
Linux Power Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

APM OR ACPI?

If you have a relatively recent x86 mobile, desktop, or server system, odds are
it supports either Advanced Power Management (APM) or Advanced Configura-
tion and Power Interface (ACPI). ACPI is the newer of the two technologies and
puts power management in the hands of the operating system, allowing for more
intelligent power management than is possible with BIOS controlled APM.

The best way to determine which, if either, your system supports is to build a
kernel with both ACPI and APM enabled (as of 2.3.x ACPI is enabled by default). If
a working ACPI implementation is found, the ACPI driver will override and disable
APM, otherwise the APM driver will be used.

No, sorry, you cannot have both ACPI and APM enabled and running at once. Some
people with broken ACPI or broken APM implementations would like to use both
to get a full set of working features, but you simply cannot mix and match the two.
Only one power management interface can be in control of the machine at once.
Think about it..

1.1 User-space Daemons

Both APM and ACPI rely on user-space daemons, apmd and acpid respectively, to
be completely functional. Obtain both of these daemons from your Linux distribu-
tion or from the Internet (see below) and be sure that they are started sometime in
the system boot process. Go ahead and start both. If ACPI or APM is not available
on your system the associated daemon will exit gracefully.

apmd http://ftp.debian.org/pool/main/a/apmd/
acpid http://acpid.sf.net/

1

http://ftp.debian.org/pool/main/a/apmd/
http://acpid.sf.net/

Linux Power Documentation

2 Chapter 1. APM or ACPI?

CHAPTER

TWO

DEBUGGING HIBERNATION AND SUSPEND

(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL

2.1 1. Testing hibernation (aka suspend to disk or STD)

To check if hibernation works, you can try to hibernate in the “reboot”mode:
echo reboot > /sys/power/disk
echo disk > /sys/power/state

and the system should create a hibernation image, reboot, resume and get back
to the command prompt where you have started the transition. If that happens,
hibernation is most likely to work correctly. Still, you need to repeat the test at
least a couple of times in a row for confidence. [This is necessary, because some
problems only show up on a second attempt at suspending and resuming the sys-
tem.] Moreover, hibernating in the“reboot”and“shutdown”modes causes the
PM core to skip some platform-related callbacks which on ACPI systems might be
necessary to make hibernation work. Thus, if your machine fails to hibernate or
resume in the “reboot”mode, you should try the “platform”mode:
echo platform > /sys/power/disk
echo disk > /sys/power/state

which is the default and recommended mode of hibernation.

Unfortunately, the“platform”mode of hibernation does not work on some systems
with broken BIOSes. In such cases the “shutdown”mode of hibernation might
work:

echo shutdown > /sys/power/disk
echo disk > /sys/power/state

(it is similar to the “reboot”mode, but it requires you to press the power button
to make the system resume).

If neither“platform”nor“shutdown”hibernation mode works, you will need to
identify what goes wrong.

3

mailto:rjw@sisk.pl

Linux Power Documentation

2.1.1 a) Test modes of hibernation

To find out why hibernation fails on your system, you can use a special testing
facility available if the kernel is compiled with CONFIG_PM_DEBUG set. Then,
there is the file /sys/power/pm_test that can be used to make the hibernation core
run in a test mode. There are 5 test modes available:

freezer
• test the freezing of processes

devices
• test the freezing of processes and suspending of devices

platform
• test the freezing of processes, suspending of devices and platform global
control methods1

processors
• test the freezing of processes, suspending of devices, platform global
control methods1 and the disabling of nonboot CPUs

core
• test the freezing of processes, suspending of devices, platform global
control methods1, the disabling of nonboot CPUs and suspending of plat-
form/system devices

To use one of them it is necessary to write the corresponding string to
/sys/power/pm_test (eg.“devices”to test the freezing of processes and suspending
devices) and issue the standard hibernation commands. For example, to use the
“devices”test mode along with the “platform”mode of hibernation, you should
do the following:

echo devices > /sys/power/pm_test
echo platform > /sys/power/disk
echo disk > /sys/power/state

Then, the kernel will try to freeze processes, suspend devices, wait a few seconds
(5 by default, but configurable by the suspend.pm_test_delay module parameter),
resume devices and thaw processes. If“platform”is written to /sys/power/pm_test ,
then after suspending devices the kernel will additionally invoke the global control
methods (eg. ACPI global control methods) used to prepare the platform firmware
for hibernation. Next, it will wait a configurable number of seconds and invoke
the platform (eg. ACPI) global methods used to cancel hibernation etc.

Writing “none”to /sys/power/pm_test causes the kernel to switch to the normal
hibernation/suspend operations. Also, when open for reading, /sys/power/pm_test
contains a space-separated list of all available tests (including “none”that rep-
resents the normal functionality) in which the current test level is indicated by
square brackets.

1 the platform global control methods are only available on ACPI systems and are only tested if
the hibernation mode is set to “platform”

4 Chapter 2. Debugging hibernation and suspend

Linux Power Documentation

Generally, as you can see, each test level is more“invasive”than the previous one
and the“core”level tests the hardware and drivers as deeply as possible without
creating a hibernation image. Obviously, if the“devices”test fails, the“platform”
test will fail as well and so on. Thus, as a rule of thumb, you should try the test
modes starting from“freezer”, through“devices”,“platform”and“processors”
up to“core”(repeat the test on each level a couple of times to make sure that any
random factors are avoided).

If the “freezer”test fails, there is a task that cannot be frozen (in that case it
usually is possible to identify the offending task by analysing the output of dmesg
obtained after the failing test). Failure at this level usually means that there is a
problem with the tasks freezer subsystem that should be reported.

If the “devices”test fails, most likely there is a driver that cannot suspend or
resume its device (in the latter case the system may hang or become unstable
after the test, so please take that into consideration). To find this driver, you can
carry out a binary search according to the rules:

• if the test fails, unload a half of the drivers currently loaded and repeat (that
would probably involve rebooting the system, so always note what drivers
have been loaded before the test),

• if the test succeeds, load a half of the drivers you have unloadedmost recently
and repeat.

Once you have found the failing driver (there can be more than just one of them),
you have to unload it every time before hibernation. In that case please make sure
to report the problem with the driver.

It is also possible that the “devices”test will still fail after you have unloaded
all modules. In that case, you may want to look in your kernel configuration for
the drivers that can be compiled as modules (and test again with these drivers
compiled as modules). You may also try to use some special kernel command line
options such as “noapic”, “noacpi”or even “acpi=off”.
If the“platform”test fails, there is a problem with the handling of the platform (eg.
ACPI) firmware on your system. In that case the“platform”mode of hibernation
is not likely to work. You can try the “shutdown”mode, but that is rather a poor
man’s workaround.
If the“processors”test fails, the disabling/enabling of nonboot CPUs does not work
(of course, this only may be an issue on SMP systems) and the problem should be
reported. In that case you can also try to switch the nonboot CPUs off and on using
the /sys/devices/system/cpu/cpu*/online sysfs attributes and see if that works.

If the “core”test fails, which means that suspending of the system/platform de-
vices has failed (these devices are suspended on one CPU with interrupts off), the
problem is most probably hardware-related and serious, so it should be reported.

A failure of any of the“platform”,“processors”or“core”tests may cause your system
to hang or become unstable, so please beware. Such a failure usually indicates a
serious problem that very well may be related to the hardware, but please report
it anyway.

2.1. 1. Testing hibernation (aka suspend to disk or STD) 5

Linux Power Documentation

2.1.2 b) Testing minimal configuration

If all of the hibernation test modes work, you can boot the system with the
“init=/bin/bash”command line parameter and attempt to hibernate in the “re-
boot”,“shutdown”and“platform”modes. If that does not work, there probably
is a problem with a driver statically compiled into the kernel and you can try to
compile more drivers as modules, so that they can be tested individually. Other-
wise, there is a problem with a modular driver and you can find it by loading a
half of the modules you normally use and binary searching in accordance with the
algorithm: - if there are n modules loaded and the attempt to suspend and resume
fails, unload n/2 of the modules and try again (that would probably involve reboot-
ing the system), - if there are n modules loaded and the attempt to suspend and
resume succeeds, load n/2 modules more and try again.

Again, if you find the offending module(s), it(they) must be unloaded every time
before hibernation, and please report the problem with it(them).

2.1.3 c) Using the “test_resume”hibernation option

/sys/power/disk generally tells the kernel what to do after creating a hibernation
image. One of the available options is“test_resume”which causes the just created
image to be used for immediate restoration. Namely, after doing:

echo test_resume > /sys/power/disk
echo disk > /sys/power/state

a hibernation image will be created and a resume from it will be triggered imme-
diately without involving the platform firmware in any way.

That test can be used to check if failures to resume from hibernation are related to
bad interactions with the platform firmware. That is, if the above works every time,
but resume from actual hibernation does not work or is unreliable, the platform
firmware may be responsible for the failures.

On architectures and platforms that support using different kernels to restore hi-
bernation images (that is, the kernel used to read the image from storage and load
it into memory is different from the one included in the image) or support kernel
address space randomization, it also can be used to check if failures to resume
may be related to the differences between the restore and image kernels.

2.1.4 d) Advanced debugging

In case that hibernation does not work on your system even in the minimal config-
uration and compiling more drivers as modules is not practical or some modules
cannot be unloaded, you can use one of the more advanced debugging techniques
to find the problem. First, if there is a serial port in your box, you can boot the
kernel with the‘no_console_suspend’parameter and try to log kernel messages
using the serial console. This may provide you with some information about the
reasons of the suspend (resume) failure. Alternatively, it may be possible to use
a FireWire port for debugging with firescope (http://v3.sk/~lkundrak/firescope/).
On x86 it is also possible to use the PM_TRACE mechanism documented in Docu-
mentation/power/s2ram.rst .

6 Chapter 2. Debugging hibernation and suspend

http://v3.sk/~lkundrak/firescope/

Linux Power Documentation

2.2 2. Testing suspend to RAM (STR)

To verify that the STR works, it is generally more convenient to use the s2ram
tool available from http://suspend.sf.net and documented at http://en.opensuse.
org/SDB:Suspend_to_RAM (S2RAM_LINK).

Namely, after writing“freezer”,“devices”,“platform”,“processors”, or“core”into
/sys/power/pm_test (available if the kernel is compiled with CONFIG_PM_DEBUG
set) the suspend code will work in the test mode corresponding to given string.
The STR test modes are defined in the same way as for hibernation, so please refer
to Section 1 for more information about them. In particular, the“core”test allows
you to test everything except for the actual invocation of the platform firmware in
order to put the system into the sleep state.

Among other things, the testing with the help of /sys/power/pm_test may allow
you to identify drivers that fail to suspend or resume their devices. They should
be unloaded every time before an STR transition.

Next, you can follow the instructions at S2RAM_LINK to test the system, but if it
does not work“out of the box”, you may need to boot it with“init=/bin/bash”and
test s2ram in the minimal configuration. In that case, you may be able to search
for failing drivers by following the procedure analogous to the one described in
section 1. If you find some failing drivers, you will have to unload them every
time before an STR transition (ie. before you run s2ram), and please report the
problems with them.

There is a debugfs entry which shows the suspend to RAM statistics. Here is an
example of its output:

mount -t debugfs none /sys/kernel/debug
cat /sys/kernel/debug/suspend_stats
success: 20
fail: 5
failed_freeze: 0
failed_prepare: 0
failed_suspend: 5
failed_suspend_noirq: 0
failed_resume: 0
failed_resume_noirq: 0
failures:

last_failed_dev: alarm
adc

last_failed_errno: -16
-16

last_failed_step: suspend
suspend

Field success means the success number of suspend to RAM, and field fail means
the failure number. Others are the failure number of different steps of suspend
to RAM. suspend_stats just lists the last 2 failed devices, error number and failed
step of suspend.

2.2. 2. Testing suspend to RAM (STR) 7

http://suspend.sf.net
http://en.opensuse.org/SDB:Suspend_to_RAM
http://en.opensuse.org/SDB:Suspend_to_RAM

Linux Power Documentation

8 Chapter 2. Debugging hibernation and suspend

CHAPTER

THREE

CHARGER MANAGER

(C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL

Charger Manager provides in-kernel battery charger management that requires
temperaturemonitoring during suspend-to-RAM state andwhere each batterymay
have multiple chargers attached and the userland wants to look at the aggregated
information of the multiple chargers.

Charger Manager is a platform_driver with power-supply-class entries. An in-
stance of Charger Manager (a platform-device created with Charger-Manager)
represents an independent battery with chargers. If there are multiple batteries
with their own chargers acting independently in a system, the system may need
multiple instances of Charger Manager.

3.1 1. Introduction

Charger Manager supports the following:

• Support for multiple chargers (e.g., a device with USB, AC, and solar panels)
A system may have multiple chargers (or power sources) and some of
they may be activated at the same time. Each charger may have its
own power-supply-class and each power-supply-class can provide differ-
ent information about the battery status. This framework aggregates
charger-related information from multiple sources and shows combined
information as a single power-supply-class.

• Support for in suspend-to-RAM polling (with suspend_again callback)
While the battery is being charged and the system is in suspend-to-RAM,
we may need to monitor the battery health by looking at the ambient or
battery temperature. We can accomplish this by waking up the system
periodically. However, such a method wakes up devices unnecessarily
for monitoring the battery health and tasks, and user processes that
are supposed to be kept suspended. That, in turn, incurs unnecessary
power consumption and slow down charging process. Or even, such
peak power consumption can stop chargers in the middle of charging
(external power input < device power consumption), which not only
affects the charging time, but the lifespan of the battery.

Charger Manager provides a function “cm_suspend_again”that can be
used as suspend_again callback of platform_suspend_ops. If the platform
requires tasks other than cm_suspend_again, it may implement its own

9

mailto:myungjoo.ham@samsung.com

Linux Power Documentation

suspend_again callback that calls cm_suspend_again in the middle. Nor-
mally, the platform will need to resume and suspend some devices that
are used by Charger Manager.

• Support for premature full-battery event handling If the battery volt-
age drops by“fullbatt_vchkdrop_uV”after“fullbatt_vchkdrop_ms”from
the full-battery event, the framework restarts charging. This check is
also performed while suspended by setting wakeup time accordingly and
using suspend_again.

• Support for uevent-notify With the charger-related events, the device
sends notification to users with UEVENT.

3.2 2. Global Charger-Manager Data related with sus-
pend_again

In order to setup Charger Manager with suspend-again feature (in-
suspend monitoring), the user should provide charger_global_desc with
setup_charger_manager(struct charger_global_desc *). This charger_global_desc
data for in-suspend monitoring is global as the name suggests. Thus, the user
needs to provide only once even if there are multiple batteries. If there are
multiple batteries, the multiple instances of Charger Manager share the same
charger_global_desc and it will manage in-suspend monitoring for all instances of
Charger Manager.

The user needs to provide all the three entries to struct charger_global_desc prop-
erly in order to activate in-suspend monitoring:

char *rtc_name; The name of rtc (e.g.,“rtc0”) used to wakeup the system from
suspend for Charger Manager. The alarm interrupt (AIE) of the rtc should
be able to wake up the system from suspend. Charger Manager saves and
restores the alarm value and use the previously-defined alarm if it is going
to go off earlier than Charger Manager so that Charger Manager does not
interfere with previously-defined alarms.

bool (*rtc_only_wakeup)(void); This callback should let CM know whether the
wakeup-from-suspend is caused only by the alarm of“rtc”in the same struct.
If there is any other wakeup source triggered the wakeup, it should return
false. If the “rtc”is the only wakeup reason, it should return true.

bool assume_timer_stops_in_suspend; if true, Charger Manager assumes that
the timer (CM uses jiffies as timer) stops during suspend. Then, CM assumes
that the suspend-duration is same as the alarm length.

10 Chapter 3. Charger Manager

Linux Power Documentation

3.3 3. How to setup suspend_again

Charger Manager provides a function “extern bool cm_suspend_again(void)”.
When cm_suspend_again is called, it monitors every battery. The suspend_ops
callback of the system’s platform_suspend_ops can call cm_suspend_again func-
tion to know whether Charger Manager wants to suspend again or not. If there
are no other devices or tasks that want to use suspend_again feature, the plat-
form_suspend_ops may directly refer to cm_suspend_again for its suspend_again
callback.

The cm_suspend_again() returns true (meaning“I want to suspend again”) if the
systemwas woken up by ChargerManager and the polling (in-suspendmonitoring)
results in “normal”.

3.4 4. Charger-Manager Data (struct charger_desc)

For each battery charged independently from other batteries (if a series of batter-
ies are charged by a single charger, they are counted as one independent battery),
an instance of Charger Manager is attached to it. The following

struct charger_desc elements:

char *psy_name; The power-supply-class name of the battery. Default is
“battery”if psy_name is NULL. Users can access the psy entries at
“/sys/class/power_supply/[psy_name]/”.

enum polling_modes polling_mode;
CM_POLL_DISABLE: do not poll this battery.
CM_POLL_ALWAYS: always poll this battery.
CM_POLL_EXTERNAL_POWER_ONLY: poll this battery if and only if an ex-

ternal power source is attached.

CM_POLL_CHARGING_ONLY: poll this battery if and only if the battery is
being charged.

unsigned int fullbatt_vchkdrop_ms; / unsigned int fullbatt_vchkdrop_uV;
If both have non-zero values, Charger Manager will check the battery voltage
drop fullbatt_vchkdrop_ms after the battery is fully charged. If the voltage
drop is over fullbatt_vchkdrop_uV, Charger Manager will try to recharge the
battery by disabling and enabling chargers. Recharge with voltage drop
condition only (without delay condition) is needed to be implemented with
hardware interrupts from fuel gauges or charger devices/chips.

unsigned int fullbatt_uV; If specified with a non-zero value, Charger Manager
assumes that the battery is full (capacity = 100) if the battery is not being
charged and the battery voltage is equal to or greater than fullbatt_uV.

unsigned int polling_interval_ms; Required polling interval in ms. Charger
Manager will poll this battery every polling_interval_ms or more frequently.

enum data_source battery_present;
CM_BATTERY_PRESENT: assume that the battery exists.

3.3. 3. How to setup suspend_again 11

Linux Power Documentation

CM_NO_BATTERY: assume that the battery does not exists.
CM_FUEL_GAUGE: get battery presence information from fuel gauge.

CM_CHARGER_STAT: get battery presence from chargers.

char **psy_charger_stat; An array ending with NULL that has power-supply-
class names of chargers. Each power-supply-class should provide“PRESENT”
(if battery_present is“CM_CHARGER_STAT”),“ONLINE”(shows whether
an external power source is attached or not), and“STATUS”(shows whether
the battery is {“FULL”or not FULL} or {“FULL”,“Charging”,“Discharging”
, “NotCharging”}).

int num_charger_regulators; / struct regulator_bulk_data *charger_regulators;
Regulators representing the chargers in the form for regulator framework’
s bulk functions.

char *psy_fuel_gauge; Power-supply-class name of the fuel gauge.
int (*temperature_out_of_range)(int *mC); / bool measure_battery_temp;

This callback returns 0 if the temperature is safe for charging, a positive
number if it is too hot to charge, and a negative number if it is too cold
to charge. With the variable mC, the callback returns the temperature in
1/1000 of centigrade. The source of temperature can be battery or ambient
one according to the value of measure_battery_temp.

3.5 5. Notify Charger-Manager of charger events:
cm_notify_event()

If there is an charger event is required to notify ChargerManager, a charger device
driver that triggers the event can call cm_notify_event(psy, type, msg) to notify
the corresponding Charger Manager. In the function, psy is the charger driver’s
power_supply pointer, which is associated with Charger-Manager. The parameter
“type”is the same as irq’s type (enum cm_event_types). The event message“msg”
is optional and is effective only if the event type is“UNDESCRIBED”or“OTHERS”
.

3.6 6. Other Considerations

At the charger/battery-related events such as battery-pulled-out, charger-pulled-
out, charger-inserted, DCIN-over/under-voltage, charger-stopped, and others crit-
ical to chargers, the system should be configured to wake up. At least the following
should wake up the system from a suspend: a) charger-on/off b) external-power-
in/out c) battery-in/out (while charging)

It is usually accomplished by configuring the PMIC as a wakeup source.

12 Chapter 3. Charger Manager

CHAPTER

FOUR

TESTING SUSPEND AND RESUME SUPPORT IN DEVICE
DRIVERS

(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL

4.1 1. Preparing the test system

Unfortunately, to effectively test the support for the system-wide suspend and re-
sume transitions in a driver, it is necessary to suspend and resume a fully func-
tional system with this driver loaded. Moreover, that should be done several times,
preferably several times in a row, and separately for hibernation (aka suspend to
disk or STD) and suspend to RAM (STR), because each of these cases involves
slightly different operations and different interactions with the machine’s BIOS.
Of course, for this purpose the test system has to be known to suspend and re-
sume without the driver being tested. Thus, if possible, you should first resolve all
suspend/resume-related problems in the test system before you start testing the
new driver. Please see Documentation/power/basic-pm-debugging.rst for more in-
formation about the debugging of suspend/resume functionality.

4.2 2. Testing the driver

Once you have resolved the suspend/resume-related problems with your test sys-
tem without the new driver, you are ready to test it:

a) Build the driver as a module, load it and try the test modes of hibernation
(see: Documentation/power/basic-pm-debugging.rst, 1).

b) Load the driver and attempt to hibernate in the“reboot”,“shutdown”and
“platform”modes (see: Documentation/power/basic-pm-debugging.rst, 1).
c) Compile the driver directly into the kernel and try the test modes of hiberna-
tion.

d) Attempt to hibernate with the driver compiled directly into the kernel in the
“reboot”, “shutdown”and “platform”modes.

e) Try the test modes of suspend (see: Documentation/power/basic-pm-
debugging.rst, 2). [As far as the STR tests are concerned, it should not matter
whether or not the driver is built as a module.]

13

mailto:rjw@sisk.pl

Linux Power Documentation

f) Attempt to suspend to RAM using the s2ram tool with the driver loaded (see:
Documentation/power/basic-pm-debugging.rst, 2).

Each of the above tests should be repeated several times and the STD tests should
be mixed with the STR tests. If any of them fails, the driver cannot be regarded
as suspend/resume-safe.

14 Chapter 4. Testing suspend and resume support in device drivers

CHAPTER

FIVE

ENERGY MODEL OF CPUS

5.1 1. Overview

The Energy Model (EM) framework serves as an interface between drivers know-
ing the power consumed by CPUs at various performance levels, and the kernel
subsystems willing to use that information to make energy-aware decisions.

The source of the information about the power consumed by CPUs can vary greatly
from one platform to another. These power costs can be estimated using device-
tree data in some cases. In others, the firmware will know better. Alternatively,
userspace might be best positioned. And so on. In order to avoid each and ev-
ery client subsystem to re-implement support for each and every possible source
of information on its own, the EM framework intervenes as an abstraction layer
which standardizes the format of power cost tables in the kernel, hence enabling
to avoid redundant work.

The figure below depicts an example of drivers (Arm-specific here, but the ap-
proach is applicable to any architecture) providing power costs to the EM frame-
work, and interested clients reading the data from it:

+---------------+ +-----------------+ +---------------+
| Thermal (IPA) | | Scheduler (EAS) | | Other |
+---------------+ +-----------------+ +---------------+

| | em_pd_energy() |
| | em_cpu_get() |
+---------+ | +---------+

| | |
v v v

+---------------------+
| Energy Model |
| Framework |
+---------------------+

^ ^ ^
| | | em_register_perf_domain()

+----------+ | +---------+
| | |

+---------------+ +---------------+ +--------------+
| cpufreq-dt | | arm_scmi | | Other |
+---------------+ +---------------+ +--------------+

^ ^ ^
| | |

+--------------+ +---------------+ +--------------+
(continues on next page)

15

Linux Power Documentation

(continued from previous page)
| Device Tree | | Firmware | | ? |
+--------------+ +---------------+ +--------------+

The EM framework manages power cost tables per‘performance domain’in the
system. A performance domain is a group of CPUs whose performance is scaled
together. Performance domains generally have a 1-to-1 mapping with CPUFreq
policies. All CPUs in a performance domain are required to have the same micro-
architecture. CPUs in different performance domains can have different micro-
architectures.

5.2 2. Core APIs

5.2.1 2.1 Config options

CONFIG_ENERGY_MODEL must be enabled to use the EM framework.

5.2.2 2.2 Registration of performance domains

Drivers are expected to register performance domains into the EM framework by
calling the following API:

int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
struct em_data_callback *cb);

Drivers must specify the CPUs of the performance domains using the cpumask
argument, and provide a callback function returning <frequency, power> tuples
for each capacity state. The callback function provided by the driver is free to
fetch data from any relevant location (DT, firmware,⋯), and by any mean deemed
necessary. See Section 3. for an example of driver implementing this callback,
and kernel/power/energy_model.c for further documentation on this API.

5.2.3 2.3 Accessing performance domains

Subsystems interested in the energy model of a CPU can retrieve it using the
em_cpu_get() API. The energy model tables are allocated once upon creation of
the performance domains, and kept in memory untouched.

The energy consumed by a performance domain can be estimated using the
em_pd_energy() API. The estimation is performed assuming that the schedutil
CPUfreq governor is in use.

More details about the above APIs can be found in include/linux/energy_model.h.

16 Chapter 5. Energy Model of CPUs

Linux Power Documentation

5.3 3. Example driver

This section provides a simple example of a CPUFreq driver registering a perfor-
mance domain in the Energy Model framework using the (fake)‘foo’protocol. The
driver implements an est_power() function to be provided to the EM framework:

-> drivers/cpufreq/foo_cpufreq.c

01 static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
02 {
03 long freq, power;
04
05 /* Use the 'foo' protocol to ceil the frequency */
06 freq = foo_get_freq_ceil(cpu, *KHz);
07 if (freq < 0);
08 return freq;
09
10 /* Estimate the power cost for the CPU at the relevant freq.␣
↪→*/
11 power = foo_estimate_power(cpu, freq);
12 if (power < 0);
13 return power;
14
15 /* Return the values to the EM framework */
16 *mW = power;
17 *KHz = freq;
18
19 return 0;
20 }
21
22 static int foo_cpufreq_init(struct cpufreq_policy *policy)
23 {
24 struct em_data_callback em_cb = EM_DATA_CB(est_power);
25 int nr_opp, ret;
26
27 /* Do the actual CPUFreq init work ... */
28 ret = do_foo_cpufreq_init(policy);
29 if (ret)
30 return ret;
31
32 /* Find the number of OPPs for this policy */
33 nr_opp = foo_get_nr_opp(policy);
34
35 /* And register the new performance domain */
36 em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
37
38 return 0;
39 }

5.3. 3. Example driver 17

Linux Power Documentation

18 Chapter 5. Energy Model of CPUs

CHAPTER

SIX

FREEZING OF TASKS

(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL

6.1 I. What is the freezing of tasks?

The freezing of tasks is a mechanism by which user space processes and some
kernel threads are controlled during hibernation or system-wide suspend (on some
architectures).

6.2 II. How does it work?

There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN and
PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have PF_NOFREEZE
unset (all user space processes and some kernel threads) are regarded as‘freez-
able’and treated in a special way before the system enters a suspend state as
well as before a hibernation image is created (in what follows we only consider
hibernation, but the description also applies to suspend).

Namely, as the first step of the hibernation procedure the function
freeze_processes() (defined in kernel/power/process.c) is called. A system-wide
variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate
whether the system is to undergo a freezing operation. And freeze_processes()
sets this variable. After this, it executes try_to_freeze_tasks() that sends a fake
signal to all user space processes, and wakes up all the kernel threads. All
freezable tasks must react to that by calling try_to_freeze(), which results in
a call to __refrigerator() (defined in kernel/freezer.c), which sets the task’s
PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes it
loop until PF_FROZEN is cleared for it. Then, we say that the task is ‘frozen’
and therefore the set of functions handling this mechanism is referred to as‘the
freezer’(these functions are defined in kernel/power/process.c, kernel/freezer.c &
include/linux/freezer.h). User space processes are generally frozen before kernel
threads.

__refrigerator() must not be called directly. Instead, use the try_to_freeze() func-
tion (defined in include/linux/freezer.h), that checks if the task is to be frozen and
makes the task enter __refrigerator().

For user space processes try_to_freeze() is called automatically from the signal-
handling code, but the freezable kernel threads need to call it explicitly in suitable

19

mailto:rjw@sisk.pl

Linux Power Documentation

places or use the wait_event_freezable() or wait_event_freezable_timeout() macros
(defined in include/linux/freezer.h) that combine interruptible sleep with checking
if the task is to be frozen and calling try_to_freeze(). The main loop of a freezable
kernel thread may look like the following one:

set_freezable();
do {

hub_events();
wait_event_freezable(khubd_wait,

!list_empty(&hub_event_list) ||
kthread_should_stop());

} while (!kthread_should_stop() || !list_empty(&hub_event_list));

(from drivers/usb/core/hub.c::hub_thread()).

If a freezable kernel thread fails to call try_to_freeze() after the freezer has ini-
tiated a freezing operation, the freezing of tasks will fail and the entire hiber-
nation operation will be cancelled. For this reason, freezable kernel threads
must call try_to_freeze() somewhere or use one of the wait_event_freezable() and
wait_event_freezable_timeout() macros.

After the system memory state has been restored from a hibernation image and
devices have been reinitialized, the function thaw_processes() is called in order to
clear the PF_FROZEN flag for each frozen task. Then, the tasks that have been
frozen leave __refrigerator() and continue running.

