) to this
structure without affecting compatibility. Need to come up with the better
approach to address this.

The possible approaches are:

1. Introduce version field for version tracking, bump up the version
whenever a new field is added to the structure in future. The ver-
sion field can be used to find out what fields are valid for the current
version of the structure. 2. Reserve the area of predefined size (say
PAGE SIZE) for this structure and have unused area as reserved (ini-
tialized to zero) for future field additions.

The advantage of approach 1 over 2 is we don’ t need to reserve extra space.
Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
This document is based on the original documentation written for phyp

assisted dump by Linas Vepstas and Manish Ahuja.

10.4. TODO: 49

mailto:mahesh@linux.vnet.ibm.com

Linux Powerpc Documentation

50 Chapter 10. Firmware-Assisted Dump

CHAPTER
ELEVEN

HVCS IBM “HYPERVISOR VIRTUAL CONSOLE SERVER”
INSTALLATION GUIDE

for Linux Kernel 2.6.4+

Copyright (C) 2004 IBM Corporation

Author(s): Ryan S. Arnold <rsa@us.ibm.com>

Date Created: March, 02, 2004 Last Changed: August, 24, 2004

11.1 1. Driver Introduction:

This is the device driver for the IBM Hypervisor Virtual Console Server, “hvcs” .
The IBM hvcs provides a tty driver interface to allow Linux user space applications
access to the system consoles of logically partitioned operating systems (Linux and
AIX) running on the same partitioned Power5 ppc64 system. Physical hardware
consoles per partition are not practical on this hardware so system consoles are
accessed by this driver using firmware interfaces to virtual terminal devices.

11.2 2. System Requirements:

This device driver was written using 2.6.4 Linux kernel APIs and will only build
and run on kernels of this version or later.

This driver was written to operate solely on IBM Power5 ppc64 hardware though
some care was taken to abstract the architecture dependent firmware calls from
the driver code.

Sysfs must be mounted on the system so that the user can determine which ma-
jor and minor numbers are associated with each vty-server. Directions for sysfs
mounting are outside the scope of this document.

51

mailto:rsa@us.ibm.com

Linux Powerpc Documentation

11.3 3. Build Options:

The hvcs driver registers itself as a tty driver. The tty layer dynamically allocates
a block of major and minor numbers in a quantity requested by the registering
driver. The hvcs driver asks the tty layer for 64 of these major/minor numbers by
default to use for hvcs device node entries.

If the default number of device entries is adequate then this driver can be built
into the kernel. If not, the default can be over-ridden by inserting the driver as a
module with insmod parameters.

11.3.1 3.1 Built-in:

The following menuconfig example demonstrates selecting to build this driver into
the kernel:

Device Drivers --->
Character devices --->
<*> IBM Hypervisor Virtual Console Server Support

Begin the kernel make process.

11.3.2 3.2 Module:

The following menuconfig example demonstrates selecting to build this driver as
a kernel module:

Device Drivers --->
Character devices --->
<M> IBM Hypervisor Virtual Console Server Support

The make process will build the following kernel modules:
* hvcs.ko
* hvcserver.ko

To insert the module with the default allocation execute the following commands
in the order they appear:

insmod hvcserver.ko
insmod hvcs.ko

The hvcserver module contains architecture specific firmware calls and must be
inserted first, otherwise the hvcs module will not find some of the symbols it ex-
pects.

To override the default use an insmod parameter as follows (requesting 4 tty de-
vices as an example):

insmod hvcs.ko hvcs parm num devs=4

There is a maximum number of dev entries that can be specified on insmod. We
think that 1024 is currently a decent maximum number of server adapters to allow.

5Ghapter 11. HVCS IBM “Hypervisor Virtual Console Server” Installation
Guide

Linux Powerpc Documentation

This can always be changed by modifying the constant in the source file before
building.

NOTE: The length of time it takes to insmod the driver seems to be related to the
number of tty interfaces the registering driver requests.

In order to remove the driver module execute the following command:

rmmod hvcs. ko

The recommended method for installing hvcs as a module is to use depmod to build
a current modules.dep file in /lib/modules/uname -r and then execute:

modprobe hvcs hvcs parm _num_devs=4

The modules.dep file indicates that hvcserver.ko needs to be inserted before
hvcs.ko and modprobe uses this file to smartly insert the modules in the proper
order.

The following modprobe command is used to remove hvcs and hvcserver in the
proper order:

modprobe -r hvcs

11.4 4. Installation:

The tty layer creates sysfs entries which contain the major and minor numbers
allocated for the hvcs driver. The following snippet of “tree” output of the sysfs
directory shows where these numbers are presented:

-- *other sysfs base dirs*

-- class
| -- *other classes of devices*

| -- *other tty devices*

|

| -- hvcsO

| T-- dev
| -- hvcsl

| T-- dev
| -- hvcs2

| T-- dev
|

|

|

|

-- *other tty devices*

S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-- *other sysfs base dirs*

For the above examples the following output is a result of cat’ ing the “dev” entry
in the hvcs directory:

11.4. 4. Installation: 53

Linux Powerpc Documentation

Pow5:/sys/class/tty/hvcs0/ # cat dev
254:0

Pow5:/sys/class/tty/hvcsl/ # cat dev
254:1

Pow5:/sys/class/tty/hvcs2/ # cat dev
254:2

Pow5:/sys/class/tty/hvcs3/ # cat dev
254:3

The output from reading the “dev” attribute is the char device major and minor
numbers that the tty layer has allocated for this driver’s use. Most systems running
hvcs will already have the device entries created or udev will do it automatically.

Given the example output above, to manually create a /dev/hvcs* node entry mknod
can be used as follows:

mknod /dev/hvcsO c 254 0
mknod /dev/hvcsl c 254 1
mknod /dev/hvcs2 c 254 2
mknod /dev/hvcs3 ¢ 254 3

Using mknod to manually create the device entries makes these device nodes per-
sistent. Once created they will exist prior to the driver insmod.

Attempting to connect an application to /dev/hvcs* prior to insertion of the hvcs
module will result in an error message similar to the following:

"/dev/hvcs*: No such device".

NOTE: Just because there is a device node present doesn’ t mean that there is a
vty-server device configured for that node.

11.5 5. Connection

Since this driver controls devices that provide a tty interface a user can interact
with the device node entries using any standard tty-interactive method (e.g. “cat”
, “dd”, “echo”). The intent of this driver however, is to provide real time console
interaction with a Linux partition’ s console, which requires the use of applications
that provide bi-directional, interactive I/O with a tty device.

Applications (e.g. “minicom” and “screen”) that act as terminal emulators or per-
form terminal type control sequence conversion on the data being passed through
them are NOT acceptable for providing interactive console I/O. These programs
often emulate antiquated terminal types (vt100 and ANSI) and expect inbound
data to take the form of one of these supported terminal types but they either do
not convert, or do not adequately convert, outbound data into the terminal type
of the terminal which invoked them (though screen makes an attempt and can
apparently be configured with much termcap wrestling.)

For this reason kermit and cu are two of the recommended applications for inter-
acting with a Linux console via an hvcs device. These programs simply act as a

5@hapter 11. HVCS IBM “Hypervisor Virtual Console Server” Installation
Guide

Linux Powerpc Documentation

conduit for data transfer to and from the tty device. They do not require inbound
data to take the form of a particular terminal type, nor do they cook outbound data
to a particular terminal type.

In order to ensure proper functioning of console applications one must make sure
that once connected to a /dev/hvcs console that the console’ s $TERM env variable
is set to the exact terminal type of the terminal emulator used to launch the inter-
active I/O application. If one is using xterm and kermit to connect to /dev/hvcs0
when the console prompt becomes available one should “export TERM=xterm” on
the console. This tells ncurses applications that are invoked from the console that
they should output control sequences that xterm can understand.

As a precautionary measure an hvcs user should always “exit” from their session
before disconnecting an application such as kermit from the device node. If this is
not done, the next user to connect to the console will continue using the previous
user’s logged in session which includes using the $TERM variable that the previous
user supplied.

Hotplug add and remove of vty-server adapters affects which /dev/hvcs* node is
used to connect to each vty-server adapter. In order to determine which vty-server
adapter is associated with which /dev/hvcs* node a special sysfs attribute has been
added to each vty-server sysfs entry. This entry is called “index” and showing it
reveals an integer that refers to the /dev/hvcs* entry to use to connect to that
device. For instance cating the index attribute of vty-server adapter 30000004
shows the following:

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat index
2

This index of ‘2’ means that in order to connect to vty-server adapter 30000004
the user should interact with /dev/hvcs2.

It should be noted that due to the system hotplug I/O capabilities of a system the
/dev/hvcs* entry that interacts with a particular vty-server adapter is not guaran-
teed to remain the same across system reboots. Look in the Q & A section for more
on this issue.

11.6 6. Disconnection

As a security feature to prevent the delivery of stale data to an unintended target
the Power5 system firmware disables the fetching of data and discards that data
when a connection between a vty-server and a vty has been severed. As an ex-
ample, when a vty-server is immediately disconnected from a vty following output
of data to the vty the vty adapter may not have enough time between when it re-
ceived the data interrupt and when the connection was severed to fetch the data
from firmware before the fetch is disabled by firmware.

When hvcs is being used to serve consoles this behavior is not a huge issue because
the adapter stays connected for large amounts of time following almost all data
writes. When hvcs is being used as a tty conduit to tunnel data between two
partitions [see Q & A below] this is a huge problem because the standard Linux
behavior when cat’ ing or dd’ ing data to a device is to open the tty, send the data,
and then close the tty. If this driver manually terminated vty-server connections

11.6. 6. Disconnection 55

Linux Powerpc Documentation

on tty close this would close the vty-server and vty connection before the target
vty has had a chance to fetch the data.

Additionally, disconnecting a vty-server and vty only on module removal or adapter
removal is impractical because other vty-servers in other partitions may require
the usage of the target vty at any time.

Due to this behavioral restriction disconnection of vty-servers from the connected
vty is a manual procedure using a write to a sysfs attribute outlined below, on the
other hand the initial vty-server connection to a vty is established automatically
by this driver. Manual vty-server connection is never required.

In order to terminate the connection between a vty-server and vty the
“vterm_state” sysfs attribute within each vty-server’ s sysfs entry is used. Read-
ing this attribute reveals the current connection state of the vty-server adapter.
A zero means that the vty-server is not connected to a vty. A one indicates that a
connection is active.

Writinga ‘0’ (zero) to the vterm_state attribute will disconnect the VTERM con-
nection between the vty-server and target vty ONLY if the vterm state previously
read ‘1’ . The write directive is ignored if the vterm state read ‘0’ or if any
value other than ‘0’ was written to the vterm_state attribute. The following exam-
ple will show the method used for verifying the vty-server connection status and
disconnecting a vty-server connection:

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat vterm state
1

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # echo @ > vterm state

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat vterm state
0

All vty-server connections are automatically terminated when the device is hotplug
removed and when the module is removed.

11.7 7. Configuration

Each vty-server has a sysfs entry in the /sys/devices/vio directory, which is sym-
linked in several other sysfs tree directories, notably under the hvcs driver entry,
which looks like the following example:

Pow5:/sys/bus/vio/drivers/hvcs # 1s
30000003 30000004 rescan

By design, firmware notifies the hvcs driver of vty-server lifetimes and partner vty
removals but not the addition of partner vtys. Since an HMC Super Admin can add
partner info dynamically we have provided the hvcs driver sysfs directory with the
“rescan” update attribute which will query firmware and update the partner info
for all the vty-servers that this driver manages. Writing a ‘1’ to the attribute
triggers the update. An explicit example follows:

Pow5:/sys/bus/vio/drivers/hvcs # echo 1 > rescan

5Ghapter 11. HVCS IBM “Hypervisor Virtual Console Server” Installation
Guide

Linux Powerpc Documentation

Reading the attribute will indicate a state of ‘1’ or ‘0’ . A one indicates that an
update is in process. A zero indicates that an update has completed or was never
executed.

Vty-server entries in this directory are a 32 bit partition unique unit address that
is created by firmware. An example vty-server sysfs entry looks like the following:

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # 1s
current vty devspec name partner_vtys
index partner clcs vterm state

Each entry is provided, by default with a “name” attribute. Reading the “name”
attribute will reveal the device type as shown in the following example:

Pow5:/sys/bus/vio/drivers/hvcs/30000003 # cat name
vty-server

Each entry is also provided, by default, with a “devspec” attribute which reveals
the full device specification when read, as shown in the following example:

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat devspec
/vdevice/vty-server@30000004

Each vty-server sysfs dir is provided with two read-only attributes that provide
lists of easily parsed partner vty data: “partner vtys” and “partner clcs” :

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat partner vtys
30000000
30000001
30000002
30000000
30000000

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat partner clcs
U5112.428.103048A-V3-C0O
U5112.428.103048A-V3-C2
U5112.428.103048A-V3-C3
U5112.428.103048A-V4-CO
U5112.428.103048A-V5-C0O

Reading partner vtys returns a list of partner vtys. Vty unit address numbering is
only per-partition-unique so entries will frequently repeat.

Reading partner clcs returns a list of “converged location codes” which are com-
posed of a system serial number followed by “V*” , where the “* is the target
partition number, and “-C*’ , where the “ is the slot of the adapter. The first
vty partner corresponds to the first clc item, the second vty partner to the second
clc item, etc.

A vty-server can only be connected to a single vty at a time. The entry, “current vty”
prints the clc of the currently selected partner vty when read.

The current vty can be changed by writing a valid partner clc to the entry as in
the following example:

Pow5:/sys/bus/vio/drivers/hvcs/30000004 # echo U5112.428.10304
8A-V4-CO > current vty

11.7. 7. Configuration 57

Linux Powerpc Documentation

Changing the current vty when a vty-server is already connected to a vty does not
affect the current connection. The change takes effect when the currently open
connection is freed.

Information on the “vterm state” attribute was covered earlier on the chapter
entitled “disconnection” .

11.8 8. Questions & Answers:

Q: What are the security concerns involving hvcs?
A: There are three main security concerns:

1. The creator of the /dev/hvcs* nodes has the ability to restrict the
access of the device entries to certain users or groups. It may be best
to create a special hvcs group privilege for providing access to system
consoles.

2. To provide network security when grabbing the console it is suggested
that the user connect to the console hosting partition using a secure
method, such as SSH or sit at a hardware console.

3. Make sure to exit the user session when done with a console or the
next vty-server connection (which may be from another partition) will
experience the previously logged in session.

Q: How do I multiplex a console that I grab through hvcs so that other people can
see it:

A: You can use “screen” to directly connect to the /dev/hvcs* device and setup a
session on your machine with the console group privileges. As pointed out earlier
by default screen doesn’t provide the termcap settings for most terminal emulators
to provide adequate character conversion from term type “screen” to others. This
means that curses based programs may not display properly in screen sessions.

Q: Why are the colors all messed up? Q: Why are the control characters acting
strange or not working? Q: Why is the console output all strange and unintelligi-
ble?

A: Please see the preceding section on “Connection” for a discussion of how ap-
plications can affect the display of character control sequences. Additionally, just
because you logged into the console using and xterm doesn’ t mean someone else
didn’ t log into the console with the HMC console (vt320) before you and leave the
session logged in. The best thing to do is to export TERM to the terminal type of
your terminal emulator when you get the console. Additionally make sure to “exit”
the console before you disconnect from the console. This will ensure that the next
user gets their own TERM type set when they login.

Q: When I try to CONNECT kermit to an hvcs device I get: “Sorry, can’ t open
connection: /dev/hvcs*” What is happening?

58hapter 11. HVCS IBM “Hypervisor Virtual Console Server”’ Installation
Guide

Linux Powerpc Documentation

A: Some other Power5 console mechanism has a connection to the vty and isn’ t
giving it up. You can try to force disconnect the consoles from the HMC by right
clicking on the partition and then selecting “close terminal” . Otherwise you
have to hunt down the people who have console authority. It is possible that you
already have the console open using another kermit session and just forgot about
it. Please review the console options for Power5 systems to determine the many
ways a system console can be held.