6.2.1 Rationale behind the functions dealing with freezing and
thawing of tasks

freeze_processes():
• freezes only userspace tasks

freeze_kernel_threads():
• freezes all tasks (including kernel threads) because we can’t freeze ker-
nel threads without freezing userspace tasks

thaw_kernel_threads():
• thaws only kernel threads; this is particularly useful if we need to do
anything special in between thawing of kernel threads and thawing of
userspace tasks, or if we want to postpone the thawing of userspace tasks

thaw_processes():
• thaws all tasks (including kernel threads) because we can’t thaw
userspace tasks without thawing kernel threads

20 Chapter 6. Freezing of tasks

Linux Power Documentation

6.3 III. Which kernel threads are freezable?

Kernel threads are not freezable by default. However, a kernel thread may clear
PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE
directly is not allowed). From this point it is regarded as freezable and must call
try_to_freeze() in a suitable place.

6.4 IV. Why do we do that?

Generally speaking, there is a couple of reasons to use the freezing of tasks:

1. The principal reason is to prevent filesystems from being damaged after hi-
bernation. At the moment we have no simple means of checkpointing filesys-
tems, so if there are any modifications made to filesystem data and/or meta-
data on disks, we cannot bring them back to the state from before the modifi-
cations. At the same time each hibernation image contains some filesystem-
related information that must be consistent with the state of the on-disk data
and metadata after the system memory state has been restored from the im-
age (otherwise the filesystems will be damaged in a nasty way, usually making
them almost impossible to repair). We therefore freeze tasks that might cause
the on-disk filesystems’data and metadata to be modified after the hiberna-
tion image has been created and before the system is finally powered off. The
majority of these are user space processes, but if any of the kernel threads
may cause something like this to happen, they have to be freezable.

2. Next, to create the hibernation image we need to free a sufficient amount
of memory (approximately 50% of available RAM) and we need to do that
before devices are deactivated, because we generally need them for swapping
out. Then, after the memory for the image has been freed, we don’t want
tasks to allocate additional memory and we prevent them from doing that by
freezing them earlier. [Of course, this also means that device drivers should
not allocate substantial amounts of memory from their .suspend() callbacks
before hibernation, but this is a separate issue.]

3. The third reason is to prevent user space processes and some kernel threads
from interfering with the suspending and resuming of devices. A user space
process running on a second CPU while we are suspending devices may, for
example, be troublesome and without the freezing of tasks we would need
some safeguards against race conditions that might occur in such a case.

Although Linus Torvalds doesn’t like the freezing of tasks, he said this in one of
the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):

“RJW:> Why we freeze tasks at all or why we freeze kernel threads?
Linus: In many ways, ‘at all’.
I do realize the IO request queue issues, and that we cannot actually do s2ram
with some devices in the middle of a DMA. So we want to be able to avoid that,
there’s no question about that. And I suspect that stopping user threads and then
waiting for a sync is practically one of the easier ways to do so.

6.3. III. Which kernel threads are freezable? 21

http://lkml.org/lkml/2007/4/27/608

Linux Power Documentation

So in practice, the‘at all’may become a‘why freeze kernel threads?’and freezing
user threads I don’t find really objectionable.”
Still, there are kernel threads that may want to be freezable. For example, if a
kernel thread that belongs to a device driver accesses the device directly, it in
principle needs to know when the device is suspended, so that it doesn’t try to
access it at that time. However, if the kernel thread is freezable, it will be frozen
before the driver’s .suspend() callback is executed and it will be thawed after the
driver’s .resume() callback has run, so it won’t be accessing the device while it’
s suspended.

4. Another reason for freezing tasks is to prevent user space processes from
realizing that hibernation (or suspend) operation takes place. Ideally, user
space processes should not notice that such a system-wide operation has oc-
curred and should continue running without any problems after the restore
(or resume from suspend). Unfortunately, in the most general case this is
quite difficult to achieve without the freezing of tasks. Consider, for exam-
ple, a process that depends on all CPUs being online while it’s running. Since
we need to disable nonboot CPUs during the hibernation, if this process is not
frozen, it may notice that the number of CPUs has changed and may start to
work incorrectly because of that.

6.5 V. Are there any problems related to the freezing of
tasks?

Yes, there are.

First of all, the freezing of kernel threads may be tricky if they depend one
on another. For example, if kernel thread A waits for a completion (in the
TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread
B and B is frozen in the meantime, then A will be blocked until B is thawed, which
may be undesirable. That’s why kernel threads are not freezable by default.
Second, there are the following two problems related to the freezing of user space
processes:

1. Putting processes into an uninterruptible sleep distorts the load average.

2. Now that we have FUSE, plus the framework for doing device drivers in
userspace, it gets even more complicated because some userspace pro-
cesses are now doing the sorts of things that kernel threads do (https:
//lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).

The problem 1. seems to be fixable, although it hasn’t been fixed so far. The
other one is more serious, but it seems that we can work around it by using hiber-
nation (and suspend) notifiers (in that case, though, we won’t be able to avoid the
realization by the user space processes that the hibernation is taking place).

There are also problems that the freezing of tasks tends to expose, although they
are not directly related to it. For example, if request_firmware() is called from
a device driver’s .resume() routine, it will timeout and eventually fail, because
the user land process that should respond to the request is frozen at this point.
So, seemingly, the failure is due to the freezing of tasks. Suppose, however, that

22 Chapter 6. Freezing of tasks

https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html
https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html

Linux Power Documentation

the firmware file is located on a filesystem accessible only through another device
that hasn’t been resumed yet. In that case, request_firmware() will fail regardless
of whether or not the freezing of tasks is used. Consequently, the problem is not
really related to the freezing of tasks, since it generally exists anyway.

A driver must have all firmwares it may need in RAM before suspend() is called. If
keeping them is not practical, for example due to their size, theymust be requested
early enough using the suspend notifier API described in Documentation/driver-
api/pm/notifiers.rst.

6.6 VI. Are there any precautions to be taken to prevent
freezing failures?

Yes, there are.

First of all, grabbing the‘system_transition_mutex’lock tomutually exclude a piece
of code from system-wide sleep such as suspend/hibernation is not encouraged.
If possible, that piece of code must instead hook onto the suspend/hibernation
notifiers to achievemutual exclusion. Look at the CPU-Hotplug code (kernel/cpu.c)
for an example.

However, if that is not feasible, and grabbing ‘system_transition_mutex’
is deemed necessary, it is strongly discouraged to directly call mu-
tex_[un]lock(&system_transition_mutex) since that could lead to freezing
failures, because if the suspend/hibernate code successfully acquired the
‘system_transition_mutex’lock, and hence that other entity failed to acquire the
lock, then that task would get blocked in TASK_UNINTERRUPTIBLE state. As a
consequence, the freezer would not be able to freeze that task, leading to freezing
failure.

However, the [un]lock_system_sleep() APIs are safe to use in this scenario,
since they ask the freezer to skip freezing this task, since it is anyway
“frozen enough”as it is blocked on ‘system_transition_mutex’, which will
be released only after the entire suspend/hibernation sequence is complete.
So, to summarize, use [un]lock_system_sleep() instead of directly using mu-
tex_[un]lock(&system_transition_mutex). That would prevent freezing failures.

6.7 V. Miscellaneous

/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze all
user space processes or all freezable kernel threads, in unit of millisecond. The
default value is 20000, with range of unsigned integer.

6.6. VI. Are there any precautions to be taken to prevent freezing
failures?

23

Linux Power Documentation

24 Chapter 6. Freezing of tasks

CHAPTER

SEVEN

OPERATING PERFORMANCE POINTS (OPP) LIBRARY

(C) 2009-2010 Nishanth Menon <nm@ti.com>, Texas Instruments Incorporated

7.1 1. Introduction

7.1.1 1.1 What is an Operating Performance Point (OPP)?

Complex SoCs of today consists of a multiple sub-modules working in conjunction.
In an operational system executing varied use cases, not all modules in the SoC
need to function at their highest performing frequency all the time. To facilitate
this, sub-modules in a SoC are grouped into domains, allowing some domains to
run at lower voltage and frequency while other domains run at voltage/frequency
pairs that are higher.

The set of discrete tuples consisting of frequency and voltage pairs that the device
will support per domain are called Operating Performance Points or OPPs.

As an example:

Let us consider an MPU device which supports the following: {300MHz at mini-
mum voltage of 1V}, {800MHz at minimum voltage of 1.2V}, {1GHz at minimum
voltage of 1.3V}

We can represent these as three OPPs as the following {Hz, uV} tuples:

• {300000000, 1000000}

• {800000000, 1200000}

• {1000000000, 1300000}

7.1.2 1.2 Operating Performance Points Library

OPP library provides a set of helper functions to organize and query the OPP in-
formation. The library is located in drivers/opp/ directory and the header is lo-
cated in include/linux/pm_opp.h. OPP library can be enabled by enabling CON-
FIG_PM_OPP from power management menuconfig menu. OPP library depends
on CONFIG_PM as certain SoCs such as Texas Instrument’s OMAP framework
allows to optionally boot at a certain OPP without needing cpufreq.

Typical usage of the OPP library is as follows:

25

mailto:nm@ti.com

Linux Power Documentation

(users) -> registers a set of default OPPs -> (library)
SoC framework -> modifies on required cases certain OPPs -> OPP layer

-> queries to search/retrieve information ->

OPP layer expects each domain to be represented by a unique device pointer. SoC
framework registers a set of initial OPPs per device with the OPP layer. This list
is expected to be an optimally small number typically around 5 per device. This
initial list contains a set of OPPs that the framework expects to be safely enabled
by default in the system.

Note on OPP Availability

As the system proceeds to operate, SoC framework may choose to make certain
OPPs available or not available on each device based on various external factors.
Example usage: Thermal management or other exceptional situations where SoC
framework might choose to disable a higher frequency OPP to safely continue
operations until that OPP could be re-enabled if possible.

OPP library facilitates this concept in its implementation. The following op-
erational functions operate only on available opps: opp_find_freq_{ceil, floor},
dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count

dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can
then be used for dev_pm_opp_enable/disable functions to make an opp available
as required.

WARNING: Users of OPP library should refresh their availability count using
get_opp_count if dev_pm_opp_enable/disable functions are invoked for a device,
the exact mechanism to trigger these or the notification mechanism to other de-
pendent subsystems such as cpufreq are left to the discretion of the SoC specific
framework which uses the OPP library. Similar care needs to be taken care to
refresh the cpufreq table in cases of these operations.

7.2 2. Initial OPP List Registration

The SoC implementation calls dev_pm_opp_add function iteratively to add OPPs
per device. It is expected that the SoC framework will register the OPP entries
optimally- typical numbers range to be less than 5. The list generated by register-
ing the OPPs is maintained by OPP library throughout the device operation. The
SoC framework can subsequently control the availability of the OPPs dynamically
using the dev_pm_opp_enable / disable functions.

dev_pm_opp_add Add a new OPP for a specific domain represented by the device
pointer. The OPP is defined using the frequency and voltage. Once added,
the OPP is assumed to be available and control of its availability can be done
with the dev_pm_opp_enable/disable functions. OPP library internally stores
and manages this information in the opp struct. This function may be used
by SoC framework to define a optimal list as per the demands of SoC usage
environment.

WARNING: Do not use this function in interrupt context.

26 Chapter 7. Operating Performance Points (OPP) Library

Linux Power Documentation

Example:

soc_pm_init()
{

/* Do things */
r = dev_pm_opp_add(mpu_dev, 1000000, 900000);
if (!r) {

pr_err("%s: unable to register mpu opp(%d)\n", r);
goto no_cpufreq;

}
/* Do cpufreq things */

no_cpufreq:
/* Do remaining things */

}

7.3 3. OPP Search Functions

High level framework such as cpufreq operates on frequencies. To map the fre-
quency back to the corresponding OPP, OPP library provides handy functions to
search the OPP list that OPP library internally manages. These search functions
return the matching pointer representing the opp if a match is found, else returns
error. These errors are expected to be handled by standard error checks such as
IS_ERR() and appropriate actions taken by the caller.

Callers of these functions shall call dev_pm_opp_put() after they have used the OPP.
Otherwise the memory for the OPP will never get freed and result in memleak.

dev_pm_opp_find_freq_exact Search for an OPP based on an exact frequency
and availability. This function is especially useful to enable an OPP which is
not available by default. Example: In a case when SoC framework detects a
situation where a higher frequency could be made available, it can use this
function to find the OPP prior to call the dev_pm_opp_enable to actually make
it available:

opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
dev_pm_opp_put(opp);
/* dont operate on the pointer.. just do a sanity check.. */
if (IS_ERR(opp)) {

pr_err("frequency not disabled!\n");
/* trigger appropriate actions.. */

} else {
dev_pm_opp_enable(dev,1000000000);

}

NOTE: This is the only search function that operates on OPPs which are not
available.

dev_pm_opp_find_freq_floor Search for an available OPP which is at most the
provided frequency. This function is useful while searching for a lesser match
OR operating on OPP information in the order of decreasing frequency. Ex-
ample: To find the highest opp for a device:

7.3. 3. OPP Search Functions 27

Linux Power Documentation

freq = ULONG_MAX;
opp = dev_pm_opp_find_freq_floor(dev, &freq);
dev_pm_opp_put(opp);

dev_pm_opp_find_freq_ceil Search for an available OPPwhich is at least the pro-
vided frequency. This function is useful while searching for a higher match
OR operating on OPP information in the order of increasing frequency. Ex-
ample 1: To find the lowest opp for a device:

freq = 0;
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
dev_pm_opp_put(opp);

Example 2: A simplified implementation of a SoC cpufreq_driver->target:

soc_cpufreq_target(..)
{

/* Do stuff like policy checks etc. */
/* Find the best frequency match for the req */
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
dev_pm_opp_put(opp);
if (!IS_ERR(opp))

soc_switch_to_freq_voltage(freq);
else

/* do something when we can't satisfy the req */
/* do other stuff */

}

7.4 4. OPP Availability Control Functions

A default OPP list registered with the OPP library may not cater to all possible sit-
uation. The OPP library provides a set of functions to modify the availability of a
OPP within the OPP list. This allows SoC frameworks to have fine grained dynamic
control of which sets of OPPs are operationally available. These functions are in-
tended to temporarily remove an OPP in conditions such as thermal considerations
(e.g. don’t use OPPx until the temperature drops).
WARNING: Do not use these functions in interrupt context.
dev_pm_opp_enable Make a OPP available for operation. Example: Lets say that

1GHz OPP is to be made available only if the SoC temperature is lower than
a certain threshold. The SoC framework implementation might choose to do
something as follows:

if (cur_temp < temp_low_thresh) {
/* Enable 1GHz if it was disabled */
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
dev_pm_opp_put(opp);
/* just error check */
if (!IS_ERR(opp))

ret = dev_pm_opp_enable(dev, 1000000000);
else

(continues on next page)

28 Chapter 7. Operating Performance Points (OPP) Library

Linux Power Documentation

(continued from previous page)
goto try_something_else;

}

dev_pm_opp_disable Make an OPP to be not available for operation Example:
Lets say that 1GHz OPP is to be disabled if the temperature exceeds a thresh-
old value. The SoC framework implementation might choose to do something
as follows:

if (cur_temp > temp_high_thresh) {
/* Disable 1GHz if it was enabled */
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true);
dev_pm_opp_put(opp);
/* just error check */
if (!IS_ERR(opp))

ret = dev_pm_opp_disable(dev, 1000000000);
else

goto try_something_else;
}

7.5 5. OPP Data Retrieval Functions

Since OPP library abstracts away the OPP information, a set of functions to pull
information from the OPP structure is necessary. Once an OPP pointer is retrieved
using the search functions, the following functions can be used by SoC framework
to retrieve the information represented inside the OPP layer.

dev_pm_opp_get_voltage Retrieve the voltage represented by the opp pointer.
Example: At a cpufreq transition to a different frequency, SoC framework re-
quires to set the voltage represented by the OPP using the regulator frame-
work to the Power Management chip providing the voltage:

soc_switch_to_freq_voltage(freq)
{

/* do things */
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
v = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
if (v)

regulator_set_voltage(.., v);
/* do other things */

}

dev_pm_opp_get_freq Retrieve the freq represented by the opp pointer. Exam-
ple: Lets say the SoC framework uses a couple of helper functions we could
pass opp pointers instead of doing additional parameters to handle quiet a
bit of data parameters:

soc_cpufreq_target(..)
{

/* do things.. */
max_freq = ULONG_MAX;
max_opp = dev_pm_opp_find_freq_floor(dev,&max_freq);

(continues on next page)

7.5. 5. OPP Data Retrieval Functions 29

Linux Power Documentation

(continued from previous page)
requested_opp = dev_pm_opp_find_freq_ceil(dev,&freq);
if (!IS_ERR(max_opp) && !IS_ERR(requested_opp))

r = soc_test_validity(max_opp, requested_opp);
dev_pm_opp_put(max_opp);
dev_pm_opp_put(requested_opp);

/* do other things */
}
soc_test_validity(..)
{

if(dev_pm_opp_get_voltage(max_opp) < dev_pm_opp_get_
↪→voltage(requested_opp))

return -EINVAL;
if(dev_pm_opp_get_freq(max_opp) < dev_pm_opp_get_

↪→freq(requested_opp))
return -EINVAL;

/* do things.. */
}

dev_pm_opp_get_opp_count Retrieve the number of available opps for a device
Example: Lets say a co-processor in the SoC needs to know the available
frequencies in a table, the main processor can notify as following:

soc_notify_coproc_available_frequencies()
{

/* Do things */
num_available = dev_pm_opp_get_opp_count(dev);
speeds = kzalloc(sizeof(u32) * num_available, GFP_KERNEL);
/* populate the table in increasing order */
freq = 0;
while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(dev, &freq))) {

speeds[i] = freq;
freq++;
i++;
dev_pm_opp_put(opp);

}

soc_notify_coproc(AVAILABLE_FREQs, speeds, num_available);
/* Do other things */

}

7.6 6. Data Structures

Typically an SoC contains multiple voltage domains which are variable. Each do-
main is represented by a device pointer. The relationship to OPP can be repre-
sented as follows:

SoC
|- device 1
| |- opp 1 (availability, freq, voltage)
| |- opp 2 ..
... ...
| `- opp n ..
|- device 2

(continues on next page)

30 Chapter 7. Operating Performance Points (OPP) Library

Linux Power Documentation

(continued from previous page)
...
`- device m

OPP library maintains a internal list that the SoC framework populates and ac-
cessed by various functions as described above. However, the structures repre-
senting the actual OPPs and domains are internal to the OPP library itself to allow
for suitable abstraction reusable across systems.

struct dev_pm_opp The internal data structure of OPP library which is used to
represent an OPP. In addition to the freq, voltage, availability information, it
also contains internal book keeping information required for the OPP library
to operate on. Pointer to this structure is provided back to the users such as
SoC framework to be used as a identifier for OPP in the interactions with OPP
layer.

WARNING: The struct dev_pm_opp pointer should not be parsed or mod-
ified by the users. The defaults of for an instance is populated by
dev_pm_opp_add, but the availability of the OPP can be modified by
dev_pm_opp_enable/disable functions.

struct device This is used to identify a domain to the OPP layer. The nature of
the device and its implementation is left to the user of OPP library such as
the SoC framework.

Overall, in a simplistic view, the data structure operations is represented as fol-
lowing:

Initialization / modification:
+-----+ /- dev_pm_opp_enable

dev_pm_opp_add --> | opp | <-------
| +-----+ \- dev_pm_opp_disable
\-------> domain_info(device)

Search functions:
/-- dev_pm_opp_find_freq_ceil ---\ +-----+

domain_info<---- dev_pm_opp_find_freq_exact -----> | opp |
\-- dev_pm_opp_find_freq_floor ---/ +-----+

Retrieval functions:
+-----+ /- dev_pm_opp_get_voltage
| opp | <---
+-----+ \- dev_pm_opp_get_freq

domain_info <- dev_pm_opp_get_opp_count

7.6. 6. Data Structures 31

Linux Power Documentation

32 Chapter 7. Operating Performance Points (OPP) Library

CHAPTER

EIGHT

PCI POWER MANAGEMENT

Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.

An overview of concepts and the Linux kernel’s interfaces related to
PCI power management. Based on previous work by Patrick Mochel
<mochel@transmeta.com> (and others).

This document only covers the aspects of power management specific to PCI de-
vices. For general description of the kernel’s interfaces related to device power
management refer to Documentation/driver-api/pm/devices.rst and Documenta-
tion/power/runtime_pm.rst.

8.1 1. Hardware and Platform Support for PCI Power
Management

8.1.1 1.1. Native and Platform-Based Power Management

In general, power management is a feature allowing one to save energy by putting
devices into states in which they draw less power (low-power states) at the price
of reduced functionality or performance.

Usually, a device is put into a low-power state when it is underutilized or com-
pletely inactive. However, when it is necessary to use the device once again, it
has to be put back into the “fully functional”state (full-power state). This may
happen when there are some data for the device to handle or as a result of an ex-
ternal event requiring the device to be active, which may be signaled by the device
itself.

PCI devices may be put into low-power states in two ways, by using the device
capabilities introduced by the PCI Bus PowerManagement Interface Specification,
or with the help of platform firmware, such as an ACPI BIOS. In the first approach,
that is referred to as the native PCI power management (native PCI PM) in what
follows, the device power state is changed as a result of writing a specific value
into one of its standard configuration registers. The second approach requires the
platform firmware to provide special methods that may be used by the kernel to
change the device’s power state.
Devices supporting the native PCI PM usually can generate wakeup signals called
Power Management Events (PMEs) to let the kernel know about external events
requiring the device to be active. After receiving a PME the kernel is supposed
to put the device that sent it into the full-power state. However, the PCI Bus

33

mailto:rjw@sisk.pl
mailto:mochel@transmeta.com

Linux Power Documentation

Power Management Interface Specification doesn’t define any standard method
of delivering the PME from the device to the CPU and the operating system kernel.
It is assumed that the platform firmware will perform this task and therefore, even
though a PCI device is set up to generate PMEs, it alsomay be necessary to prepare
the platform firmware for notifying the CPU of the PMEs coming from the device
(e.g. by generating interrupts).

In turn, if the methods provided by the platform firmware are used for chang-
ing the power state of a device, usually the platform also provides a method for
preparing the device to generate wakeup signals. In that case, however, it often
also is necessary to prepare the device for generating PMEs using the native PCI
PM mechanism, because the method provided by the platform depends on that.

Thus in many situations both the native and the platform-based power manage-
ment mechanisms have to be used simultaneously to obtain the desired result.

8.1.2 1.2. Native PCI Power Management

The PCI Bus Power Management Interface Specification (PCI PM Spec) was in-
troduced between the PCI 2.1 and PCI 2.2 Specifications. It defined a standard
interface for performing various operations related to power management.

The implementation of the PCI PM Spec is optional for conventional PCI devices,
but it is mandatory for PCI Express devices. If a device supports the PCI PM Spec,
it has an 8 byte power management capability field in its PCI configuration space.
This field is used to describe and control the standard features related to the native
PCI power management.

The PCI PM Spec defines 4 operating states for devices (D0-D3) and for buses (B0-
B3). The higher the number, the less power is drawn by the device or bus in that
state. However, the higher the number, the longer the latency for the device or
bus to return to the full-power state (D0 or B0, respectively).

There are two variants of the D3 state defined by the specification. The first one
is D3hot, referred to as the software accessible D3, because devices can be pro-
grammed to go into it. The second one, D3cold, is the state that PCI devices are in
when the supply voltage (Vcc) is removed from them. It is not possible to program
a PCI device to go into D3cold, although there may be a programmable interface
for putting the bus the device is on into a state in which Vcc is removed from all
devices on the bus.

PCI bus power management, however, is not supported by the Linux kernel at the
time of this writing and therefore it is not covered by this document.

Note that every PCI device can be in the full-power state (D0) or in D3cold, re-
gardless of whether or not it implements the PCI PM Spec. In addition to that, if
the PCI PM Spec is implemented by the device, it must support D3hot as well as
D0. The support for the D1 and D2 power states is optional.

PCI devices supporting the PCI PM Spec can be programmed to go to any of the
supported low-power states (except for D3cold). While in D1-D3hot the standard
configuration registers of the device must be accessible to software (i.e. the de-
vice is required to respond to PCI configuration accesses), although its I/O and
memory spaces are then disabled. This allows the device to be programmatically
put into D0. Thus the kernel can switch the device back and forth between D0 and

34 Chapter 8. PCI Power Management

Linux Power Documentation

the supported low-power states (except for D3cold) and the possible power state
transitions the device can undergo are the following:

Current State | New State
D0 | D1, D2, D3
D1 | D2, D3
D2 | D3
D1, D2, D3 | D0

The transition from D3cold to D0 occurs when the supply voltage is provided to
the device (i.e. power is restored). In that case the device returns to D0 with a full
power-on reset sequence and the power-on defaults are restored to the device by
hardware just as at initial power up.

PCI devices supporting the PCI PM Spec can be programmed to generate PMEs
while in any power state (D0-D3), but they are not required to be capable of gen-
erating PMEs from all supported power states. In particular, the capability of gen-
erating PMEs from D3cold is optional and depends on the presence of additional
voltage (3.3Vaux) allowing the device to remain sufficiently active to generate a
wakeup signal.

8.1.3 1.3. ACPI Device Power Management

The platform firmware support for the power management of PCI devices is
system-specific. However, if the system in question is compliant with the Advanced
Configuration and Power Interface (ACPI) Specification, like the majority of x86-
based systems, it is supposed to implement device power management interfaces
defined by the ACPI standard.

For this purpose the ACPI BIOS provides special functions called “control meth-
ods”that may be executed by the kernel to perform specific tasks, such as putting
a device into a low-power state. These control methods are encoded using spe-
cial byte-code language called the ACPI Machine Language (AML) and stored in
the machine’s BIOS. The kernel loads them from the BIOS and executes them
as needed using an AML interpreter that translates the AML byte code into com-
putations and memory or I/O space accesses. This way, in theory, a BIOS writer
can provide the kernel with a means to perform actions depending on the system
design in a system-specific fashion.

ACPI control methods may be divided into global control methods, that are not
associated with any particular devices, and device control methods, that have to
be defined separately for each device supposed to be handled with the help of the
platform. This means, in particular, that ACPI device control methods can only
be used to handle devices that the BIOS writer knew about in advance. The ACPI
methods used for device power management fall into that category.

The ACPI specification assumes that devices can be in one of four power states
labeled as D0, D1, D2, and D3 that roughly correspond to the native PCI PM D0-
D3 states (although the difference between D3hot and D3cold is not taken into
account by ACPI). Moreover, for each power state of a device there is a set of
power resources that have to be enabled for the device to be put into that state.
These power resources are controlled (i.e. enabled or disabled) with the help of

8.1. 1. Hardware and Platform Support for PCI Power Management 35

Linux Power Documentation

their own control methods, _ON and _OFF, that have to be defined individually for
each of them.

To put a device into the ACPI power state Dx (where x is a number between 0 and
3 inclusive) the kernel is supposed to (1) enable the power resources required by
the device in this state using their _ON control methods and (2) execute the _PSx
control method defined for the device. In addition to that, if the device is going to
be put into a low-power state (D1-D3) and is supposed to generate wakeup signals
from that state, the _DSW (or _PSW, replaced with _DSW by ACPI 3.0) control
method defined for it has to be executed before _PSx. Power resources that are
not required by the device in the target power state and are not required any more
by any other device should be disabled (by executing their _OFF control methods).
If the current power state of the device is D3, it can only be put into D0 this way.

However, quite often the power states of devices are changed during a system-
wide transition into a sleep state or back into the working state. ACPI defines four
system sleep states, S1, S2, S3, and S4, and denotes the system working state as
S0. In general, the target system sleep (or working) state determines the highest
power (lowest number) state the device can be put into and the kernel is supposed
to obtain this information by executing the device’s _SxD control method (where
x is a number between 0 and 4 inclusive). If the device is required to wake up the
system from the target sleep state, the lowest power (highest number) state it can
be put into is also determined by the target state of the system. The kernel is then
supposed to use the device’s _SxW control method to obtain the number of that
state. It also is supposed to use the device’s _PRW control method to learn which
power resources need to be enabled for the device to be able to generate wakeup
signals.

8.1.4 1.4. Wakeup Signaling

Wakeup signals generated by PCI devices, either as native PCI PMEs, or as a result
of the execution of the _DSW (or _PSW) ACPI control method before putting the
device into a low-power state, have to be caught and handled as appropriate. If
they are sent while the system is in the working state (ACPI S0), they should be
translated into interrupts so that the kernel can put the devices generating them
into the full-power state and take care of the events that triggered them. In turn,
if they are sent while the system is sleeping, they should cause the system’s core
logic to trigger wakeup.

On ACPI-based systems wakeup signals sent by conventional PCI devices are con-
verted into ACPI General-Purpose Events (GPEs) which are hardware signals from
the system core logic generated in response to various events that need to be acted
upon. Every GPE is associated with one or more sources of potentially interest-
ing events. In particular, a GPE may be associated with a PCI device capable of
signaling wakeup. The information on the connections between GPEs and event
sources is recorded in the system’s ACPI BIOS from where it can be read by the
kernel.

If a PCI device known to the system’s ACPI BIOS signals wakeup, the GPE asso-
ciated with it (if there is one) is triggered. The GPEs associated with PCI bridges
may also be triggered in response to a wakeup signal from one of the devices be-
low the bridge (this also is the case for root bridges) and, for example, native PCI
PMEs from devices unknown to the system’s ACPI BIOS may be handled this way.

36 Chapter 8. PCI Power Management

Linux Power Documentation

A GPE may be triggered when the system is sleeping (i.e. when it is in one of the
ACPI S1-S4 states), in which case system wakeup is started by its core logic (the
device that was the source of the signal causing the system wakeup to occur may
be identified later). The GPEs used in such situations are referred to as wakeup
GPEs.

Usually, however, GPEs are also triggered when the system is in the working state
(ACPI S0) and in that case the system’s core logic generates a System Control
Interrupt (SCI) to notify the kernel of the event. Then, the SCI handler identifies
the GPE that caused the interrupt to be generated which, in turn, allows the kernel
to identify the source of the event (that may be a PCI device signaling wakeup).
The GPEs used for notifying the kernel of events occurring while the system is in
the working state are referred to as runtime GPEs.

Unfortunately, there is no standard way of handling wakeup signals sent by con-
ventional PCI devices on systems that are not ACPI-based, but there is one for
PCI Express devices. Namely, the PCI Express Base Specification introduced a
native mechanism for converting native PCI PMEs into interrupts generated by
root ports. For conventional PCI devices native PMEs are out-of-band, so they are
routed separately and they need not pass through bridges (in principle they may
be routed directly to the system’s core logic), but for PCI Express devices they
are in-band messages that have to pass through the PCI Express hierarchy, includ-
ing the root port on the path from the device to the Root Complex. Thus it was
possible to introduce a mechanism by which a root port generates an interrupt
whenever it receives a PME message from one of the devices below it. The PCI
Express Requester ID of the device that sent the PME message is then recorded
in one of the root port’s configuration registers from where it may be read by
the interrupt handler allowing the device to be identified. [PME messages sent by
PCI Express endpoints integrated with the Root Complex don’t pass through root
ports, but instead they cause a Root Complex Event Collector (if there is one) to
generate interrupts.]

In principle the native PCI Express PME signaling may also be used on ACPI-based
systems along with the GPEs, but to use it the kernel has to ask the system’s
ACPI BIOS to release control of root port configuration registers. The ACPI BIOS,
however, is not required to allow the kernel to control these registers and if it
doesn’t do that, the kernel must not modify their contents. Of course the native
PCI Express PME signaling cannot be used by the kernel in that case.

8.2 2. PCI Subsystem and Device Power Management

8.2.1 2.1. Device Power Management Callbacks

The PCI Subsystem participates in the power management of PCI devices in a
number of ways. First of all, it provides an intermediate code layer between the
device power management core (PM core) and PCI device drivers. Specifically, the
pm field of the PCI subsystem’s struct bus_type object, pci_bus_type, points to a
struct dev_pm_ops object, pci_dev_pm_ops, containing pointers to several device
power management callbacks:

8.2. 2. PCI Subsystem and Device Power Management 37

Linux Power Documentation

const struct dev_pm_ops pci_dev_pm_ops = {
.prepare = pci_pm_prepare,
.complete = pci_pm_complete,
.suspend = pci_pm_suspend,
.resume = pci_pm_resume,
.freeze = pci_pm_freeze,
.thaw = pci_pm_thaw,
.poweroff = pci_pm_poweroff,
.restore = pci_pm_restore,
.suspend_noirq = pci_pm_suspend_noirq,
.resume_noirq = pci_pm_resume_noirq,
.freeze_noirq = pci_pm_freeze_noirq,
.thaw_noirq = pci_pm_thaw_noirq,
.poweroff_noirq = pci_pm_poweroff_noirq,
.restore_noirq = pci_pm_restore_noirq,
.runtime_suspend = pci_pm_runtime_suspend,
.runtime_resume = pci_pm_runtime_resume,
.runtime_idle = pci_pm_runtime_idle,

};

These callbacks are executed by the PM core in various situations related to de-
vice power management and they, in turn, execute power management callbacks
provided by PCI device drivers. They also perform power management operations
involving some standard configuration registers of PCI devices that device drivers
need not know or care about.

The structure representing a PCI device, struct pci_dev, contains several fields
that these callbacks operate on:

struct pci_dev {
...
pci_power_t current_state; /* Current operating state. */
int pm_cap; /* PM capability offset in the

configuration space */
unsigned int pme_support:5; /* Bitmask of states from which PME#

can be generated */
unsigned int pme_interrupt:1;/* Is native PCIe PME signaling used?

↪→ */
unsigned int d1_support:1; /* Low power state D1 is supported */
unsigned int d2_support:1; /* Low power state D2 is supported */
unsigned int no_d1d2:1; /* D1 and D2 are forbidden */
unsigned int wakeup_prepared:1; /* Device prepared for wake up */
unsigned int d3_delay; /* D3->D0 transition time in ms */
...

};

They also indirectly use some fields of the struct device that is embedded in struct
pci_dev.

38 Chapter 8. PCI Power Management

Linux Power Documentation

8.2.2 2.2. Device Initialization

The PCI subsystem’s first task related to device power management is to pre-
pare the device for power management and initialize the fields of struct pci_dev
used for this purpose. This happens in two functions defined in drivers/pci/pci.c,
pci_pm_init() and platform_pci_wakeup_init().

The first of these functions checks if the device supports native PCI PM and if
that’s the case the offset of its power management capability structure in the
configuration space is stored in the pm_cap field of the device’s struct pci_dev
object. Next, the function checks which PCI low-power states are supported by
the device and from which low-power states the device can generate native PCI
PMEs. The power management fields of the device’s struct pci_dev and the struct
device embedded in it are updated accordingly and the generation of PMEs by the
device is disabled.

The second function checks if the device can be prepared to signal wakeup with
the help of the platform firmware, such as the ACPI BIOS. If that is the case, the
function updates the wakeup fields in struct device embedded in the device’s
struct pci_dev and uses the firmware-provided method to prevent the device from
signaling wakeup.

At this point the device is ready for power management. For driverless devices,
however, this functionality is limited to a few basic operations carried out during
system-wide transitions to a sleep state and back to the working state.

8.2.3 2.3. Runtime Device Power Management

The PCI subsystem plays a vital role in the runtime power management of PCI
devices. For this purpose it uses the general runtime power management (runtime
PM) framework described in Documentation/power/runtime_pm.rst. Namely, it
provides subsystem-level callbacks:

pci_pm_runtime_suspend()
pci_pm_runtime_resume()
pci_pm_runtime_idle()

that are executed by the core runtime PM routines. It also implements the entire
mechanics necessary for handling runtime wakeup signals from PCI devices in
low-power states, which at the time of this writing works for both the native PCI
Express PME signaling and the ACPI GPE-based wakeup signaling described in
Section 1.

First, a PCI device is put into a low-power state, or suspended, with the help
of pm_schedule_suspend() or pm_runtime_suspend() which for PCI devices call
pci_pm_runtime_suspend() to do the actual job. For this to work, the device’s
driver has to provide a pm->runtime_suspend() callback (see below), which is run
by pci_pm_runtime_suspend() as the first action. If the driver’s callback returns
successfully, the device’s standard configuration registers are saved, the device
is prepared to generate wakeup signals and, finally, it is put into the target low-
power state.

The low-power state to put the device into is the lowest-power (highest number)
state from which it can signal wakeup. The exact method of signaling wakeup

8.2. 2. PCI Subsystem and Device Power Management 39

Linux Power Documentation

is system-dependent and is determined by the PCI subsystem on the basis of the
reported capabilities of the device and the platform firmware. To prepare the
device for signaling wakeup and put it into the selected low-power state, the PCI
subsystem can use the platform firmware as well as the device’s native PCI PM
capabilities, if supported.

It is expected that the device driver’s pm->runtime_suspend() callback will not
attempt to prepare the device for signaling wakeup or to put it into a low-power
state. The driver ought to leave these tasks to the PCI subsystem that has all of
the information necessary to perform them.

A suspended device is brought back into the “active”state, or resumed,
with the help of pm_request_resume() or pm_runtime_resume() which both call
pci_pm_runtime_resume() for PCI devices. Again, this only works if the device’s
driver provides a pm->runtime_resume() callback (see below). However, before
the driver’s callback is executed, pci_pm_runtime_resume() brings the device back
into the full-power state, prevents it from signaling wakeup while in that state and
restores its standard configuration registers. Thus the driver’s callback need not
worry about the PCI-specific aspects of the device resume.

Note that generally pci_pm_runtime_resume() may be called in two different situ-
ations. First, it may be called at the request of the device’s driver, for example
if there are some data for it to process. Second, it may be called as a result of
a wakeup signal from the device itself (this sometimes is referred to as “remote
wakeup”). Of course, for this purpose the wakeup signal is handled in one of the
ways described in Section 1 and finally converted into a notification for the PCI
subsystem after the source device has been identified.

The pci_pm_runtime_idle() function, called for PCI devices by pm_runtime_idle()
and pm_request_idle(), executes the device driver’s pm->runtime_idle() callback,
if defined, and if that callback doesn’t return error code (or is not present at
all), suspends the device with the help of pm_runtime_suspend(). Sometimes
pci_pm_runtime_idle() is called automatically by the PM core (for example, it is
called right after the device has just been resumed), in which cases it is expected
to suspend the device if that makes sense. Usually, however, the PCI subsystem
doesn’t really know if the device really can be suspended, so it lets the device’s
driver decide by running its pm->runtime_idle() callback.

8.2.4 2.4. System-Wide Power Transitions

There are a few different types of system-wide power transitions, described in
Documentation/driver-api/pm/devices.rst. Each of them requires devices to be
handled in a specific way and the PM core executes subsystem-level power man-
agement callbacks for this purpose. They are executed in phases such that each
phase involves executing the same subsystem-level callback for every device be-
longing to the given subsystem before the next phase begins. These phases always
run after tasks have been frozen.

40 Chapter 8. PCI Power Management

Linux Power Documentation

2.4.1. System Suspend

When the system is going into a sleep state in which the contents of memory will
be preserved, such as one of the ACPI sleep states S1-S3, the phases are:

prepare, suspend, suspend_noirq.

The following PCI bus type’s callbacks, respectively, are used in these phases:
pci_pm_prepare()
pci_pm_suspend()
pci_pm_suspend_noirq()

The pci_pm_prepare() routine first puts the device into the“fully functional”state
with the help of pm_runtime_resume(). Then, it executes the device driver’s pm-
>prepare() callback if defined (i.e. if the driver’s struct dev_pm_ops object is
present and the prepare pointer in that object is valid).

The pci_pm_suspend() routine first checks if the device’s driver implements legacy
PCI suspend routines (see Section 3), in which case the driver’s legacy suspend
callback is executed, if present, and its result is returned. Next, if the device’
s driver doesn’t provide a struct dev_pm_ops object (containing pointers to the
driver’s callbacks), pci_pm_default_suspend() is called, which simply turns off
the device’s bus master capability and runs pcibios_disable_device() to disable it,
unless the device is a bridge (PCI bridges are ignored by this routine). Next, the
device driver’s pm->suspend() callback is executed, if defined, and its result is
returned if it fails. Finally, pci_fixup_device() is called to apply hardware suspend
quirks related to the device if necessary.

Note that the suspend phase is carried out asynchronously for PCI devices, so the
pci_pm_suspend() callback may be executed in parallel for any pair of PCI devices
that don’t depend on each other in a known way (i.e. none of the paths in the
device tree from the root bridge to a leaf device contains both of them).

The pci_pm_suspend_noirq() routine is executed after suspend_device_irqs() has
been called, which means that the device driver’s interrupt handler won’t be in-
voked while this routine is running. It first checks if the device’s driver implements
legacy PCI suspends routines (Section 3), in which case the legacy late suspend
routine is called and its result is returned (the standard configuration registers of
the device are saved if the driver’s callback hasn’t done that). Second, if the
device driver’s struct dev_pm_ops object is not present, the device’s standard
configuration registers are saved and the routine returns success. Otherwise the
device driver’s pm->suspend_noirq() callback is executed, if present, and its result
is returned if it fails. Next, if the device’s standard configuration registers haven’
t been saved yet (one of the device driver’s callbacks executed before might do
that), pci_pm_suspend_noirq() saves them, prepares the device to signal wakeup
(if necessary) and puts it into a low-power state.

The low-power state to put the device into is the lowest-power (highest number)
state from which it can signal wakeup while the system is in the target sleep state.
Just like in the runtime PM case described above, the mechanism of signaling
wakeup is system-dependent and determined by the PCI subsystem, which is also
responsible for preparing the device to signal wakeup from the system’s target
sleep state as appropriate.

8.2. 2. PCI Subsystem and Device Power Management 41

Linux Power Documentation

PCI device drivers (that don’t implement legacy power management callbacks)
are generally not expected to prepare devices for signaling wakeup or to put them
into low-power states. However, if one of the driver’s suspend callbacks (pm-
>suspend() or pm->suspend_noirq()) saves the device’s standard configuration
registers, pci_pm_suspend_noirq() will assume that the device has been prepared
to signal wakeup and put into a low-power state by the driver (the driver is then
assumed to have used the helper functions provided by the PCI subsystem for this
purpose). PCI device drivers are not encouraged to do that, but in some rare cases
doing that in the driver may be the optimum approach.

2.4.2. System Resume

When the system is undergoing a transition from a sleep state in which the con-
tents of memory have been preserved, such as one of the ACPI sleep states S1-S3,
into the working state (ACPI S0), the phases are:

resume_noirq, resume, complete.

The following PCI bus type’s callbacks, respectively, are executed in these phases:
pci_pm_resume_noirq()
pci_pm_resume()
pci_pm_complete()

The pci_pm_resume_noirq() routine first puts the device into the full-power state,
restores its standard configuration registers and applies early resume hardware
quirks related to the device, if necessary. This is done unconditionally, regardless
of whether or not the device’s driver implements legacy PCI power management
callbacks (this way all PCI devices are in the full-power state and their standard
configuration registers have been restored when their interrupt handlers are in-
voked for the first time during resume, which allows the kernel to avoid prob-
lems with the handling of shared interrupts by drivers whose devices are still
suspended). If legacy PCI power management callbacks (see Section 3) are im-
plemented by the device’s driver, the legacy early resume callback is executed
and its result is returned. Otherwise, the device driver’s pm->resume_noirq()
callback is executed, if defined, and its result is returned.

The pci_pm_resume() routine first checks if the device’s standard configuration
registers have been restored and restores them if that’s not the case (this only
is necessary in the error path during a failing suspend). Next, resume hardware
quirks related to the device are applied, if necessary, and if the device’s driver
implements legacy PCI power management callbacks (see Section 3), the driver’
s legacy resume callback is executed and its result is returned. Otherwise, the
device’s wakeup signaling mechanisms are blocked and its driver’s pm->resume()
callback is executed, if defined (the callback’s result is then returned).
The resume phase is carried out asynchronously for PCI devices, like the suspend
phase described above, which means that if two PCI devices don’t depend on each
other in a known way, the pci_pm_resume() routine may be executed for the both
of them in parallel.

The pci_pm_complete() routine only executes the device driver’s pm->complete()
callback, if defined.

42 Chapter 8. PCI Power Management

Linux Power Documentation

2.4.3. System Hibernation

System hibernation is more complicated than system suspend, because it requires
a system image to be created and written into a persistent storage medium. The
image is created atomically and all devices are quiesced, or frozen, before that
happens.

The freezing of devices is carried out after enough memory has been freed (at the
time of this writing the image creation requires at least 50% of system RAM to be
free) in the following three phases:

prepare, freeze, freeze_noirq

that correspond to the PCI bus type’s callbacks:
pci_pm_prepare()
pci_pm_freeze()
pci_pm_freeze_noirq()

This means that the prepare phase is exactly the same as for system suspend. The
other two phases, however, are different.

The pci_pm_freeze() routine is quite similar to pci_pm_suspend(), but it runs the
device driver’s pm->freeze() callback, if defined, instead of pm->suspend(), and it
doesn’t apply the suspend-related hardware quirks. It is executed asynchronously
for different PCI devices that don’t depend on each other in a known way.
The pci_pm_freeze_noirq() routine, in turn, is similar to pci_pm_suspend_noirq(),
but it calls the device driver’s pm->freeze_noirq() routine instead of pm-
>suspend_noirq(). It also doesn’t attempt to prepare the device for signaling
wakeup and put it into a low-power state. Still, it saves the device’s standard con-
figuration registers if they haven’t been saved by one of the driver’s callbacks.
Once the image has been created, it has to be saved. However, at this point all
devices are frozen and they cannot handle I/O, while their ability to handle I/O is
obviously necessary for the image saving. Thus they have to be brought back to
the fully functional state and this is done in the following phases:

thaw_noirq, thaw, complete

using the following PCI bus type’s callbacks:
pci_pm_thaw_noirq()
pci_pm_thaw()
pci_pm_complete()

respectively.

The first of them, pci_pm_thaw_noirq(), is analogous to pci_pm_resume_noirq().
It puts the device into the full power state and restores its standard configura-
tion registers. It also executes the device driver’s pm->thaw_noirq() callback, if
defined, instead of pm->resume_noirq().

The pci_pm_thaw() routine is similar to pci_pm_resume(), but it runs the device
driver’s pm->thaw() callback instead of pm->resume(). It is executed asyn-
chronously for different PCI devices that don’t depend on each other in a known
way.

8.2. 2. PCI Subsystem and Device Power Management 43

Linux Power Documentation

The complete phase is the same as for system resume.

After saving the image, devices need to be powered down before the system can
enter the target sleep state (ACPI S4 for ACPI-based systems). This is done in
three phases:

prepare, poweroff, poweroff_noirq

where the prepare phase is exactly the same as for system suspend. The other two
phases are analogous to the suspend and suspend_noirq phases, respectively. The
PCI subsystem-level callbacks they correspond to:

pci_pm_poweroff()
pci_pm_poweroff_noirq()

work in analogy with pci_pm_suspend() and pci_pm_poweroff_noirq(), respectively,
although they don’t attempt to save the device’s standard configuration registers.

2.4.4. System Restore

System restore requires a hibernation image to be loaded into memory and the
pre-hibernationmemory contents to be restored before the pre-hibernation system
activity can be resumed.

As described in Documentation/driver-api/pm/devices.rst, the hibernation image
is loaded into memory by a fresh instance of the kernel, called the boot kernel,
which in turn is loaded and run by a boot loader in the usual way. After the boot
kernel has loaded the image, it needs to replace its own code and data with the
code and data of the“hibernated”kernel stored within the image, called the image
kernel. For this purpose all devices are frozen just like before creating the image
during hibernation, in the

prepare, freeze, freeze_noirq

phases described above. However, the devices affected by these phases are only
those having drivers in the boot kernel; other devices will still be in whatever state
the boot loader left them.

Should the restoration of the pre-hibernationmemory contents fail, the boot kernel
would go through the“thawing”procedure described above, using the thaw_noirq,
thaw, and complete phases (that will only affect the devices having drivers in the
boot kernel), and then continue running normally.

If the pre-hibernation memory contents are restored successfully, which is the
usual situation, control is passed to the image kernel, which then becomes re-
sponsible for bringing the system back to the working state. To achieve this, it
must restore the devices’pre-hibernation functionality, which is done much like
waking up from the memory sleep state, although it involves different phases:

restore_noirq, restore, complete

The first two of these are analogous to the resume_noirq and resume phases de-
scribed above, respectively, and correspond to the following PCI subsystem call-
backs:

44 Chapter 8. PCI Power Management

Linux Power Documentation

pci_pm_restore_noirq()
pci_pm_restore()

These callbacks work in analogy with pci_pm_resume_noirq() and
pci_pm_resume(), respectively, but they execute the device driver’s pm-
>restore_noirq() and pm->restore() callbacks, if available.

The complete phase is carried out in exactly the same way as during system re-
sume.

8.3 3. PCI Device Drivers and Power Management

8.3.1 3.1. Power Management Callbacks

PCI device drivers participate in power management by providing callbacks to be
executed by the PCI subsystem’s power management routines described above
and by controlling the runtime power management of their devices.

At the time of this writing there are two ways to define power management call-
backs for a PCI device driver, the recommended one, based on using a dev_pm_ops
structure described in Documentation/driver-api/pm/devices.rst, and the“legacy”
one, in which the .suspend() and .resume() callbacks from struct pci_driver are
used. The legacy approach, however, doesn’t allow one to define runtime power
management callbacks and is not really suitable for any new drivers. Therefore it
is not covered by this document (refer to the source code to learn more about it).

It is recommended that all PCI device drivers define a struct dev_pm_ops object
containing pointers to power management (PM) callbacks that will be executed
by the PCI subsystem’s PM routines in various circumstances. A pointer to the
driver’s struct dev_pm_ops object has to be assigned to the driver.pm field in its
struct pci_driver object. Once that has happened, the “legacy”PM callbacks in
struct pci_driver are ignored (even if they are not NULL).

The PM callbacks in struct dev_pm_ops are not mandatory and if they are not de-
fined (i.e. the respective fields of struct dev_pm_ops are unset) the PCI subsystem
will handle the device in a simplified default manner. If they are defined, though,
they are expected to behave as described in the following subsections.

3.1.1. prepare()

The prepare() callback is executed during system suspend, during hibernation
(when a hibernation image is about to be created), during power-off after sav-
ing a hibernation image and during system restore, when a hibernation image has
just been loaded into memory.

This callback is only necessary if the driver’s device has children that in general
may be registered at any time. In that case the role of the prepare() callback
is to prevent new children of the device from being registered until one of the
resume_noirq(), thaw_noirq(), or restore_noirq() callbacks is run.

In addition to that the prepare() callback may carry out some operations prepar-
ing the device to be suspended, although it should not allocate memory (if addi-

8.3. 3. PCI Device Drivers and Power Management 45

Linux Power Documentation

tional memory is required to suspend the device, it has to be preallocated earlier,
for example in a suspend/hibernate notifier as described in Documentation/driver-
api/pm/notifiers.rst).

3.1.2. suspend()

The suspend() callback is only executed during system suspend, after prepare()
callbacks have been executed for all devices in the system.

This callback is expected to quiesce the device and prepare it to be put into a
low-power state by the PCI subsystem. It is not required (in fact it even is not
recommended) that a PCI driver’s suspend() callback save the standard configu-
ration registers of the device, prepare it for waking up the system, or put it into a
low-power state. All of these operations can very well be taken care of by the PCI
subsystem, without the driver’s participation.
However, in some rare case it is convenient to carry out these operations in a PCI
driver. Then, pci_save_state(), pci_prepare_to_sleep(), and pci_set_power_state()
should be used to save the device’s standard configuration registers, to prepare it
for system wakeup (if necessary), and to put it into a low-power state, respectively.
Moreover, if the driver calls pci_save_state(), the PCI subsystem will not execute
either pci_prepare_to_sleep(), or pci_set_power_state() for its device, so the driver
is then responsible for handling the device as appropriate.

While the suspend() callback is being executed, the driver’s interrupt handler can
be invoked to handle an interrupt from the device, so all suspend-related opera-
tions relying on the driver’s ability to handle interrupts should be carried out in
this callback.

3.1.3. suspend_noirq()

The suspend_noirq() callback is only executed during system suspend, after sus-
pend() callbacks have been executed for all devices in the system and after device
interrupts have been disabled by the PM core.

The difference between suspend_noirq() and suspend() is that the driver’s in-
terrupt handler will not be invoked while suspend_noirq() is running. Thus sus-
pend_noirq() can carry out operations that would cause race conditions to arise if
they were performed in suspend().

3.1.4. freeze()

The freeze() callback is hibernation-specific and is executed in two situations, dur-
ing hibernation, after prepare() callbacks have been executed for all devices in
preparation for the creation of a system image, and during restore, after a system
image has been loaded into memory from persistent storage and the prepare()
callbacks have been executed for all devices.

The role of this callback is analogous to the role of the suspend() callback described
above. In fact, they only need to be different in the rare cases when the driver takes
the responsibility for putting the device into a low-power state.

46 Chapter 8. PCI Power Management

Linux Power Documentation

In that cases the freeze() callback should not prepare the device system wakeup
or put it into a low-power state. Still, either it or freeze_noirq() should save the
device’s standard configuration registers using pci_save_state().

3.1.5. freeze_noirq()

The freeze_noirq() callback is hibernation-specific. It is executed during hiberna-
tion, after prepare() and freeze() callbacks have been executed for all devices in
preparation for the creation of a system image, and during restore, after a system
image has been loaded into memory and after prepare() and freeze() callbacks
have been executed for all devices. It is always executed after device interrupts
have been disabled by the PM core.

The role of this callback is analogous to the role of the suspend_noirq() callback
described above and it very rarely is necessary to define freeze_noirq().

The difference between freeze_noirq() and freeze() is analogous to the difference
between suspend_noirq() and suspend().

3.1.6. poweroff()

The poweroff() callback is hibernation-specific. It is executed when the system is
about to be powered off after saving a hibernation image to a persistent storage.
prepare() callbacks are executed for all devices before poweroff() is called.

The role of this callback is analogous to the role of the suspend() and freeze()
callbacks described above, although it does not need to save the contents of the
device’s registers. In particular, if the driver wants to put the device into a low-
power state itself instead of allowing the PCI subsystem to do that, the poweroff()
callback should use pci_prepare_to_sleep() and pci_set_power_state() to prepare
the device for system wakeup and to put it into a low-power state, respectively,
but it need not save the device’s standard configuration registers.

3.1.7. poweroff_noirq()

The poweroff_noirq() callback is hibernation-specific. It is executed after
poweroff() callbacks have been executed for all devices in the system.

The role of this callback is analogous to the role of the suspend_noirq() and
freeze_noirq() callbacks described above, but it does not need to save the contents
of the device’s registers.
The difference between poweroff_noirq() and poweroff() is analogous to the differ-
ence between suspend_noirq() and suspend().

8.3. 3. PCI Device Drivers and Power Management 47

Linux Power Documentation

3.1.8. resume_noirq()

The resume_noirq() callback is only executed during system resume, after the PM
core has enabled the non-boot CPUs. The driver’s interrupt handler will not be
invoked while resume_noirq() is running, so this callback can carry out operations
that might race with the interrupt handler.

Since the PCI subsystem unconditionally puts all devices into the full power state
in the resume_noirq phase of system resume and restores their standard configu-
ration registers, resume_noirq() is usually not necessary. In general it should only
be used for performing operations that would lead to race conditions if carried out
by resume().

3.1.9. resume()

The resume() callback is only executed during system resume, after re-
sume_noirq() callbacks have been executed for all devices in the system and device
interrupts have been enabled by the PM core.

This callback is responsible for restoring the pre-suspend configuration of the de-
vice and bringing it back to the fully functional state. The device should be able
to process I/O in a usual way after resume() has returned.

3.1.10. thaw_noirq()

The thaw_noirq() callback is hibernation-specific. It is executed after a system
image has been created and the non-boot CPUs have been enabled by the PM core,
in the thaw_noirq phase of hibernation. It also may be executed if the loading of
a hibernation image fails during system restore (it is then executed after enabling
the non-boot CPUs). The driver’s interrupt handler will not be invoked while
thaw_noirq() is running.

The role of this callback is analogous to the role of resume_noirq(). The difference
between these two callbacks is that thaw_noirq() is executed after freeze() and
freeze_noirq(), so in general it does not need to modify the contents of the device’
s registers.

3.1.11. thaw()

The thaw() callback is hibernation-specific. It is executed after thaw_noirq() call-
backs have been executed for all devices in the system and after device interrupts
have been enabled by the PM core.

This callback is responsible for restoring the pre-freeze configuration of the device,
so that it will work in a usual way after thaw() has returned.

48 Chapter 8. PCI Power Management

Linux Power Documentation

3.1.12. restore_noirq()

The restore_noirq() callback is hibernation-specific. It is executed in the re-
store_noirq phase of hibernation, when the boot kernel has passed control to the
image kernel and the non-boot CPUs have been enabled by the image kernel’s
PM core.

This callback is analogous to resume_noirq() with the exception that it cannotmake
any assumption on the previous state of the device, even if the BIOS (or generally
the platform firmware) is known to preserve that state over a suspend-resume
cycle.

For the vast majority of PCI device drivers there is no difference between re-
sume_noirq() and restore_noirq().

3.1.13. restore()

The restore() callback is hibernation-specific. It is executed after restore_noirq()
callbacks have been executed for all devices in the system and after the PM core
has enabled device drivers’interrupt handlers to be invoked.
This callback is analogous to resume(), just like restore_noirq() is analogous to re-
sume_noirq(). Consequently, the difference between restore_noirq() and restore()
is analogous to the difference between resume_noirq() and resume().

For the vast majority of PCI device drivers there is no difference between resume()
and restore().

3.1.14. complete()

The complete() callback is executed in the following situations:

• during system resume, after resume() callbacks have been executed for all
devices,

• during hibernation, before saving the system image, after thaw() callbacks
have been executed for all devices,

• during system restore, when the system is going back to its pre-hibernation
state, after restore() callbacks have been executed for all devices.

It also may be executed if the loading of a hibernation image into memory fails (in
that case it is run after thaw() callbacks have been executed for all devices that
have drivers in the boot kernel).

This callback is entirely optional, although it may be necessary if the prepare()
callback performs operations that need to be reversed.

8.3. 3. PCI Device Drivers and Power Management 49

Linux Power Documentation

3.1.15. runtime_suspend()

The runtime_suspend() callback is specific to device runtime power management
(runtime PM). It is executed by the PM core’s runtime PM framework when the
device is about to be suspended (i.e. quiesced and put into a low-power state) at
run time.

This callback is responsible for freezing the device and preparing it to be put into
a low-power state, but it must allow the PCI subsystem to perform all of the PCI-
specific actions necessary for suspending the device.

3.1.16. runtime_resume()

The runtime_resume() callback is specific to device runtime PM. It is executed by
the PM core’s runtime PM framework when the device is about to be resumed
(i.e. put into the full-power state and programmed to process I/O normally) at run
time.

This callback is responsible for restoring the normal functionality of the device
after it has been put into the full-power state by the PCI subsystem. The device
is expected to be able to process I/O in the usual way after runtime_resume() has
returned.

3.1.17. runtime_idle()

The runtime_idle() callback is specific to device runtime PM. It is executed by the
PM core’s runtime PM framework whenever it may be desirable to suspend the
device according to the PM core’s information. In particular, it is automatically ex-
ecuted right after runtime_resume() has returned in case the resume of the device
has happened as a result of a spurious event.