OR

A: Another user may not have a connectivity method currently attached to a
/dev/hvcs device but the vterm state may reveal that they still have the vty-server
connection established. They need to free this using the method outlined in the
section on “Disconnection” in order for others to connect to the target vty.

OR

A: The user profile you are using to execute kermit probably doesn’ t have permis-
sions to use the /dev/hvcs* device.

OR

A: You probably haven’ t inserted the hvcs.ko module yet but the /dev/hvcs* entry
still exists (on systems without udev).

OR

A: There is not a corresponding vty-server device that maps to an existing
/dev/hvcs* entry.

Q: When I try to CONNECT kermit to an hvcs device I get: “Sorry, write access
to UUCP lockfile directory denied.”

A: The /dev/hvcs* entry you have specified doesn’ t exist where you said it does?
Maybe you haven’ t inserted the module (on systems with udev).

Q: If I already have one Linux partition installed can I use hvcs on said partition
to provide the console for the install of a second Linux partition?

A: Yes granted that your are connected to the /dev/hvcs* device using kermit or cu
or some other program that doesn’ t provide terminal emulation.

Q: Can I connect to more than one partition’ s console at a time using this driver?

A: Yes. Of course this means that there must be more than one vty-server config-
ured for this partition and each must point to a disconnected vty.

Q: Does the hvcs driver support dynamic (hotplug) addition of devices?

A: Yes, if you have dlpar and hotplug enabled for your system and it has been built
into the kernel the hvcs drivers is configured to dynamically handle additions of
new devices and removals of unused devices.

11.8. 8. Questions & Answers: 59

Linux Powerpc Documentation

Q: For some reason /dev/hvcs* doesn’ t map to the same vty-server adapter after
a reboot. What happened?

A: Assignment of vty-server adapters to /dev/hvcs* entries is always done in the
order that the adapters are exposed. Due to hotplug capabilities of this driver
assignment of hotplug added vty-servers may be in a different order than how
they would be exposed on module load. Rebooting or reloading the module after
dynamic addition may result in the /dev/hvcs* and vty-server coupling changing if
a vty-server adapter was added in a slot between two other vty-server adapters.
Refer to the section above on how to determine which vty-server goes with which
/dev/hvcs* node. Hint; look at the sysfs “index” attribute for the vty-server.

Q: Can I use /dev/hvcs* as a conduit to another partition and use a tty device on
that partition as the other end of the pipe?

A: Yes, on Power5 platforms the hvc console driver provides a tty interface for
extra /dev/hvc* devices (where /dev/hvcO is most likely the console). In order to
get a tty conduit working between the two partitions the HMC Super Admin must
create an additional “serial server” for the target partition with the HMC gui which
will show up as /dev/hvc* when the target partition is rebooted.

The HMC Super Admin then creates an additional “serial client” for the current
partition and points this at the target partition’ s newly created “serial server”
adapter (remember the slot). This shows up as an additional /dev/hvcs* device.

Now a program on the target system can be configured to read or write to /dev/hvc*
and another program on the current partition can be configured to read or write
to /dev/hvcs*. Now you have a tty conduit between two partitions.

11.9 9. Reporting Bugs:

The proper channel for reporting bugs is either through the Linux OS distribution
company that provided your OS or by posting issues to the PowerPC development
mailing list at:

linuxppc-dev@lists.ozlabs.org

This request is to provide a documented and searchable public exchange of the
problems and solutions surrounding this driver for the benefit of all users.

60hapter 11. HVCS IBM “Hypervisor Virtual Console Server”’ Installation
Guide

mailto:linuxppc-dev@lists.ozlabs.org

CHAPTER
TWELVE

IMC (IN-MEMORY COLLECTION COUNTERS)

Anju T Sudhakar, 10 May 2019

Contents

e IMC (In-Memory Collection Counters)

Basic overview

IMC example usage
IMC Trace-mode
* LDBAR Register Layout
* TRACE IMC SCOM bit representation

Trace IMC example usage

Benefits of using IMC trace-mode

12.1 Basic overview

IMC (In-Memory collection counters) is a hardware monitoring facility that collects
large numbers of hardware performance events at Nest level (these are on-chip
but off-core), Core level and Thread level.

The Nest PMU counters are handled by a Nest IMC microcode which runs in the
OCC (On-Chip Controller) complex. The microcode collects the counter data and
moves the nest IMC counter data to memory.

The Core and Thread IMC PMU counters are handled in the core. Core level PMU
counters give us the IMC counters’ data per core and thread level PMU counters
give us the IMC counters’ data per CPU thread.

OPAL obtains the IMC PMU and supported events information from the IMC Cat-
alog and passes on to the kernel via the device tree. The event’ s information
contains:

e Event name
* Event Offset

* Event description

61

Linux Powerpc Documentation

and possibly also:
» Event scale
* Event unit

Some PMUs may have a common scale and unit values for all their supported
events. For those cases, the scale and unit properties for those events must be
inherited from the PMU.

The event offset in the memory is where the counter data gets accumulated.
IMC catalog is available at: htips://github.com/open-power/ima-catalog

The kernel discovers the IMC counters information in the device tree at the imc-
counters device node which has a compatible field ibm,opal-in-memory-counters.
From the device tree, the kernel parses the PMUs and their event’ s information
and register the PMU and its attributes in the kernel.

12.2 IMC example usage

perf list

[...]

nest mcs01l/PM MCS01 64B RD DISP PORTO1l/ [Kernel PMU event]
nest mcs01l/PM MCSO1 64B RD DISP PORT23/ [Kernel PMU event]
[...]

core _imc/CPM_OTHRD NON IDLE PCYC/ [Kernel PMU event]
core_imc/CPM_1THRD NON IDLE INST/ [Kernel PMU event]
[...]

thread imc/CPM OTHRD NON IDLE PCYC/ [Kernel PMU event]
thread imc/CPM_1THRD NON IDLE INST/ [Kernel PMU event]

To see per chip data for nest mcsO/PM_MCS DOWN 128B DATA XFER MCO0/:

./perf stat -e "nest mcs01l/PM MCSO1 64B WR DISP PORTO1l/" -a --per-socket

To see non-idle instructions for core 0O:

./perf stat -e "core imc/CPM NON IDLE INST/" -C 0 -I 1000

To see non-idle instructions fora “make” :

./perf stat -e "thread imc/CPM NON IDLE PCYC/" make

12.3 IMC Trace-mode

POWERS9 supports two modes for IMC which are the Accumulation mode and Trace
mode. In Accumulation mode, event counts are accumulated in system Memory.
Hypervisor then reads the posted counts periodically or when requested. In IMC
Trace mode, the 64 bit trace SCOM value is initialized with the event informa-
tion. The CPMCxSEL and CPMC LOAD in the trace SCOM, specifies the event
to be monitored and the sampling duration. On each overflow in the CPMCxSEL,

62 Chapter 12. IMC (In-Memory Collection Counters)

https://github.com/open-power/ima-catalog

Linux Powerpc Documentation

hardware snapshots the program counter along with event counts and writes into
memory pointed by LDBAR.

LDBAR is a 64 bit special purpose per thread register, it has bits to indicate
whether hardware is configured for accumulation or trace mode.

12.3.1 LDBAR Register Layout

0 Enable/Disable

1 0: Accumulation Mode
1: Trace Mode

2:3 Reserved

4-6 PB scope

7 Reserved

8:50 Counter Address
51:63 | Reserved

12.3.2 TRACE_IMC_SCOM bit representation

0:1 | SAMPSEL
2:33 | CPMC _LOAD
34:40 | CPMCISEL
41:47 | CPMC2SEL
48:50 | BUFFERSIZE
51:63 | RESERVED

CPMC LOAD contains the sampling duration. SAMPSEL and CPMCxSEL deter-
mines the event to count. BUFFERSIZE indicates the memory range. On each
overflow, hardware snapshots the program counter along with event counts and
updates the memory and reloads the CMPC LOAD value for the next sampling du-
ration. IMC hardware does not support exceptions, so it quietly wraps around if
memory buffer reaches the end.

Currently the event monitored for trace-mode is fixed as cycle.

12.4 Trace IMC example usage

perf list
[....]

trace imc/trace cycles/ [Kernel PMU event]

To record an application/process with trace-imc event:

perf record -e trace imc/trace cycles/ yes > /dev/null
[perf record: Woken up 1 times to write data |
[perf record: Captured and wrote 0.012 MB perf.data (21 samples) |

The perf.data generated, can be read using perf report.

12.4. Trace IMC example usage 63

Linux Powerpc Documentation

12.5 Benefits of using IMC trace-mode

PMI (Performance Monitoring Interrupts) interrupt handling is avoided, since IMC
trace mode snapshots the program counter and updates to the memory. And this
also provide a way for the operating system to do instruction sampling in real time
without PMI processing overhead.

Performance data using perf top with and without trace-imc event.

PMI interrupts count when perf top command is executed without trace-imc event.

grep PMI /proc/interrupts

PMI: 0 0 0 0 Performance monitoring,
—interrupts

./perf top

grep PMI /proc/interrupts

PMI: 39735 8710 17338 17801 Performance monitoring,
—interrupts

./perf top -e trace imc/trace cycles/

grep PMI /proc/interrupts
PMI: 39735 8710 17338 17801 Performance monitoring,
—interrupts

That is, the PMI interrupt counts do not increment when using the trace imc event.

64 Chapter 12. IMC (In-Memory Collection Counters)

CHAPTER
THIRTEEN

CPU TO ISA VERSION MAPPING

Mapping of some CPU versions to relevant ISA versions.

CPU Architecture version
Power9 Power ISA v3.0B
Power8 Power ISA v2.07
Power?7 Power ISA v2.06
Power6 Power ISA v2.05
PAGT Power ISA v2.04
Cell PPU * Power ISA v2.02 with some minor
exceptions
e Plus Altivec/VMX ~= 2.03
Powerb5++ Power ISA v2.04 (no VMX)
Powerb5+ Power ISA v2.03
Powers e PowerPC User Instruction Set Ar-
chitecture Book I v2.02
¢ PowerPC Virtual Environment Ar-
chitecture Book II v2.02
* PowerPC Operating Environment
Architecture Book III v2.02
PPC970

PowerPC User Instruction Set Ar-
chitecture Book I v2.01

PowerPC Virtual Environment Ar-
chitecture Book II v2.01
PowerPC Operating Environment
Architecture Book III v2.01

Plus Altivec/VMX ~= 2.03

65

Linux Powerpc Documentation

13.1 Key Features

CPU VMX (aka. Altivec)
Power9 Yes
Power8 Yes
Power?7 Yes
Power6 Yes
PAGT Yes

Cell PPU Yes

Power5++ | No

Power5+ No

Powerb No

PPC970 Yes

CPU VSX
Power9 Yes
Power8 Yes
Power7 Yes
Power6 No
PA6T No

Cell PPU No
Powerb5++ | No
Powerb+ No
Powerb No
PPC970 No

CPU Transactional Memory
Power9 Yes (* see transactional memory.txt)
Power8 Yes

Power7 No

Power6 No

PAGT No

Cell PPU No

Power5++ | No

Powerb+ No

Powerb No

PPC970 No

66

Chapter 13. CPU to ISA Version Mapping

CHAPTER
FOURTEEN

KASLR FOR FREESCALE BOOKE32

The word KASLR stands for Kernel Address Space Layout Randomization.

This document tries to explain the implementation of the KASLR for Freescale
BookE32. KASLR is a security feature that deters exploit attempts relying on
knowledge of the location of kernel internals.

Since CONFIG_RELOCATABLE has already supported, what we need to do is map
or copy kernel to a proper place and relocate. Freescale Book-E parts expect
lowmem to be mapped by fixed TLB entries(TLB1). The TLB1 entries are not suit-
able to map the kernel directly in a randomized region, so we chose to copy the
kernel to a proper place and restart to relocate.

Entropy is derived from the banner and timer base, which will change every build
and boot. This not so much safe so additionally the bootloader may pass entropy
via the /chosen/kaslr-seed node in device tree.

We will use the first 512M of the low memory to randomize the kernel image. The
memory will be split in 64M zones. We will use the lower 8 bit of the entropy to
decide the index of the 64M zone. Then we chose a 16K aligned offset inside the
64M zone to put the kernel in:

KERNELBASE
|--> 64M <--|
| |
U + o e ee o Fomm e e eeieaa o +
| | . | kernel| |
e + o e +
| |
[----- > offset <----- |

kernstart virt addr

To enable KASLR, set CONFIG RANDOMIZE BASE = vy. If KASLR is enable and
you want to disable it at runtime, add “nokaslr” to the kernel cmdline.

67

Linux Powerpc Documentation

68 Chapter 14. KASLR for Freescale BookE32

CHAPTER
FIFTEEN

LINUX 2.6.X ON MPC52XX FAMILY

For the latest info, go to http://www.246tNt.com/mpc52xx/
To compile/use :
» U-Boot:

<edit Makefile to set ARCH=ppc & CROSS COMPILE=... (also,
—EXTRAVERSION
if you wish to).
make 1ite5200 defconfig
make ulmage

then, on U-boot:

=> tftpboot 200000 ulmage
=> tftpboot 400000 pRamdisk
=> bootm 200000 400000

* DBug:

<edit Makefile to set ARCH=ppc & CROSS COMPILE=... (also,
—EXTRAVERSION
if you wish to).
make 1ite5200 defconfig
cp your_initrd.gz arch/ppc/boot/images/ramdisk.image.gz
make zImage.initrd
make

then in DBug:
DBug> dn -i zImage.initrd.lite5200

Some remarks:

* The port is named mpc52xxx, and config options are PPC MPC52xx. The
MGT5100 is not supported, and I’ m not sure anyone is interesting in working
on it so. I didn’ t took 5xxx because there’ s apparently a lot of 5xxx that have
nothing to do with the MPC5200. I also included the ‘MPC’ for the same
reason.

* Of course, I inspired myself from the 2.4 port. If you think I forgot to mention
you/your company in the copyright of some code, I’ 1l correct it ASAP.

69

http://www.246tNt.com/mpc52xx/

Linux Powerpc Documentation

70 Chapter 15. Linux 2.6.x on MPC52xx family

CHAPTER
SIXTEEN

HYPERCALL OP-CODES (HCALLS)

16.1 Overview

Virtualization on 64-bit Power Book3S Platforms is based on the PAPR specifica-
tion! which describes the run-time environment for a guest operating system and
how it should interact with the hypervisor for privileged operations. Currently
there are two PAPR compliant hypervisors:

* IBM PowerVM (PHYP): IBM’ s proprietary hypervisor that supports AIX,
IBM-i and Linux as supported guests (termed as Logical Partitions or LPARS).
It supports the full PAPR specification.

* Qemu/KVM: Supports PPC64 linux guests running on a PPC64 linux host.
Though it only implements a subset of PAPR specification called LoPAPR?.

On PPC64 arch a guest kernel running on top of a PAPR hypervisor is called a
pSeries guest. A pseries guest runs in a supervisor mode (HV=0) and must is-
sue hypercalls to the hypervisor whenever it needs to perform an action that is
hypervisor priviledged® or for other services managed by the hypervisor.

Hence a Hypercall (hcall) is essentially a request by the pseries guest asking hyper-
visor to perform a privileged operation on behalf of the guest. The guest issues
a with necessary input operands. The hypervisor after performing the privilege
operation returns a status code and output operands back to the guest.

16.2 HCALL ABI

The ABI specification for a hcall between a pseries guest and PAPR hypervisor is
covered in section 14.5.3 of ref?. Switch to the Hypervisor context is done via
the instruction HVCS that expects the Opcode for hcall is set in r3 and any in-
arguments for the hcall are provided in registers r4-r12. If values have to be
passed through a memory buffer, the data stored in that buffer should be in Big-
endian byte order.