This callback is optional, but if it is not implemented or if it returns 0, the PCI
subsystem will call pm_runtime_suspend() for the device, which in turn will cause
the driver’s runtime_suspend() callback to be executed.

3.1.18. Pointing Multiple Callback Pointers to One Routine

Although in principle each of the callbacks described in the previous subsections
can be defined as a separate function, it often is convenient to point two or more
members of struct dev_pm_ops to the same routine. There are a few convenience
macros that can be used for this purpose.

The SIMPLE_DEV_PM_OPS macro declares a struct dev_pm_ops object with one
suspend routine pointed to by the .suspend(), .freeze(), and .poweroff() members
and one resume routine pointed to by the .resume(), .thaw(), and .restore() mem-
bers. The other function pointers in this struct dev_pm_ops are unset.

The UNIVERSAL_DEV_PM_OPS macro is similar to SIMPLE_DEV_PM_OPS, but
it additionally sets the .runtime_resume() pointer to the same value as .resume()
(and .thaw(), and .restore()) and the .runtime_suspend() pointer to the same value
as .suspend() (and .freeze() and .poweroff()).

50 Chapter 8. PCI Power Management

Linux Power Documentation

The SET_SYSTEM_SLEEP_PM_OPS can be used inside of a declaration of struct
dev_pm_ops to indicate that one suspend routine is to be pointed to by the .sus-
pend(), .freeze(), and .poweroff() members and one resume routine is to be pointed
to by the .resume(), .thaw(), and .restore() members.

3.1.19. Driver Flags for Power Management

The PM core allows device drivers to set flags that influence the handling of power
management for the devices by the core itself and by middle layer code including
the PCI bus type. The flags should be set once at the driver probe time with the
help of the dev_pm_set_driver_flags() function and they should not be updated
directly afterwards.

The DPM_FLAG_NO_DIRECT_COMPLETE flag prevents the PM core from using
the direct-complete mechanism allowing device suspend/resume callbacks to be
skipped if the device is in runtime suspend when the system suspend starts. That
also affects all of the ancestors of the device, so this flag should only be used if
absolutely necessary.

The DPM_FLAG_SMART_PREPARE flag causes the PCI bus type to return a pos-
itive value from pci_pm_prepare() only if the ->prepare callback provided by
the driver of the device returns a positive value. That allows the driver to
opt out from using the direct-complete mechanism dynamically (whereas setting
DPM_FLAG_NO_DIRECT_COMPLETE means permanent opt-out).

The DPM_FLAG_SMART_SUSPEND flag tells the PCI bus type that from the driver’
s perspective the device can be safely left in runtime suspend during system
suspend. That causes pci_pm_suspend(), pci_pm_freeze() and pci_pm_poweroff()
to avoid resuming the device from runtime suspend unless there are PCI-
specific reasons for doing that. Also, it causes pci_pm_suspend_late/noirq()
and pci_pm_poweroff_late/noirq() to return early if the device remains in run-
time suspend during the “late”phase of the system-wide transition under way.
Moreover, if the device is in runtime suspend in pci_pm_resume_noirq() or
pci_pm_restore_noirq(), its runtime PM status will be changed to“active”(as it is
going to be put into D0 going forward).

Setting the DPM_FLAG_MAY_SKIP_RESUME flag means that the driver allows its
“noirq”and “early”resume callbacks to be skipped if the device can be left in
suspend after a system-wide transition into the working state. This flag is taken
into consideration by the PM core along with the power.may_skip_resume status
bit of the device which is set by pci_pm_suspend_noirq() in certain situations. If
the PM core determines that the driver’s“noirq”and“early”resume callbacks
should be skipped, the dev_pm_skip_resume() helper function will return “true”
and that will cause pci_pm_resume_noirq() and pci_pm_resume_early() to return
upfront without touching the device and executing the driver callbacks.

8.3. 3. PCI Device Drivers and Power Management 51

Linux Power Documentation

8.3.2 3.2. Device Runtime Power Management

In addition to providing device power management callbacks PCI device drivers
are responsible for controlling the runtime power management (runtime PM) of
their devices.

The PCI device runtime PM is optional, but it is recommended that PCI device
drivers implement it at least in the cases where there is a reliable way of verify-
ing that the device is not used (like when the network cable is detached from an
Ethernet adapter or there are no devices attached to a USB controller).

To support the PCI runtime PM the driver first needs to implement the run-
time_suspend() and runtime_resume() callbacks. It also may need to implement
the runtime_idle() callback to prevent the device from being suspended again ev-
ery time right after the runtime_resume() callback has returned (alternatively, the
runtime_suspend() callback will have to check if the device should really be sus-
pended and return -EAGAIN if that is not the case).

The runtime PM of PCI devices is enabled by default by the PCI core. PCI device
drivers do not need to enable it and should not attempt to do so. However, it is
blocked by pci_pm_init() that runs the pm_runtime_forbid() helper function. In
addition to that, the runtime PM usage counter of each PCI device is incremented
by local_pci_probe() before executing the probe callback provided by the device’
s driver.

If a PCI driver implements the runtime PM callbacks and intends to use the run-
time PM framework provided by the PM core and the PCI subsystem, it needs to
decrement the device’s runtime PM usage counter in its probe callback function.
If it doesn’t do that, the counter will always be different from zero for the device
and it will never be runtime-suspended. The simplest way to do that is by calling
pm_runtime_put_noidle(), but if the driver wants to schedule an autosuspend right
away, for example, it may call pm_runtime_put_autosuspend() instead for this pur-
pose. Generally, it just needs to call a function that decrements the devices usage
counter from its probe routine to make runtime PM work for the device.

It is important to remember that the driver’s runtime_suspend() callback may be
executed right after the usage counter has been decremented, because user space
may already have caused the pm_runtime_allow() helper function unblocking the
runtime PM of the device to run via sysfs, so the driver must be prepared to cope
with that.

The driver itself should not call pm_runtime_allow(), though. Instead, it should let
user space or some platform-specific code do that (user space can do it via sysfs
as stated above), but it must be prepared to handle the runtime PM of the device
correctly as soon as pm_runtime_allow() is called (which may happen at any time,
even before the driver is loaded).

When the driver’s remove callback runs, it has to balance the decrementa-
tion of the device’s runtime PM usage counter at the probe time. For this
reason, if it has decremented the counter in its probe callback, it must run
pm_runtime_get_noresume() in its remove callback. [Since the core carries out
a runtime resume of the device and bumps up the device’s usage counter before
running the driver’s remove callback, the runtime PM of the device is effectively
disabled for the duration of the remove execution and all runtime PM helper func-
tions incrementing the device’s usage counter are then effectively equivalent to

52 Chapter 8. PCI Power Management

Linux Power Documentation

pm_runtime_get_noresume().]

The runtime PM framework works by processing requests to suspend or resume
devices, or to check if they are idle (in which cases it is reasonable to subsequently
request that they be suspended). These requests are represented by work items
put into the power management workqueue, pm_wq. Although there are a few
situations in which power management requests are automatically queued by the
PM core (for example, after processing a request to resume a device the PM core
automatically queues a request to check if the device is idle), device drivers are
generally responsible for queuing power management requests for their devices.
For this purpose they should use the runtime PM helper functions provided by the
PM core, discussed in Documentation/power/runtime_pm.rst.

Devices can also be suspended and resumed synchronously, without placing a re-
quest into pm_wq. In the majority of cases this also is done by their drivers that
use helper functions provided by the PM core for this purpose.

For more information on the runtime PM of devices refer to Documenta-
tion/power/runtime_pm.rst.

8.4 4. Resources

PCI Local Bus Specification, Rev. 3.0

PCI Bus Power Management Interface Specification, Rev. 1.2

Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b

PCI Express Base Specification, Rev. 2.0

Documentation/driver-api/pm/devices.rst

Documentation/power/runtime_pm.rst

8.4. 4. Resources 53

Linux Power Documentation

54 Chapter 8. PCI Power Management

CHAPTER

NINE

PM QUALITY OF SERVICE INTERFACE

This interface provides a kernel and user mode interface for registering perfor-
mance expectations by drivers, subsystems and user space applications on one of
the parameters.

Two different PM QoS frameworks are available:
• CPU latency QoS.

• The per-device PM QoS framework provides the API to manage the per-
device latency constraints and PM QoS flags.

The latency unit used in the PM QoS framework is the microsecond (usec).

9.1 1. PM QoS framework

A global list of CPU latency QoS requests is maintained along with an aggregated
(effective) target value. The aggregated target value is updated with changes to
the request list or elements of the list. For CPU latency QoS, the aggregated target
value is simply the min of the request values held in the list elements.

Note: the aggregated target value is implemented as an atomic variable so that
reading the aggregated value does not require any locking mechanism.

From kernel space the use of this interface is simple:

void cpu_latency_qos_add_request(handle, target_value): Will insert an ele-
ment into the CPU latency QoS list with the target value. Upon change to
this list the new target is recomputed and any registered notifiers are called
only if the target value is now different. Clients of PM QoS need to save the
returned handle for future use in other PM QoS API functions.

void cpu_latency_qos_update_request(handle, new_target_value): Will up-
date the list element pointed to by the handle with the new target value and
recompute the new aggregated target, calling the notification tree if the
target is changed.

void cpu_latency_qos_remove_request(handle): Will remove the element. Af-
ter removal it will update the aggregate target and call the notification tree
if the target was changed as a result of removing the request.

int cpu_latency_qos_limit(): Returns the aggregated value for the CPU latency
QoS.

55

Linux Power Documentation

int cpu_latency_qos_request_active(handle): Returns if the request is still ac-
tive, i.e. it has not been removed from the CPU latency QoS list.

int cpu_latency_qos_add_notifier(notifier): Adds a notification callback func-
tion to the CPU latency QoS. The callback is called when the aggregated value
for the CPU latency QoS is changed.

int cpu_latency_qos_remove_notifier(notifier): Removes the notification call-
back function from the CPU latency QoS.

From user space:

The infrastructure exposes one device node, /dev/cpu_dma_latency, for the CPU
latency QoS.

Only processes can register a PM QoS request. To provide for automatic cleanup
of a process, the interface requires the process to register its parameter requests
as follows.

To register the default PM QoS target for the CPU latency QoS, the process must
open /dev/cpu_dma_latency.

As long as the device node is held open that process has a registered request on
the parameter.

To change the requested target value, the process needs to write an s32 value
to the open device node. Alternatively, it can write a hex string for the value
using the 10 char long format e.g. “0x12345678”. This translates to a
cpu_latency_qos_update_request() call.

To remove the user mode request for a target value simply close the device node.

9.2 2. PM QoS per-device latency and flags framework

For each device, there are three lists of PM QoS requests. Two of them are main-
tained along with the aggregated targets of resume latency and active state la-
tency tolerance (in microseconds) and the third one is for PM QoS flags. Values
are updated in response to changes of the request list.

The target values of resume latency and active state latency tolerance are simply
the minimum of the request values held in the parameter list elements. The PM
QoS flags aggregate value is a gather (bitwise OR) of all list elements’values. One
device PM QoS flag is defined currently: PM_QOS_FLAG_NO_POWER_OFF.

Note: The aggregated target values are implemented in such a way that reading
the aggregated value does not require any locking mechanism.

From kernel mode the use of this interface is the following:

int dev_pm_qos_add_request(device, handle, type, value): Will insert an ele-
ment into the list for that identified device with the target value. Upon change
to this list the new target is recomputed and any registered notifiers are called
only if the target value is now different. Clients of dev_pm_qos need to save
the handle for future use in other dev_pm_qos API functions.

56 Chapter 9. PM Quality Of Service Interface

Linux Power Documentation

int dev_pm_qos_update_request(handle, new_value): Will update the list ele-
ment pointed to by the handle with the new target value and recompute the
new aggregated target, calling the notification trees if the target is changed.

int dev_pm_qos_remove_request(handle): Will remove the element. After re-
moval it will update the aggregate target and call the notification trees if the
target was changed as a result of removing the request.

s32 dev_pm_qos_read_value(device, type): Returns the aggregated value for a
given device’s constraints list.

enum pm_qos_flags_status dev_pm_qos_flags(device, mask) Check PM QoS
flags of the given device against the given mask of flags. The meaning of the
return values is as follows:

PM_QOS_FLAGS_ALL: All flags from the mask are set

PM_QOS_FLAGS_SOME: Some flags from the mask are set

PM_QOS_FLAGS_NONE: No flags from the mask are set

PM_QOS_FLAGS_UNDEFINED: The device’s PM QoS structure
has not been initialized or the list of requests is empty.

int dev_pm_qos_add_ancestor_request(dev, handle, type, value) Add a PM
QoS request for the first direct ancestor of the given device whose
power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY
requests) or whose power.set_latency_tolerance callback pointer is not NULL
(for DEV_PM_QOS_LATENCY_TOLERANCE requests).

int dev_pm_qos_expose_latency_limit(device, value) Add a request to the de-
vice’s PM QoS list of resume latency constraints and create a sysfs attribute
pm_qos_resume_latency_us under the device’s power directory allowing user
space to manipulate that request.

void dev_pm_qos_hide_latency_limit(device) Drop the request added by
dev_pm_qos_expose_latency_limit() from the device’s PM QoS list of resume
latency constraints and remove sysfs attribute pm_qos_resume_latency_us
from the device’s power directory.

int dev_pm_qos_expose_flags(device, value) Add a request to the device’s PM
QoS list of flags and create sysfs attribute pm_qos_no_power_off under the
device’s power directory allowing user space to change the value of the
PM_QOS_FLAG_NO_POWER_OFF flag.

void dev_pm_qos_hide_flags(device) Drop the request added by
dev_pm_qos_expose_flags() from the device’s PM QoS list of flags and
remove sysfs attribute pm_qos_no_power_off from the device’s power
directory.

Notification mechanisms:

The per-device PM QoS framework has a per-device notification tree.

int dev_pm_qos_add_notifier(device, notifier, type): Adds a notification call-
back function for the device for a particular request type.

The callback is called when the aggregated value of the device constraints
list is changed.

9.2. 2. PM QoS per-device latency and flags framework 57

Linux Power Documentation

int dev_pm_qos_remove_notifier(device, notifier, type): Removes the notifi-
cation callback function for the device.

9.2.1 Active state latency tolerance

This device PM QoS type is used to support systems in which hardware may switch
to energy-saving operation modes on the fly. In those systems, if the operation
mode chosen by the hardware attempts to save energy in an overly aggressive
way, it may cause excess latencies to be visible to software, causing it to miss
certain protocol requirements or target frame or sample rates etc.

If there is a latency tolerance control mechanism for a given device available to
software, the .set_latency_tolerance callback in that device’s dev_pm_info struc-
ture should be populated. The routine pointed to by it is should implement what-
ever is necessary to transfer the effective requirement value to the hardware.

Whenever the effective latency tolerance changes for the device, its
.set_latency_tolerance() callback will be executed and the effective value will
be passed to it. If that value is negative, which means that the list of latency
tolerance requirements for the device is empty, the callback is expected to switch
the underlying hardware latency tolerance control mechanism to an autonomous
mode if available. If that value is PM_QOS_LATENCY_ANY, in turn, and the
hardware supports a special“no requirement”setting, the callback is expected to
use it. That allows software to prevent the hardware from automatically updating
the device’s latency tolerance in response to its power state changes (e.g. during
transitions from D3cold to D0), which generally may be done in the autonomous
latency tolerance control mode.

If .set_latency_tolerance() is present for the device, sysfs attribute
pm_qos_latency_tolerance_us will be present in the devivce’s power direc-
tory. Then, user space can use that attribute to specify its latency tolerance
requirement for the device, if any. Writing “any”to it means “no requirement,
but do not let the hardware control latency tolerance”and writing “auto”to it
allows the hardware to be switched to the autonomous mode if there are no other
requirements from the kernel side in the device’s list.
Kernel code can use the functions described above along with the
DEV_PM_QOS_LATENCY_TOLERANCE device PM QoS type to add, remove
and update latency tolerance requirements for devices.

58 Chapter 9. PM Quality Of Service Interface

CHAPTER

TEN

LINUX POWER SUPPLY CLASS

10.1 Synopsis

Power supply class used to represent battery, UPS, AC or DC power supply prop-
erties to user-space.

It defines core set of attributes, which should be applicable to (almost) every power
supply out there. Attributes are available via sysfs and uevent interfaces.

Each attribute has well defined meaning, up to unit of measure used. While the
attributes provided are believed to be universally applicable to any power supply,
specific monitoring hardware may not be able to provide them all, so any of them
may be skipped.

Power supply class is extensible, and allows to define drivers own attributes. The
core attribute set is subject to the standard Linux evolution (i.e. if it will be found
that some attribute is applicable to many power supply types or their drivers, it
can be added to the core set).

It also integrates with LED framework, for the purpose of providing typically ex-
pected feedback of battery charging/fully charged status and AC/USB power sup-
ply online status. (Note that specific details of the indication (including whether
to use it at all) are fully controllable by user and/or specific machine defaults, per
design principles of LED framework).

10.2 Attributes/properties

Power supply class has predefined set of attributes, this eliminates code duplica-
tion across drivers. Power supply class insist on reusing its predefined attributes
and their units.

So, userspace gets predictable set of attributes and their units for any kind of
power supply, and can process/present them to a user in consistent manner. Re-
sults for different power supplies and machines are also directly comparable.

See drivers/power/supply/ds2760_battery.c and drivers/power/supply/pda_power.c
for the example how to declare and handle attributes.

59

Linux Power Documentation

10.3 Units

Quoting include/linux/power_supply.h:

All voltages, currents, charges, energies, time and temperatures in µV,
µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
stated. It’s driver’s job to convert its raw values to units in which this
class operates.

10.4 Attributes/properties detailed

Charge/Energy/Capacity - how to not confuse
Because both“charge”(µAh) and“energy”(µWh) represents“capacity”
of battery, this class distinguish these terms. Don’t mix them!
• CHARGE_* attributes represents capacity in µAh only.
• ENERGY_* attributes represents capacity in µWh only.
• CAPACITY attribute represents capacity in percents, from 0 to 100.

Postfixes:

_AVG hardware averaged value, use it if your hardware is really able to report
averaged values.

_NOW momentary/instantaneous values.

STATUS this attribute represents operating status (charging, full, discharging
(i.e. powering a load), etc.). This corresponds to BATTERY_STATUS_* values,
as defined in battery.h.

CHARGE_TYPE batteries can typically charge at different rates. This defines
trickle and fast charges. For batteries that are already charged or discharg-
ing, ‘n/a’can be displayed (or ‘unknown’, if the status is not known).

AUTHENTIC indicates the power supply (battery or charger) connected to the
platform is authentic(1) or non authentic(0).

HEALTH represents health of the battery, values corresponds to
POWER_SUPPLY_HEALTH_*, defined in battery.h.

VOLTAGE_OCV open circuit voltage of the battery.

VOLTAGE_MAX_DESIGN, VOLTAGE_MIN_DESIGN design values for maximal
and minimal power supply voltages. Maximal/minimal means values of volt-
ages when battery considered“full”/”empty”at normal conditions. Yes, there
is no direct relation between voltage and battery capacity, but some dumb
batteries use voltage for very approximated calculation of capacity. Battery
driver also can use this attribute just to inform userspace about maximal and
minimal voltage thresholds of a given battery.

VOLTAGE_MAX, VOLTAGE_MIN same as _DESIGN voltage values except that
these ones should be used if hardware could only guess (measure and retain)
the thresholds of a given power supply.

60 Chapter 10. Linux power supply class

Linux Power Documentation

VOLTAGE_BOOT Reports the voltage measured during boot

CURRENT_BOOT Reports the current measured during boot

CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN design charge values,
when battery considered full/empty.

ENERGY_FULL_DESIGN, ENERGY_EMPTY_DESIGN same as above but for
energy.

CHARGE_FULL, CHARGE_EMPTY These attributes means “last remembered
value of charge when battery became full/empty”. It also couldmean“value of
charge when battery considered full/empty at given conditions (temperature,
age)”. I.e. these attributes represents real thresholds, not design values.

ENERGY_FULL, ENERGY_EMPTY same as above but for energy.

CHARGE_COUNTER the current charge counter (in µAh). This could easily be
negative; there is no empty or full value. It is only useful for relative, time-
based measurements.

PRECHARGE_CURRENT the maximum charge current during precharge phase
of charge cycle (typically 20% of battery capacity).

CHARGE_TERM_CURRENT Charge termination current. The charge cycle ter-
minates when battery voltage is above recharge threshold, and charge cur-
rent is below this setting (typically 10% of battery capacity).

CONSTANT_CHARGE_CURRENT constant charge current programmed by
charger.

CONSTANT_CHARGE_CURRENT_MAX maximum charge current supported by
the power supply object.

CONSTANT_CHARGE_VOLTAGE constant charge voltage programmed by
charger.

CONSTANT_CHARGE_VOLTAGE_MAX maximum charge voltage supported by
the power supply object.

INPUT_CURRENT_LIMIT input current limit programmed by charger. Indicates
the current drawn from a charging source.

INPUT_VOLTAGE_LIMIT input voltage limit programmed by charger. Indicates
the voltage limit from a charging source.

INPUT_POWER_LIMIT input power limit programmed by charger. Indicates the
power limit from a charging source.

CHARGE_CONTROL_LIMIT current charge control limit setting

CHARGE_CONTROL_LIMIT_MAX maximum charge control limit setting

CALIBRATE battery or coulomb counter calibration status

CAPACITY capacity in percents.
CAPACITY_ALERT_MIN minimum capacity alert value in percents.

CAPACITY_ALERT_MAX maximum capacity alert value in percents.

10.4. Attributes/properties detailed 61

Linux Power Documentation

CAPACITY_LEVEL capacity level. This corresponds to
POWER_SUPPLY_CAPACITY_LEVEL_*.

TEMP temperature of the power supply.

TEMP_ALERT_MIN minimum battery temperature alert.

TEMP_ALERT_MAX maximum battery temperature alert.

TEMP_AMBIENT ambient temperature.

TEMP_AMBIENT_ALERT_MIN minimum ambient temperature alert.

TEMP_AMBIENT_ALERT_MAX maximum ambient temperature alert.

TEMP_MIN minimum operatable temperature

TEMP_MAX maximum operatable temperature

TIME_TO_EMPTY seconds left for battery to be considered empty (i.e. while
battery powers a load)

TIME_TO_FULL seconds left for battery to be considered full (i.e. while battery
is charging)

10.5 Battery <-> external power supply interaction

Often power supplies are acting as supplies and supplicants at the same time. Bat-
teries are good example. So, batteries usually care if they’re externally powered
or not.

For that case, power supply class implements notificationmechanism for batteries.

External power supply (AC) lists supplicants (batteries) names in “supplied_to”
struct member, and each power_supply_changed() call issued by external power
supply will notify supplicants via external_power_changed callback.

10.6 Devicetree battery characteristics

Drivers should call power_supply_get_battery_info() to obtain battery
characteristics from a devicetree battery node, defined in Documenta-
tion/devicetree/bindings/power/supply/battery.txt. This is implemented in
drivers/power/supply/bq27xxx_battery.c.

Properties in struct power_supply_battery_info and their counterparts in the bat-
tery node have names corresponding to elements in enum power_supply_property,
for naming consistency between sysfs attributes and battery node properties.

62 Chapter 10. Linux power supply class

Linux Power Documentation

10.7 QA

Q: Where is POWER_SUPPLY_PROP_XYZ attribute?
A: If you cannot find attribute suitable for your driver needs, feel free to add it

and send patch along with your driver.

The attributes available currently are the ones currently provided by the
drivers written.

Good candidates to add in future: model/part#, cycle_time, manufacturer,
etc.

Q: I have some very specific attribute (e.g. battery color), should I add this at-
tribute to standard ones?

A: Most likely, no. Such attribute can be placed in the driver itself, if it is use-
ful. Of course, if the attribute in question applicable to large set of batteries,
provided by many drivers, and/or comes from some general battery specifi-
cation/standard, it may be a candidate to be added to the core attribute set.

Q: Suppose, my battery monitoring chip/firmware does not provides capacity in
percents, but provides charge_{now,full,empty}. Should I calculate percent-
age capacity manually, inside the driver, and register CAPACITY attribute?
The same question about time_to_empty/time_to_full.

A: Most likely, no. This class is designed to export properties which are directly
measurable by the specific hardware available.

Inferring not available properties using some heuristics or mathematical
model is not subject of work for a battery driver. Such functionality should
be factored out, and in fact, apm_power, the driver to serve legacy APM API
on top of power supply class, uses a simple heuristic of approximating re-
maining battery capacity based on its charge, current, voltage and so on. But
full-fledged battery model is likely not subject for kernel at all, as it would re-
quire floating point calculation to deal with things like differential equations
and Kalman filters. This is better be handled by batteryd/libbattery, yet to be
written.

10.7. QA 63

Linux Power Documentation

64 Chapter 10. Linux power supply class

CHAPTER

ELEVEN

RUNTIME POWER MANAGEMENT FRAMEWORK FOR I/O
DEVICES

(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.

(C) 2010 Alan Stern <stern@rowland.harvard.edu>

(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

11.1 1. Introduction

Support for runtime power management (runtime PM) of I/O devices is provided
at the power management core (PM core) level by means of:

• The power management workqueue pm_wq in which bus types and device
drivers can put their PM-related work items. It is strongly recommended that
pm_wq be used for queuing all work items related to runtime PM, because
this allows them to be synchronized with system-wide power transitions (sus-
pend to RAM, hibernation and resume from system sleep states). pm_wq is
declared in include/linux/pm_runtime.h and defined in kernel/power/main.c.

• A number of runtime PM fields in the ‘power’member of ‘struct device’
(which is of the type ‘struct dev_pm_info’, defined in include/linux/pm.h)
that can be used for synchronizing runtime PM operations with one another.

• Three device runtime PM callbacks in ‘struct dev_pm_ops’(defined in in-
clude/linux/pm.h).

• A set of helper functions defined in drivers/base/power/runtime.c that can be
used for carrying out runtime PM operations in such a way that the synchro-
nization between them is taken care of by the PM core. Bus types and device
drivers are encouraged to use these functions.

The runtime PM callbacks present in‘struct dev_pm_ops’, the device runtime PM
fields of‘struct dev_pm_info’and the core helper functions provided for runtime
PM are described below.

65

mailto:rjw@sisk.pl
mailto:stern@rowland.harvard.edu
mailto:rafael.j.wysocki@intel.com

Linux Power Documentation

11.2 2. Device Runtime PM Callbacks

There are three device runtime PM callbacks defined in ‘struct dev_pm_ops’:
struct dev_pm_ops {

...
int (*runtime_suspend)(struct device *dev);
int (*runtime_resume)(struct device *dev);
int (*runtime_idle)(struct device *dev);
...

};

The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks are
executed by the PM core for the device’s subsystem that may be either of the
following:

1. PM domain of the device, if the device’s PM domain object, dev->pm_domain,
is present.

2. Device type of the device, if both dev->type and dev->type->pm are present.

3. Device class of the device, if both dev->class and dev->class->pm are
present.

4. Bus type of the device, if both dev->bus and dev->bus->pm are present.

If the subsystem chosen by applying the above rules doesn’t provide the relevant
callback, the PM core will invoke the corresponding driver callback stored in dev-
>driver->pm directly (if present).

The PM core always checks which callback to use in the order given above, so
the priority order of callbacks from high to low is: PM domain, device type, class
and bus type. Moreover, the high-priority one will always take precedence over
a low-priority one. The PM domain, bus type, device type and class callbacks are
referred to as subsystem-level callbacks in what follows.

By default, the callbacks are always invoked in process context with interrupts
enabled. However, the pm_runtime_irq_safe() helper function can be used to tell
the PM core that it is safe to run the ->runtime_suspend(), ->runtime_resume() and
->runtime_idle() callbacks for the given device in atomic context with interrupts
disabled. This implies that the callback routines in question must not block or
sleep, but it also means that the synchronous helper functions listed at the end of
Section 4 may be used for that device within an interrupt handler or generally in
an atomic context.

The subsystem-level suspend callback, if present, is _entirely_ _responsible_ for
handling the suspend of the device as appropriate, whichmay, but need not include
executing the device driver’s own ->runtime_suspend() callback (from the PM core’
s point of view it is not necessary to implement a ->runtime_suspend() callback in
a device driver as long as the subsystem-level suspend callback knows what to do
to handle the device).

• Once the subsystem-level suspend callback (or the driver suspend callback,
if invoked directly) has completed successfully for the given device, the PM
core regards the device as suspended, which need not mean that it has been
put into a low power state. It is supposed to mean, however, that the device

66 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

will not process data and will not communicate with the CPU(s) and RAM until
the appropriate resume callback is executed for it. The runtime PM status of
a device after successful execution of the suspend callback is‘suspended’.

• If the suspend callback returns -EBUSY or -EAGAIN, the device’s runtime
PM status remains ‘active’, which means that the device _must_ be fully
operational afterwards.

• If the suspend callback returns an error code different from -EBUSY and -
EAGAIN, the PM core regards this as a fatal error and will refuse to run the
helper functions described in Section 4 for the device until its status is directly
set to either‘active’, or‘suspended’(the PM core provides special helper
functions for this purpose).

In particular, if the driver requires remote wakeup capability (i.e. hardware mech-
anism allowing the device to request a change of its power state, such as PCI
PME) for proper functioning and device_can_wakeup() returns ‘false’for the
device, then ->runtime_suspend() should return -EBUSY. On the other hand, if
device_can_wakeup() returns ‘true’for the device and the device is put into a
low-power state during the execution of the suspend callback, it is expected that
remote wakeup will be enabled for the device. Generally, remote wakeup should
be enabled for all input devices put into low-power states at run time.