! “Power Architecture Platform Reference” https://en.wikipedia.org/wiki/Power Architecture

Platform Reference

2 “Linux on Power Architecture Platform Reference” https://members.openpowerfoundation.org/
document/dl/469

3 “Definitions and Notation” Book III-Section 14.5.3 https://openpowerfoundation.org/?resource
lib=power-isa-version-3-0

71

https://en.wikipedia.org/wiki/Power_Architecture_Platform_Reference
https://en.wikipedia.org/wiki/Power_Architecture_Platform_Reference
https://members.openpowerfoundation.org/document/dl/469
https://members.openpowerfoundation.org/document/dl/469
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0

Linux Powerpc Documentation

Once control is returns back to the guest after hypervisor has serviced the ‘HVCS’
instruction the return value of the hcall is available in r3 and any out values are
returned in registers r4-r12. Again like in case of in-arguments, any out values
stored in a memory buffer will be in Big-endian byte order.

Powerpc arch code provides convenient wrappers named plpar_hcall xxx defined
in a arch specific header” to issue hcalls from the linux kernel running as pseries
guest.

16.3 Register Conventions

Any hcall should follow same register convention as described in section 2.2.1.1 of
“64-Bit ELF V2 ABI Specification: Power Architecture™. Table below summarizes
these conventions:

Register Volatile Purpose

Range (Y/N)

r0 Y Optional-usage

rl N Stack Pointer

r2 N TOC

r3 Y hcall opcode/return value

r4-r10 Y in and out values

rlil Y Optional-usage/Environmental pointer

rl2 Y Optional-usage/Function entry address at global en-
try point

rl3 N Thread-Pointer

r14-r31 N Local Variables

LR Y Link Register

CTR Y Loop Counter

XER Y Fixed-point exception register.

CRO-1 Y Condition register fields.

CR2-4 N Condition register fields.

CR5-7 Y Condition register fields.

Others N

16.4 DRC & DRC Indexes

DR1 Guest

+- -+ T R + oo - +

| <----> I | User |

+--+ DRC1 | | DRC | Space |
| PAPR | Index +--------- +

DR2 | Hypervisor | |

+--+ | | <----- > | Kernel |

(continues on next page)

4 arch/powerpc/include/asm/hvcall.h
°® “G4-Bit ELF V2 ABI Specification: Power Architecture” https://openpowerfoundation.org/
?resource_lib=64-bit-elf-v2-abi-specification-power-architecture

72 Chapter 16. Hypercall Op-codes (hcalls)

https://openpowerfoundation.org/?resource_lib=64-bit-elf-v2-abi-specification-power-architecture
https://openpowerfoundation.org/?resource_lib=64-bit-elf-v2-abi-specification-power-architecture

Linux Powerpc Documentation

(continued from previous page)

| <----> | Hcall | |
+--+ DRC2 +------------ + +o--o- - +

PAPR hypervisor terms shared hardware resources like PCI devices, NVDIMMSs etc
available for use by LPARs as Dynamic Resource (DR). When a DR is allocated to an
LPAR, PHYP creates a data-structure called Dynamic Resource Connector (DRC)
to manage LPAR access. An LPAR refers to a DRC via an opaque 32-bit number
called DRC-Index. The DRC-index value is provided to the LPAR via device-tree
where its present as an attribute in the device tree node associated with the DR.

16.5 HCALL Return-values

After servicing the hcall, hypervisor sets the return-value in r3 indicating success
or failure of the hcall. In case of a failure an error code indicates the cause for
error. These codes are defined and documented in arch specific header?.

In some cases a hcall can potentially take a long time and need to be issued mul-
tiple times in order to be completely serviced. These hcalls will usually accept
an opaque value continue-token within there argument list and a return value of
H CONTINUE indicates that hypervisor hasn’ t still finished servicing the hcall
yet.

To make such hcalls the guest need to set continue-token == 0 for the initial call
and use the hypervisor returned value of continue-token for each subsequent hcall
until hypervisor returns a non H CONTINUE return value.

16.6 HCALL Op-codes

Below is a partial list of HCALLs that are supported by PHYP. For the corresponding
opcode values please look into the arch specific header?:

H_SCM_READ METADATA

Input: drclndex, offset, buffer-address, numBytesToRead
Out: numBytesRead
Return Value: H Success, H Parameter, H P2, H P3, H Hardware

Given a DRC Index of an NVDIMM, read N-bytes from the the metadata area as-
sociated with it, at a specified offset and copy it to provided buffer. The metadata
area stores configuration information such as label information, bad-blocks etc.
The metadata area is located out-of-band of NVDIMM storage area hence a sepa-
rate access semantics is provided.

H_SCM_WRITE_METADATA

Input: drclndex, offset, data, numBytesToWrite

16.5. HCALL Return-values 73

Linux Powerpc Documentation

Out: None
Return Value: H Success, H Parameter, H P2, H P4, H Hardware

Given a DRC Index of an NVDIMM, write N-bytes to the metadata area associated
with it, at the specified offset and from the provided buffer.

H_SCM_BIND MEM

Input: drcindex, startingScmBlockIndex, numScmBlocksToBind,
targetLogicalMemoryAddress, continue-token

Out: continue-token, targetLogicalMemoryAddress, numScmBlocksToBound
Return Value: H Success, H Parameter, H P2, H P3, H P4, H Overlap,

H Too Big, H P5, H Busy

Given a DRC-Index of an NVDIMM, map a continuous SCM blocks range (start-
ingScmBlockIndex, startingScmBlockIindex+numScmBlocksToBind) to the guest
at targetLogicalMemoryAddress within guest physical address space. In case tar-
getLogicalMemoryAddress == OxFFFFFFFF FFFFFFFF then hypervisor assigns
a target address to the guest. The HCALL can fail if the Guest has an active PTE
entry to the SCM block being bound.

H_SCM_UNBIND _MEM | Input: drclndex, startingScmLogicalMemoryAd-
dress, numScmBlocksToUnbind | Out: numScmBlocksUnbound | Return Value:
H Success, H Parameter, H P2, H P3, H In Use, H Overlap, | H Busy,
H LongBusyOrderlmSec, H LongBusyOrder10mSec

Given a DRC-Index of an NVDimm, unmap numScmBlocksToUnbind SCM blocks
starting at startingScmLogicalMemoryAddress from guest physical address space.
The HCALL can fail if the Guest has an active PTE entry to the SCM block being
unbound.

H_SCM_QUERY BLOCK_MEM_BINDING

Input: drcindex, scmBlockIndex
Out: Guest-Physical-Address
Return Value: H Success, H Parameter, H P2, H NotFound

Given a DRC-Index and an SCM Block index return the guest physical address to
which the SCM block is mapped to.

H_SCM_QUERY_LOGICAL_MEM _BINDING

Input: Guest-Physical-Address
Out: drclndex, scmBlockIndex
Return Value: H Success, H Parameter, H P2, H NotFound

74 Chapter 16. Hypercall Op-codes (hcalls)

Linux Powerpc Documentation

Given a guest physical address return which DRC Index and SCM block is mapped
to that address.

H_SCM_UNBIND ALL

Input: scmTargetScope, drcindex

Out: None

Return Value: H Success, H Parameter, H P2, H P3, H In Use, H Busy,
H LongBusyOrderlmSec, H LongBusyOrder10mSec

Depending on the Target scope unmap all SCM blocks belonging to all NVDIMMs
or all SCM blocks belonging to a single NVDIMM identified by its drcIndex from
the LPAR memory:.

H_SCM_HEALTH

Input: drcIndex
Out: health-bitmap (r4), health-bit-valid-bitmap (r5)
Return Value: H Success, H Parameter, H Hardware

Given a DRC Index return the info on predictive failure and overall health of the
PMEM device. The asserted bits in the health-bitmap indicate one or more states
(described in table below) of the PMEM device and health-bit-valid-bitmap indicate
which bits in health-bitmap are valid. The bits are reported in reverse bit ordering
for example a value of 0xC400000000000000 indicates bits 0, 1, and 5 are valid.

Health Bitmap Flags:

Bit | Definition

00 | PMEM device is unable to persist memory contents. If the system is pow-
ered down, nothing will be saved.

01 | PMEM device failed to persist memory contents. Either contents were not
saved successfully on power down or were not restored properly on power
up.

02 | PMEM device contents are persisted from previous IPL. The data from the
last boot were successfully restored.

03 | PMEM device contents are not persisted from previous IPL. There was no
data to restore from the last boot.

04 | PMEM device memory life remaining is critically low

05 | PMEM device will be garded off next IPL due to failure

06 | PMEM device contents cannot persist due to current platform health sta-
tus. A hardware failure may prevent data from being saved or restored.
07 | PMEM device is unable to persist memory contents in certain conditions
08 | PMEM device is encrypted

09 | PMEM device has successfully completed a requested erase or secure
erase procedure.

10:63Reserved / Unused

16.6. HCALL Op-codes 75

Linux Powerpc Documentation

H_SCM_PERFORMANCE_STATS

Input: drcindex, resultBuffer Addr
Out: None

Return Value: H Success, H Parameter, H Unsupported, H Hardware,
H Authority, H Privilege

Given a DRC Index collect the performance statistics for NVDIMM and copy them
to the resultBuffer.

16.7 References

76 Chapter 16. Hypercall Op-codes (hcalls)

CHAPTER
SEVENTEEN

PCI EXPRESS 1/0 VIRTUALIZATION RESOURCE ON
POWERENV

Wei Yang <weiyang@linux.vnet.ibm.com>
Benjamin Herrenschmidt <benh@aul.ibm.com>
Bjorn Helgaas <bhelgaas@google.com>

26 Aug 2014

This document describes the requirement from hardware for PCI MMIO resource
sizing and assignment on PowerKVM and how generic PCI code handles this re-
quirement. The first two sections describe the concepts of Partitionable Endpoints
and the implementation on P8 (IODA2). The next two sections talks about consid-
erations on enabling SRIOV on IODA?2.

17.1 1. Introduction to Partitionable Endpoints

A Partitionable Endpoint (PE) is a way to group the various resources associated
with a device or a set of devices to provide isolation between partitions (i.e., fil-
tering of DMA, MSIs etc.) and to provide a mechanism to freeze a device that is
causing errors in order to limit the possibility of propagation of bad data.

There is thus, in HW, a table of PE states that contains a pair of “frozen” state
bits (one for MMIO and one for DMA, they get set together but can be cleared
independently) for each PE.

When a PE is frozen, all stores in any direction are dropped and all loads return all
1’ s value. MSIs are also blocked. There’ s a bit more state that captures things
like the details of the error that caused the freeze etc., but that’ s not critical.

The interesting part is how the various PCle transactions (MMIO, DMA, -:-) are
matched to their corresponding PEs.

The following section provides a rough description of what we have on P8 (I0DA2).
Keep in mind that this is all per PHB (PCI host bridge). Each PHB is a completely
separate HW entity that replicates the entire logic, so has its own set of PEs, etc.

77

mailto:weiyang@linux.vnet.ibm.com
mailto:benh@au1.ibm.com
mailto:bhelgaas@google.com

Linux Powerpc Documentation

17.2 2. Implementation of Partitionable Endpoints on
P8 (IODA2)

P8 supports up to 256 Partitionable Endpoints per PHB.
* Inbound

For DMA, MSIs and inbound PCle error messages, we have a table (in mem-
ory but accessed in HW by the chip) that provides a direct correspondence
between a PCIe RID (bus/dev/fn) with a PE number. We call this the RTT.

- For DMA we then provide an entire address space for each PE that can
contain two “windows” , depending on the value of PCI address bit
59. Each window can be configured to be remapped via a “TCE table”
(IOMMU translation table), which has various configurable characteris-
tics not described here.

- For MSIs, we have two windows in the address space (one at the top of
the 32-bit space and one much higher) which, via a combination of the
address and MSI value, will result in one of the 2048 interrupts per bridge
being triggered. There’ s a PE# in the interrupt controller descriptor
table as well which is compared with the PE# obtained from the RTT to
“authorize” the device to emit that specific interrupt.

- Error messages just use the RTT.
e Outbound. That’ s where the tricky part is.

Like other PCI host bridges, the Power8 IODA2 PHB supports “windows”
from the CPU address space to the PCI address space. There is one M32
window and sixteen M64 windows. They have different characteristics. First
what they have in common: they forward a configurable portion of the CPU
address space to the PCle bus and must be naturally aligned power of two in
size. The rest is different:

- The M32 window:
* Is limited to 4GB in size.

* Drops the top bits of the address (above the size) and replaces them
with a configurable value. This is typically used to generate 32-bit
PCle accesses. We configure that window at boot from FW and don’
t touch it from Linux; it s usually set to forward a 2GB portion of
address space from the CPU to PCle 0x8000 0000..0xffff ffff. (Note:
The top 64KB are actually reserved for MSIs but this is not a problem
at this point; we just need to ensure Linux doesn’ t assign anything
there, the M32 logic ignores that however and will forward in that
space if we try).

* It is divided into 256 segments of equal size. A table in the chip maps
each segment to a PE#. That allows portions of the MMIO space to
be assigned to PEs on a segment granularity. For a 2GB window, the
segment granularity is 2GB/256 = 8MB.

Now, this is the “main” window we use in Linux today (excluding SR-IOV). We
basically use the trick of forcing the bridge MMIO windows onto a segment

78 Chapter 17. PCI Express 1/0 Virtualization Resource on Powerenv

Linux Powerpc Documentation

alignment/granularity so that the space behind a bridge can be assigned to a
PE.

Ideally we would like to be able to have individual functions in PEs but that
would mean using a completely different address allocation scheme where
individual function BARs can be “grouped” to fit in one or more segments.

- The M64 windows:
* Must be at least 256MB in size.

* Do not translate addresses (the address on PClIe is the same as the
address on the PowerBus). There is a way to also set the top 14 bits
which are not conveyed by PowerBus but we don’ t use this.

* Can be configured to be segmented. When not segmented, we can
specify the PE# for the entire window. When segmented, a window
has 256 segments; however, there is no table for mapping a segment
to a PE#. The segment number is the PE#.

* Support overlaps. If an address is covered by multiple windows,
there’ s a defined ordering for which window applies.

We have code (fairly new compared to the M32 stuff) that exploits that for
large BARs in 64-bit space:

We configure an M64 window to cover the entire region of address space that
has been assigned by FW for the PHB (about 64GB, ignore the space for the
M32, it comes out of a different “reserve”). We configure it as segmented.

Then we do the same thing as with M32, using the bridge alignment trick, to
match to those giant segments.

Since we cannot remap, we have two additional constraints:

- We do the PE# allocation after the 64-bit space has been assigned be-
cause the addresses we use directly determine the PE#. We then update
the M32 PE# for the devices that use both 32-bit and 64-bit spaces or
assign the remaining PE# to 32-bit only devices.

- We cannot “group” segments in HW, so if a device ends up using more
than one segment, we end up with more than one PE#. There is a HW
mechanism to make the freeze state cascade to “companion” PEs but
that only works for PCle error messages (typically used so that if you
freeze a switch, it freezes all its children). So we do it in SW. We lose a
bit of effectiveness of EEH in that case, but that’ s the best we found. So
when any of the PEs freezes, we freeze the other ones for that “domain”
. We thus introduce the concept of “master PE” which is the one used for
DMA, MSIs, etc., and “secondary PEs” that are used for the remaining
M64 segments.

”

We would like to investigate using additional M64 windows in “single PE
mode to overlay over specific BARs to work around some of that, for example
for devices with very large BARs, e.g., GPUs. It would make sense, but we
haven’ t done it yet.

17.2. 2. Implementation of Partitionable Endpoints on P8 (IODA2) 79

Linux Powerpc Documentation

17.3 3. Considerations for SR-IOV on PowerKVM

* SR-IOV Background

The PCle SR-IOV feature allows a single Physical Function (PF) to
support several Virtual Functions (VFs). Registers in the PF’ s SR-
IOV Capability control the number of VFs and whether they are en-
abled.

When VFs are enabled, they appear in Configuration Space like nor-
mal PCI devices, but the BARs in VF config space headers are un-
usual. For a non-VF device, software uses BARs in the config space
header to discover the BAR sizes and assign addresses for them.
For VF devices, software uses VF BAR registers in the PF SR-IOV
Capability to discover sizes and assign addresses. The BARs in the
VF’ s config space header are read-only zeros.

When a VF BAR in the PF SR-IOV Capability is programmed, it sets
the base address for all the corresponding VF(n) BARs. For exam-
ple, if the PF SR-IOV Capability is programmed to enable eight VFs,
and it has a 1MB VF BARO, the address in that VF BAR sets the
base of an 8MB region. This region is divided into eight contiguous
1MB regions, each of which is a BARO for one of the VFs. Note that
even though the VF BAR describes an 8MB region, the alignment
requirement is for a single VF, i.e., 1MB in this example.

There are several strategies for isolating VFs in PEs:

e M32 window: There’ s one M32 window, and it is split into 256
equally-sized segments. The finest granularity possible is a 256MB
window with 1MB segments. VF BARs that are 1MB or larger could
be mapped to separate PEs in this window. Each segment can be
individually mapped to a PE via the lookup table, so this is quite
flexible, but it works best when all the VF BARs are the same size.
If they are different sizes, the entire window has to be small enough
that the segment size matches the smallest VF BAR, which means
larger VF BARs span several segments.

* Non-segmented M64 window: A non-segmented M64 window is
mapped entirely to a single PE, so it could only isolate one VF.

* Single segmented M64 windows: A segmented M64 window could
be used just like the M32 window, but the segments can’ t be indi-
vidually mapped to PEs (the segment number is the PE#), so there
isn’ t as much flexibility. A VF with multiple BARs would have to
beina “domain” of multiple PEs, which is not as well isolated as a
single PE.

* Multiple segmented M64 windows: As usual, each window is split
into 256 equally-sized segments, and the segment number is the
PE#. Butif we use several M64 windows, they can be set to different
base addresses and different segment sizes. If we have VFs that
each have a 1MB BAR and a 32MB BAR, we could use one M64
window to assign 1MB segments and another M64 window to assign
32MB segments.

80 Chapter 17. PCI Express 1/0 Virtualization Resource on Powerenv

Linux Powerpc Documentation

Finally, the plan to use M64 windows for SR-IOV, which will be described
more in the next two sections. For a given VF BAR, we need to effectively
reserve the entire 256 segments (256 * VF BAR size) and position the VF
BAR to start at the beginning of a free range of segments/PEs inside that
M64 window.

The goal is of course to be able to give a separate PE for each VF.

The IODA?2 platform has 16 M64 windows, which are used to map MMIO
range to PE#. Each M64 window defines one MMIO range and this
range is divided into 256 segments, with each segment corresponding
to one PE.

We decide to leverage this M64 window to map VFs to individual PEs,
since SR-IOV VF BARs are all the same size.

But doing so introduces another problem: total VFs is usually smaller
than the number of M64 window segments, so if we map one VF BAR
directly to one M64 window, some part of the M64 window will map to
another device’ s MMIO range.

IODA supports 256 PEs, so segmented windows contain 256 segments,
soiftotal VFsislessthan 256, we have the situation in Figure 1.0, where
segments [total VFs, 255] of the M64 window may map to some MMIO
range on other devices:

0 1 total VFs - 1
+------ +------ +- S S +------ +
I I I I I
+ommm- +ommm-- +- e R +ommm-- +
VF(n) BAR space
0 1 total VFs - 1 255
+ommm-- +ommm-- +- R +ommm-- +- R $ommm-- +
I I I I I | |
+ommm-- +ommm-- +- R +--mm-- +- e T +--mm-- +
M64 window

Figure 1.0 Direct map VF(n) BAR space

Our current solution is to allocate 256 segments even if the VF(n) BAR
space doesn’ t need that much, as shown in Figure 1.1:

0 1 total VFs - 1 255
+------ +--m-- +- ctmmmm-- tommmm- +- ST Fommmm- +
I I I I I I I
+------ +------ +- S SR +------ +- B +------ +
VF(n) BAR space + extra
0 1 total VFs - 1 255
+------ +------ +- S SR +------ +- B +------ +
I I I I I I I
S R +- oo S +- A — S +

(continues on next page)

17.3. 3. Considerations for SR-IOV on PowerkKVM

81

Linux Powerpc Documentation

(continued from previous page)

M64 window

Figure 1.1 Map VF(n) BAR space + extra

Allocating the extra space ensures that the entire M64 window will be
assigned to this one SR-IOV device and none of the space will be available
for other devices. Note that this only expands the space reserved in
software; there are still only total VFs VFs, and they only respond to
segments [0, total VFs - 1]. There’ s nothing in hardware that responds
to segments [total VFs, 255].

17.4 4. Implications for the Generic PCl Code

The PCle SR-IOV spec requires that the base of the VF(n) BAR space be aligned to
the size of an individual VF BAR.

In IODA2, the MMIO address determines the PE#. If the address is in an M32
window, we can set the PE# by updating the table that translates segments to
PE#s. Similarly, if the address is in an unsegmented M64 window, we can set the
PE# for the window. But ifit’ s in a segmented M64 window, the segment number
is the PE#.

Therefore, the only way to control the PE# for a VF is to change the base of the
VF(n) BAR space in the VF BAR. If the PCI core allocates the exact amount of
space required for the VF(n) BAR space, the VF BAR value is fixed and cannot be
changed.

On the other hand, if the PCI core allocates additional space, the VF BAR value
can be changed as long as the entire VF(n) BAR space remains inside the space
allocated by the core.

Ideally the segment size will be the same as an individual VF BAR size. Then each
VF will be in its own PE. The VF BARs (and therefore the PE#s) are contiguous. If
VFO is in PE(x), then VF(n) is in PE(x+n). If we allocate 256 segments, there are
(256 - numVFSs) choices for the PE# of VFO.

If the segment size is smaller than the VF BAR size, it will take several segments
to cover a VF BAR, and a VF will be in several PEs. This is possible, but the
isolation isn’ t as good, and it reduces the number of PE# choices because instead
of consuming only numVFs segments, the VF(n) BAR space will consume (numVFs
*n) segments. That means there aren’ t as many available segments for adjusting
base of the VF(n) BAR space.

82 Chapter 17. PCI Express 1/0 Virtualization Resource on Powerenv

CHAPTER
EIGHTEEN

PMU EVENT BASED BRANCHES

Event Based Branches (EBBs) are a feature which allows the hardware to branch
directly to a specified user space address when certain events occur.

The full specification is available in Power ISA v2.07:
https://'www.power.org/documentation/power-isa-version-2-07/

One type of event for which EBBs can be configured is PMU exceptions. This
document describes the API for configuring the Power PMU to generate EBBs,
using the Linux perf events API.

18.1 Terminology

Throughout this document we will refer to an “EBB event” or “EBB events” . This
just refers to a struct perf event which has set the “EBB” flag in its attr.config. All
events which can be configured on the hardware PMU are possible “EBB events”

18.2 Background

When a PMU EBB occurs it is delivered to the currently running process. As such
EBBs can only sensibly be used by programs for self-monitoring.

It is a feature of the perf events API that events can be created on other processes,
subject to standard permission checks. This is also true of EBB events, however
unless the target process enables EBBs (via mtspr(BESCR)) no EBBs will ever be
delivered.

This makes it possible for a process to enable EBBs for itself, but not actually
configure any events. At a later time another process can come along and attach
an EBB event to the process, which will then cause EBBs to be delivered to the
first process. It’ s not clear if this is actually useful.

When the PMU is configured for EBBs, all PMU interrupts are delivered to the
user process. This means once an EBB event is scheduled on the PMU, no non-EBB
events can be configured. This means that EBB events can not be run concurrently
with regular ‘perf commands, or any other perf events.

83

https://www.power.org/documentation/power-isa-version-2-07/

Linux Powerpc Documentation

It is however safe to run ‘perf commands on a process which is using EBBs. The
kernel will in general schedule the EBB event, and perf will be notified that its
events could not run.

The exclusion between EBB events and regular events is implemented using the
existing “pinned” and “exclusive” attributes of perf events. This means EBB
events will be given priority over other events, unless they are also pinned. If an
EBB event and a regular event are both pinned, then whichever is enabled first
will be scheduled and the other will be put in error state. See the section below
titled “Enabling an EBB event” for more information.

18.3 Creating an EBB event

To request that an event is counted using EBB, the event code should have bit 63
set.

EBB events must be created with a particular, and restrictive, set of attributes - this
is so that they interoperate correctly with the rest of the perf events subsystem.

An EBB event must be created with the “pinned” and “exclusive” attributes set.
Note that if you are creating a group of EBB events, only the leader can have these
attributes set.

An EBB event must NOT set any of the “inherit” , “sample period” , “freq” or
“enable on exec” attributes.

An EBB event must be attached to a task. This is specified to perf event open()
by passing a pid value, typically 0 indicating the current task.

All events in a group must agree on whether they want EBB. That is all events
must request EBB, or none may request EBB.

EBB events must specify the PMC they are to be counted on. This ensures
userspace is able to reliably determine which PMC the event is scheduled on.

18.4 Enabling an EBB event

Once an EBB event has been successfully opened, it must be enabled with the
perf events API. This can be achieved either via the ioctl() interface, or the prctl()
interface.

However, due to the design of the perf events API, enabling an event does not
guarantee that it has been scheduled on the PMU. To ensure that the EBB event has
been scheduled on the PMU, you must perform a read() on the event. If the read()
returns EOF, then the event has not been scheduled and EBBs are not enabled.

This behaviour occurs because the EBB event is pinned and exclusive. When the
EBB event is enabled it will force all other non-pinned events off the PMU. In this
case the enable will be successful. However if there is already an event pinned on
the PMU then the enable will not be successful.

84 Chapter 18. PMU Event Based Branches

Linux Powerpc Documentation

18.5 Reading an EBB event

It is possible to read() from an EBB event. However the results are meaningless.
Because interrupts are being delivered to the user process the kernel is not able
to count the event, and so will return a junk value.

18.6 Closing an EBB event

When an EBB event is finished with, you can close it using close() as for any regular
event. If this is the last EBB event the PMU will be deconfigured and no further
PMU EBBs will be delivered.

18.7 EBB Handler

The EBB handler is just regular userspace code, however it must be written in
the style of an interrupt handler. When the handler is entered all registers are
live (possibly) and so must be saved somehow before the handler can invoke other
code.

It’ s up to the program how to handle this. For C programs a relatively simple
option is to create an interrupt frame on the stack and save registers there.

18.8 Fork

EBB events are not inherited across fork. If the child process wishes to use
EBBs it should open a new event for itself. Similarly the EBB state in BE-
SCR/EBBHR/EBBRR is cleared across fork().

18.5. Reading an EBB event 85

Linux Powerpc Documentation

86 Chapter 18. PMU Event Based Branches

CHAPTER
NINETEEN

PTRACE

GDB intends to support the following hardware debug features of BookE proces-
SOrs:

4 hardware breakpoints (IAC) 2 hardware watchpoints (read, write and read-write)
(DAC) 2 value conditions for the hardware watchpoints (DVC)

For that, we need to extend ptrace so that GDB can query and set these resources.
Since we’ re extending, we’ re trying to create an interface that’ s extendable
and that covers both BookE and server processors, so that GDB doesn’ t need to
special-case each of them. We added the following 3 new ptrace requests.

19.1 1. PTRACE_PPC_GETHWDEBUGINFO

Query for GDB to discover the hardware debug features. The main info to be
returned here is the minimum alignment for the hardware watchpoints. BookE
processors don’ t have restrictions here, but server processors have an 8-byte
alignment restriction for hardware watchpoints. We’ d like to avoid adding special
cases to GDB based on what it sees in AUXV.

Since we’ re at it, we added other useful info that the kernel can return to GDB:
this query will return the number of hardware breakpoints, hardware watchpoints
and whether it supports a range of addresses and a condition. The query will fill
the following structure provided by the requesting process:

struct ppc _debug info {
unit32 t version;
unit32 t num instruction bps;
unit32 t num_data bps;
unit32_t num_condition_regs;
unit32 t data bp alignment;
unit32 t sizeof condition; /* size of the DVC register */
uint64 t features; /* bitmask of the individual flags */

+

features will have bits indicating whether there is support for:

#define PPC_DEBUG FEATURE INSN BP RANGE ox1
#define PPC_DEBUG FEATURE_INSN BP_MASK 0x2
#define PPC_DEBUG FEATURE DATA BP_RANGE Ox4
#define PPC_DEBUG FEATURE DATA BP_ MASK 0x8
#define PPC_DEBUG FEATURE DATA BP_ DAWR 0x10

87

Linux Powerpc Documentation

2. PTRACE SETHWDEBUG

Sets a hardware breakpoint or watchpoint, according to the provided structure:

struct ppc_hw breakpoint {
uint32 t version;
#define PPC_BREAKPOINT TRIGGER EXECUTE 0x1

#define PPC BREAKPOINT TRIGGER READ 0x2
#define PPC BREAKPOINT TRIGGER WRITE 0x4
uint32 t trigger type; /* only some combinations allowed */
#define PPC_BREAKPOINT MODE EXACT 0x0
#define PPC_BREAKPOINT MODE RANGE INCLUSIVE 0x1
#define PPC_BREAKPOINT MODE RANGE EXCLUSIVE 0x2
#define PPC_BREAKPOINT MODE MASK 0x3
uint32 t addr_mode; /* address match mode */

#define PPC_BREAKPOINT CONDITION MODE 0x3
#define PPC_BREAKPOINT CONDITION NONE 0x0
#define PPC_BREAKPOINT CONDITION_AND 0x1
#define PPC_BREAKPOINT CONDITION EXACT 0x1 /* different name for the,
—.same thing as above */
#define PPC_BREAKPOINT CONDITION OR 0x2
#define PPC_BREAKPOINT CONDITION AND OR 0x3
#define PPC_BREAKPOINT CONDITION BE ALL 0x00ff0000 /* byte enable bits,,
Ly
#define PPC_BREAKPOINT CONDITION BE(n) (1<<((n)+16))
uint32 t condition mode; /* break/watchpoint condition flags */

uint64 t addr;
uint64_t addr2;
uint64 t condition_value;

}

A request specifies one event, not necessarily just one register to be set. For
instance, if the request is for a watchpoint with a condition, both the DAC and
DVC registers will be set in the same request.

With this GDB can ask for all kinds of hardware breakpoints and watchpoints that
the BookE supports. COMEFROM breakpoints available in server processors are
not contemplated, but that is out of the scope of this work.

ptrace will return an integer (handle) uniquely identifying the breakpoint or watch-
point just created. This integer will be used in the PTRACE DELHWDEBUG re-
quest to ask for its removal. Return -ENOSPC if the requested breakpoint can’ t
be allocated on the registers.

Some examples of using the structure to:

* set a breakpoint in the first breakpoint register:

p.version = PPC_DEBUG CURRENT VERSION;
p.trigger type = PPC_BREAKPOINT TRIGGER EXECUTE;
p.addr_mode = PPC_BREAKPOINT MODE EXACT;
p.condition_mode = PPC_BREAKPOINT CONDITION NONE;
p.addr = (uint64 t) address;

p.addr2 = 0;

p.condition value = 0;

88 Chapter 19. Ptrace

Linux Powerpc Documentation

* set a watchpoint which triggers on reads in the second watchpoint register:

p.version = PPC_DEBUG CURRENT VERSION;
p.trigger type = PPC_BREAKPOINT TRIGGER READ;
p.addr_mode = PPC_BREAKPOINT MODE EXACT;
p.condition mode = PPC BREAKPOINT CONDITION NONE;
p.addr = (uint64 t) address;

p.addr2 = 0;

p.condition value = 0;

* set a watchpoint which triggers only with a specific value:

p.version = PPC_DEBUG_CURRENT_ VERSION;
p.trigger type = PPC_ BREAKPOINT TRIGGER READ;
p.addr_mode = PPC_BREAKPOINT MODE_EXACT;

p.condition mode
—CONDITION BE ALL
p.addr

p.addr2
p.condition value

PPC_BREAKPOINT CONDITION AND | PPC BREAKPOINT

(uint64 t) address;
0;
(uint64 t) condition;

nmwan-~-

* set a ranged hardware breakpoint:

p.version = PPC_DEBUG_CURRENT VERSION;
p.trigger_type = PPC_BREAKPOINT TRIGGER EXECUTE;
p.addr_mode = PPC_BREAKPOINT MODE_ RANGE_INCLUSIVE;
p.condition mode = PPC BREAKPOINT CONDITION NONE;
p.addr = (uint64 t) begin range;

p.addr2 = (uint64 t) end range;

p.condition value = 0;

* set a watchpoint in server processors (BookS):

p.version =1,

p.trigger type = PPC_BREAKPOINT TRIGGER RW;
p.addr_mode = PPC_BREAKPOINT MODE RANGE INCLUSIVE;
or

p.addr_mode = PPC_BREAKPOINT MODE EXACT;

p.condition mode PPC_BREAKPOINT CONDITION NONE;

p.addr = (uint64 t) begin range;
/* For PPC BREAKPOINT MODE RANGE INCLUSIVE addr2 needs to be,
—.specified, where

* addr2 - addr <= 8 Bytes.