The subsystem-level resume callback, if present, is entirely responsible for han-
dling the resume of the device as appropriate, which may, but need not include
executing the device driver’s own ->runtime_resume() callback (from the PM core’
s point of view it is not necessary to implement a ->runtime_resume() callback in
a device driver as long as the subsystem-level resume callback knows what to do
to handle the device).

• Once the subsystem-level resume callback (or the driver resume callback, if
invoked directly) has completed successfully, the PM core regards the device
as fully operational, which means that the device _must_ be able to complete
I/O operations as needed. The runtime PM status of the device is then‘active’
.

• If the resume callback returns an error code, the PM core regards this as a
fatal error and will refuse to run the helper functions described in Section 4
for the device, until its status is directly set to either‘active’, or‘suspended’(by
means of special helper functions provided by the PM core for this purpose).

The idle callback (a subsystem-level one, if present, or the driver one) is executed
by the PM core whenever the device appears to be idle, which is indicated to the
PM core by two counters, the device’s usage counter and the counter of‘active’
children of the device.

• If any of these counters is decreased using a helper function provided by the
PM core and it turns out to be equal to zero, the other counter is checked. If
that counter also is equal to zero, the PM core executes the idle callback with
the device as its argument.

The action performed by the idle callback is totally dependent on the subsystem
(or driver) in question, but the expected and recommended action is to check
if the device can be suspended (i.e. if all of the conditions necessary for sus-
pending the device are satisfied) and to queue up a suspend request for the de-
vice in that case. If there is no idle callback, or if the callback returns 0, then

11.2. 2. Device Runtime PM Callbacks 67

Linux Power Documentation

the PM core will attempt to carry out a runtime suspend of the device, also re-
specting devices configured for autosuspend. In essence this means a call to
pm_runtime_autosuspend() (do note that drivers needs to update the device last
busy mark, pm_runtime_mark_last_busy(), to control the delay under this circum-
stance). To prevent this (for example, if the callback routine has started a delayed
suspend), the routine must return a non-zero value. Negative error return codes
are ignored by the PM core.

The helper functions provided by the PM core, described in Section 4, guarantee
that the following constraints are met with respect to runtime PM callbacks for
one device:

(1) The callbacks are mutually exclusive (e.g. it is forbidden to execute -
>runtime_suspend() in parallel with ->runtime_resume() or with another in-
stance of ->runtime_suspend() for the same device) with the exception that
->runtime_suspend() or ->runtime_resume() can be executed in parallel with
->runtime_idle() (although ->runtime_idle() will not be started while any of
the other callbacks is being executed for the same device).

(2) ->runtime_idle() and ->runtime_suspend() can only be executed for ‘ac-
tive’devices (i.e. the PM core will only execute ->runtime_idle() or -
>runtime_suspend() for the devices the runtime PM status of which is‘active’
).

(3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device
the usage counter of which is equal to zero _and_ either the counter of‘active’
children of which is equal to zero, or the‘power.ignore_children’flag of which
is set.

(4) ->runtime_resume() can only be executed for ‘suspended’devices (i.e. the
PM core will only execute ->runtime_resume() for the devices the runtime
PM status of which is ‘suspended’).

Additionally, the helper functions provided by the PM core obey the following rules:

• If ->runtime_suspend() is about to be executed or there’s a pending request
to execute it, ->runtime_idle() will not be executed for the same device.

• A request to execute or to schedule the execution of ->runtime_suspend() will
cancel any pending requests to execute ->runtime_idle() for the same device.

• If ->runtime_resume() is about to be executed or there’s a pending request
to execute it, the other callbacks will not be executed for the same device.

• A request to execute ->runtime_resume() will cancel any pending or sched-
uled requests to execute the other callbacks for the same device, except for
scheduled autosuspends.

68 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

11.3 3. Runtime PM Device Fields

The following device runtime PM fields are present in ‘struct dev_pm_info’, as
defined in include/linux/pm.h:

struct timer_list suspend_timer;
• timer used for scheduling (delayed) suspend and autosuspend
requests

unsigned long timer_expires;
• timer expiration time, in jiffies (if this is different from zero, the
timer is running and will expire at that time, otherwise the timer
is not running)

struct work_struct work;
• work structure used for queuing up requests (i.e. work items in
pm_wq)

wait_queue_head_t wait_queue;
• wait queue used if any of the helper functions needs to wait for
another one to complete

spinlock_t lock;
• lock used for synchronization

atomic_t usage_count;
• the usage counter of the device

atomic_t child_count;
• the count of ‘active’children of the device

unsigned int ignore_children;
• if set, the value of child_count is ignored (but still updated)

unsigned int disable_depth;
• used for disabling the helper functions (they work normally if
this is equal to zero); the initial value of it is 1 (i.e. runtime PM
is initially disabled for all devices)

int runtime_error;
• if set, there was a fatal error (one of the callbacks returned error
code as described in Section 2), so the helper functions will not
work until this flag is cleared; this is the error code returned by
the failing callback

unsigned int idle_notification;
• if set, ->runtime_idle() is being executed

unsigned int request_pending;
• if set, there’s a pending request (i.e. a work item queued up
into pm_wq)

11.3. 3. Runtime PM Device Fields 69

Linux Power Documentation

enum rpm_request request;
• type of request that’s pending (valid if request_pending is set)

unsigned int deferred_resume;
• set if ->runtime_resume() is about to be run while -
>runtime_suspend() is being executed for that device and it is
not practical to wait for the suspend to complete; means“start
a resume as soon as you’ve suspended”

enum rpm_status runtime_status;
• the runtime PM status of the device; this field’s initial value
is RPM_SUSPENDED, which means that each device is initially
regarded by the PM core as‘suspended’, regardless of its real
hardware status

unsigned int runtime_auto;
• if set, indicates that the user space has allowed the device driver
to power manage the device at run time via the /sys/devices/⋯
/power/control interface; it may only be modified with the help
of the pm_runtime_allow() and pm_runtime_forbid() helper func-
tions

unsigned int no_callbacks;
• indicates that the device does not use the runtime PM call-
backs (see Section 8); it may be modified only by the
pm_runtime_no_callbacks() helper function

unsigned int irq_safe;
• indicates that the ->runtime_suspend() and ->runtime_resume()
callbacks will be invoked with the spinlock held and interrupts
disabled

unsigned int use_autosuspend;
• indicates that the device’s driver supports delayed auto-
suspend (see Section 9); it may be modified only by the
pm_runtime{_dont}_use_autosuspend() helper functions

unsigned int timer_autosuspends;
• indicates that the PM core should attempt to carry out an auto-
suspend when the timer expires rather than a normal suspend

int autosuspend_delay;
• the delay time (in milliseconds) to be used for autosuspend

unsigned long last_busy;
• the time (in jiffies) when the pm_runtime_mark_last_busy()
helper function was last called for this device; used in calcu-
lating inactivity periods for autosuspend

All of the above fields are members of the ‘power’member of ‘struct device’.

70 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

11.4 4. Runtime PM Device Helper Functions

The following runtime PM helper functions are defined in
drivers/base/power/runtime.c and include/linux/pm_runtime.h:

void pm_runtime_init(struct device *dev);
• initialize the device runtime PM fields in ‘struct dev_pm_info’

void pm_runtime_remove(struct device *dev);
• make sure that the runtime PM of the device will be disabled
after removing the device from device hierarchy

int pm_runtime_idle(struct device *dev);
• execute the subsystem-level idle callback for the device;
returns an error code on failure, where -EINPROGRESS
means that ->runtime_idle() is already being executed; if
there is no callback or the callback returns 0 then run
pm_runtime_autosuspend(dev) and return its result

int pm_runtime_suspend(struct device *dev);
• execute the subsystem-level suspend callback for the device; re-
turns 0 on success, 1 if the device’s runtime PM status was
already‘suspended’, or error code on failure, where -EAGAIN
or -EBUSY means it is safe to attempt to suspend the device
again in future and -EACCES means that‘power.disable_depth’
is different from 0

int pm_runtime_autosuspend(struct device *dev);
• same as pm_runtime_suspend() except that the
autosuspend delay is taken into account; if
pm_runtime_autosuspend_expiration() says the delay has
not yet expired then an autosuspend is scheduled for the
appropriate time and 0 is returned

int pm_runtime_resume(struct device *dev);
• execute the subsystem-level resume callback for the device; re-
turns 0 on success, 1 if the device’s runtime PM status was
already‘active’or error code on failure, where -EAGAIN means
it may be safe to attempt to resume the device again in future,
but‘power.runtime_error’should be checked additionally, and
-EACCES means that‘power.disable_depth’is different from 0

int pm_request_idle(struct device *dev);
• submit a request to execute the subsystem-level idle callback for
the device (the request is represented by a work item in pm_wq);
returns 0 on success or error code if the request has not been
queued up

int pm_request_autosuspend(struct device *dev);
• schedule the execution of the subsystem-level suspend callback
for the device when the autosuspend delay has expired; if the

11.4. 4. Runtime PM Device Helper Functions 71

Linux Power Documentation

delay has already expired then the work item is queued up im-
mediately

int pm_schedule_suspend(struct device *dev, unsigned int delay);

• schedule the execution of the subsystem-level suspend callback
for the device in future, where ‘delay’is the time to wait be-
fore queuing up a suspend work item in pm_wq, in milliseconds
(if ‘delay’is zero, the work item is queued up immediately);
returns 0 on success, 1 if the device’s PM runtime status was
already‘suspended’, or error code if the request hasn’t been
scheduled (or queued up if ‘delay’is 0); if the execution of -
>runtime_suspend() is already scheduled and not yet expired,
the new value of ‘delay’will be used as the time to wait

int pm_request_resume(struct device *dev);
• submit a request to execute the subsystem-level resume call-
back for the device (the request is represented by a work item
in pm_wq); returns 0 on success, 1 if the device’s runtime PM
status was already ‘active’, or error code if the request hasn’
t been queued up

void pm_runtime_get_noresume(struct device *dev);
• increment the device’s usage counter

int pm_runtime_get(struct device *dev);
• increment the device’s usage counter, run
pm_request_resume(dev) and return its result

int pm_runtime_get_sync(struct device *dev);
• increment the device’s usage counter, run
pm_runtime_resume(dev) and return its result

int pm_runtime_get_if_in_use(struct device *dev);
• return -EINVAL if‘power.disable_depth’is nonzero; otherwise,
if the runtime PM status is RPM_ACTIVE and the runtime PM
usage counter is nonzero, increment the counter and return 1;
otherwise return 0 without changing the counter

int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count);

• return -EINVAL if ‘power.disable_depth’is nonzero; other-
wise, if the runtime PM status is RPM_ACTIVE, and either
ign_usage_count is true or the device’s usage_count is non-zero,
increment the counter and return 1; otherwise return 0 without
changing the counter

void pm_runtime_put_noidle(struct device *dev);
• decrement the device’s usage counter

int pm_runtime_put(struct device *dev);

72 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

• decrement the device’s usage counter; if the result is 0 then run
pm_request_idle(dev) and return its result

int pm_runtime_put_autosuspend(struct device *dev);
• decrement the device’s usage counter; if the result is 0 then run
pm_request_autosuspend(dev) and return its result

int pm_runtime_put_sync(struct device *dev);
• decrement the device’s usage counter; if the result is 0 then run
pm_runtime_idle(dev) and return its result

int pm_runtime_put_sync_suspend(struct device *dev);
• decrement the device’s usage counter; if the result is 0 then run
pm_runtime_suspend(dev) and return its result

int pm_runtime_put_sync_autosuspend(struct device *dev);
• decrement the device’s usage counter; if the result is 0 then run
pm_runtime_autosuspend(dev) and return its result

void pm_runtime_enable(struct device *dev);
• decrement the device’s‘power.disable_depth’field; if that field
is equal to zero, the runtime PM helper functions can execute
subsystem-level callbacks described in Section 2 for the device

int pm_runtime_disable(struct device *dev);
• increment the device’s‘power.disable_depth’field (if the value
of that field was previously zero, this prevents subsystem-level
runtime PM callbacks from being run for the device), make sure
that all of the pending runtime PM operations on the device are
either completed or canceled; returns 1 if there was a resume
request pending and it was necessary to execute the subsystem-
level resume callback for the device to satisfy that request, oth-
erwise 0 is returned

int pm_runtime_barrier(struct device *dev);
• check if there’s a resume request pending for the device and
resume it (synchronously) in that case, cancel any other pending
runtime PM requests regarding it and wait for all runtime PM
operations on it in progress to complete; returns 1 if there was
a resume request pending and it was necessary to execute the
subsystem-level resume callback for the device to satisfy that
request, otherwise 0 is returned

void pm_suspend_ignore_children(struct device *dev, bool enable);

• set/unset the power.ignore_children flag of the device

int pm_runtime_set_active(struct device *dev);
• clear the device’s‘power.runtime_error’flag, set the device’s
runtime PM status to‘active’and update its parent’s counter
of ‘active’children as appropriate (it is only valid to use this

11.4. 4. Runtime PM Device Helper Functions 73

Linux Power Documentation

function if‘power.runtime_error’is set or‘power.disable_depth’is
greater than zero); it will fail and return error code if the device
has a parent which is not active and the‘power.ignore_children’
flag of which is unset

void pm_runtime_set_suspended(struct device *dev);
• clear the device’s‘power.runtime_error’flag, set the device’s
runtime PM status to‘suspended’and update its parent’s counter
of ‘active’children as appropriate (it is only valid to use this
function if‘power.runtime_error’is set or‘power.disable_depth’
is greater than zero)

bool pm_runtime_active(struct device *dev);
• return true if the device’s runtime PM status is‘active’or its
‘power.disable_depth’field is not equal to zero, or false otherwise

bool pm_runtime_suspended(struct device *dev);
• return true if the device’s runtime PM status is‘suspended’and
its‘power.disable_depth’field is equal to zero, or false otherwise

bool pm_runtime_status_suspended(struct device *dev);
• return true if the device’s runtime PM status is ‘suspended’

void pm_runtime_allow(struct device *dev);
• set the power.runtime_auto flag for the device and decrease its
usage counter (used by the /sys/devices/⋯/power/control inter-
face to effectively allow the device to be power managed at run
time)

void pm_runtime_forbid(struct device *dev);
• unset the power.runtime_auto flag for the device and increase its
usage counter (used by the /sys/devices/⋯/power/control inter-
face to effectively prevent the device from being power managed
at run time)

void pm_runtime_no_callbacks(struct device *dev);
• set the power.no_callbacks flag for the device and remove the
runtime PM attributes from /sys/devices/⋯/power (or prevent
them from being added when the device is registered)

void pm_runtime_irq_safe(struct device *dev);
• set the power.irq_safe flag for the device, causing the runtime-
PM callbacks to be invoked with interrupts off

bool pm_runtime_is_irq_safe(struct device *dev);
• return true if power.irq_safe flag was set for the device, causing
the runtime-PM callbacks to be invoked with interrupts off

void pm_runtime_mark_last_busy(struct device *dev);
• set the power.last_busy field to the current time

void pm_runtime_use_autosuspend(struct device *dev);

74 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

• set the power.use_autosuspend flag, enabling autosuspend de-
lays; call pm_runtime_get_sync if the flag was previously cleared
and power.autosuspend_delay is negative

void pm_runtime_dont_use_autosuspend(struct device *dev);
• clear the power.use_autosuspend flag, disabling autosuspend
delays; decrement the device’s usage counter if the flag was
previously set and power.autosuspend_delay is negative; call
pm_runtime_idle

void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);

• set the power.autosuspend_delay value to ‘delay’(expressed
in milliseconds); if ‘delay’is negative then runtime sus-
pends are prevented; if power.use_autosuspend is set,
pm_runtime_get_sync may be called or the device’s usage
counter may be decremented and pm_runtime_idle called
depending on if power.autosuspend_delay is changed to or
from a negative value; if power.use_autosuspend is clear,
pm_runtime_idle is called

unsigned long pm_runtime_autosuspend_expiration(struct device *dev);

• calculate the time when the current autosuspend de-
lay period will expire, based on power.last_busy and
power.autosuspend_delay; if the delay time is 1000 ms or
larger then the expiration time is rounded up to the nearest
second; returns 0 if the delay period has already expired
or power.use_autosuspend isn’t set, otherwise returns the
expiration time in jiffies

It is safe to execute the following helper functions from interrupt context:

• pm_request_idle()

• pm_request_autosuspend()

• pm_schedule_suspend()

• pm_request_resume()

• pm_runtime_get_noresume()

• pm_runtime_get()

• pm_runtime_put_noidle()

• pm_runtime_put()

• pm_runtime_put_autosuspend()

• pm_runtime_enable()

• pm_suspend_ignore_children()

• pm_runtime_set_active()

• pm_runtime_set_suspended()

11.4. 4. Runtime PM Device Helper Functions 75

Linux Power Documentation

• pm_runtime_suspended()

• pm_runtime_mark_last_busy()

• pm_runtime_autosuspend_expiration()

If pm_runtime_irq_safe() has been called for a device then the following helper
functions may also be used in interrupt context:

• pm_runtime_idle()

• pm_runtime_suspend()

• pm_runtime_autosuspend()

• pm_runtime_resume()

• pm_runtime_get_sync()

• pm_runtime_put_sync()

• pm_runtime_put_sync_suspend()

• pm_runtime_put_sync_autosuspend()

11.5 5. Runtime PM Initialization, Device Probing and
Removal

Initially, the runtime PM is disabled for all devices, which means that the majority
of the runtime PM helper functions described in Section 4 will return -EAGAIN
until pm_runtime_enable() is called for the device.

In addition to that, the initial runtime PM status of all devices is ‘suspended’,
but it need not reflect the actual physical state of the device. Thus, if the device is
initially active (i.e. it is able to process I/O), its runtime PM status must be changed
to‘active’, with the help of pm_runtime_set_active(), before pm_runtime_enable()
is called for the device.

However, if the device has a parent and the parent’s runtime PM is enabled, call-
ing pm_runtime_set_active() for the device will affect the parent, unless the parent’
s ‘power.ignore_children’flag is set. Namely, in that case the parent won’t be
able to suspend at run time, using the PM core’s helper functions, as long as the
child’s status is ‘active’, even if the child’s runtime PM is still disabled (i.e.
pm_runtime_enable() hasn’t been called for the child yet or pm_runtime_disable()
has been called for it). For this reason, once pm_runtime_set_active() has been
called for the device, pm_runtime_enable() should be called for it too as soon as
reasonably possible or its runtime PM status should be changed back to ‘sus-
pended’with the help of pm_runtime_set_suspended().
If the default initial runtime PM status of the device (i.e.‘suspended’) reflects the
actual state of the device, its bus type’s or its driver’s ->probe() callback will likely
need to wake it up using one of the PM core’s helper functions described in Section
4. In that case, pm_runtime_resume() should be used. Of course, for this purpose
the device’s runtime PM has to be enabled earlier by calling pm_runtime_enable().

Note, if the device may execute pm_runtime calls during the probe (such as if it is
registers with a subsystem that may call back in) then the pm_runtime_get_sync()

76 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

call paired with a pm_runtime_put() call will be appropriate to ensure that the
device is not put back to sleep during the probe. This can happen with systems
such as the network device layer.

It may be desirable to suspend the device once ->probe() has finished. Therefore
the driver core uses the asynchronous pm_request_idle() to submit a request to
execute the subsystem-level idle callback for the device at that time. A driver that
makes use of the runtime autosuspend feature, may want to update the last busy
mark before returning from ->probe().

Moreover, the driver core prevents runtime PM callbacks from racing with the
bus notifier callback in __device_release_driver(), which is necessary, because
the notifier is used by some subsystems to carry out operations affecting the
runtime PM functionality. It does so by calling pm_runtime_get_sync() before
driver_sysfs_remove() and the BUS_NOTIFY_UNBIND_DRIVER notifications. This
resumes the device if it’s in the suspended state and prevents it from being sus-
pended again while those routines are being executed.

To allow bus types and drivers to put devices into the suspended state by calling
pm_runtime_suspend() from their ->remove() routines, the driver core executes
pm_runtime_put_sync() after running the BUS_NOTIFY_UNBIND_DRIVER notifi-
cations in __device_release_driver(). This requires bus types and drivers to make
their ->remove() callbacks avoid races with runtime PM directly, but also it allows
of more flexibility in the handling of devices during the removal of their drivers.

Drivers in ->remove() callback should undo the runtime PM changes
done in ->probe(). Usually this means calling pm_runtime_disable(),
pm_runtime_dont_use_autosuspend() etc.

The user space can effectively disallow the driver of the device to power manage
it at run time by changing the value of its /sys/devices/⋯/power/control attribute
to“on”, which causes pm_runtime_forbid() to be called. In principle, this mech-
anism may also be used by the driver to effectively turn off the runtime power
management of the device until the user space turns it on. Namely, during the
initialization the driver can make sure that the runtime PM status of the device is
‘active’and call pm_runtime_forbid(). It should be noted, however, that if the user
space has already intentionally changed the value of /sys/devices/⋯/power/control
to “auto”to allow the driver to power manage the device at run time, the driver
may confuse it by using pm_runtime_forbid() this way.

11.6 6. Runtime PM and System Sleep

Runtime PM and system sleep (i.e., system suspend and hibernation, also known as
suspend-to-RAM and suspend-to-disk) interact with each other in a couple of ways.
If a device is active when a system sleep starts, everything is straightforward. But
what should happen if the device is already suspended?

The device may have different wake-up settings for runtime PM and system sleep.
For example, remote wake-up may be enabled for runtime suspend but disallowed
for system sleep (device_may_wakeup(dev) returns‘false’). When this happens,
the subsystem-level system suspend callback is responsible for changing the de-
vice’s wake-up setting (it may leave that to the device driver’s system suspend
routine). It may be necessary to resume the device and suspend it again in order

11.6. 6. Runtime PM and System Sleep 77

Linux Power Documentation

to do so. The same is true if the driver uses different power levels or other settings
for runtime suspend and system sleep.

During system resume, the simplest approach is to bring all devices back to full
power, even if they had been suspended before the system suspend began. There
are several reasons for this, including:

• The device might need to switch power levels, wake-up settings, etc.

• Remote wake-up events might have been lost by the firmware.

• The device’s children may need the device to be at full power in order to
resume themselves.

• The driver’s idea of the device state may not agree with the device’s physical
state. This can happen during resume from hibernation.

• The device might need to be reset.

• Even though the device was suspended, if its usage counter was > 0 then
most likely it would need a runtime resume in the near future anyway.

If the device had been suspended before the system suspend began and it’s brought
back to full power during resume, then its runtime PM status will have to be up-
dated to reflect the actual post-system sleep status. The way to do this is:

• pm_runtime_disable(dev);

• pm_runtime_set_active(dev);

• pm_runtime_enable(dev);

The PM core always increments the runtime usage counter before calling the
->suspend() callback and decrements it after calling the ->resume() callback.
Hence disabling runtime PM temporarily like this will not cause any runtime sus-
pend attempts to be permanently lost. If the usage count goes to zero following the
return of the ->resume() callback, the ->runtime_idle() callback will be invoked as
usual.

On some systems, however, system sleep is not entered through a global firmware
or hardware operation. Instead, all hardware components are put into low-power
states directly by the kernel in a coordinated way. Then, the system sleep state
effectively follows from the states the hardware components end up in and the
system is woken up from that state by a hardware interrupt or a similar mechanism
entirely under the kernel’s control. As a result, the kernel never gives control away
and the states of all devices during resume are precisely known to it. If that is the
case and none of the situations listed above takes place (in particular, if the system
is not waking up from hibernation), it may be more efficient to leave the devices
that had been suspended before the system suspend began in the suspended state.

To this end, the PM core provides a mechanism allowing some coordination be-
tween different levels of device hierarchy. Namely, if a system suspend .prepare()
callback returns a positive number for a device, that indicates to the PM core
that the device appears to be runtime-suspended and its state is fine, so it may
be left in runtime suspend provided that all of its descendants are also left in run-
time suspend. If that happens, the PM core will not execute any system suspend
and resume callbacks for all of those devices, except for the complete callback,
which is then entirely responsible for handling the device as appropriate. This

78 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

only applies to system suspend transitions that are not related to hibernation (see
Documentation/driver-api/pm/devices.rst for more information).

The PM core does its best to reduce the probability of race conditions between the
runtime PM and system suspend/resume (and hibernation) callbacks by carrying
out the following operations:

• During system suspend pm_runtime_get_noresume() is called for every de-
vice right before executing the subsystem-level .prepare() callback for it and
pm_runtime_barrier() is called for every device right before executing the
subsystem-level .suspend() callback for it. In addition to that the PM core
calls __pm_runtime_disable() with‘false’as the second argument for every
device right before executing the subsystem-level .suspend_late() callback for
it.

• During system resume pm_runtime_enable() and pm_runtime_put() are called
for every device right after executing the subsystem-level .resume_early()
callback and right after executing the subsystem-level .complete() callback
for it, respectively.

7. Generic subsystem callbacks

Subsystems may wish to conserve code space by using the set of generic
power management callbacks provided by the PM core, defined in
driver/base/power/generic_ops.c:

int pm_generic_runtime_suspend(struct device *dev);
• invoke the ->runtime_suspend() callback provided by the driver
of this device and return its result, or return 0 if not defined

int pm_generic_runtime_resume(struct device *dev);
• invoke the ->runtime_resume() callback provided by the driver
of this device and return its result, or return 0 if not defined

int pm_generic_suspend(struct device *dev);
• if the device has not been suspended at run time, invoke the -
>suspend() callback provided by its driver and return its result,
or return 0 if not defined

int pm_generic_suspend_noirq(struct device *dev);
• if pm_runtime_suspended(dev) returns “false”, invoke the -
>suspend_noirq() callback provided by the device’s driver and
return its result, or return 0 if not defined

int pm_generic_resume(struct device *dev);
• invoke the ->resume() callback provided by the driver of this
device and, if successful, change the device’s runtime PM status
to ‘active’

int pm_generic_resume_noirq(struct device *dev);
• invoke the ->resume_noirq() callback provided by the driver of
this device

int pm_generic_freeze(struct device *dev);

11.6. 6. Runtime PM and System Sleep 79

Linux Power Documentation

• if the device has not been suspended at run time, invoke the -
>freeze() callback provided by its driver and return its result, or
return 0 if not defined

int pm_generic_freeze_noirq(struct device *dev);
• if pm_runtime_suspended(dev) returns “false”, invoke the -
>freeze_noirq() callback provided by the device’s driver and
return its result, or return 0 if not defined

int pm_generic_thaw(struct device *dev);
• if the device has not been suspended at run time, invoke the -
>thaw() callback provided by its driver and return its result, or
return 0 if not defined

int pm_generic_thaw_noirq(struct device *dev);
• if pm_runtime_suspended(dev) returns “false”, invoke the -
>thaw_noirq() callback provided by the device’s driver and re-
turn its result, or return 0 if not defined

int pm_generic_poweroff(struct device *dev);
• if the device has not been suspended at run time, invoke the -
>poweroff() callback provided by its driver and return its result,
or return 0 if not defined

int pm_generic_poweroff_noirq(struct device *dev);
• if pm_runtime_suspended(dev) returns “false”, run the -
>poweroff_noirq() callback provided by the device’s driver and
return its result, or return 0 if not defined

int pm_generic_restore(struct device *dev);
• invoke the ->restore() callback provided by the driver of this
device and, if successful, change the device’s runtime PM status
to ‘active’

int pm_generic_restore_noirq(struct device *dev);
• invoke the ->restore_noirq() callback provided by the device’s
driver

These functions are the defaults used by the PM core, if a subsystem doesn’
t provide its own callbacks for ->runtime_idle(), ->runtime_suspend(),
->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(), -
>resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(), -
>poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() in the subsystem-
level dev_pm_ops structure.

Device drivers that wish to use the same function as a system suspend, freeze,
poweroff and runtime suspend callback, and similarly for system resume, thaw,
restore, and runtime resume, can achieve this with the help of the UNIVER-
SAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its last
argument to NULL).

80 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

11.7 8. “No-Callback”Devices

Some“devices”are only logical sub-devices of their parent and cannot be power-
managed on their own. (The prototype example is a USB interface. Entire USB
devices can go into low-power mode or send wake-up requests, but neither is
possible for individual interfaces.) The drivers for these devices have no need
of runtime PM callbacks; if the callbacks did exist, ->runtime_suspend() and -
>runtime_resume() would always return 0 without doing anything else and -
>runtime_idle() would always call pm_runtime_suspend().

Subsystems can tell the PM core about these devices by calling
pm_runtime_no_callbacks(). This should be done after the device structure
is initialized and before it is registered (although after device registration is also
okay). The routine will set the device’s power.no_callbacks flag and prevent the
non-debugging runtime PM sysfs attributes from being created.

When power.no_callbacks is set, the PM core will not invoke the ->runtime_idle(), -
>runtime_suspend(), or ->runtime_resume() callbacks. Instead it will assume that
suspends and resumes always succeed and that idle devices should be suspended.

As a consequence, the PM core will never directly inform the device’s subsystem
or driver about runtime power changes. Instead, the driver for the device’s parent
must take responsibility for telling the device’s driver when the parent’s power
state changes.

11.8 9. Autosuspend, or automatically-delayed sus-
pends

Changing a device’s power state isn’t free; it requires both time and energy. A
device should be put in a low-power state only when there’s some reason to think
it will remain in that state for a substantial time. A common heuristic says that a
device which hasn’t been used for a while is liable to remain unused; following
this advice, drivers should not allow devices to be suspended at runtime until they
have been inactive for some minimum period. Even when the heuristic ends up
being non-optimal, it will still prevent devices from“bouncing”too rapidly between
low-power and full-power states.