*/

p.addr2
p.condition value

(uint64 t) end range;
0;

3. PTRACE DELHWDEBUG

Takes an integer which identifies an existing breakpoint or watchpoint (i.e., the
value returned from PTRACE SETHWDEBUG), and deletes the corresponding
breakpoint or watchpoint..

19.1. 1. PTRACE_PPC_GETHWDEBUGINFO 89

Linux Powerpc Documentation

20

Chapter 19. Ptrace

CHAPTER
TWENTY

FREESCALE QUICC ENGINE FIRMWARE UPLOADING

(c) 2007 Timur Tabi <timur at freescale.com>, Freescale Semiconductor

20.1 Revision Information

November 30, 2007: Rev 1.0 - Initial version

20.2 | - Software License for Firmware

Each firmware file comes with its own software license. For information on the
particular license, please see the license text that is distributed with the firmware.

20.3 1l - Microcode Availability

Firmware files are distributed through various channels. Some are available on
http://opensource.freescale.com. For other firmware files, please contact your
Freescale representative or your operating system vendor.

20.4 11l - Description and Terminology

In this document, the term ‘microcode’ refers to the sequence of 32-bit integers
that compose the actual QE microcode.

The term ‘firmware’ refers to a binary blob that contains the microcode as well
as other data that

1) describes the microcode’ s purpose

2) describes how and where to upload the microcode

3) specifies the values of various registers

4) includes additional data for use by specific device drivers

Firmware files are binary files that contain only a firmware.

91

http://opensource.freescale.com

Linux Powerpc Documentation

20.5 IV - Microcode Programming Details

The QE architecture allows for only one microcode present in I-RAM for each RISC
processor. To replace any current microcode, a full QE reset (which disables the
microcode) must be performed first.

QE microcode is uploaded using the following procedure:

1) The microcode is placed into I-RAM at a specific location, using the
IRAM.IADD and IRAM.IDATA registers.

2) The CERCR.CIR bitis set to 0 or 1, depending on whether the firmware needs
split I-RAM. Split I-RAM is only meaningful for SOCs that have QEs with mul-
tiple RISC processors, such as the 8360. Splitting the I-RAM allows each
processor to run a different microcode, effectively creating an asymmetric
multiprocessing (AMP) system.

3) The TIBCR trap registers are loaded with the addresses of the trap handlers
in the microcode.

4) The RSP.ECCR register is programmed with the value provided.

5) If necessary, device drivers that need the virtual traps and extended mode
data will use them.

Virtual Microcode Traps

These virtual traps are conditional branches in the microcode. These are “soft”pro-
visional introduced in the ROMcode in order to enable higher flexibility and save
h/w traps If new features are activated or an issue is being fixed in the RAM pack-
age utilizing they should be activated. This data structure signals the microcode
which of these virtual traps is active.

This structure contains 6 words that the application should copy to some specific
been defined. This table describes the structure:

| Offset in | | Destination Offset | Size of |
| array | Protocol | within PRAM | Operand |
__ |
0	Ethernet	OxF8	4 bytes
	interworking		
4	ATM	OxF8	4 bytes
	interworking		
8	PPP	OxF8	4 bytes
	interworking		
12	Ethernet RX	0x22	1 byte

| | Distributor Page | | |

| 16 | ATM Globtal | 0x28 | 1 byte |
| | Params Table | | |

92 Chapter 20. Freescale QUICC Engine Firmware Uploading

Linux Powerpc Documentation

Extended Modes

This is a double word bit array (64 bits) that defines special functionality which
has an impact on the software drivers. Each bit has its own impact and has special
instructions for the s/w associated with it. This structure is described in this table:

General | Indicates that prior to each host command
push command | given by the application, the software must |
| assert a special host command (push command) |
| CECDR = 0x00800000. |
| CECR = 0x01c1000f. |
UcC ATM | Indicates that after issuing ATM RX INIT |
RX INIT | command, the host must issue another special]
push command | command (push command) and immediately |
| following that re-issue the ATM RX INIT |
| command. (This makes the sequence of |
| initializing the ATM receiver a sequence of |
| three host commands) |
| CECDR = 0x00800000. |
| CECR = 0x01c1000f. |
| Add/remove | Indicates that following the specific host |
| command | command: "Add/Remove entry in Hash Lookup
| validation | Table" used in Interworking setup, the user |
| | must issue another command.
| | CECDR = 0xce000003. |
| | CECR = 0x01c10f58. |
General push | Indicates that the s/w has to initialize |
command | some pointers in the Ethernet thread pages |
| which are used when Header Compression is |
| activated. The full details of these |
| pointers is located in the software drivers. |
General push | Indicates that after issuing Ethernet TX |
command | INIT command, user must issue this command |
| for each SNUM of Ethernet TX thread. |
| CECDR = 0x00800003. |
| CECR = 0x7'b{0}, 8'b{Enet TX thread SNUM}, |
| 1'b{1}, 12'b{0}, 4'b{1} |

| 5 - 31 | N/A | Reserved, set to zero. |

20.5. IV - Microcode Programming Details 93

Linux Powerpc Documentation

20.6 V - Firmware Structure Layout

QE microcode from Freescale is typically provided as a header file. This header file
contains macros that define the microcode binary itself as well as some other data
used in uploading that microcode. The format of these files do not lend themselves
to simple inclusion into other code. Hence, the need for a more portable format.
This section defines that format.

Instead of distributing a header file, the microcode and related data are embedded
into a binary blob. This blob is passed to the ge upload firmware() function, which
parses the blob and performs everything necessary to upload the microcode.

All integers are big-endian. See the comments for function ge upload firmware()
for up-to-date implementation information.

This structure supports versioning, where the version of the structure is embed-
ded into the structure itself. To ensure forward and backwards compatibility, all
versions of the structure must use the same ‘ge_header’ structure at the beginning.

‘header’ (type: struct qe_header): The ‘length’ field is the size, in bytes, of
the entire structure, including all the microcode embedded in it, as well as
the CRC (if present).

The ‘magic’ field is an array of three bytes that contains the letters ‘Q’ ,
‘E’ ,and ‘F’ . This is an identifier that indicates that this structure is a QE
Firmware structure.

The ‘version’ field is a single byte that indicates the version of this structure.
If the layout of the structure should ever need to be changed to add support
for additional types of microcode, then the version number should also be
changed.

The ‘id’ field is a null-terminated string(suitable for printing) that identifies the
firmware.

The ‘count’ field indicates the number of ‘microcode’ structures. There must
be one and only one ‘microcode’ structure for each RISC processor. Therefore,
this field also represents the number of RISC processors for this SOC.

The ‘soc’ structure contains the SOC numbers and revisions used to match the
microcode to the SOC itself. Normally, the microcode loader should check the
data in this structure with the SOC number and revisions, and only upload the
microcode if there’ s a match. However, this check is not made on all platforms.

Although it is not recommended, you can specify ‘0’ in the soc.model field to skip
matching SOCs altogether.

The ‘model’ field is a 16-bit number that matches the actual SOC. The ‘major’
and ‘minor’ fields are the major and minor revision numbers, respectively, of the
SOC.

For example, to match the 8323, revision 1.0:

soc.model = 8323
soc.major =1
soc.minor = 0

24 Chapter 20. Freescale QUICC Engine Firmware Uploading

Linux Powerpc Documentation

‘padding’ is necessary for structure alignment. This field ensures that the ‘ex-
tended modes’ field is aligned on a 64-bit boundary.

‘extended modes’is a bitfield that defines special functionality which has an impact
on the device drivers. Each bit has its own impact and has special instructions for
the driver associated with it. This field is stored in the QE library and available to
any driver that calles ge get firmware info().

‘vtraps’ is an array of 8 words that contain virtual trap values for each virtual traps.
As with ‘extended modes’ , this field is stored in the QE library and available to
any driver that calles qe get firmware info().

‘microcode’ (type: struct ge_microcode): For each RISC processor there is
one ‘microcode’ structure. The first ‘microcode’ structure is for the first
RISC, and so on.

The ‘id’ field is a null-terminated string suitable for printing that identifies
this particular microcode.

‘traps’ is an array of 16 words that contain hardware trap values for each of
the 16 traps. If trap[i] is O, then this particular trap is to be ignored (i.e. not
written to TIBCR[i]). The entire value is written as-is to the TIBCR[i] register,
so be sure to set the EN and T IBP bits if necessary.

‘eccr’ is the value to program into the ECCR register.
‘iram_offset’ is the offset into IRAM to start writing the microcode.
‘count’ is the number of 32-bit words in the microcode.

‘code offset’ is the offset, in bytes, from the beginning of this structure where
the microcode itself can be found. The first microcode binary should be lo-
cated immediately after the ‘microcode’ array.

‘major’ , ‘minor , and ‘revision’ are the major, minor, and revision version
numbers, respectively, of the microcode. If all values are 0, then these fields
are ignored.

‘reserved’ is necessary for structure alignment. Since ‘microcode’ is an array;,
the 64-bit ‘extended modes’ field needs to be aligned on a 64-bit boundary,
and this can only happen if the size of ‘microcode’ is a multiple of 8 bytes.
To ensure that, we add ‘reserved’

After the last microcode is a 32-bit CRC. It can be calculated using this algorithm:

u32 crc32(const u8 *p, unsigned int len)

{
unsigned int i;
u32 crc = 0;

while (len--) {
crc "= *pt++;
for (1 =0; 1 < 8; i++)
crc = (crc > 1) ~ ((crc & 1) ? 0xedb88320 : 0);
}

return crc;

20.6. V - Firmware Structure Layout 95

Linux Powerpc Documentation

20.7 VI - Sample Code for Creating Firmware Files

A Python program that creates firmware binaries from the header files normally
distributed by Freescale can be found on http://opensource.freescale.com.

96 Chapter 20. Freescale QUICC Engine Firmware Uploading

http://opensource.freescale.com

CHAPTER
TWENTYONE

POWER ARCHITECTURE 64-BIT LINUX SYSTEM CALL ABI

21.1 syscall

syscall calling sequence1 matches the Power Architecture 64-bit ELF ABI specifi-
cation C function calling sequence, including register preservation rules, with the
following differences.

21.1.1 Parameters and return value

The system call number is specified in r0.
There is a maximum of 6 integer parameters to a syscall, passed in r3-r8.

Both a return value and a return error code are returned. cr0.SO is the return
error code, and r3 is the return value or error code. When cr0.SO is clear, the
syscall succeeded and r3 is the return value. When cr0.SO is set, the syscall failed
and r3 is the error code that generally corresponds to errno.

21.1.2 Stack

System calls do not modify the caller’ s stack frame. For example, the caller’ s
stack frame LR and CR save fields are not used.

21.1.3 Register preservation rules

Register preservation rules match the ELF ABI calling sequence with the following
differences:

r0 Volatile (System call number.)

r3 Volatile (Parameter 1, and return value.)
r4-r8 Volatile (Parameters 2-6.)

cr0 Volatile (cr0.S0O is the return error condition)
crl, cr5-7 | Nonvolatile

Ir Nonvolatile

' Some syscalls (typically low-level management functions) may have different calling sequences
(e.g., rt_sigreturn).

97

Linux Powerpc Documentation

All floating point and vector data registers as well as control and status registers
are nonvolatile.

21.1.4 Invocation

The syscall is performed with the sc instruction, and returns with execution con-
tinuing at the instruction following the sc instruction.

21.1.5 Transactional Memory

Syscall behavior can change if the processor is in transactional or suspended trans-
action state, and the syscall can affect the behavior of the transaction.

If the processor is in suspended state when a syscall is made, the syscall will be
performed as normal, and will return as normal. The syscall will be performed
in suspended state, so its side effects will be persistent according to the usual
transactional memory semantics. A syscall may or may not result in the transaction
being doomed by hardware.

If the processor is in transactional state when a syscall is made, then the behavior
depends on the presence of PPC FEATURE2 HTM NOSC in the AT HWCAP2 ELF
auxiliary vector.

» If present, which is the case for newer kernels, then the syscall will not be
performed and the transaction will be doomed by the kernel with the failure
code TM_CAUSE SYSCALL | TM_CAUSE PERSISTENT in the TEXASR SPR.

» If not present (older kernels), then the kernel will suspend the transactional
state and the syscall will proceed as in the case of a suspended state syscall,
and will resume the transactional state before returning to the caller. This
case is not well defined or supported, so this behavior should not be relied
upon.

21.2 vsyscall

vsyscall calling sequence matches the syscall calling sequence, with the following
differences. Some vsyscalls may have different calling sequences.

21.2.1 Parameters and return value

r0 is not used as an input. The vsyscall is selected by its address.

98 Chapter 21. Power Architecture 64-bit Linux system call ABI

Linux Powerpc Documentation

21.2.2 Stack

The vsyscall may or may not use the caller’ s stack frame save areas.

21.2.3 Register preservation rules

r0 Volatile
crl, cr5-7 | Volatile
Ir Volatile

21.2.4 Invocation

The vsyscall is performed with a branch-with-link instruction to the vsyscall func-
tion address.

21.2.5 Transactional Memory

vsyscalls will run in the same transactional state as the caller. A vsyscall may or
may not result in the transaction being doomed by hardware.

21.2. vsyscall 929

Linux Powerpc Documentation

100 Chapter 21. Power Architecture 64-bit Linux system call ABI

CHAPTER
TWENTYTWO

TRANSACTIONAL MEMORY SUPPORT

POWER kernel support for this feature is currently limited to supporting its use
by user programs. It is not currently used by the kernel itself.

This file aims to sum up how it is supported by Linux and what behaviour you can
expect from your user programs.

22.1 Basic overview

Hardware Transactional Memory is supported on POWERS8 processors, and is a
feature that enables a different form of atomic memory access. Several new in-
structions are presented to delimit transactions; transactions are guaranteed to
either complete atomically or roll back and undo any partial changes.

A simple transaction looks like this:

begin move money:
tbegin
beq abort handler

1d r4, SAVINGS ACCT(r3)
1d r5, CURRENT ACCT(r3)
subi r5, r5, 1
addi r4, r4, 1
std r4, SAVINGS ACCT(r3)
std r5, CURRENT ACCT(r3)

tend
b continue

abort handler:
. test for odd failures ...

/* Retry the transaction if it failed because it conflicted with
* someone else: */
b begin move money

The ‘tbegin’ instruction denotes the start point, and ‘tend’ the end point. Be-
tween these points the processor is in ‘Transactional’ state; any memory refer-
ences will complete in one go if there are no conflicts with other transactional
or non-transactional accesses within the system. In this example, the transac-
tion completes as though it were normal straight-line code IF no other proces-

101

Linux Powerpc Documentation

sor has touched SAVINGS ACCT(r3) or CURRENT ACCT(r3); an atomic move of
money from the current account to the savings account has been performed. Even
though the normal 1d/std instructions are used (note no lwarx/stwcx), either both
SAVINGS ACCT(r3) and CURRENT ACCT(r3) will be updated, or neither will be
updated.

If, in the meantime, there is a conflict with the locations accessed by the transac-
tion, the transaction will be aborted by the CPU. Register and memory state will
roll back to that at the ‘tbegin’ , and control will continue from ‘tbegin+4’ .
The branch to abort handler will be taken this second time; the abort handler can
check the cause of the failure, and retry.

Checkpointed registers include all GPRs, FPRs, VRs/VSRs, LR, CCR/CR, CTR,
FPCSR and a few other status/flag regs; see the ISA for details.

22.2 Causes of transaction aborts

* Conflicts with cache lines used by other processors
* Signals
* Context switches

* See the ISA for full documentation of everything that will abort transactions.

22.3 Syscalls

Syscalls made from within an active transaction will not be performed
and the transaction will be doomed by the kernel with the failure code
TM CAUSE SYSCALL | TM_CAUSE PERSISTENT.

Syscalls made from within a suspended transaction are performed as normal and
the transaction is not explicitly doomed by the kernel. However, what the kernel
does to perform the syscall may result in the transaction being doomed by the
hardware. The syscall is performed in suspended mode so any side effects will
be persistent, independent of transaction success or failure. No guarantees are
provided by the kernel about which syscalls will affect transaction success.

Care must be taken when relying on syscalls to abort during active transactions
if the calls are made via a library. Libraries may cache values (which may give
the appearance of success) or perform operations that cause transaction failure
before entering the kernel (which may produce different failure codes). Examples
are glibc’ s getpid() and lazy symbol resolution.

102 Chapter 22. Transactional Memory support

Linux Powerpc Documentation

22.4 Signals

Delivery of signals (both sync and async) during transactions provides a second
thread state (ucontext/mcontext) to represent the second transactional register
state. Signal delivery ‘treclaim’ s to capture both register states, so signals abort
transactions. The usual ucontext t passed to the signal handler represents the
checkpointed/original register state; the signal appears to have arisen at ‘tbe-
gin+4’

If the sighandler ucontext has uc_link set, a second ucontext has been delivered.
For future compatibility the MSR.TS field should be checked to determine the
transactional state - if so, the second ucontext in uc->uc_link represents the active
transactional registers at the point of the signal.

For 64-bit processes, uc->uc _mcontext.regs->msr is a full 64-bit MSR and its TS
field shows the transactional mode.

For 32-bit processes, the mcontext’ s MSR register is only 32 bits; the top
32 bits are stored in the MSR of the second ucontext, i.e. in uc->uc link-
>uc _mcontext.regs->msr. The top word contains the transactional state TS.

However, basic signal handlers don’ t need to be aware of transactions and simply
returning from the handler will deal with things correctly:

Transaction-aware signal handlers can read the transactional register state from
the second ucontext. This will be necessary for crash handlers to determine, for
example, the address of the instruction causing the SIGSEGV.

Example signal handler:

void crash handler(int sig, siginfo t *si, void *uc)
{

ucontext t *ucp = uc;

ucontext t *transactional ucp = ucp->uc_link;

if (ucp_link) {
u64 msr = ucp->uc_mcontext.regs->msr;
/* May have transactional ucontext! */
#ifndef _ powerpc64
msr |= ((u64)transactional ucp->uc _mcontext.regs->msr) << 32;
#endif
if (MSR_TM ACTIVE(msr)) {
/* Yes, we crashed during a transaction. Oops. */
fprintf(stderr, "Transaction to be restarted at 0x%l1lx, but "
"crashy instruction was at Ox%Lllx\n",
ucp->uc_mcontext.regs->nip,
transactional ucp->uc_mcontext.regs->nip);
}
}

fix_the problem(ucp->dar);

}

When in an active transaction that takes a signal, we need to be careful with the
stack. It’ s possible that the stack has moved back up after the tbegin. The obvious
case here is when the tbegin is called inside a function that returns before a tend.
In this case, the stack is part of the checkpointed transactional memory state. If

22.4. Signals 103

Linux Powerpc Documentation

we write over this non transactionally or in suspend, we are in trouble because
if we get a tm abort, the program counter and stack pointer will be back at the
tbegin but our in memory stack won’ t be valid anymore.

To avoid this, when taking a signal in an active transaction, we need to use the
stack pointer from the checkpointed state, rather than the speculated state. This
ensures that the signal context (written tm suspended) will be written below the
stack required for the rollback. The transaction is aborted because of the treclaim,
so any memory written between the tbegin and the signal will be rolled back any-
way.

For signals taken in non-TM or suspended mode, we use the normal/non-
checkpointed stack pointer.

Any transaction initiated inside a sighandler and suspended on return from the
sighandler to the kernel will get reclaimed and discarded.

22.5 Failure cause codes used by kernel

These are defined in <asm/reg.h>, and distinguish different reasons why the ker-
nel aborted a transaction:

TM CAUSE RESCHED Thread was rescheduled.

TM CAUSE TLBI Software TLB invalid.

TM CAUSE FAC UNAV FP/VEC/VSX unavailable trap.
TM CAUSE SYSCALL Syscall from active transaction.
TM CAUSE SIGNAL Signal delivered.

TM CAUSE MISC Currently unused.

TM CAUSE ALIGNMENT | Alignment fault.
TM CAUSE EMULATE Emulation that touched memory.

These can be checked by the user program’ s abort handler as TEXASR[0:7].
If bit 7 is set, it indicates that the error is consider persistent. For example a
TM CAUSE ALIGNMENT will be persistent while a TM_CAUSE RESCHED will
not.

22.6 GDB

GDB and ptrace are not currently TM-aware. If one stops during a transaction, it
looks like the transaction has just started (the checkpointed state is presented).
The transaction cannot then be continued and will take the failure handler route.
Furthermore, the transactional 2nd register state will be inaccessible. GDB can
currently be used on programs using TM, but not sensibly in parts within transac-
tions.

104 Chapter 22. Transactional Memory support

Linux Powerpc Documentation

22.7 POWER9

T™M on POWERS9 has issues with storing the complete register state. This is de-
scribed in this commit:

commit 4bb3c7a0208fcl13ca70598efd109901a7cd45ae?

Author: Paul Mackerras <paulus@ozlabs.org>

Date: Wed Mar 21 21:32:01 2018 +1100

KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9

To account for this different POWER9 chips have TM enabled in different ways.

On POWERON DD2.01 and below, TM is disabled. ie HW-
CAP2[PPC FEATURE2 HTM] is not set.

On POWERON DD2.1 TM is configured by firmware to always abort a transaction
when tm suspend occurs. So tsuspend will cause a transaction to be aborted and
rolled back. Kernel exceptions will also cause the transaction to be aborted and
rolled back and the exception will not occur. If userspace constructs a sigcontext
that enables TM suspend, the sigcontext will be rejected by the kernel. This mode
is advertised to users with HWCAP2[PPC FEATURE2 HTM NO SUSPEND] set.
HWCAP2[PPC FEATURE2 HTM] is not set in this mode.

On POWERO9N DD2.2 and above, KVM and POWERVM emulate TM for guests
(as described in commit 4bb3c7a0208f), hence TM is enabled for guests ie. HW-
CAP2[PPC FEATURE2 HTM] is set for guest userspace. Guests that makes heavy
use of TM suspend (tsuspend or kernel suspend) will result in traps into the hy-
pervisor and hence will suffer a performance degradation. Host userspace has
TM disabled ie. HWCAP2[PPC FEATURE2 HTM] is not set. (although we make
enable it at some point in the future if we bring the emulation into host userspace
context switching).

POWER9C DD1.2 and above are only available with POWERVM and hence Linux
only runs as a guest. On these systems TM is emulated like on POWER9N DD?2.2.

Guest migration from POWERS8 to POWER9 will work with POWER9N DD2.2 and
POWERIC DD1.2. Since earlier POWER9 processors don’ t support TM emulation,
migration from POWERS8 to POWERS9 is not supported there.

22.8 Kernel implementation

22.8.1 h/rfid mtmsrd quirk

As defined in the ISA, rfid has a quirk which is useful in early exception handling.
When in a userspace transaction and we enter the kernel via some exception, MSR
will end up as TM=0 and TS=01 (ie. TM off but TM suspended). Regularly the
kernel will want change bits in the MSR and will perform an rfid to do this. In this
case rfid can have SRRO TM = 0 and TS = 00 (ie. TM off and non transaction) and
the resulting MSR will retain TM = 0 and TS=01 from before (ie. stay in suspend).
This is a quirk in the architecture as this would normally be a transition from
TS=01 to TS=00 (ie. suspend -> non transactional) which is an illegal transition.

This quirk is described the architecture in the definition of rfid with these lines:

22.7. POWER9 105

Linux Powerpc Documentation

if (MSR 29:31 = = 0b010 | SRR1 29:31 - = 0b000) then MSR
29:31 <- SRR1 29:31

hrfid and mtmsrd have the same quirk.

The Linux kernel uses this quirk in it’ s early exception handling.

106 Chapter 22. Transactional Memory support

CHAPTER
TWENTYTHREE

PROTECTED EXECUTION FACILITY

Contents

* Protected Execution Facility

Introduction

* Hardware
*x Software/Microcode
* Terminology

Ultravisor calls API

* Ultracalls used by Hypervisor
* Ultracalls used by SVM

Hypervisor Calls API

* Hypervisor calls to support Ultravisor

References

23.1 Introduction

Protected Execution Facility (PEF) is an architectural change for
POWER 9 that enables Secure Virtual Machines (SVMs). DD2.3 chips
(PVR=0x004€e1203) or greater will be PEF-capable. A new ISA release
will include the PEF RFC02487 changes.

When enabled, PEF adds a new higher privileged mode, called Ultrav-
isor mode, to POWER architecture. Along with the new mode there is
new firmware called the Protected Execution Ultravisor (or Ultravisor
for short). Ultravisor mode is the highest privileged mode in POWER
architecture.

Privilege States
Problem
Supervisor
Hypervisor
Ultravisor

107

Linux Powerpc Documentation

PEF protects SVMs from the hypervisor, privileged users, and other VMs
in the system. SVMs are protected while at rest and can only be exe-
cuted by an authorized machine. All virtual machines utilize hypervisor
services. The Ultravisor filters calls between the SVMs and the hypervi-
sor to assure that information does not accidentally leak. All hypercalls
except H RANDOM are reflected to the hypervisor. H RANDOM is not
reflected to prevent the hypervisor from influencing random values in
the SVM.

To support this there is a refactoring of the ownership of resources in the
CPU. Some of the resources which were previously hypervisor privileged
are now ultravisor privileged.

23.1.1 Hardware

The hardware changes include the following:

There is a new bit in the MSR that determines whether the current
process is running in secure mode, MSR(S) bit 41. MSR(S)=1, pro-
cess is in secure mode, MSR(s)=0 process is in normal mode.

The MSR(S) bit can only be set by the Ultravisor.

HRFID cannot be used to set the MSR(S) bit. If the hypervisor needs
to return to a SVM it must use an ultracall. It can determine if the
VM it is returning to is secure.

There is a new Ultravisor privileged register, SMFCTRL, which has
an enable/disable bit SMFCTRL(E).

The privilege of a process is now determined by three MSR bits,
MSR(S, HV, PR). In each of the tables below the modes are listed
from least privilege to highest privilege. The higher privilege modes
can access all the resources of the lower privilege modes.

Secure Mode MSR Settings

S | HV | PR | Privilege

110 1 Problem

1|0 0 Privileged(OS)
1|1 0 Ultravisor
111 1 Reserved

Normal Mode MSR Settings

S | HV | PR | Privilege

00 1 Problem

00 0 Privileged(OS)
01 0 | Hypervisor
011 1 Problem (Host)

Memory is partitioned into secure and normal memory. Only pro-
cesses that are running in secure mode can access secure memory.

108

Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

The hardware does not allow anything that is not running secure
to access secure memory. This means that the Hypervisor cannot
access the memory of the SVM without using an ultracall (asking
the Ultravisor). The Ultravisor will only allow the hypervisor to see
the SVM memory encrypted.

I/0O systems are not allowed to directly address secure memory. This
limits the SVMs to virtual I/O only.

The architecture allows the SVM to share pages of memory with the
hypervisor that are not protected with encryption. However, this
sharing must be initiated by the SVM.

When a process is running in secure mode all hypercalls (syscall
lev=1) go to the Ultravisor.

When a process is in secure mode all interrupts go to the Ultravisor.

The following resources have become Ultravisor privileged and re-
quire an Ultravisor interface to manipulate:

- Processor configurations registers (SCOMs).
- Stop state information.

- The debug registers CIABR, DAWR, and DAWRX when SMFC-
TRL(D) is set. If SMFCTRL(D) is not set they do not work in
secure mode. When set, reading and writing requires an Ul-
travisor call, otherwise that will cause a Hypervisor Emulation
Assistance interrupt.

- PTCR and partition table entries (partition table is in secure
memory). An attempt to write to PTCR will cause a Hypervisor
Emulation Assitance interrupt.

- LDBAR (LD Base Address Register) and IMC (In-Memory Collec-
tion) non-architected registers. An attempt to write to them will
cause a Hypervisor Emulation Assistance interrupt.

- Paging for an SVM, sharing of memory with Hypervisor for an
SVM. (Including Virtual Processor Area (VPA) and virtual 1/0).

23.1.2 Software/Microcode

The software changes include:

SVMs are created from normal VM using (open source) tooling sup-
plied by IBM.

All SVMs start as normal VMs and utilize an ultracall, UV_ESM (En-
ter Secure Mode), to make the transition.

When the UV_ESM ultracall is made the Ultravisor copies the VM
into secure memory, decrypts the verification information, and
checks the integrity of the SVM. If the integrity check passes the
Ultravisor passes control in secure mode.

23.1.

Introduction

109

Linux Powerpc Documentation

* The verification information includes the pass phrase for the en-
crypted disk associated with the SVM. This pass phrase is given to
the SVM when requested.

» The Ultravisor is not involved in protecting the encrypted disk of the
SVM while at rest.

» For external interrupts the Ultravisor saves the state of the SVM,
and reflects the interrupt to the hypervisor for processing. For hy-
percalls, the Ultravisor inserts neutral state into all registers not
needed for the hypercall then reflects the call to the hypervisor for
processing. The H RANDOM hypercall is performed by the Ultrav-
isor and not reflected.

* For virtual I/O to work bounce buffering must be done.

* The Ultravisor uses AES (IAPM) for protection of SVM memory.
IAPM is a mode of AES that provides integrity and secrecy concur-
rently.

* The movement of data between normal and secure pages is coordi-
nated with the Ultravisor by a new HMM plug-in in the Hypervisor.

The Ultravisor offers new services to the hypervisor and SVMs. These
are accessed through ultracalls.

23.1.3 Terminology

* Hypercalls: special system calls used to request services from Hypervisor.
* Normal memory: Memory that is accessible to Hypervisor.
* Normal page: Page backed by normal memory and available to Hypervisor.

* Shared page: A page backed by normal memory and available to both the
Hypervisor/QEMU and the SVM (i.e page has mappings in SVM and Hyper-
visor/QEMU).

* Secure memory: Memory that is accessible only to Ultravisor and SVMs.

» Secure page: Page backed by secure memory and only available to Ultravisor
and SVM.

e SVM: Secure Virtual Machine.

» Ultracalls: special system calls used to request services from Ultravisor.

110 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

23.2 Ultravisor calls API

This section describes Ultravisor calls (ultracalls) needed to support Se-
cure Virtual Machines (SVM)s and Paravirtualized KVM. The ultracalls
allow the SVMs and Hypervisor to request services from the Ultravisor
such as accessing a register or memory region that can only be accessed
when running in Ultravisor-privileged mode.

The specific service needed from an ultracall is specified in register R3
(the first parameter to the ultracall). Other parameters to the ultracall,
if any, are specified in registers R4 through R12.

Return value of all ultracalls is in register R3. Other output values from
the ultracall, if any, are returned in registers R4 through R12. The only
exception to this register usage is the UV_RETURN ultracall described be-
low.