The term“autosuspend”is an historical remnant. It doesn’t mean that the device is
automatically suspended (the subsystem or driver still has to call the appropriate
PM routines); rather it means that runtime suspends will automatically be delayed
until the desired period of inactivity has elapsed.

Inactivity is determined based on the power.last_busy field. Drivers should call
pm_runtime_mark_last_busy() to update this field after carrying out I/O, typi-
cally just before calling pm_runtime_put_autosuspend(). The desired length of
the inactivity period is a matter of policy. Subsystems can set this length ini-
tially by calling pm_runtime_set_autosuspend_delay(), but after device registra-
tion the length should be controlled by user space, using the /sys/devices/⋯
/power/autosuspend_delay_ms attribute.

In order to use autosuspend, subsystems or drivers must call
pm_runtime_use_autosuspend() (preferably before registering the device),

11.7. 8. “No-Callback”Devices 81

Linux Power Documentation

and thereafter they should use the various *_autosuspend() helper functions
instead of the non-autosuspend counterparts:

Instead of: pm_runtime_suspend use: pm_runtime_autosuspend;
Instead of: pm_schedule_suspend use: pm_request_autosuspend;
Instead of: pm_runtime_put use: pm_runtime_put_autosuspend;
Instead of: pm_runtime_put_sync use: pm_runtime_put_sync_autosuspend.

Drivers may also continue to use the non-autosuspend helper functions; they will
behave normally, which means sometimes taking the autosuspend delay into ac-
count (see pm_runtime_idle).

Under some circumstances a driver or subsystem may want to prevent a de-
vice from autosuspending immediately, even though the usage counter is zero
and the autosuspend delay time has expired. If the ->runtime_suspend() call-
back returns -EAGAIN or -EBUSY, and if the next autosuspend delay expira-
tion time is in the future (as it normally would be if the callback invoked
pm_runtime_mark_last_busy()), the PM core will automatically reschedule the au-
tosuspend. The ->runtime_suspend() callback can’t do this rescheduling itself
because no suspend requests of any kind are accepted while the device is sus-
pending (i.e., while the callback is running).

The implementation is well suited for asynchronous use in interrupt contexts.
However such use inevitably involves races, because the PM core can’t synchro-
nize ->runtime_suspend() callbacks with the arrival of I/O requests. This synchro-
nization must be handled by the driver, using its private lock. Here is a schematic
pseudo-code example:

foo_read_or_write(struct foo_priv *foo, void *data)
{

lock(&foo->private_lock);
add_request_to_io_queue(foo, data);
if (foo->num_pending_requests++ == 0)

pm_runtime_get(&foo->dev);
if (!foo->is_suspended)

foo_process_next_request(foo);
unlock(&foo->private_lock);

}

foo_io_completion(struct foo_priv *foo, void *req)
{

lock(&foo->private_lock);
if (--foo->num_pending_requests == 0) {

pm_runtime_mark_last_busy(&foo->dev);
pm_runtime_put_autosuspend(&foo->dev);

} else {
foo_process_next_request(foo);

}
unlock(&foo->private_lock);
/* Send req result back to the user ... */

}

int foo_runtime_suspend(struct device *dev)
{

struct foo_priv foo = container_of(dev, ...);
int ret = 0;

(continues on next page)

82 Chapter 11. Runtime Power Management Framework for I/O Devices

Linux Power Documentation

(continued from previous page)

lock(&foo->private_lock);
if (foo->num_pending_requests > 0) {

ret = -EBUSY;
} else {

/* ... suspend the device ... */
foo->is_suspended = 1;

}
unlock(&foo->private_lock);
return ret;

}

int foo_runtime_resume(struct device *dev)
{

struct foo_priv foo = container_of(dev, ...);

lock(&foo->private_lock);
/* ... resume the device ... */
foo->is_suspended = 0;
pm_runtime_mark_last_busy(&foo->dev);
if (foo->num_pending_requests > 0)

foo_process_next_request(foo);
unlock(&foo->private_lock);
return 0;

}

The important point is that after foo_io_completion() asks for an autosuspend,
the foo_runtime_suspend() callback may race with foo_read_or_write(). Therefore
foo_runtime_suspend() has to check whether there are any pending I/O requests
(while holding the private lock) before allowing the suspend to proceed.

In addition, the power.autosuspend_delay field can be changed by
user space at any time. If a driver cares about this, it can call
pm_runtime_autosuspend_expiration() from within the ->runtime_suspend()
callback while holding its private lock. If the function returns a nonzero value
then the delay has not yet expired and the callback should return -EAGAIN.

11.8. 9. Autosuspend, or automatically-delayed suspends 83

Linux Power Documentation

84 Chapter 11. Runtime Power Management Framework for I/O Devices

CHAPTER

TWELVE

HOW TO GET S2RAM WORKING

2006 Linus Torvalds 2006 Pavel Machek

1) Check suspend.sf.net, program s2ram there has long whitelist of“known ok”
machines, along with tricks to use on each one.

2) If that does not help, try reading tricks.txt and video.txt. Perhaps problem is
as simple as broken module, and simple module unload can fix it.

3) You can use Linus’TRACE_RESUME infrastructure, described below.

12.1 Using TRACE_RESUME

I’ve been working at making the machines I have able to STR, and almost always
it’s a driver that is buggy. Thank God for the suspend/resume debugging - the
thing that Chuck tried to disable. That’s often the _only_ way to debug these
things, and it’s actually pretty powerful (but time-consuming - having to insert
TRACE_RESUME() markers into the device driver that doesn’t resume and re-
compile and reboot).

Anyway, the way to debug this for people who are interested (have a machine that
doesn’t boot) is:
• enable PM_DEBUG, and PM_TRACE

• use a script like this:

#!/bin/sh
sync
echo 1 > /sys/power/pm_trace
echo mem > /sys/power/state

to suspend

• if it doesn’t come back up (which is usually the problem), reboot by holding
the power button down, and look at the dmesg output for things like:

Magic number: 4:156:725
hash matches drivers/base/power/resume.c:28
hash matches device 0000:01:00.0

which means that the last trace event was just before trying to resume device
0000:01:00.0. Then figure out what driver is controlling that device (lspci and

85

Linux Power Documentation

/sys/devices/pci* is your friend), and see if you can fix it, disable it, or trace
into its resume function.

If no device matches the hash (or any matches appear to be false positives),
the culprit may be a device from a loadable kernel module that is not loaded
until after the hash is checked. You can check the hash against the current
devices again after more modules are loaded using sysfs:

cat /sys/power/pm_trace_dev_match

For example, the above happens to be the VGA device on my EVO, which I used to
run with“radeonfb”(it’s an ATI Radeon mobility). It turns out that“radeonfb”
simply cannot resume that device - it tries to set the PLL’s, and it just _hangs_.
Using the regular VGA console and letting X resume it instead works fine.

12.1.1 NOTE

pm_trace uses the system’s Real Time Clock (RTC) to save the magic number.
Reason for this is that the RTC is the only reliably available piece of hardware
during resume operations where a value can be set that will survive a reboot.

pm_trace is not compatible with asynchronous suspend, so it turns asynchronous
suspend off (which may work around timing or ordering-sensitive bugs).

Consequence is that after a resume (even if it is successful) your system clock will
have a value corresponding to the magic number instead of the correct date/time!
It is therefore advisable to use a program like ntp-date or rdate to reset the correct
date/time from an external time source when using this trace option.

As the clock keeps ticking it is also essential that the reboot is done quickly after
the resume failure. The trace option does not use the seconds or the low order
bits of the minutes of the RTC, but a too long delay will corrupt the magic value.

86 Chapter 12. How to get s2ram working

CHAPTER

THIRTEEN

INTERACTION OF SUSPEND CODE (S3) WITH THE CPU
HOTPLUG INFRASTRUCTURE

(C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>

13.1 I. Differences between CPU hotplug and Suspend-
to-RAM

How does the regular CPU hotplug code differ from how the Suspend-to-RAM in-
frastructure uses it internally? And where do they share common code?

Well, a picture is worth a thousand words⋯So ASCII art follows :-)
[This depicts the current design in the kernel, and focusses only on the interac-
tions involving the freezer and CPU hotplug and also tries to explain the locking
involved. It outlines the notifications involved as well. But please note that here,
only the call paths are illustrated, with the aim of describing where they take dif-
ferent paths and where they share code. What happens when regular CPU hotplug
and Suspend-to-RAM race with each other is not depicted here.]

On a high level, the suspend-resume cycle goes like this:

|Freeze| -> |Disable nonboot| -> |Do suspend| -> |Enable nonboot| -> |Thaw␣
↪→|
|tasks | | cpus | | | | cpus | ␣
↪→|tasks|

More details follow:

Suspend call path

Write 'mem' to
/sys/power/state

sysfs file
|
v

Acquire system_transition_mutex lock
|
v

Send PM_SUSPEND_PREPARE
notifications

(continues on next page)

87

mailto:srivatsa.bhat@linux.vnet.ibm.com

Linux Power Documentation

(continued from previous page)
|
v

Freeze tasks
|
|
v

freeze_secondary_cpus()
/* start */

|
v

Acquire cpu_add_remove_lock
|
v

Iterate over CURRENTLY
online CPUs

|
|
| ----------
v | L

======> _cpu_down() |
| [This takes cpuhotplug.lock |

Common | before taking down the CPU |
code | and releases it when done] | O

| While it is at it, notifications |
| are sent when notable events occur, |
======> by running all registered callbacks. |

| | O
| |
| |
v |

Note down these cpus in | P
frozen_cpus mask ----------

|
v

Disable regular cpu hotplug
by increasing cpu_hotplug_disabled

|
v

Release cpu_add_remove_lock
|
v

/* freeze_secondary_cpus() complete */
|
v

Do suspend

Resuming back is likewise, with the counterparts being (in the order of execution
during resume):

• thaw_secondary_cpus() which involves:

| Acquire cpu_add_remove_lock
| Decrease cpu_hotplug_disabled, thereby enabling regular cpu hotplug
| Call _cpu_up() [for all those cpus in the frozen_cpus mask, in a␣
↪→loop]
| Release cpu_add_remove_lock

(continues on next page)

88 Chapter 13. Interaction of Suspend code (S3) with the CPU hotplug
infrastructure

Linux Power Documentation

(continued from previous page)
v

• thaw tasks

• send PM_POST_SUSPEND notifications

• Release system_transition_mutex lock.

It is to be noted here that the system_transition_mutex lock is acquired at the very
beginning, when we are just starting out to suspend, and then released only after
the entire cycle is complete (i.e., suspend + resume).

Regular CPU hotplug call path

Write 0 (or 1) to
/sys/devices/system/cpu/cpu*/online

sysfs file
|
|
v

cpu_down()
|
v

Acquire cpu_add_remove_lock
|
v

If cpu_hotplug_disabled > 0
return gracefully

|
|
v

======> _cpu_down()
| [This takes cpuhotplug.lock

Common | before taking down the CPU
code | and releases it when done]

| While it is at it, notifications
| are sent when notable events occur,
======> by running all registered callbacks.

|
|
v

Release cpu_add_remove_lock
[That's it!, for

regular CPU hotplug]

So, as can be seen from the two diagrams (the parts marked as “Common code”
), regular CPU hotplug and the suspend code path converge at the _cpu_down()
and _cpu_up() functions. They differ in the arguments passed to these functions, in
that during regular CPU hotplug, 0 is passed for the‘tasks_frozen’argument. But
during suspend, since the tasks are already frozen by the time the non-boot CPUs
are offlined or onlined, the _cpu_*() functions are called with the ‘tasks_frozen’
argument set to 1. [See below for some known issues regarding this.]

13.1. I. Differences between CPU hotplug and Suspend-to-RAM 89

Linux Power Documentation

13.1.1 Important files and functions/entry points:

• kernel/power/process.c : freeze_processes(), thaw_processes()

• kernel/power/suspend.c : suspend_prepare(), suspend_enter(), sus-
pend_finish()

• kernel/cpu.c: cpu_[up|down](), _cpu_[up|down](), [dis-
able|enable]_nonboot_cpus()

13.1.2 II. What are the issues involved in CPU hotplug?

There are some interesting situations involving CPU hotplug and microcode up-
date on the CPUs, as discussed below:

[Please bear in mind that the kernel requests the microcode im-
ages from userspace, using the request_firmware() function defined in
drivers/base/firmware_loader/main.c]

a. When all the CPUs are identical:

This is the most common situation and it is quite straightforward:
we want to apply the same microcode revision to each of the CPUs.
To give an example of x86, the collect_cpu_info() function defined in
arch/x86/kernel/microcode_core.c helps in discovering the type of the CPU
and thereby in applying the correct microcode revision to it. But note that
the kernel does not maintain a common microcode image for the all CPUs, in
order to handle case ‘b’described below.

b. When some of the CPUs are different than the rest:

In this case since we probably need to apply different microcode revisions to
different CPUs, the kernel maintains a copy of the correct microcode image
for each CPU (after appropriate CPU type/model discovery using functions
such as collect_cpu_info()).

c. When a CPU is physically hot-unplugged and a new (and possibly different
type of) CPU is hot-plugged into the system:

In the current design of the kernel, whenever a CPU is taken offline during
a regular CPU hotplug operation, upon receiving the CPU_DEAD notification
(which is sent by the CPU hotplug code), the microcode update driver’s call-
back for that event reacts by freeing the kernel’s copy of the microcode image
for that CPU.

Hence, when a new CPU is brought online, since the kernel finds that it doesn’
t have the microcode image, it does the CPU type/model discovery afresh and
then requests the userspace for the appropriate microcode image for that
CPU, which is subsequently applied.

For example, in x86, the mc_cpu_callback() function (which is the mi-
crocode update driver’s callback registered for CPU hotplug events) calls
microcode_update_cpu() which would call microcode_init_cpu() in this case,
instead of microcode_resume_cpu() when it finds that the kernel doesn’t have
a valid microcode image. This ensures that the CPU type/model discovery is

90 Chapter 13. Interaction of Suspend code (S3) with the CPU hotplug
infrastructure

Linux Power Documentation

performed and the right microcode is applied to the CPU after getting it from
userspace.

d. Handling microcode update during suspend/hibernate:

Strictly speaking, during a CPU hotplug operation which does not involve
physically removing or inserting CPUs, the CPUs are not actually powered
off during a CPU offline. They are just put to the lowest C-states possible.
Hence, in such a case, it is not really necessary to re-apply microcode when
the CPUs are brought back online, since they wouldn’t have lost the image
during the CPU offline operation.

This is the usual scenario encountered during a resume after a suspend. How-
ever, in the case of hibernation, since all the CPUs are completely powered
off, during restore it becomes necessary to apply the microcode images to all
the CPUs.

[Note that we don’t expect someone to physically pull out nodes and insert
nodes with a different type of CPUs in-between a suspend-resume or a hiber-
nate/restore cycle.]

In the current design of the kernel however, during a CPU offline operation as
part of the suspend/hibernate cycle (cpuhp_tasks_frozen is set), the existing
copy of microcode image in the kernel is not freed up. And during the CPU on-
line operations (during resume/restore), since the kernel finds that it already
has copies of the microcode images for all the CPUs, it just applies them to
the CPUs, avoiding any re-discovery of CPU type/model and the need for vali-
dating whether the microcode revisions are right for the CPUs or not (due to
the above assumption that physical CPU hotplug will not be done in-between
suspend/resume or hibernate/restore cycles).

13.2 III. Known problems

Are there any known problems when regular CPU hotplug and suspend race with
each other?

Yes, they are listed below:

1. When invoking regular CPU hotplug, the‘tasks_frozen’argument passed to
the _cpu_down() and _cpu_up() functions is always 0. This might not reflect
the true current state of the system, since the tasks could have been frozen
by an out-of-band event such as a suspend operation in progress. Hence,
the cpuhp_tasks_frozen variable will not reflect the frozen state and the CPU
hotplug callbacks which evaluate that variable might execute the wrong code
path.

2. If a regular CPU hotplug stress test happens to race with the freezer due
to a suspend operation in progress at the same time, then we could hit the
situation described below:

• A regular cpu online operation continues its journey from userspace into
the kernel, since the freezing has not yet begun.

• Then freezer gets to work and freezes userspace.

13.2. III. Known problems 91

Linux Power Documentation

• If cpu online has not yet completed the microcode update stuff
by now, it will now start waiting on the frozen userspace in the
TASK_UNINTERRUPTIBLE state, in order to get the microcode image.

• Now the freezer continues and tries to freeze the remaining tasks. But
due to this wait mentioned above, the freezer won’t be able to freeze
the cpu online hotplug task and hence freezing of tasks fails.

As a result of this task freezing failure, the suspend operation gets aborted.

92 Chapter 13. Interaction of Suspend code (S3) with the CPU hotplug
infrastructure

CHAPTER

FOURTEEN

SYSTEM SUSPEND AND DEVICE INTERRUPTS

Copyright (C) 2014 Intel Corp. Author: Rafael J. Wysocki
<rafael.j.wysocki@intel.com>

14.1 Suspending and Resuming Device IRQs

Device interrupt request lines (IRQs) are generally disabled during system sus-
pend after the“late”phase of suspending devices (that is, after all of the ->prepare,
->suspend and ->suspend_late callbacks have been executed for all devices). That
is done by suspend_device_irqs().

The rationale for doing so is that after the“late”phase of device suspend there is no
legitimate reason why any interrupts from suspended devices should trigger and if
any devices have not been suspended properly yet, it is better to block interrupts
from them anyway. Also, in the past we had problems with interrupt handlers for
shared IRQs that device drivers implementing them were not prepared for inter-
rupts triggering after their devices had been suspended. In some cases they would
attempt to access, for example, memory address spaces of suspended devices and
cause unpredictable behavior to ensue as a result. Unfortunately, such problems
are very difficult to debug and the introduction of suspend_device_irqs(), along
with the“noirq”phase of device suspend and resume, was the only practical way
to mitigate them.

Device IRQs are re-enabled during system resume, right before the“early”phase
of resuming devices (that is, before starting to execute ->resume_early callbacks
for devices). The function doing that is resume_device_irqs().

14.2 The IRQF_NO_SUSPEND Flag

There are interrupts that can legitimately trigger during the entire system
suspend-resume cycle, including the “noirq”phases of suspending and resum-
ing devices as well as during the time when nonboot CPUs are taken offline and
brought back online. That applies to timer interrupts in the first place, but also to
IPIs and to some other special-purpose interrupts.

The IRQF_NO_SUSPEND flag is used to indicate that to the IRQ subsystem when
requesting a special-purpose interrupt. It causes suspend_device_irqs() to leave
the corresponding IRQ enabled so as to allow the interrupt to work as expected
during the suspend-resume cycle, but does not guarantee that the interrupt will

93

mailto:rafael.j.wysocki@intel.com

Linux Power Documentation

wake the system from a suspended state – for such cases it is necessary to use
enable_irq_wake().

Note that the IRQF_NO_SUSPEND flag affects the entire IRQ and not just one user
of it. Thus, if the IRQ is shared, all of the interrupt handlers installed for it will
be executed as usual after suspend_device_irqs(), even if the IRQF_NO_SUSPEND
flag was not passed to request_irq() (or equivalent) by some of the IRQ’s users.
For this reason, using IRQF_NO_SUSPEND and IRQF_SHARED at the same time
should be avoided.

14.3 System Wakeup Interrupts, enable_irq_wake() and
disable_irq_wake()

System wakeup interrupts generally need to be configured to wake up the system
from sleep states, especially if they are used for different purposes (e.g. as I/O
interrupts) in the working state.

That may involve turning on a special signal handling logic within the platform
(such as an SoC) so that signals from a given line are routed in a different way
during system sleep so as to trigger a system wakeup when needed. For example,
the platformmay include a dedicated interrupt controller used specifically for han-
dling system wakeup events. Then, if a given interrupt line is supposed to wake up
the system from sleep sates, the corresponding input of that interrupt controller
needs to be enabled to receive signals from the line in question. After wakeup, it
generally is better to disable that input to prevent the dedicated controller from
triggering interrupts unnecessarily.

The IRQ subsystem provides two helper functions to be used by device drivers
for those purposes. Namely, enable_irq_wake() turns on the platform’s logic for
handling the given IRQ as a system wakeup interrupt line and disable_irq_wake()
turns that logic off.

Calling enable_irq_wake() causes suspend_device_irqs() to treat the given IRQ in
a special way. Namely, the IRQ remains enabled, by on the first interrupt it will
be disabled, marked as pending and “suspended”so that it will be re-enabled
by resume_device_irqs() during the subsequent system resume. Also the PM core
is notified about the event which causes the system suspend in progress to be
aborted (that doesn’t have to happen immediately, but at one of the points where
the suspend thread looks for pending wakeup events).

This way every interrupt from a wakeup interrupt source will either cause the sys-
tem suspend currently in progress to be aborted or wake up the system if already
suspended. However, after suspend_device_irqs() interrupt handlers are not exe-
cuted for system wakeup IRQs. They are only executed for IRQF_NO_SUSPEND
IRQs at that time, but those IRQs should not be configured for system wakeup
using enable_irq_wake().

94 Chapter 14. System Suspend and Device Interrupts

Linux Power Documentation

14.4 Interrupts and Suspend-to-Idle

Suspend-to-idle (also known as the“freeze”sleep state) is a relatively new system
sleep state that works by idling all of the processors and waiting for interrupts
right after the “noirq”phase of suspending devices.
Of course, this means that all of the interrupts with the IRQF_NO_SUSPEND flag
set will bring CPUs out of idle while in that state, but they will not cause the IRQ
subsystem to trigger a system wakeup.

System wakeup interrupts, in turn, will trigger wakeup from suspend-to-idle in
analogy with what they do in the full system suspend case. The only difference
is that the wakeup from suspend-to-idle is signaled using the usual working state
interrupt delivery mechanisms and doesn’t require the platform to use any special
interrupt handling logic for it to work.

14.5 IRQF_NO_SUSPEND and enable_irq_wake()

There are very few valid reasons to use both enable_irq_wake() and the
IRQF_NO_SUSPEND flag on the same IRQ, and it is never valid to use both for
the same device.

First of all, if the IRQ is not shared, the rules for handling IRQF_NO_SUSPEND in-
terrupts (interrupt handlers are invoked after suspend_device_irqs()) are directly
at odds with the rules for handling system wakeup interrupts (interrupt handlers
are not invoked after suspend_device_irqs()).

Second, both enable_irq_wake() and IRQF_NO_SUSPEND apply to entire IRQs and
not to individual interrupt handlers, so sharing an IRQ between a system wakeup
interrupt source and an IRQF_NO_SUSPEND interrupt source does not generally
make sense.

In rare cases an IRQ can be shared between a wakeup device driver and an
IRQF_NO_SUSPEND user. In order for this to be safe, the wakeup device driver
must be able to discern spurious IRQs from genuine wakeup events (signalling
the latter to the core with pm_system_wakeup()), must use enable_irq_wake() to
ensure that the IRQ will function as a wakeup source, and must request the IRQ
with IRQF_COND_SUSPEND to tell the core that it meets these requirements. If
these requirements are not met, it is not valid to use IRQF_COND_SUSPEND.

14.4. Interrupts and Suspend-to-Idle 95

Linux Power Documentation

96 Chapter 14. System Suspend and Device Interrupts

CHAPTER

FIFTEEN

USING SWAP FILES WITH SOFTWARE SUSPEND
(SWSUSP)

(C) 2006 Rafael J. Wysocki <rjw@sisk.pl>

The Linux kernel handles swap files almost in the same way as it handles swap
partitions and there are only two differences between these two types of swap
areas: (1) swap files need not be contiguous, (2) the header of a swap file is not in
the first block of the partition that holds it. From the swsusp’s point of view (1) is
not a problem, because it is already taken care of by the swap-handling code, but
(2) has to be taken into consideration.

In principle the location of a swap file’s header may be determined with the help
of appropriate filesystem driver. Unfortunately, however, it requires the filesystem
holding the swap file to be mounted, and if this filesystem is journaled, it cannot be
mounted during resume from disk. For this reason to identify a swap file swsusp
uses the name of the partition that holds the file and the offset from the beginning
of the partition at which the swap file’s header is located. For convenience, this
offset is expressed in <PAGE_SIZE> units.

In order to use a swap file with swsusp, you need to:

1) Create the swap file and make it active, eg.:

dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_
↪→in_k>
mkswap <swap_file_path>
swapon <swap_file_path>

2) Use an application that will bmap the swap file with the help of the FIBMAP ioctl
and determine the location of the file’s swap header, as the offset, in <PAGE_SIZE>
units, from the beginning of the partition which holds the swap file.

3) Add the following parameters to the kernel command line:

resume=<swap_file_partition> resume_offset=<swap_file_offset>

where <swap_file_partition> is the partition on which the swap file is located and
<swap_file_offset> is the offset of the swap header determined by the application
in 2) (of course, this step may be carried out automatically by the same application
that determines the swap file’s header offset using the FIBMAP ioctl)
OR

Use a userland suspend application that will set the partition and off-
set with the help of the SNAPSHOT_SET_SWAP_AREA ioctl described in

97

mailto:rjw@sisk.pl

Linux Power Documentation

Documentation/power/userland-swsusp.rst (this is the only method to suspend to
a swap file allowing the resume to be initiated from an initrd or initramfs image).

Now, swsusp will use the swap file in the same way in which it would use a swap
partition. In particular, the swap file has to be active (ie. be present in /proc/swaps)
so that it can be used for suspending.

Note that if the swap file used for suspending is deleted and recreated, the location
of its header need not be the same as before. Thus every time this happens the
value of the“resume_offset=”kernel command line parameter has to be updated.

98 Chapter 15. Using swap files with software suspend (swsusp)

CHAPTER

SIXTEEN

HOW TO USE DM-CRYPT AND SWSUSP TOGETHER

Author: Andreas Steinmetz <ast@domdv.de>

Some prerequisites: You know how dm-crypt works. If not, visit the follow-
ing web page: http://www.saout.de/misc/dm-crypt/ You have read Documenta-
tion/power/swsusp.rst and understand it. You did read Documentation/admin-
guide/initrd.rst and know how an initrd works. You know how to create or how
to modify an initrd.

Now your system is properly set up, your disk is encrypted except for the swap
device(s) and the boot partition which may contain a mini system for crypto setup
and/or rescue purposes. You may even have an initrd that does your current crypto
setup already.

At this point you want to encrypt your swap, too. Still you want to be able to
suspend using swsusp. This, however, means that you have to be able to either
enter a passphrase or that you read the key(s) from an external device like a pcmcia
flash disk or an usb stick prior to resume. So you need an initrd, that sets up dm-
crypt and then asks swsusp to resume from the encrypted swap device.

The most important thing is that you set up dm-crypt in such a way that the swap
device you suspend to/resume from has always the same major/minor within the
initrd as well as within your running system. The easiest way to achieve this is to
always set up this swap device first with dmsetup, so that it will always look like
the following:

brw------- 1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0

Now set up your kernel to use /dev/mapper/swap0 as the default resume partition,
so your kernel .config contains:

CONFIG_PM_STD_PARTITION="/dev/mapper/swap0"

Prepare your boot loader to use the initrd you will create or modify. For lilo the
simplest setup looks like the following lines:

image=/boot/vmlinuz
initrd=/boot/initrd.gz
label=linux
append="root=/dev/ram0 init=/linuxrc rw"

Finally you need to create or modify your initrd. Lets assume you create an initrd
that reads the required dm-crypt setup from a pcmcia flash disk card. The card is
formatted with an ext2 fs which resides on /dev/hde1 when the card is inserted.

99

mailto:ast@domdv.de
http://www.saout.de/misc/dm-crypt/

Linux Power Documentation

The card contains at least the encrypted swap setup in a file named “swapkey”.
/etc/fstab of your initrd contains something like the following:

/dev/hda1 /mnt ext3 ro 0 0
none /proc proc defaults,noatime,nodiratime 0 0
none /sys sysfs defaults,noatime,nodiratime 0 0

/dev/hda1 contains an unencrypted mini system that sets up all of your crypto
devices, again by reading the setup from the pcmcia flash disk. What follows now
is a /linuxrc for your initrd that allows you to resume from encrypted swap and that
continues boot with your mini system on /dev/hda1 if resume does not happen:

#!/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
mount /proc
mount /sys
mapped=0
noresume=`grep -c noresume /proc/cmdline`
if ["$*" != ""]
then

noresume=1
fi
dmesg -n 1
/sbin/cardmgr -q
for i in 1 2 3 4 5 6 7 8 9 0
do

if [-f /proc/ide/hde/media]
then

usleep 500000
mount -t ext2 -o ro /dev/hde1 /mnt
if [-f /mnt/swapkey]
then
dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1

fi
umount /mnt
break

fi
usleep 500000

done
killproc /sbin/cardmgr
dmesg -n 6
if [$mapped = 1]
then

if [$noresume != 0]
then
mkswap /dev/mapper/swap0 > /dev/null 2>&1

fi
echo 254:0 > /sys/power/resume
dmsetup remove swap0

fi
umount /sys
mount /mnt
umount /proc
cd /mnt
pivot_root . mnt
mount /proc
umount -l /mnt

(continues on next page)

100 Chapter 16. How to use dm-crypt and swsusp together

Linux Power Documentation

(continued from previous page)
umount /proc
exec chroot . /sbin/init $* < dev/console > dev/console 2>&1

Please don’t mind the weird loop above, busybox’s msh doesn’t know the let
statement. Now, what is happening in the script? First we have to decide if we
want to try to resume, or not. We will not resume if booting with “noresume”or
any parameters for init like “single”or “emergency”as boot parameters.
Then we need to set up dmcrypt with the setup data from the pcmcia flash disk. If
this succeeds we need to reset the swap device if we don’t want to resume. The line
“echo 254:0 > /sys/power/resume”then attempts to resume from the first device
mapper device. Note that it is important to set the device in /sys/power/resume,
regardless if resuming or not, otherwise later suspend will fail. If resume starts,
script execution terminates here.