Each ultracall returns specific error codes, applicable in the context of
the ultracall. However, like with the PowerPC Architecture Platform Ref-
erence (PAPR), if no specific error code is defined for a particular situa-
tion, then the ultracall will fallback to an erroneous parameter-position
based code. i.e U PARAMETER, U P2, U P3 etc depending on the ultra-
call parameter that may have caused the error.

Some ultracalls involve transferring a page of data between Ultravisor
and Hypervisor. Secure pages that are transferred from secure memory
to normal memory may be encrypted using dynamically generated keys.
When the secure pages are transferred back to secure memory, they may
be decrypted using the same dynamically generated keys. Generation
and management of these keys will be covered in a separate document.

For now this only covers ultracalls currently implemented and being
used by Hypervisor and SVMs but others can be added here when it
makes sense.

The full specification for all hypercalls/ultracalls will eventually be made
available in the public/OpenPower version of the PAPR specification.

Note: If PEF is not enabled, the ultracalls will be redirected to the
Hypervisor which must handle/fail the calls.

23.2.1 Ultracalls used by Hypervisor

This section describes the virtual memory management ultracalls used
by the Hypervisor to manage SVMs.

23.2. Ultravisor calls API 111

Linux Powerpc Documentation

UV_PAGE_OUT

Encrypt and move the contents of a page from secure memory to normal
memory.

Syntax

uint64_t ultracall(const uint64_t UV PAGE OUT,

uintl6_t lpid, /* LPAR ID */

uint64_t dest ra, /* real address of destination page */
uint64_t src gpa, /* source guest-physical-address */
uint8_t flags, /* flags */

uint64_t order) /* page size order */

Return values

One of the following values:
* U SUCCESS on success.
« U PARAMETER if 1pid is invalid.
« U P2 if dest rais invalid.

U P3 if the src_gpa address is invalid.
* U P4 if any bit in the flags is unrecognized

U PS5 if the order parameter is unsupported.

U FUNCTION if functionality is not supported.

U BUSY if page cannot be currently paged-out.

Description

Encrypt the contents of a secure-page and make it available to Hypervi-
sor in a normal page.

By default, the source page is unmapped from the SVM’ s partition-
scoped page table. But the Hypervisor can provide a hint to the Ultravi-
sor to retain the page mapping by setting the UV_SNAPSHOT flag in flags
parameter.

If the source page is already a shared page the call returns U SUCCESS,
without doing anything.

112 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

Use cases

1. QEMU attempts to access an address belonging to the SVM but the page
frame for that address is not mapped into QEMU’ s address space. In this
case, the Hypervisor will allocate a page frame, map it into QEMU’ s address
space and issue the UV_PAGE OUT call to retrieve the encrypted contents of
the page.

2. When Ultravisor runs low on secure memory and it needs to page-out an LRU
page. In this case, Ultravisor will issue the H SVM PAGE OUT hypercall to the
Hypervisor. The Hypervisor will then allocate a normal page and issue the
UV_PAGE OUT ultracall and the Ultravisor will encrypt and move the contents
of the secure page into the normal page.

3. When Hypervisor accesses SVM data, the Hypervisor requests the Ultravisor
to transfer the corresponding page into a insecure page, which the Hypervi-
sor can access. The data in the normal page will be encrypted though.

UV_PAGE_IN

Move the contents of a page from normal memory to secure memory.

Syntax

uint64_t ultracall(const uint64_t UV PAGE IN,

uintl6_t 1lpid, /* the LPAR ID */

uint64_t src ra, /* source real address of page */
uint64_t dest gpa, /* destination guest physical address */
uint64_t flags, /* flags */

uint64_t order) /* page size order */

Return values

One of the following values:
» U SUCCESS on success.

U BUSY if page cannot be currently paged-in.
U FUNCTION if functionality is not supported
U PARAMETER if 1pid is invalid.

« U P2if src_rais invalid.

U P3 if the dest gpa address is invalid.
* U P4 if any bit in the flags is unrecognized

U PS5 if the order parameter is unsupported.

23.2. Ultravisor calls API 113

Linux Powerpc Documentation

Description

Use

Move the contents of the page identified by src_ra from normal memory
to secure memory and map it to the guest physical address dest gpa.

If dest gpa refers to a shared address, map the page into the partition-
scoped page-table of the SVM. If dest gpa is not shared, copy the con-
tents of the page into the corresponding secure page. Depending on the
context, decrypt the page before being copied.

The caller provides the attributes of the page through the flags param-
eter. Valid values for flags are:

« CACHE INHIBITED
« CACHE ENABLED
* WRITE PROTECTION

The Hypervisor must pin the page in memory before making UV _PAGE IN
ultracall.

cases

. When a normal VM switches to secure mode, all its pages residing in normal

memory, are moved into secure memory.

. When an SVM requests to share a page with Hypervisor the Hypervisor allo-

cates a page and informs the Ultravisor.

. When an SVM accesses a secure page that has been paged-out, Ultravisor
invokes the Hypervisor to locate the page. After locating the page, the Hy-

pervisor uses UV _PAGE IN to make the page available to Ultravisor.

UV_PAGE_INVAL

Invalidate the Ultravisor mapping of a page.

Syntax

uint64_t ultracall(const uint64_t UV PAGE INVAL,

uintl6e t 1lpid, /* the LPAR ID */
uint64_t guest pa, /* destination guest-physical-address */
uint64_t order) /* page size order */

114

Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

Return values

One of the following values:
* U SUCCESS on success.
« U PARAMETER if 1pid is invalid.

» U _P2 if guest_pa is invalid (or corresponds to a secure page
mapping).

U P3 if the order is invalid.
U FUNCTION if functionality is not supported.

U BUSY if page cannot be currently invalidated.

Description

This ultracall informs Ultravisor that the page mapping in Hypervisor
corresponding to the given guest physical address has been invalidated
and that the Ultravisor should not access the page. If the specified
guest pa corresponds to a secure page, Ultravisor will ignore the at-
tempt to invalidate the page and return U P2.

Use cases

1. When a shared page is unmapped from the QEMU’ s page table, possibly
because it is paged-out to disk, Ultravisor needs to know that the page should
not be accessed from its side too.

UV_WRITE_PATE

Validate and write the partition table entry (PATE) for a given partition.

Syntax

uint64 t ultracall(const uint64 t UV WRITE PATE,

uint32_t 1lpid, /* the LPAR ID */
uint64_t dw0 /* the first double word to write */
uint64_t dwl) /* the second double word to write */

23.2. Ultravisor calls API 115

Linux Powerpc Documentation

Return values

One of the following values:

* U SUCCESS on success.
U BUSY if PATE cannot be currently written to.
U FUNCTION if functionality is not supported.
U PARAMETER if 1pid is invalid.
U P2 if dw0 is invalid.
U P3 if the dwl address is invalid.

U_PERMISSION if the Hypervisor is attempting to change the PATE
of a secure virtual machine or if called from a context other
than Hypervisor.

Description

Validate and write a LPID and its partition-table-entry for the given LPID.
If the LPID is already allocated and initialized, this call results in chang-
ing the partition table entry.

Use cases

1. The Partition table resides in Secure memory and its entries, called PATE
(Partition Table Entries), point to the partition- scoped page tables for the
Hypervisor as well as each of the virtual machines (both secure and normal).
The Hypervisor operates in partition 0 and its partition-scoped page tables
reside in normal memory.

2. This ultracall allows the Hypervisor to register the partition- scoped and
process-scoped page table entries for the Hypervisor and other partitions
(virtual machines) with the Ultravisor.

3. If the value of the PATE for an existing partition (VM) changes, the TLB cache
for the partition is flushed.

4. The Hypervisor is responsible for allocating LPID. The LPID and its PATE
entry are registered together. The Hypervisor manages the PATE entries for
a normal VM and can change the PATE entry anytime. Ultravisor manages
the PATE entries for an SVM and Hypervisor is not allowed to modify them.

116 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

UV_RETURN

Return control from the Hypervisor back to the Ultravisor after process-
ing an hypercall or interrupt that was forwarded (aka reflected) to the
Hypervisor.

Syntax

uint64_t ultracall(const uint64_t UV RETURN)

Return values

This call never returns to Hypervisor on success. It returns U INVALID
if ultracall is not made from a Hypervisor context.

Description

When an SVM makes an hypercall or incurs some other exception, the
Ultravisor usually forwards (aka reflects) the exceptions to the Hyper-
visor. After processing the exception, Hypervisor uses the UV_RETURN
ultracall to return control back to the SVM.

The expected register state on entry to this ultracall is:
* Non-volatile registers are restored to their original values.

* If returning from an hypercall, register RO contains the return value
(unlike other ultracalls) and, registers R4 through R12 contain
any output values of the hypercall.

* R3 contains the ultracall number, i.e UV_RETURN.

* If returning with a synthesized interrupt, R2 contains the synthe-
sized interrupt number.

Use cases

1. Ultravisor relies on the Hypervisor to provide several services to the SVM
such as processing hypercall and other exceptions. After processing the ex-
ception, Hypervisor uses UV_RETURN to return control back to the Ultravi-
sor.

2. Hypervisor has to use this ultracall to return control to the SVM.

23.2. Ultravisor calls API 117

Linux Powerpc Documentation

UV_REGISTER_MEM SLOT

Register an SVM address-range with specified properties.

Syntax

uint64_t ultracall(const uint64_t UV REGISTER MEM SLOT,

uint64_t 1lpid, /* LPAR ID of the SVM */

uint64_t start gpa, /* start guest physical address */
uint64 t size, /* size of address range in bytes */
uint64_t flags /* reserved for future expansion */
uintlé_t slotid) /* slot identifier */

Return values

One of the following values:

U _SUCCESS on success.

U PARAMETER if lpid is invalid.

U P2 if start gpa is invalid.

U P3if size is invalid.

U P4 if any bit in the flags is unrecognized.

U P5 if the slotid parameter is unsupported.

U PERMISSION if called from context other than Hypervisor.
U FUNCTION if functionality is not supported.

Description

Register a memory range for an SVM. The memory range starts at the
guest physical address start gpa and is size bytes long.

Use cases

1. When a virtual machine goes secure, all the memory slots managed by the Hy-
pervisor move into secure memory. The Hypervisor iterates through each of
memory slots, and registers the slot with Ultravisor. Hypervisor may discard
some slots such as those used for firmware (SLOF).

2. When new memory is hot-plugged, a new memory slot gets registered.

118

Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

UV_UNREGISTER_MEM_SLOT

Unregister an SVM address-range that was previously registered using
UV REGISTER MEM SLOT.

Syntax

uint64_t ultracall(const uint64_t UV _UNREGISTER MEM SLOT,
uint64_t 1lpid, /* LPAR ID of the SVM */
uint64_t slotid) /* reservation slotid */

Return values

One of the following values:
* U SUCCESS on success.
U FUNCTION if functionality is not supported.
U PARAMETER if 1pid is invalid.
U P2 if slotid is invalid.
U PERMISSION if called from context other than Hypervisor.

Description

Release the memory slot identified by slotid and free any resources
allocated towards the reservation.

Use cases

1. Memory hot-remove.

UV_SVM_TERMINATE

Terminate an SVM and release its resources.

Syntax

uint64_t ultracall(const uint64_t UV _SVM TERMINATE,
uint64_t 1lpid, /* LPAR ID of the SVM */)

23.2. Ultravisor calls API 119

Linux Powerpc Documentation

Return values

One of the following values:
* U SUCCESS on success.
U FUNCTION if functionality is not supported.
U PARAMETER if 1pid is invalid.
U INVALID if VM is not secure.
U PERMISSION if not called from a Hypervisor context.

Description

Terminate an SVM and release all its resources.

Use cases
1. Called by Hypervisor when terminating an SVM.
23.2.2 Ultracalls used by SVM

UV_SHARE_PAGE

Share a set of guest physical pages with the Hypervisor.

Syntax

uint64_t ultracall(const uint64_t UV SHARE PAGE,
uint64_t gfn, /* guest page frame number */
uint64 _t num) /* number of pages of size PAGE SIZE */

Return values

One of the following values:
* U SUCCESS on success.
U FUNCTION if functionality is not supported.
U INVALID if the VM is not secure.
U PARAMETER if gfn is invalid.

* U P2 if num is invalid.

120 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

Description

Share the num pages starting at guest physical frame number gfn with
the Hypervisor. Assume page size is PAGE SIZE bytes. Zero the pages
before returning.

If the address is already backed by a secure page, unmap the page and
back it with an insecure page, with the help of the Hypervisor. If it is not
backed by any page yet, mark the PTE as insecure and back it with an
insecure page when the address is accessed. If it is already backed by
an insecure page, zero the page and return.

Use cases

1. The Hypervisor cannot access the SVM pages since they are backed by secure
pages. Hence an SVM must explicitly request Ultravisor for pages it can share

with Hypervisor.

2. Shared pages are needed to support virtio and Virtual Processor Area (VPA)

in SVMs.

UV_UNSHARE_PAGE

Restore a shared SVM page to its initial state.

Syntax

uint64_t ultracall(const uint64_t UV _UNSHARE PAGE,
uint64_t gfn, /* guest page frame number */
uint73 num) /* number of pages of size PAGE SIZE*/

Return values

One of the following values:
* U SUCCESS on success.
U FUNCTION if functionality is not supported.
U INVALID if VM is not secure.
U PARAMETER if gfn is invalid.

« U P2 if num is invalid.

23.2. Ultravisor calls API

121

Linux Powerpc Documentation

Description

Stop sharing num pages starting at gfn with the Hypervisor. Assume that
the page size is PAGE SIZE. Zero the pages before returning.

If the address is already backed by an insecure page, unmap the page
and back it with a secure page. Inform the Hypervisor to release refer-
ence to its shared page. If the address is not backed by a page yet, mark
the PTE as secure and back it with a secure page when that address is
accessed. If it is already backed by an secure page zero the page and
return.

Use cases

1. The SVM may decide to unshare a page from the Hypervisor.

UV_UNSHARE_ALL_PAGES

Unshare all pages the SVM has shared with Hypervisor.

Syntax

uint64_t ultracall(const uint64_t UV UNSHARE ALL PAGES)

Return values

One of the following values:
» U SUCCESS on success.
» U FUNCTION if functionality is not supported.
U INVAL if VM is not secure.

Description

Unshare all shared pages from the Hypervisor. All unshared pages are
zeroed on return. Only pages explicitly shared by the SVM with the
Hypervisor (using UV_SHARE PAGE ultracall) are unshared. Ultravisor
may internally share some pages with the Hypervisor without explicit
request from the SVM. These pages will not be unshared by this ultracall.

122 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

Use cases

1. This call is needed when kexec is used to boot a different kernel. It may also

be needed during SVM reset.

UV_ESM

Secure the virtual machine (enter secure mode).

Syntax

uint64_t ultracall(const uint64_t UV ESM,
uint64_t esm blob addr, /* location of the ESM blob */
unint64 t fdt) /* Flattened device tree */

Return values

One of the following values:
* U SUCCESS on success (including if VM is already secure).
U FUNCTION if functionality is not supported.
U INVALID if VM is not secure.
U PARAMETER if esm blob addr is invalid.
U P2 if fdt is invalid.
U PERMISSION if any integrity checks fail.
U RETRY insufficient memory to create SVM.

U NO KEY symmetric key unavailable.

Description

Secure the virtual machine. On successful completion, return control to
the virtual machine at the address specified in the ESM blob.

Use cases

1. A normal virtual machine can choose to switch to a secure mode.

23.2. Ultravisor calls API

123

Linux Powerpc Documentation

23.3 Hypervisor Calls API

This document describes the Hypervisor calls (hypercalls) that are
needed to support the Ultravisor. Hypercalls are services provided by
the Hypervisor to virtual machines and Ultravisor.

Register usage for these hypercalls is identical to that of the other hy-
percalls defined in the Power Architecture Platform Reference (PAPR)
document. i.e on input, register R3 identifies the specific service that is
being requested and registers R4 through R11 contain additional param-
eters to the hypercall, if any. On output, register R3 contains the return
value and registers R4 through R9 contain any other output values from
the hypercall.

This document only covers hypercalls currently implemented/planned
for Ultravisor usage but others can be added here when it makes sense.

The full specification for all hypercalls/ultracalls will eventually be made
available in the public/OpenPower version of the PAPR specification.

23.3.1 Hypervisor calls to support Ultravisor

Following are the set of hypercalls needed to support Ultravisor.

H_SVM_INIT_START

Begin the process of converting a normal virtual machine into an SVM.

Syntax

uint64_t hypercall(const uint64_t H SVM INIT START)

Return values

One of the following values:
* H SUCCESS on success.

Description

Initiate the process of securing a virtual machine. This involves coordi-
nating with the Ultravisor, using ultracalls, to allocate resources in the
Ultravisor for the new SVM, transferring the VM’ s pages from normal
to secure memory etc. When the process is completed, Ultravisor issues
the H SVM INIT DONE hypercall.

124 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

Use cases

1. Ultravisor uses this hypercall to inform Hypervisor that a VM has initiated
the process of switching to secure mode.

H_SVM_INIT DONE

Complete the process of securing an SVM.

Syntax

uint64_t hypercall(const uint64_t H SVM INIT DONE)

Return values

One of the following values:
» H SUCCESS on success.

« H UNSUPPORTED if called from the wrong context (e.g.
from an SVM or before an H SVM INIT START hypercall).

Description

Complete the process of securing a virtual machine. This call must be
made after a prior call to H SVM_INIT START hypercall.

Use cases

On successfully securing a virtual machine, the Ultravisor informs Hy-
pervisor about it. Hypervisor can use this call to finish setting up its
internal state for this virtual machine.

H_SVM_INIT_ABORT

Abort the process of securing an SVM.

23.3. Hypervisor Calls API 125

Linux Powerpc Documentation

Syntax

uint64_t hypercall(const uint64_t H SVM INIT ABORT)

Return values

One of the following values:

« H PARAMETER on successfully cleaning up the state,
Hypervisor will return this value to the guest, to indicate
that the underlying UV_ESM ultracall failed.

» H_STATE if called after a VM has gone secure (i.e
H SVM INIT DONE hypercall was successful).

* H UNSUPPORTED if called from a wrong context (e.g. from a
normal VM).

Description

Abort the process of securing a virtual machine. This call must be made
after a prior call to H SVM INIT START hypercall and before a call to
H SVM INIT DONE.

On entry into this hypercall the non-volatile GPRs and FPRs are expected
to contain the values they had at the time the VM issued the UV _ESM
ultracall. Further SRRO is expected to contain the address of the instruc-
tion after the UV _ESM ultracall and SRR1 the MSR value with which to
return to the VM.

This hypercall will cleanup any partial state that was established for
the VM since the prior H SVM INIT START hypercall, including pag-
ing out pages that were paged-into secure memory, and issue the
UV_SVM TERMINATE ultracall to terminate the VM.

After the partial state is cleaned up, control returns to the VM (not Ul-
travisor), at the address specified in SRRO with the MSR values set to
the value in SRR1.

Use cases

If after a successful call toH SVM INIT START, the Ultravisor encounters
an error while securing a virtual machine, either due to lack of resources
or because the VM’ s security information could not be validated, Ultra-
visor informs the Hypervisor about it. Hypervisor should use this call
to clean up any internal state for this virtual machine and return to the
VM.

126 Chapter 23. Protected Execution Facility

Linux Powerpc Documentation

H_SVM_PAGE_IN

Move the contents of a page from normal memory to secure memory.

Syntax

uint64_t hypercall(const uint64_t H SVM PAGE 1IN,

uint64_t guest pa, /* guest-physical-address */
uint64_t flags, /* flags */
uint64 _t order) /* page size order */

Return values

One of the following values:
* H SUCCESS on success.
« H PARAMETER if guest pa is invalid.
« H P2 if flags is invalid.
« H P3if order of page is invalid.

Description

Retrieve the content of the page, belonging to the VM at the specified
guest physical address.

Only valid value(s) in flags are:

« H PAGE IN SHARED which indicates that the page is to be shared
with the Ultravisor.

* H PAGE IN NONSHARED indicates that the UV is not anymore in-
terested in the page. Applicable if the page is a shared page.

The order parameter must correspond to the configured page size.

Use cases

1. When a normal VM becomes a secure VM (using the UV _ESM ultracall), the
Ultravisor uses this hypercall to move contents of each page of the VM from
normal memory to secure memory.

2. Ultravisor uses this hypercall to ask Hypervisor to provide a page in normal
memory that can be shared between the SVM and Hypervisor.

3. Ultravisor uses this hypercall to page-in a paged-out page. This can happen
when the SVM touches a paged-out page.

4. If SVM wants to disable sharing of pages with Hypervisor, it can inform Ultra-
visor to do so. Ultravisor will then use this hypercall and inform Hypervisor
that it has released access to the normal page.

23.3. Hypervisor Calls API 127

Linux Powerpc Documentation

H_SVM_PAGE_OUT

Move the contents of the page to normal memory.

Syntax

uint64_t hypercall(const uint64_t H SVM PAGE OUT,

uint64_t guest pa, /* guest-physical-address */
uint64_t flags, /* flags (currently none) */
uint64_t order) /* page size order */

Return values

One of the following values:
* H SUCCESS on success.
« H PARAMETER if guest pa is invalid.
« H P2 if flags is invalid.

* H P3if order is invalid.

Description

Move the contents of the page identified by guest pa to normal memory.

Currently flags is unused and must be set to 0. The order parameter
must correspond to the configured page size.

Use cases

1. If Ultravisor is running low on secure pages, it can move the contents of
some secure pages, into normal pages using this hypercall. The content will
be encrypted.

23.4 References

* Supporting Protected Computing on IBM Power Architecture

128 Chapter 23. Protected Execution Facility

https://developer.ibm.com/articles/l-support-protected-computing/

CHAPTER
TWENTYFOUR

VIRTUAL ACCELERATOR SWITCHBOARD (VAS)
USERSPACE API

24.1 Introduction

Power9 processor introduced Virtual Accelerator Switchboard (VAS) which allows
both userspace and kernel communicate to co-processor (hardware accelerator)
referred to as the Nest Accelerator (NX). The NX unit comprises of one or more
hardware engines or co-processor types such as 842 compression, GZIP compres-
sion and encryption. On power9, userspace applications will have access to only
GZIP Compression engine which supports ZLIB and GZIP compression algorithms
in the hardware.

To communicate with NX, kernel has to establish a channel or window and then
requests can be submitted directly without kernel involvement. Requests to the
GZIP engine must be formatted as a co-processor Request Block (CRB) and these
CRBs must be submitted to the NX using COPY/PASTE instructions to paste the
CRB to hardware address that is associated with the engine’ s request queue.

The GZIP engine provides two priority levels of requests: Normal and High. Only
Normal requests are supported from userspace right now.

This document explains userspace API that is used to interact with kernel to setup
channel / window which can be used to send compression requests directly to NX
accelerator.

24.2 Overview

Application access to the GZIP engine is provided through /dev/crypto/nx-gzip de-
vice node implemented by the VAS/NX device driver. An application must open
the /dev/crypto/nx-gzip device to obtain a file descriptor (fd). Then should issue
VAS TX WIN OPEN ioctl with this fd to establish connection to the engine. It
means send window is opened on GZIP engine for this process. Once a connection
is established, the application should use the mmap() system call to map the hard-
ware address of engine’ s request queue into the application’ s virtual address
space.

The application can then submit one or more requests to the the engine by us-
ing copy/paste instructions and pasting the CRBs to the virtual address (aka

129

Linux Powerpc Documentation

paste address) returned by mmap(). User space can close the established connec-
tion or send window by closing the file descriptior (close(fd)) or upon the process
exit.

Note that applications can send several requests with the same window or can
establish multiple windows, but one window for each file descriptor.

Following sections provide additional details and references about the individual
steps.

24.3 NX-GZIP Device Node

There is one /dev/crypto/nx-gzip node in the system and it provides access to all
GZIP engines in the system. The only valid operations on /dev/crypto/nx-gzip are:

* open() the device for read and write.
* issue VAS TX WIN OPEN ioctl

« mmap() the engine’ s request queue into application’ s virtual address space
(i.e. get a paste_address for the co-processor engine).

* close the device node.
Other file operations on this device node are undefined.

Note that the copy and paste operations go directly to the hardware and do not go
through this device. Refer COPY/PASTE document for more details.

Although a system may have several instances of the NX co-processor engines
(typically, one per P9 chip) there is just one /dev/crypto/nx-gzip device node in the
system. When the nx-gzip device node is opened, Kernel opens send window on
a suitable instance of NX accelerator. It finds CPU on which the user process is
executing and determine the NX instance for the corresponding chip on which this
CPU belongs.

Applications may chose a specific instance of the NX co-processor using the vas id
field in the VAS TX WIN OPEN ioctl as detailed below.

A userspace library libnxz is available here but still in development:
https://github.com/abalib/power-gzip

Applications that use inflate / deflate calls can link with libnxz instead of libz and
use NX GZIP compression without any modification.

24.4 Open /dev/crypto/nx-gzip

The nx-gzip device should be opened for read and write. No special privileges are
needed to open the device. Each window corresponds to one file descriptor. So
if the userspace process needs multiple windows, several open calls have to be
issued.

See open(2) system call man pages for other details such as return values, error
codes and restrictions.

130 Chapter 24. Virtual Accelerator Switchboard (VAS) userspace API

https://github.com/abalib/power-gzip

Linux Powerpc Documentation

24.5 VAS_TX_WIN_OPEN ioctl

Applications should use the VAS TX WIN OPEN ioctl as follows to establish a con-
nection with NX co-processor engine:

struct vas_tx_win_open_attr { u32version; sl6vas id; /* spe-
cific instance of vas or -1

for default */

_ul6 reservedl; u64 flags; /* For future use */ u64 re-
served2[6];

+;

version: The version field must be currently set to 1. vas id: If ‘1’ is
passed, kernel will make a best-effort attempt

to assign an optimal instance of NX for the process. To select
the specific VAS instance, refer “Discovery of available VAS
engines” section below.

flags, reservedl and reserved2[6] fields are for future extension and
must be set to 0.

The attributes attr for the VAS TX WIN OPEN ioctl are defined as fol-
lows:

#define VAS MAGIC % #define VAS TX WIN OPEN
'IOW(VAS MAGIC, 1,

struct vas tx win open_attr)

struct vas tx win open attr attr; rc = ioctl(fd,
VAS TX WIN OPEN, &attr);

The VAS TX WIN OPEN ioctl returns 0 on success. On errors, it returns
-1 and sets the errno variable to indicate the error.

Error conditions: EINVAL fd does not refer to a valid VAS device. EIN-
VAL Invalid vas ID EINVAL version is not set with proper value EEX-
IST Window is already opened for the given f{d ENOMEM Memory
is not available to allocate window ENOSPC System has too many
active windows (connections)

opened
EINVAL reserved fields are not set to 0.

See the ioctl(2) man page for more details, error codes and restrictions.

24.5. VAS_TX_WIN_OPEN ioctl 131

Linux Powerpc Documentation

24.6 mmap() NX-GZIP device

The mmap() system call for a NX-GZIP device fd returns a paste address that the
application can use to copy/paste its CRB to the hardware engines.

paste addr = mmap(addr, size, prot, flags, fd, offset);

Only restrictions on mmap for a NX-GZIP device fd are:
* size should be PAGE SIZE
» offset parameter should be OULL

Refer to mmap(2) man page for additional details/restrictions. In addi-
tion to the error conditions listed on the mmap(2) man page, can also
fail with one of the following error codes:

EINVAL fd is not associated with an open window
(i.,e mmap() does not follow a successful call to the
VAS TX WIN OPEN ioctl).

EINVAL offset field is not OULL.

24.7 Discovery of available VAS engines

Each available VAS instance in the system will have a device tree node like
/proc/device-tree/vas@* or /proc/device-tree/xscom@*/vas@*. Determine the chip
or VAS instance and use the corresponding ibm,vas-id property value in this node
to select specific VAS instance.

24.8 Copy/Paste operations

Applications should use the copy and paste instructions to send CRB to NX. Refer
section 4.4 in PowerlISA for Copy/Paste instructions: https://openpowerfoundation.
org/?resource lib=power-isa-version-3-0

24.9 CRB Specification and use NX

Applications should format requests to the co-processor using the co-processor
Request Block (CRBs). Refer NX-GZIP user’ s manual for the format of CRB and
use NX from userspace such as sending requests and checking request status.

132 Chapter 24. Virtual Accelerator Switchboard (VAS) userspace API

https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0

Linux Powerpc Documentation

24.10 NX Fault handling

Applications send requests to NX and wait for the status by polling on co-processor
Status Block (CSB) flags. NX updates status in CSB after each request is pro-
cessed. Refer NX-GZIP user’ s manual for the format of CSB and status flags.

In case if NX encounters translation error (called NX page fault) on CSB address
or any request buffer, raises an interrupt on the CPU to handle the fault. Page
fault can happen if an application passes invalid addresses or request buffers are
not in memory. The operating system handles the fault by updating CSB with the
following data:

csb.flags = CSB 'V, csb.cc = CSB CC TRANSLATION; csb.ce =
CSB_CE TERMINATION; csb.address = fault address;

When an application receives translation error, it can touch or access the page
that has a fault address so that this page will be in memory. Then the application
can resend this request to NX.

If the OS can not update CSB due to invalid CSB address, sends SEGV signal to the
process who opened the send window on which the original request was issued.
This signal returns with the following siginfo struct:

siginfo.si signo = SIGSEGYV; siginfo.si errno = EFAULT; siginfo.si code
= SEGV_MAPERR,; siginfo.si addr = CSB adress;

In the case of multi-thread applications, NX send windows can be shared across all
threads. For example, a child thread can open a send window, but other threads
can send requests to NX using this window. These requests will be successful even
in the case of OS handling faults as long as CSB address is valid. If the NX request
contains an invalid CSB address, the signal will be sent to the child thread that
opened the window. But if the thread is exited without closing the window and the
request is issued using this window. the signal will be issued to the thread group
leader (tgid). It is up to the application whether to ignore or handle these signals.

NX-GZIP User s Manual: https://github.com/libnxz/power-gzip/blob/master/
power nx gzip um.pdf

24.11 Simple example

:: int use nx gzip() {
int rc, fd; void *addr; struct vas setup attr txattr;
fd = open(“/dev/crypto/nx-gzip” , O RDWR); if (fd < 0) {
fprintf(stderr, “open nx-gzip failedn”); return -1;

} memset(&txattr, 0, sizeof(txattr)); txattr.version = 1; tx-
attr.vas id = -1 rc = ioctl(fd, VAS TX WIN OPEN,

(unsigned long)&txattr);
if rc < 0) {

24.10. NX Fault handling 133

https://github.com/libnxz/power-gzip/blob/master/power_nx_gzip_um.pdf
https://github.com/libnxz/power-gzip/blob/master/power_nx_gzip_um.pdf

Linux Powerpc Documentation

fprintf(stderr, “ioctl() n %d, error %dn” , rc, er-
rno);

return rc;

} addr = mmap(NULL, 4096, PROT READ|PROT WRITE,
MAP SHARED, fd, OULL);

if (addr == MAP_FAILED) {

fprintf(stderr, “mmap() failed, errno %dn” ,
errno);

return -errno;
} do{

//[Format CRB request with compression or //un-
compression // Refer tests for vas copy/vas paste
vas_copy((&crb, 0, 1); vas paste(addr, 0, 1); // Poll on
csb.flags with timeout // csb address is listed in CRB

} while (true) close(fd) or window can be closed upon pro-
cess exit

}

Refer https://github.com/abalib/power-gzip for tests or more use cases.

134 Chapter 24. Virtual Accelerator Switchboard (VAS) userspace API

https://github.com/abalib/power-gzip