Otherwise we just remove the encrypted swap device and leave it to the mini sys-
tem on /dev/hda1 to set the whole crypto up (it is up to you to modify this to your
taste).

What then follows is the well known process to change the root file system and con-
tinue booting from there. I prefer to unmount the initrd prior to continue booting
but it is up to you to modify this.

101

Linux Power Documentation

102 Chapter 16. How to use dm-crypt and swsusp together

CHAPTER

SEVENTEEN

SWAP SUSPEND

Some warnings, first.

Warning: BIG FAT WARNING
If you touch anything on disk between suspend and resume⋯ ⋯kiss

your data goodbye.

If you do resume from initrd after your filesystems are mounted⋯
⋯bye bye root partition.

[this is actually same case as above]

If you have unsupported () devices using DMA, you may have some problems.
If your disk driver does not support suspend⋯(IDE does), it may cause some
problems, too. If you change kernel command line between suspend and re-
sume, it may do something wrong. If you change your hardware while system
is suspended⋯well, it was not good idea; but it will probably only crash.
() suspend/resume support is needed to make it safe.

If you have any filesystems on USB devices mounted before software suspend,
they won’t be accessible after resume and you may lose data, as though you
have unplugged the USB devices with mounted filesystems on them; see the
FAQ below for details. (This is not true for more traditional power states like
“standby”, which normally don’t turn USB off.)

Swap partition: You need to append resume=/dev/your_swap_partition to kernel
command line or specify it using /sys/power/resume.

Swap file: If using a swapfile you can also specify a resume offset using
resume_offset=<number> on the kernel command line or specify it in
/sys/power/resume_offset.

After preparing then you suspend by:

echo shutdown > /sys/power/disk; echo disk > /sys/power/state

• If you feel ACPI works pretty well on your system, you might try:

echo platform > /sys/power/disk; echo disk > /sys/power/state

• If you would like to write hibernation image to swap and then suspend to RAM
(provided your platform supports it), you can try:

103

Linux Power Documentation

echo suspend > /sys/power/disk; echo disk > /sys/power/state

• If you have SATA disks, you’ll need recent kernels with SATA suspend support.
For suspend and resume to work, make sure your disk drivers are built into
kernel – not modules. [There’s way to make suspend/resume with modular
disk drivers, see FAQ, but you probably should not do that.]

If you want to limit the suspend image size to N bytes, do:

echo N > /sys/power/image_size

before suspend (it is limited to around 2/5 of available RAM by default).

• The resume process checks for the presence of the resume device, if found,
it then checks the contents for the hibernation image signature. If both are
found, it resumes the hibernation image.

• The resume process may be triggered in two ways:

1) During lateinit: If resume=/dev/your_swap_partition is specified on the
kernel command line, lateinit runs the resume process. If the resume
device has not been probed yet, the resume process fails and bootup
continues.

2) Manually from an initrd or initramfs: May be run from the init script
by using the /sys/power/resume file. It is vital that this be done prior to
remounting any filesystems (even as read-only) otherwise data may be
corrupted.

17.1 Article about goals and implementation of Soft-
ware Suspend for Linux

Author: Gábor Kuti Last revised: 2003-10-20 by Pavel Machek

17.1.1 Idea and goals to achieve

Nowadays it is common in several laptops that they have a suspend button. It saves
the state of the machine to a filesystem or to a partition and switches to standby
mode. Later resuming the machine the saved state is loaded back to ram and the
machine can continue its work. It has two real benefits. First we save ourselves
the time machine goes down and later boots up, energy costs are real high when
running from batteries. The other gain is that we don’t have to interrupt our
programs so processes that are calculating something for a long time shouldn’t
need to be written interruptible.

swsusp saves the state of the machine into active swaps and then reboots or pow-
erdowns. You must explicitly specify the swap partition to resume from with re-
sume= kernel option. If signature is found it loads and restores saved state. If the
option noresume is specified as a boot parameter, it skips the resuming. If the op-
tion hibernate=nocompress is specified as a boot parameter, it saves hibernation
image without compression.

104 Chapter 17. Swap suspend

Linux Power Documentation

In the meantime while the system is suspended you should not add/remove any of
the hardware, write to the filesystems, etc.

17.2 Sleep states summary

There are three different interfaces you can use, /proc/acpi should work like this:

In a really perfect world:

echo 1 > /proc/acpi/sleep # for standby
echo 2 > /proc/acpi/sleep # for suspend to ram
echo 3 > /proc/acpi/sleep # for suspend to ram, but with more power

conservative
echo 4 > /proc/acpi/sleep # for suspend to disk
echo 5 > /proc/acpi/sleep # for shutdown unfriendly the system

and perhaps:

echo 4b > /proc/acpi/sleep # for suspend to disk via s4bios

17.3 Frequently Asked Questions

Q: well, suspending a server is IMHO a really stupid thing, but⋯(Diego Zuccato):
A: You bought new UPS for your server. How do you install it without bringing

machine down? Suspend to disk, rearrange power cables, resume.

You have your server on UPS. Power died, and UPS is indicating 30 seconds
to failure. What do you do? Suspend to disk.

Q: Maybe I’m missing something, but why don’t the regular I/O paths work?
A: We do use the regular I/O paths. However we cannot restore the data to its

original location as we load it. That would create an inconsistent kernel state
which would certainly result in an oops. Instead, we load the image into
unused memory and then atomically copy it back to it original location. This
implies, of course, a maximum image size of half the amount of memory.

There are two solutions to this:

• require half of memory to be free during suspend. That way you can read
“new”data onto free spots, then cli and copy
• assumewe had special“polling”ide driver that only usesmemory between
0-640KB. That way, I’d have to make sure that 0-640KB is free during
suspending, but otherwise it would work⋯

suspend2 shares this fundamental limitation, but does not include user data
and disk caches into“used memory”by saving them in advance. That means
that the limitation goes away in practice.

Q: Does linux support ACPI S4?
A: Yes. That’s what echo platform > /sys/power/disk does.

17.2. Sleep states summary 105

Linux Power Documentation

Q: What is ‘suspend2’?
A: suspend2 is ‘Software Suspend 2’, a forked implementation of suspend-to-

disk which is available as separate patches for 2.4 and 2.6 kernels from
swsusp.sourceforge.net. It includes support for SMP, 4GB highmem and pre-
emption. It also has a extensible architecture that allows for arbitrary trans-
formations on the image (compression, encryption) and arbitrary backends
for writing the image (eg to swap or an NFS share[Work In Progress]). Ques-
tions regarding suspend2 should be sent to the mailing list available through
the suspend2 website, and not to the Linux Kernel Mailing List. We are work-
ing toward merging suspend2 into the mainline kernel.

Q: What is the freezing of tasks and why are we using it?
A: The freezing of tasks is a mechanism by which user space processes and some

kernel threads are controlled during hibernation or system-wide suspend (on
some architectures). See freezing-of-tasks.txt for details.

Q: What is the difference between “platform”and “shutdown”?
A:

shutdown: save state in linux, then tell bios to powerdown
platform: save state in linux, then tell bios to powerdown and blink “sus-

pended led”
“platform”is actually right thing to do where supported, but “shutdown”is
most reliable (except on ACPI systems).

Q: I do not understand why you have such strong objections to idea of selective
suspend.

A: Do selective suspend during runtime power management, that’s okay. But
it’s useless for suspend-to-disk. (And I do not see how you could use it for
suspend-to-ram, I hope you do not want that).

Lets see, so you suggest to

• SUSPEND all but swap device and parents

• Snapshot

• Write image to disk

• SUSPEND swap device and parents

• Powerdown

Oh no, that does not work, if swap device or its parents uses DMA, you’ve
corrupted data. You’d have to do
• SUSPEND all but swap device and parents

• FREEZE swap device and parents

• Snapshot

• UNFREEZE swap device and parents

• Write

• SUSPEND swap device and parents

106 Chapter 17. Swap suspend

Linux Power Documentation

Which means that you still need that FREEZE state, and you get more com-
plicated code. (And I have not yet introduce details like system devices).

Q: There don’t seem to be any generally useful behavioral distinctions between
SUSPEND and FREEZE.

A: Doing SUSPEND when you are asked to do FREEZE is always correct, but it
may be unnecessarily slow. If you want your driver to stay simple, slowness
may not matter to you. It can always be fixed later.

For devices like disk it does matter, you do not want to spindown for FREEZE.

Q: After resuming, system is paging heavily, leading to very bad interactivity.

A: Try running:

cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while␣
↪→read file
do
test -f "$file" && cat "$file" > /dev/null

done

after resume. swapoff -a; swapon -a may also be useful.

Q: What happens to devices during swsusp? They seem to be resumed during
system suspend?

A: That’s correct. We need to resume them if we want to write image to disk.
Whole sequence goes like

Suspend part
running system, user asks for suspend-to-disk

user processes are stopped

suspend(PMSG_FREEZE): devices are frozen so that they don’t in-
terfere with state snapshot

state snapshot: copy of whole used memory is taken with interrupts
disabled

resume(): devices are woken up so that we can write image to swap

write image to swap

suspend(PMSG_SUSPEND): suspend devices so that we can power
off

turn the power off

Resume part
(is actually pretty similar)

running system, user asks for suspend-to-disk

user processes are stopped (in common case there are none, but with
resume-from-initrd, no one knows)

read image from disk

17.3. Frequently Asked Questions 107

Linux Power Documentation

suspend(PMSG_FREEZE): devices are frozen so that they don’t in-
terfere with image restoration

image restoration: rewrite memory with image

resume(): devices are woken up so that system can continue

thaw all user processes

Q: What is this ‘Encrypt suspend image’for?
A: First of all: it is not a replacement for dm-crypt encrypted swap. It cannot

protect your computer while it is suspended. Instead it does protect from
leaking sensitive data after resume from suspend.

Think of the following: you suspend while an application is running that keeps
sensitive data in memory. The application itself prevents the data from be-
ing swapped out. Suspend, however, must write these data to swap to be
able to resume later on. Without suspend encryption your sensitive data are
then stored in plaintext on disk. This means that after resume your sensitive
data are accessible to all applications having direct access to the swap device
which was used for suspend. If you don’t need swap after resume these data
can remain on disk virtually forever. Thus it can happen that your system gets
broken in weeks later and sensitive data which you thought were encrypted
and protected are retrieved and stolen from the swap device. To prevent this
situation you should use ‘Encrypt suspend image’.
During suspend a temporary key is created and this key is used to encrypt the
data written to disk. When, during resume, the data was read back into mem-
ory the temporary key is destroyed which simply means that all data written
to disk during suspend are then inaccessible so they can’t be stolen later on.
The only thing that you must then take care of is that you call‘mkswap’for
the swap partition used for suspend as early as possible during regular boot.
This asserts that any temporary key from an oopsed suspend or from a failed
or aborted resume is erased from the swap device.

As a rule of thumb use encrypted swap to protect your data while your system
is shut down or suspended. Additionally use the encrypted suspend image to
prevent sensitive data from being stolen after resume.

Q: Can I suspend to a swap file?
A: Generally, yes, you can. However, it requires you to use the “resume=”and
“resume_offset=”kernel command line parameters, so the resume from a
swap file cannot be initiated from an initrd or initramfs image. See swsusp-
and-swap-files.txt for details.

Q: Is there a maximum system RAM size that is supported by swsusp?

A: It should work okay with highmem.
Q: Does swsusp (to disk) use only one swap partition or can it use multiple swap

partitions (aggregate them into one logical space)?

A: Only one swap partition, sorry.
Q: If my application(s) causes lots of memory & swap space to be used (over half

of the total system RAM), is it correct that it is likely to be useless to try to
suspend to disk while that app is running?

108 Chapter 17. Swap suspend

Linux Power Documentation

A: No, it should work okay, as long as your app does not mlock() it. Just prepare
big enough swap partition.

Q: What information is useful for debugging suspend-to-disk problems?
A: Well, last messages on the screen are always useful. If something is broken, it is

usually some kernel driver, therefore trying with as little as possible modules
loaded helps a lot. I also prefer people to suspend from console, preferably
without X running. Booting with init=/bin/bash, then swapon and starting
suspend sequence manually usually does the trick. Then it is good idea to try
with latest vanilla kernel.

Q: How can distributions ship a swsusp-supporting kernel with modular disk
drivers (especially SATA)?

A: Well, it can be done, load the drivers, then do echo into /sys/power/resume file
from initrd. Be sure not to mount anything, not even read-only mount, or you
are going to lose your data.

Q: How do I make suspend more verbose?
A: If you want to see any non-error kernel messages on the virtual terminal the

kernel switches to during suspend, you have to set the kernel console loglevel
to at least 4 (KERN_WARNING), for example by doing:

save the old loglevel
read LOGLEVEL DUMMY < /proc/sys/kernel/printk
set the loglevel so we see the progress bar.
if the level is higher than needed, we leave it alone.
if [$LOGLEVEL -lt 5]; then

echo 5 > /proc/sys/kernel/printk
fi

IMG_SZ=0
read IMG_SZ < /sys/power/image_size
echo -n disk > /sys/power/state
RET=$?
#
the logic here is:
if image_size > 0 (without kernel support, IMG_SZ will be zero),
then try again with image_size set to zero.
if [$RET -ne 0 -a $IMG_SZ -ne 0]; then # try again with minimal␣
↪→image size

echo 0 > /sys/power/image_size
echo -n disk > /sys/power/state
RET=$?

fi

restore previous loglevel
echo $LOGLEVEL > /proc/sys/kernel/printk
exit $RET

Q: Is this true that if I have a mounted filesystem on a USB device and I suspend
to disk, I can lose data unless the filesystem has been mounted with“sync”?

A: That’s right ⋯if you disconnect that device, you may lose data. In fact, even
with“-o sync”you can lose data if your programs have information in buffers
they haven’t written out to a disk you disconnect, or if you disconnect before

17.3. Frequently Asked Questions 109

Linux Power Documentation

the device finished saving data you wrote.

Software suspend normally powers downUSB controllers, which is equivalent
to disconnecting all USB devices attached to your system.

Your system might well support low-power modes for its USB controllers
while the system is asleep, maintaining the connection, using true sleep
modes like “suspend-to-RAM”or “standby”. (Don’t write “disk”to the
/sys/power/state file; write“standby”or“mem”.) We’ve not seen any hard-
ware that can use these modes through software suspend, although in theory
some systems might support “platform”modes that won’t break the USB
connections.

Remember that it’s always a bad idea to unplug a disk drive containing a
mounted filesystem. That’s true even when your system is asleep! The safest
thing is to unmount all filesystems on removable media (such USB, Firewire,
CompactFlash, MMC, external SATA, or even IDE hotplug bays) before sus-
pending; then remount them after resuming.

There is a work-around for this problem. For more information, see
Documentation/driver-api/usb/persist.rst.

Q: Can I suspend-to-disk using a swap partition under LVM?
A: Yes and No. You can suspend successfully, but the kernel will not be able to

resume on its own. You need an initramfs that can recognize the resume
situation, activate the logical volume containing the swap volume (but not
touch any filesystems!), and eventually call:

echo -n "$major:$minor" > /sys/power/resume

where $major and $minor are the respective major andminor device numbers
of the swap volume.

uswsusp works with LVM, too. See http://suspend.sourceforge.net/

Q: I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were compiled with
the similar configuration files. Anyway I found that suspend to disk (and re-
sume) is much slower on 2.6.16 compared to 2.6.15. Any idea for why that
might happen or how can I speed it up?

A: This is because the size of the suspend image is now greater than for 2.6.15
(by saving more data we can get more responsive system after resume).

There’s the /sys/power/image_size knob that controls the size of the image.
If you set it to 0 (eg. by echo 0 > /sys/power/image_size as root), the 2.6.15
behavior should be restored. If it is still too slow, take a look at suspend.sf.net
– userland suspend is faster and supports LZF compression to speed it up
further.

110 Chapter 17. Swap suspend

http://suspend.sourceforge.net/

CHAPTER

EIGHTEEN

VIDEO ISSUES WITH S3 RESUME

2003-2006, Pavel Machek

During S3 resume, hardware needs to be reinitialized. For most devices, this is
easy, and kernel driver knows how to do it. Unfortunately there’s one exception:
video card. Those are usually initialized by BIOS, and kernel does not have enough
information to boot video card. (Kernel usually does not even contain video card
driver – vesafb and vgacon are widely used).

This is not problem for swsusp, because during swsusp resume, BIOS is run nor-
mally so video card is normally initialized. It should not be problem for S1 standby,
because hardware should retain its state over that.

We either have to run video BIOS during early resume, or interpret it using vbetool
later, or maybe nothing is necessary on particular system because video state is
preserved. Unfortunately different methods work on different systems, and no
known method suits all of them.

Userland application called s2ram has been developed; it contains long whitelist
of systems, and automatically selects working method for a given system. It can
be downloaded from CVS at www.sf.net/projects/suspend . If you get a system that
is not in the whitelist, please try to find a working solution, and submit whitelist
entry so that work does not need to be repeated.

Currently, VBE_SAVE method (6 below) works on most systems. Unfortunately,
vbetool only runs after userland is resumed, so it makes debugging of early resume
problems hard/impossible. Methods that do not rely on userland are preferable.

18.1 Details

There are a few types of systems where video works after S3 resume:

(1) systems where video state is preserved over S3.

(2) systems where it is possible to call the video BIOS during S3 resume. Unfor-
tunately, it is not correct to call the video BIOS at that point, but it happens
to work on some machines. Use acpi_sleep=s3_bios.

(3) systems that initialize video card into vga text mode and where the BIOS
works well enough to be able to set video mode. Use acpi_sleep=s3_mode on
these.

111

Linux Power Documentation

(4) on some systems s3_bios kicks video into text mode, and
acpi_sleep=s3_bios,s3_mode is needed.

(5) radeon systems, where X can soft-boot your video card. You’ll need a
new enough X, and a plain text console (no vesafb or radeonfb). See http:
//www.doesi.gmxhome.de/linux/tm800s3/s3.html for more information. Al-
ternatively, you should use vbetool (6) instead.

(6) other radeon systems, where vbetool is enough to bring system back to
life. It needs text console to be working. Do vbetool vbestate save >
/tmp/delme; echo 3 > /proc/acpi/sleep; vbetool post; vbetool vbestate restore
< /tmp/delme; setfont <whatever>, and your video should work.

(7) on some systems, it is possible to boot most of kernel, and then POSTing
bios works. Ole Rohne has patch to do just that at http://dev.gentoo.org/
~marineam/patch-radeonfb-2.6.11-rc2-mm2.

(8) on some systems, you can use the video_post utility and or do echo 3 >
/sys/power/state && /usr/sbin/video_post - which will initialize the display in
console mode. If you are in X, you can switch to a virtual terminal and back to
X using CTRL+ALT+F1 - CTRL+ALT+F7 to get the display working in graph-
ical mode again.

Now, if you pass acpi_sleep=something, and it does not work with your bios, you’ll
get a hard crash during resume. Be careful. Also it is safest to do your experiments
with plain old VGA console. The vesafb and radeonfb (etc) drivers have a tendency
to crash the machine during resume.

You may have a system where none of above works. At that point you either invent
another ugly hack that works, or write proper driver for your video card (good luck
getting docs :-(). Maybe suspending from X (proper X, knowing your hardware, not
XF68_FBcon) might have better chance of working.

Table of known working notebooks:

Model hack (or “how to do it”)
Acer Aspire 1406LC ole’s late BIOS init (7), turn off DRI
Acer TM 230 s3_bios (2)
Acer TM 242FX vbetool (6)
Acer TM C110 video_post (8)
Acer TM C300 vga=normal (only suspend on console,

not in X), vbetool (6) or video_post (8)
Acer TM 4052LCi s3_bios (2)
Acer TM 636Lci s3_bios,s3_mode (4)
Acer TM 650 (Radeon M7) vga=normal plus boot-radeon (5) gets

text console back
Acer TM 660 ???1
Acer TM 800 vga=normal, X patches, see webpage

(5) or vbetool (6)
Acer TM 803 vga=normal, X patches, see webpage

(5) or vbetool (6)
Acer TM 803LCi vga=normal, vbetool (6)
Arima W730a vbetool needed (6)

Continued on next page

112 Chapter 18. Video issues with S3 resume

http://www.doesi.gmxhome.de/linux/tm800s3/s3.html
http://www.doesi.gmxhome.de/linux/tm800s3/s3.html
http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2
http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2

Linux Power Documentation

Table 1 – continued from previous page
Model hack (or “how to do it”)
Asus L2400D s3_mode (3)2 (S1 also works OK)
Asus L3350M (SiS 740)

(6)

Asus L3800C (Radeon M7) s3_bios (2) (S1 also works OK)
Asus M6887Ne vga=normal, s3_bios (2), use radeon

driver instead of fglrx in x.org
Athlon64 desktop prototype s3_bios (2)
Compal CL-50 ???1
Compaq Armada E500 - P3-700 none (1) (S1 also works OK)
Compaq Evo N620c vga=normal, s3_bios (2)
Dell 600m, ATI R250 Lf none (1), but needs xorg-x11-

6.8.1.902-1
Dell D600, ATI RV250 vga=normal and X, or try vbestate (6)
Dell D610 vga=normal and X (possibly vbestate

(6) too, but not tested)
Dell Inspiron 4000 ???1
Dell Inspiron 500m ???1
Dell Inspiron 510m ???
Dell Inspiron 5150 vbetool needed (6)
Dell Inspiron 600m ???1
Dell Inspiron 8200 ???1
Dell Inspiron 8500 ???1
Dell Inspiron 8600 ???1
eMachines athlon64 machines vbetool needed (6) (someone please

get me model #s)
HP NC6000 s3_bios, may not use radeonfb (2); or

vbetool (6)
HP NX7000 ???1
HP Pavilion ZD7000 vbetool post needed, need open-source

nv driver for X
HP Omnibook XE3 athlon version none (1)
HP Omnibook XE3GC none (1), video is S3 Savage/IX-MV
HP Omnibook XE3L-GF vbetool (6)
HP Omnibook 5150 none (1), (S1 also works OK)
IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294

Savage/IX-MV, vesafb gets “interest-
ing”but X work.

IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with BIOS 1.04
2002-08-23, but not at all with BIOS
1.11 2004-11-05 :-(]

IBM TP R32 / Type 2658-MMG none (1)
IBM TP R40 2722B3G ???1
IBM TP R50p / Type 1832-22U s3_bios (2)
IBM TP R51 none (1)
IBM TP T30 236681A ???1

Continued on next page

18.1. Details 113

Linux Power Documentation

Table 1 – continued from previous page
Model hack (or “how to do it”)
IBM TP T40 / Type 2373-MU4 none (1)
IBM TP T40p none (1)
IBM TP R40p s3_bios (2)
IBM TP T41p s3_bios (2), switch to X after resume
IBM TP T42 s3_bios (2)
IBM ThinkPad T42p (2373-GTG) s3_bios (2)
IBM TP X20 ???1
IBM TP X30 s3_bios, s3_mode (4)
IBM TP X31 / Type 2672-XXH none (1), use radeontool (http:

//fdd.com/software/radeon/) to turn off
backlight.

IBM TP X32 none (1), but backlight is on and video
is trashed after long suspend. s3_bios,
s3_mode (4) works too. Perhaps that
gets better results?

IBM Thinkpad X40 Type 2371-7JG s3_bios,s3_mode (4)
IBM TP 600e none(1), but a switch to console and

back to X is needed
Medion MD4220 ???1
Samsung P35 vbetool needed (6)
Sharp PC-AR10 (ATI rage) none (1), backlight does not switch off
Sony Vaio PCG-C1VRX/K s3_bios (2)
Sony Vaio PCG-F403 ???1
Sony Vaio PCG-GRT995MP none (1), works with ‘nv’X driver
Sony Vaio PCG-GR7/K none (1), but needs radeonfb, use

radeontool (http://fdd.com/software/
radeon/) to turn off backlight.

Sony Vaio PCG-N505SN ???1
Sony Vaio vgn-s260 X or boot-radeon can init it (5)
Sony Vaio vgn-S580BH vga=normal, but suspend from X. Con-

sole will be blank unless you return to
X.

Sony Vaio vgn-FS115B s3_bios (2),s3_mode (4)
Toshiba Libretto L5 none (1)
Toshiba Libretto 100CT/110CT vbetool (6)
Toshiba Portege 3020CT s3_mode (3)
Toshiba Satellite 4030CDT s3_mode (3) (S1 also works OK)
Toshiba Satellite 4080XCDT s3_mode (3) (S1 also works OK)
Toshiba Satellite 4090XCDT ???1
Toshiba Satellite P10-554 s3_bios,s3_mode (4)[#f3]_
Toshiba M30

(2) xor X with nvidia driver using in-
ternal AGP

Uniwill 244IIO ???1

1 from https://wiki.ubuntu.com/HoaryPMResults, not sure which options to use. If you know,

114 Chapter 18. Video issues with S3 resume

http://fdd.com/software/radeon/
http://fdd.com/software/radeon/
http://fdd.com/software/radeon/
http://fdd.com/software/radeon/
https://wiki.ubuntu.com/HoaryPMResults

Linux Power Documentation

18.2 Known working desktop systems

Mainboard Graphics card hack (or “how to do it”)
Asus A7V8X nVidia RIVA TNT2 model 64 s3_bios,s3_mode (4)

please tell me.
2 To be tested with a newer kernel.

18.2. Known working desktop systems 115

Linux Power Documentation

116 Chapter 18. Video issues with S3 resume

CHAPTER

NINETEEN

SWSUSP/S3 TRICKS

Pavel Machek <pavel@ucw.cz>

If you want to trick swsusp/S3 into working, you might want to try:

• go with minimal config, turn off drivers like USB, AGP you don’t really need
• turn off APIC and preempt

• use ext2. At least it has working fsck. [If something seems to go wrong, force
fsck when you have a chance]

• turn off modules

• use vga text console, shut down X. [If you really want X, you might want to
try vesafb later]

• try running as few processes as possible, preferably go to single user mode.

• due to video issues, swsusp should be easier to get working than S3. Try that
first.

When you make it work, try to find out what exactly was it that broke suspend,
and preferably fix that.

117

mailto:pavel@ucw.cz

Linux Power Documentation

118 Chapter 19. swsusp/S3 tricks

CHAPTER

TWENTY

DOCUMENTATION FOR USERLAND SOFTWARE SUSPEND
INTERFACE

(C) 2006 Rafael J. Wysocki <rjw@sisk.pl>

First, the warnings at the beginning of swsusp.txt still apply.

Second, you should read the FAQ in swsusp.txt _now_ if you have not done it al-
ready.

Now, to use the userland interface for software suspend you need special utilities
that will read/write the system memory snapshot from/to the kernel. Such utili-
ties are available, for example, from <http://suspend.sourceforge.net>. You may
want to have a look at them if you are going to develop your own suspend/resume
utilities.

The interface consists of a character device providing the open(), release(),
read(), and write() operations as well as several ioctl() commands defined in in-
clude/linux/suspend_ioctls.h . The major and minor numbers of the device are,
respectively, 10 and 231, and they can be read from /sys/class/misc/snapshot/dev.

The device can be open either for reading or for writing. If open for reading, it is
considered to be in the suspend mode. Otherwise it is assumed to be in the resume
mode. The device cannot be open for simultaneous reading and writing. It is also
impossible to have the device open more than once at a time.

Even opening the device has side effects. Data structures are allocated, and
PM_HIBERNATION_PREPARE / PM_RESTORE_PREPARE chains are called.

The ioctl() commands recognized by the device are:

SNAPSHOT_FREEZE freeze user space processes (the current process is
not frozen); this is required for SNAPSHOT_CREATE_IMAGE and SNAP-
SHOT_ATOMIC_RESTORE to succeed

SNAPSHOT_UNFREEZE thaw user space processes frozen by SNAP-
SHOT_FREEZE

SNAPSHOT_CREATE_IMAGE create a snapshot of the system memory; the last
argument of ioctl() should be a pointer to an int variable, the value of which
will indicate whether the call returned after creating the snapshot (1) or af-
ter restoring the system memory state from it (0) (after resume the system
finds itself finishing the SNAPSHOT_CREATE_IMAGE ioctl() again); after the
snapshot has been created the read() operation can be used to transfer it out
of the kernel

119

mailto:rjw@sisk.pl
http://suspend.sourceforge.net

Linux Power Documentation

SNAPSHOT_ATOMIC_RESTORE restore the system memory state from the up-
loaded snapshot image; before calling it you should transfer the system mem-
ory snapshot back to the kernel using the write() operation; this call will not
succeed if the snapshot image is not available to the kernel

SNAPSHOT_FREE free memory allocated for the snapshot image

SNAPSHOT_PREF_IMAGE_SIZE set the preferred maximum size of the image
(the kernel will do its best to ensure the image size will not exceed this num-
ber, but if it turns out to be impossible, the kernel will create the smallest
image possible)

SNAPSHOT_GET_IMAGE_SIZE return the actual size of the hibernation image
(the last argument should be a pointer to a loff_t variable that will contain the
result if the call is successful)

SNAPSHOT_AVAIL_SWAP_SIZE return the amount of available swap in bytes
(the last argument should be a pointer to a loff_t variable that will contain
the result if the call is successful)

SNAPSHOT_ALLOC_SWAP_PAGE allocate a swap page from the resume parti-
tion (the last argument should be a pointer to a loff_t variable that will contain
the swap page offset if the call is successful)

SNAPSHOT_FREE_SWAP_PAGES free all swap pages allocated by SNAP-
SHOT_ALLOC_SWAP_PAGE

SNAPSHOT_SET_SWAP_AREA set the resume partition and the offset (in
<PAGE_SIZE> units) from the beginning of the partition at which the
swap header is located (the last ioctl() argument should point to a struct
resume_swap_area, as defined in kernel/power/suspend_ioctls.h, contain-
ing the resume device specification and the offset); for swap partitions
the offset is always 0, but it is different from zero for swap files (see
Documentation/power/swsusp-and-swap-files.rst for details).

SNAPSHOT_PLATFORM_SUPPORT enable/disable the hibernation platform
support, depending on the argument value (enable, if the argument is
nonzero)

SNAPSHOT_POWER_OFF make the kernel transition the system to the hiberna-
tion state (eg. ACPI S4) using the platform (eg. ACPI) driver

SNAPSHOT_S2RAM suspend to RAM; using this call causes the kernel to imme-
diately enter the suspend-to-RAM state, so this call must always be preceded
by the SNAPSHOT_FREEZE call and it is also necessary to use the SNAP-
SHOT_UNFREEZE call after the system wakes up. This call is needed to im-
plement the suspend-to-both mechanism in which the suspend image is first
created, as though the system had been suspended to disk, and then the sys-
tem is suspended to RAM (this makes it possible to resume the system from
RAM if there’s enough battery power or restore its state on the basis of the
saved suspend image otherwise)

The device’s read() operation can be used to transfer the snapshot image from
the kernel. It has the following limitations:

• you cannot read() more than one virtual memory page at a time

120Chapter 20. Documentation for userland software suspend interface

Linux Power Documentation

• read()s across page boundaries are impossible (ie. if you read() 1/2 of a page
in the previous call, you will only be able to read() at most 1/2 of the page in
the next call)

The device’s write() operation is used for uploading the system memory snapshot
into the kernel. It has the same limitations as the read() operation.

The release() operation frees all memory allocated for the snapshot image and all
swap pages allocated with SNAPSHOT_ALLOC_SWAP_PAGE (if any). Thus it is not
necessary to use either SNAPSHOT_FREE or SNAPSHOT_FREE_SWAP_PAGES be-
fore closing the device (in fact it will also unfreeze user space processes frozen by
SNAPSHOT_UNFREEZE if they are still frozen when the device is being closed).

Currently it is assumed that the userland utilities reading/writing the snapshot
image from/to the kernel will use a swap partition, called the resume partition,
or a swap file as storage space (if a swap file is used, the resume partition is the
partition that holds this file). However, this is not really required, as they can
use, for example, a special (blank) suspend partition or a file on a partition that is
unmounted before SNAPSHOT_CREATE_IMAGE and mounted afterwards.

These utilities MUST NOT make any assumptions regarding the ordering of data
within the snapshot image. The contents of the image are entirely owned by the
kernel and its structure may be changed in future kernel releases.

The snapshot image MUST be written to the kernel unaltered (ie. all of the image
data, metadata and header MUST be written in _exactly_ the same amount, form
and order in which they have been read). Otherwise, the behavior of the resumed
system may be totally unpredictable.

While executing SNAPSHOT_ATOMIC_RESTORE the kernel checks if the struc-
ture of the snapshot image is consistent with the information stored in the image
header. If any inconsistencies are detected, SNAPSHOT_ATOMIC_RESTORE will
not succeed. Still, this is not a fool-proof mechanism and the userland utilities
using the interface SHOULD use additional means, such as checksums, to ensure
the integrity of the snapshot image.

The suspending and resuming utilities MUST lock themselves in memory, prefer-
ably using mlockall(), before calling SNAPSHOT_FREEZE.

The suspending utility MUST check the value stored by SNAP-
SHOT_CREATE_IMAGE in the memory location pointed to by the last argument
of ioctl() and proceed in accordance with it:

1. If the value is 1 (ie. the system memory snapshot has just been created and
the system is ready for saving it):

(a) The suspending utility MUST NOT close the snapshot device _unless_
the whole suspend procedure is to be cancelled, in which case, if the
snapshot image has already been saved, the suspending utility SHOULD
destroy it, preferably by zapping its header. If the suspend is not to be
cancelled, the system MUST be powered off or rebooted after the snap-
shot image has been saved.

(b) The suspending utility SHOULD NOT attempt to perform any file sys-
tem operations (including reads) on the file systems that were mounted
before SNAPSHOT_CREATE_IMAGE has been called. However, it MAY

121

Linux Power Documentation

mount a file system that was not mounted at that time and perform some
operations on it (eg. use it for saving the image).

2. If the value is 0 (ie. the system state has just been restored from the snapshot
image), the suspending utility MUST close the snapshot device. Afterwards
it will be treated as a regular userland process, so it need not exit.

The resuming utility SHOULD NOT attempt to mount any file systems that could
be mounted before suspend and SHOULD NOT attempt to perform any operations
involving such file systems.

For details, please refer to the source code.

122Chapter 20. Documentation for userland software suspend interface

CHAPTER

TWENTYONE

POWER CAPPING FRAMEWORK

The power capping framework provides a consistent interface between the kernel
and the user space that allows power capping drivers to expose the settings to
user space in a uniform way.

21.1 Terminology

The framework exposes power capping devices to user space via sysfs in the form
of a tree of objects. The objects at the root level of the tree represent ‘control
types’, which correspond to different methods of power capping. For example,
the intel-rapl control type represents the Intel “Running Average Power Limit”
(RAPL) technology, whereas the ‘idle-injection’control type corresponds to the
use of idle injection for controlling power.

Power zones represent different parts of the system, which can be controlled and
monitored using the power capping method determined by the control type the
given zone belongs to. They each contain attributes for monitoring power, as well
as controls represented in the form of power constraints. If the parts of the system
represented by different power zones are hierarchical (that is, one bigger part
consists of multiple smaller parts that each have their own power controls), those
power zones may also be organized in a hierarchy with one parent power zone
containing multiple subzones and so on to reflect the power control topology of
the system. In that case, it is possible to apply power capping to a set of devices
together using the parent power zone and if more fine grained control is required,
it can be applied through the subzones.

Example sysfs interface tree:

/sys/devices/virtual/powercap
└──intel-rapl

├──intel-rapl:0
│ ├──constraint_0_name
│ ├──constraint_0_power_limit_uw
│ ├──constraint_0_time_window_us
│ ├──constraint_1_name
│ ├──constraint_1_power_limit_uw
│ ├──constraint_1_time_window_us
│ ├──device -> ../../intel-rapl
│ ├──energy_uj
│ ├──intel-rapl:0:0

(continues on next page)

123

Linux Power Documentation

(continued from previous page)
│ │ ├──constraint_0_name
│ │ ├──constraint_0_power_limit_uw
│ │ ├──constraint_0_time_window_us
│ │ ├──constraint_1_name
│ │ ├──constraint_1_power_limit_uw
│ │ ├──constraint_1_time_window_us
│ │ ├──device -> ../../intel-rapl:0
│ │ ├──energy_uj
│ │ ├──max_energy_range_uj
│ │ ├──name
│ │ ├──enabled
│ │ ├──power
│ │ │ ├──async
│ │ │ []
│ │ ├──subsystem -> ../../../../../../class/power_cap
│ │ └──uevent
│ ├──intel-rapl:0:1
│ │ ├──constraint_0_name
│ │ ├──constraint_0_power_limit_uw
│ │ ├──constraint_0_time_window_us
│ │ ├──constraint_1_name
│ │ ├──constraint_1_power_limit_uw
│ │ ├──constraint_1_time_window_us
│ │ ├──device -> ../../intel-rapl:0
│ │ ├──energy_uj
│ │ ├──max_energy_range_uj
│ │ ├──name
│ │ ├──enabled
│ │ ├──power
│ │ │ ├──async
│ │ │ []
│ │ ├──subsystem -> ../../../../../../class/power_cap
│ │ └──uevent
│ ├──max_energy_range_uj
│ ├──max_power_range_uw
│ ├──name
│ ├──enabled
│ ├──power
│ │ ├──async
│ │ []
│ ├──subsystem -> ../../../../../class/power_cap
│ ├──enabled
│ ├──uevent
├──intel-rapl:1
│ ├──constraint_0_name
│ ├──constraint_0_power_limit_uw
│ ├──constraint_0_time_window_us
│ ├──constraint_1_name
│ ├──constraint_1_power_limit_uw
│ ├──constraint_1_time_window_us
│ ├──device -> ../../intel-rapl

(continues on next page)

124 Chapter 21. Power Capping Framework

Linux Power Documentation

(continued from previous page)
│ ├──energy_uj
│ ├──intel-rapl:1:0
│ │ ├──constraint_0_name
│ │ ├──constraint_0_power_limit_uw
│ │ ├──constraint_0_time_window_us
│ │ ├──constraint_1_name
│ │ ├──constraint_1_power_limit_uw
│ │ ├──constraint_1_time_window_us
│ │ ├──device -> ../../intel-rapl:1
│ │ ├──energy_uj
│ │ ├──max_energy_range_uj
│ │ ├──name
│ │ ├──enabled
│ │ ├──power
│ │ │ ├──async
│ │ │ []
│ │ ├──subsystem -> ../../../../../../class/power_cap
│ │ └──uevent
│ ├──intel-rapl:1:1
│ │ ├──constraint_0_name
│ │ ├──constraint_0_power_limit_uw
│ │ ├──constraint_0_time_window_us
│ │ ├──constraint_1_name
│ │ ├──constraint_1_power_limit_uw
│ │ ├──constraint_1_time_window_us
│ │ ├──device -> ../../intel-rapl:1
│ │ ├──energy_uj
│ │ ├──max_energy_range_uj
│ │ ├──name
│ │ ├──enabled
│ │ ├──power
│ │ │ ├──async
│ │ │ []
│ │ ├──subsystem -> ../../../../../../class/power_cap
│ │ └──uevent
│ ├──max_energy_range_uj
│ ├──max_power_range_uw
│ ├──name
│ ├──enabled
│ ├──power
│ │ ├──async
│ │ []
│ ├──subsystem -> ../../../../../class/power_cap
│ ├──uevent
├──power
│ ├──async
│ []
├──subsystem -> ../../../../class/power_cap
├──enabled
└──uevent

The above example illustrates a case in which the Intel RAPL technology, available

21.1. Terminology 125

Linux Power Documentation

in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one control
type called intel-rapl which contains two power zones, intel-rapl:0 and intel-rapl:1,
representing CPU packages. Each of these power zones contains two subzones,
intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the “core”and the “un-
core”parts of the given CPU package, respectively. All of the zones and subzones
contain energy monitoring attributes (energy_uj, max_energy_range_uj) and con-
straint attributes (constraint_*) allowing controls to be applied (the constraints in
the ‘package’power zones apply to the whole CPU packages and the subzone
constraints only apply to the respective parts of the given package individually).
Since Intel RAPL doesn’t provide instantaneous power value, there is no power_uw
attribute.

In addition to that, each power zone contains a name attribute, allowing the part
of the system represented by that zone to be identified. For example:

cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name

21.1.1 package-0

The Intel RAPL technology allows two constraints, short term and long term, with
two different time windows to be applied to each power zone. Thus for each zone
there are 2 attributes representing the constraint names, 2 power limits and 2
attributes representing the sizes of the time windows. Such that, constraint_j_*
attributes correspond to the jth constraint (j = 0,1).

For example:

constraint_0_name
constraint_0_power_limit_uw
constraint_0_time_window_us
constraint_1_name
constraint_1_power_limit_uw
constraint_1_time_window_us

21.2 Power Zone Attributes

21.2.1 Monitoring attributes

energy_uj (rw) Current energy counter in micro joules. Write“0”to reset. If the
counter can not be reset, then this attribute is read only.

max_energy_range_uj (ro) Range of the above energy counter in micro-joules.
power_uw (ro) Current power in micro watts.
max_power_range_uw (ro) Range of the above power value in micro-watts.
name (ro) Name of this power zone.
It is possible that some domains have both power ranges and energy counter
ranges; however, only one is mandatory.

126 Chapter 21. Power Capping Framework

Linux Power Documentation

21.2.2 Constraints

constraint_X_power_limit_uw (rw) Power limit in micro watts, which should be
applicable for the time window specified by“constraint_X_time_window_us”
.

constraint_X_time_window_us (rw) Time window in micro seconds.
constraint_X_name (ro) An optional name of the constraint
constraint_X_max_power_uw(ro) Maximum allowed power in micro watts.

constraint_X_min_power_uw(ro) Minimum allowed power in micro watts.

constraint_X_max_time_window_us(ro) Maximum allowed time window in mi-
cro seconds.

constraint_X_min_time_window_us(ro) Minimum allowed time window in mi-
cro seconds.

Except power_limit_uw and time_window_us other fields are optional.

21.2.3 Common zone and control type attributes

enabled (rw): Enable/Disable controls at zone level or for all zones using a control
type.

21.3 Power Cap Client Driver Interface

The API summary:

Call powercap_register_control_type() to register control type object. Call power-
cap_register_zone() to register a power zone (under a given control type), either
as a top-level power zone or as a subzone of another power zone registered earlier.
The number of constraints in a power zone and the corresponding callbacks have
to be defined prior to calling powercap_register_zone() to register that zone.

To Free a power zone call powercap_unregister_zone(). To free a control type
object call powercap_unregister_control_type(). Detailed API can be generated
using kernel-doc on include/linux/powercap.h.

21.3. Power Cap Client Driver Interface 127

Linux Power Documentation

128 Chapter 21. Power Capping Framework

CHAPTER

TWENTYTWO

REGULATOR CONSUMER DRIVER INTERFACE

This text describes the regulator interface for consumer device drivers. Please see
overview.txt for a description of the terms used in this text.

22.1 1. Consumer Regulator Access (static & dynamic
drivers)

A consumer driver can get access to its supply regulator by calling

regulator = regulator_get(dev, "Vcc");

The consumer passes in its struct device pointer and power supply ID. The core
then finds the correct regulator by consulting a machine specific lookup table. If
the lookup is successful then this call will return a pointer to the struct regulator
that supplies this consumer.

To release the regulator the consumer driver should call

regulator_put(regulator);

Consumers can be supplied by more than one regulator e.g. codec consumer with
analog and digital supplies

digital = regulator_get(dev, "Vcc"); /* digital core */
analog = regulator_get(dev, "Avdd"); /* analog */

The regulator access functions regulator_get() and regulator_put() will usually be
called in your device drivers probe() and remove() respectively.

22.2 2. Regulator Output Enable & Disable (static & dy-
namic drivers)

A consumer can enable its power supply by calling:

int regulator_enable(regulator);

NOTE: The supply may already be enabled before regulator_enabled() is called.
This may happen if the consumer shares the regulator or the regulator has
been previously enabled by bootloader or kernel board initialization code.

129

Linux Power Documentation

A consumer can determine if a regulator is enabled by calling:

int regulator_is_enabled(regulator);

This will return > zero when the regulator is enabled.

A consumer can disable its supply when no longer needed by calling:

int regulator_disable(regulator);

NOTE: This may not disable the supply if it’s shared with other consumers. The
regulator will only be disabled when the enabled reference count is zero.

Finally, a regulator can be forcefully disabled in the case of an emergency:

int regulator_force_disable(regulator);

NOTE: this will immediately and forcefully shutdown the regulator output. All
consumers will be powered off.

22.3 3. Regulator Voltage Control & Status (dynamic
drivers)

Some consumer drivers need to be able to dynamically change their supply voltage
to match system operating points. e.g. CPUfreq drivers can scale voltage along
with frequency to save power, SD drivers may need to select the correct card
voltage, etc.

Consumers can control their supply voltage by calling:

int regulator_set_voltage(regulator, min_uV, max_uV);

Where min_uV and max_uV are the minimum and maximum acceptable voltages
in microvolts.

NOTE: this can be called when the regulator is enabled or disabled. If called when
enabled, then the voltage changes instantly, otherwise the voltage configuration
changes and the voltage is physically set when the regulator is next enabled.

The regulators configured voltage output can be found by calling:

int regulator_get_voltage(regulator);

NOTE: get_voltage() will return the configured output voltage whether the regu-
lator is enabled or disabled and should NOT be used to determine regulator
output state. However this can be used in conjunction with is_enabled() to
determine the regulator physical output voltage.

130 Chapter 22. Regulator Consumer Driver Interface

Linux Power Documentation

22.4 4. Regulator Current Limit Control & Status (dy-
namic drivers)

Some consumer drivers need to be able to dynamically change their supply current
limit to match system operating points. e.g. LCD backlight driver can change the
current limit to vary the backlight brightness, USB drivers may want to set the
limit to 500mA when supplying power.

Consumers can control their supply current limit by calling:

int regulator_set_current_limit(regulator, min_uA, max_uA);

Where min_uA and max_uA are the minimum and maximum acceptable current
limit in microamps.

NOTE: this can be called when the regulator is enabled or disabled. If called
when enabled, then the current limit changes instantly, otherwise the current
limit configuration changes and the current limit is physically set when the
regulator is next enabled.

A regulators current limit can be found by calling:

int regulator_get_current_limit(regulator);

NOTE: get_current_limit() will return the current limit whether the regulator is
enabled or disabled and should not be used to determine regulator current
load.

22.5 5. Regulator Operating Mode Control & Status (dy-
namic drivers)

Some consumers can further save system power by changing the operating mode
of their supply regulator to be more efficient when the consumers operating state
changes. e.g. consumer driver is idle and subsequently draws less current

Regulator operating mode can be changed indirectly or directly.

22.5.1 Indirect operating mode control.

Consumer drivers can request a change in their supply regulator operating mode
by calling:

int regulator_set_load(struct regulator *regulator, int load_uA);

This will cause the core to recalculate the total load on the regulator (based on all
its consumers) and change operating mode (if necessary and permitted) to best
match the current operating load.

The load_uA value can be determined from the consumer’s datasheet. e.g. most
datasheets have tables showing the maximum current consumed in certain situa-
tions.

22.4. 4. Regulator Current Limit Control & Status (dynamic drivers) 131

Linux Power Documentation

Most consumers will use indirect operatingmode control since they have no knowl-
edge of the regulator or whether the regulator is shared with other consumers.

22.5.2 Direct operating mode control.

Bespoke or tightly coupled driversmaywant to directly control regulator operating
mode depending on their operating point. This can be achieved by calling:

int regulator_set_mode(struct regulator *regulator, unsigned int mode);
unsigned int regulator_get_mode(struct regulator *regulator);

Direct mode will only be used by consumers that know about the regulator and
are not sharing the regulator with other consumers.

22.6 6. Regulator Events

Regulators can notify consumers of external events. Events could be received by
consumers under regulator stress or failure conditions.

Consumers can register interest in regulator events by calling:

int regulator_register_notifier(struct regulator *regulator,
struct notifier_block *nb);

Consumers can unregister interest by calling:

int regulator_unregister_notifier(struct regulator *regulator,
struct notifier_block *nb);

Regulators use the kernel notifier framework to send event to their interested
consumers.

22.7 7. Regulator Direct Register Access

Some kinds of power management hardware or firmware are designed such that
they need to do low-level hardware access to regulators, with no involvement from
the kernel. Examples of such devices are:

• clocksource with a voltage-controlled oscillator and control logic to change
the supply voltage over I2C to achieve a desired output clock rate

• thermal management firmware that can issue an arbitrary I2C transaction to
perform system poweroff during overtemperature conditions

To set up such a device/firmware, various parameters like I2C address of the regu-
lator, addresses of various regulator registers etc. need to be configured to it. The
regulator framework provides the following helpers for querying these details.

Bus-specific details, like I2C addresses or transfer rates are handled by the regmap
framework. To get the regulator’s regmap (if supported), use:

132 Chapter 22. Regulator Consumer Driver Interface

Linux Power Documentation

struct regmap *regulator_get_regmap(struct regulator *regulator);

To obtain the hardware register offset and bitmask for the regulator’s voltage
selector register, use:

int regulator_get_hardware_vsel_register(struct regulator *regulator,
unsigned *vsel_reg,
unsigned *vsel_mask);

To convert a regulator framework voltage selector code (used by regula-
tor_list_voltage) to a hardware-specific voltage selector that can be directly written
to the voltage selector register, use:

int regulator_list_hardware_vsel(struct regulator *regulator,
unsigned selector);

22.7. 7. Regulator Direct Register Access 133

Linux Power Documentation

134 Chapter 22. Regulator Consumer Driver Interface

CHAPTER

TWENTYTHREE

REGULATOR API DESIGN NOTES

This document provides a brief, partially structured, overview of some of the de-
sign considerations which impact the regulator API design.

23.1 Safety

• Errors in regulator configuration can have very serious consequences for the
system, potentially including lasting hardware damage.

• It is not possible to automatically determine the power configuration of the
system - software-equivalent variants of the same chip may have different
power requirements, and not all components with power requirements are
visible to software.

Note: The API shouldmake no changes to the hardware state unless it has specific
knowledge that these changes are safe to perform on this particular system.

23.2 Consumer use cases

• The overwhelming majority of devices in a system will have no requirement
to do any runtime configuration of their power beyond being able to turn it
on or off.

• Many of the power supplies in the system will be shared between many dif-
ferent consumers.

Note: The consumer API should be structured so that these use cases are very
easy to handle and so that consumers will work with shared supplies without any
additional effort.

135

Linux Power Documentation

136 Chapter 23. Regulator API design notes

CHAPTER

TWENTYFOUR

REGULATOR MACHINE DRIVER INTERFACE

The regulator machine driver interface is intended for board/machine specific ini-
tialisation code to configure the regulator subsystem.

Consider the following machine:

Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
|
+-> [Consumer B @ 3.3V]

The drivers for consumers A & B must be mapped to the correct regulator in order
to control their power supplies. This mapping can be achieved in machine initial-
isation code by creating a struct regulator_consumer_supply for each regulator:

struct regulator_consumer_supply {
const char *dev_name; /* consumer dev_name() */
const char *supply; /* consumer supply - e.g. "vcc" */

};

e.g. for the machine above:

static struct regulator_consumer_supply regulator1_consumers[] = {
REGULATOR_SUPPLY("Vcc", "consumer B"),

};

static struct regulator_consumer_supply regulator2_consumers[] = {
REGULATOR_SUPPLY("Vcc", "consumer A"),

};

This maps Regulator-1 to the‘Vcc’supply for Consumer B and maps Regulator-2
to the ‘Vcc’supply for Consumer A.
Constraints can now be registered by defining a struct regulator_init_data for each
regulator power domain. This structure also maps the consumers to their supply
regulators:

static struct regulator_init_data regulator1_data = {
.constraints = {

.name = "Regulator-1",

.min_uV = 3300000,

.max_uV = 3300000,

.valid_modes_mask = REGULATOR_MODE_NORMAL,
},
.num_consumer_supplies = ARRAY_SIZE(regulator1_consumers),

(continues on next page)

137

Linux Power Documentation

(continued from previous page)
.consumer_supplies = regulator1_consumers,

};

The name field should be set to something that is usefully descriptive for the board
for configuration of supplies for other regulators and for use in logging and other
diagnostic output. Normally the name used for the supply rail in the schematic is
a good choice. If no name is provided then the subsystem will choose one.

Regulator-1 supplies power to Regulator-2. This relationship must be registered
with the core so that Regulator-1 is also enabled when Consumer A enables its
supply (Regulator-2). The supply regulator is set by the supply_regulator field
below and co:

static struct regulator_init_data regulator2_data = {
.supply_regulator = "Regulator-1",
.constraints = {

.min_uV = 1800000,

.max_uV = 2000000,

.valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,

.valid_modes_mask = REGULATOR_MODE_NORMAL,
},
.num_consumer_supplies = ARRAY_SIZE(regulator2_consumers),
.consumer_supplies = regulator2_consumers,

};

Finally the regulator devices must be registered in the usual manner:

static struct platform_device regulator_devices[] = {
{

.name = "regulator",

.id = DCDC_1,

.dev = {
.platform_data = ®ulator1_data,

},
},
{

.name = "regulator",

.id = DCDC_2,

.dev = {
.platform_data = ®ulator2_data,

},
},

};
/* register regulator 1 device */
platform_device_register(®ulator_devices[0]);

/* register regulator 2 device */
platform_device_register(®ulator_devices[1]);

138 Chapter 24. Regulator Machine Driver Interface

CHAPTER

TWENTYFIVE

LINUX VOLTAGE AND CURRENT REGULATOR
FRAMEWORK

25.1 About

This framework is designed to provide a standard kernel interface to control volt-
age and current regulators.

The intention is to allow systems to dynamically control regulator power output in
order to save power and prolong battery life. This applies to both voltage regula-
tors (where voltage output is controllable) and current sinks (where current limit
is controllable).

(C) 2008 Wolfson Microelectronics PLC.

Author: Liam Girdwood <lrg@slimlogic.co.uk>

25.2 Nomenclature

Some terms used in this document:

• Regulator
– Electronic device that supplies power to other devices. Most regula-
tors can enable and disable their output while some can control their
output voltage and or current.

Input Voltage -> Regulator -> Output Voltage

• PMIC
– Power Management IC. An IC that contains numerous regulators and
often contains other subsystems.

• Consumer
– Electronic device that is supplied power by a regulator. Consumers
can be classified into two types:-

Static: consumer does not change its supply voltage or current limit.
It only needs to enable or disable its power supply. Its supply voltage
is set by the hardware, bootloader, firmware or kernel board initiali-
sation code.

139

mailto:lrg@slimlogic.co.uk

Linux Power Documentation

Dynamic: consumer needs to change its supply voltage or current
limit to meet operation demands.

• Power Domain
– Electronic circuit that is supplied its input power by the output power
of a regulator, switch or by another power domain.

The supply regulator may be behind a switch(s). i.e.:

Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
| |
| +-> [Consumer B], [Consumer C]
|
+-> [Consumer D], [Consumer E]

That is one regulator and three power domains:

∗ Domain 1: Switch-1, Consumers D & E.

∗ Domain 2: Switch-2, Consumers B & C.

∗ Domain 3: Consumer A.

and this represents a “supplies”relationship:
Domain-1 –> Domain-2 –> Domain-3.

A power domain may have regulators that are supplied power by
other regulators. i.e.:

Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
|
+-> [Consumer B]

This gives us two regulators and two power domains:

∗ Domain 1: Regulator-2, Consumer B.

∗ Domain 2: Consumer A.

and a “supplies”relationship:
Domain-1 –> Domain-2

• Constraints
– Constraints are used to define power levels for performance and hard-
ware protection. Constraints exist at three levels:

Regulator Level: This is defined by the regulator hardware operating
parameters and is specified in the regulator datasheet. i.e.

∗ voltage output is in the range 800mV -> 3500mV.

∗ regulator current output limit is 20mA @ 5V but is 10mA @ 10V.

Power Domain Level: This is defined in software by kernel level board
initialisation code. It is used to constrain a power domain to a partic-
ular power range. i.e.

∗ Domain-1 voltage is 3300mV

140 Chapter 25. Linux voltage and current regulator framework

Linux Power Documentation

∗ Domain-2 voltage is 1400mV -> 1600mV

∗ Domain-3 current limit is 0mA -> 20mA.

Consumer Level: This is defined by consumer drivers dynamically
setting voltage or current limit levels.

e.g. a consumer backlight driver asks for a current increase from
5mA to 10mA to increase LCD illumination. This passes to through
the levels as follows :-

Consumer: need to increase LCD brightness. Lookup and request
next current mA value in brightness table (the consumer driver could
be used on several different personalities based upon the same ref-
erence device).

Power Domain: is the new current limit within the domain operat-
ing limits for this domain and system state (e.g. battery power, USB
power)

Regulator Domains: is the new current limit within the regulator op-
erating parameters for input/output voltage.

If the regulator request passes all the constraint tests then the new
regulator value is applied.

25.3 Design

The framework is designed and targeted at SoC based devices but may also be
relevant to non SoC devices and is split into the following four interfaces:-

1. Consumer driver interface.

This uses a similar API to the kernel clock interface in that consumer drivers
can get and put a regulator (like they can with clocks atm) and get/set volt-
age, current limit, mode, enable and disable. This should allow consumers
complete control over their supply voltage and current limit. This also com-
piles out if not in use so drivers can be reused in systems with no regulator
based power control.

See Documentation/power/regulator/consumer.rst

2. Regulator driver interface.

This allows regulator drivers to register their regulators and provide opera-
tions to the core. It also has a notifier call chain for propagating regulator
events to clients.

See Documentation/power/regulator/regulator.rst

3. Machine interface.

This interface is for machine specific code and allows the creation of volt-
age/current domains (with constraints) for each regulator. It can provide
regulator constraints that will prevent device damage through overvoltage
or overcurrent caused by buggy client drivers. It also allows the creation of

25.3. Design 141

Linux Power Documentation

a regulator tree whereby some regulators are supplied by others (similar to
a clock tree).

See Documentation/power/regulator/machine.rst

4. Userspace ABI.

The framework also exports a lot of useful voltage/current/opmode data to
userspace via sysfs. This could be used to help monitor device power con-
sumption and status.

See Documentation/ABI/testing/sysfs-class-regulator

142 Chapter 25. Linux voltage and current regulator framework

CHAPTER

TWENTYSIX

REGULATOR DRIVER INTERFACE

The regulator driver interface is relatively simple and designed to allow regulator
drivers to register their services with the core framework.

26.1 Registration

Drivers can register a regulator by calling:

struct regulator_dev *regulator_register(struct regulator_desc *regulator_
↪→desc,

const struct regulator_config␣
↪→*config);

This will register the regulator’s capabilities and operations to the regulator core.
Regulators can be unregistered by calling:

void regulator_unregister(struct regulator_dev *rdev);

26.2 Regulator Events

Regulators can send events (e.g. overtemperature, undervoltage, etc) to consumer
drivers by calling:

int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);

143

