
Linux Pcmcia Documentation

The kernel development community

Jul 14, 2020





CONTENTS

i



ii



CHAPTER

ONE

PCMCIA DRIVER

1.1 sysfs

New PCMCIA IDs may be added to a device driver pcmcia_device_id table at run-
time as shown below:

echo "match_flags manf_id card_id func_id function device_no \
prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
/sys/bus/pcmcia/drivers/{driver}/new_id

All fields are passed in as hexadecimal values (no leading 0x). The mean-
ing is described in the PCMCIA specification, the match_flags is a bitwise
or-ed combination from PCMCIA_DEV_ID_MATCH_* constants defined in in-
clude/linux/mod_devicetable.h.

Once added, the driver probe routine will be invoked for any unclaimed PCMCIA
device listed in its (newly updated) pcmcia_device_id list.

A common use-case is to add a new device according to the manufacturer ID and
the card ID (form the manf_id and card_id file in the device tree). For this, just
use:

echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
/sys/bus/pcmcia/drivers/{driver}/new_id

after loading the driver.

1



Linux Pcmcia Documentation

2 Chapter 1. PCMCIA Driver



CHAPTER

TWO

DEVICE TABLE

Matching of PCMCIA devices to drivers is done using one or more of the following
criteria:

• manufactor ID

• card ID

• product ID strings _and_ hashes of these strings

• function ID

• device function (actual and pseudo)

You should use the helpers in include/pcmcia/device_id.h for generating the struct
pcmcia_device_id[] entries which match devices to drivers.

If you want to match product ID strings, you also need to pass the crc32 hashes
of the string to the macro, e.g. if you want to match the product ID string 1, you
need to use

PCMCIA_DEVICE_PROD_ID1(“some_string”, 0x(hash_of_some_string)),
If the hash is incorrect, the kernel will inform you about this in “dmesg”upon
module initialization, and tell you of the correct hash.

You can determine the hash of the product ID strings by cat-
ting the file “modalias”in the sysfs directory of the PCM-
CIA device. It generates a string in the following form: pcm-
cia:m0149cC1ABf06pfn00fn00pa725B842DpbF1EFEE84pc0877B627pd00000000

The hex value after“pa”is the hash of product ID string 1, after“pb”for string
2 and so on.

Alternatively, you can use crc32hash (see tools/pcmcia/crc32hash.c) to determine
the crc32 hash. Simply pass the string you want to evaluate as argument to this
program, e.g.: $ tools/pcmcia/crc32hash “Dual Speed”

3



Linux Pcmcia Documentation

4 Chapter 2. Device table



CHAPTER

THREE

LOCKING

This file explains the locking and exclusion scheme used in the PCCARD and PCM-
CIA subsystems.

3.1 A) Overview, Locking Hierarchy:

pcmcia_socket_list_rwsem
• protects only the list of sockets

• skt_mutex
– serializes card insert / ejection

– ops_mutex
∗ serializes socket operation

3.2 B) Exclusion

The following functions and callbacks to struct pcmcia_socket must be called with
“skt_mutex”held:
socket_detect_change()
send_event()
socket_reset()
socket_shutdown()
socket_setup()
socket_remove()
socket_insert()
socket_early_resume()
socket_late_resume()
socket_resume()
socket_suspend()

struct pcmcia_callback *callback

The following functions and callbacks to struct pcmcia_socket must be called with
“ops_mutex”held:

5



Linux Pcmcia Documentation

socket_reset()
socket_setup()

struct pccard_operations *ops
struct pccard_resource_ops *resource_ops;

Note that send_event() and struct pcmcia_callback *callback must not be called
with “ops_mutex”held.

3.3 C) Protection

3.3.1 1. Global Data:

struct list_head pcmcia_socket_list;

protected by pcmcia_socket_list_rwsem;

3.3.2 2. Per-Socket Data:

The resource_ops and their data are protected by ops_mutex.

The“main”struct pcmcia_socket is protected as follows (read-only fields or single-
use fields not mentioned):

• by pcmcia_socket_list_rwsem:

struct list_head socket_list;

• by thread_lock:

unsigned int thread_events;

• by skt_mutex:

u_int suspended_state;
void (*tune_bridge);
struct pcmcia_callback *callback;
int resume_status;

• by ops_mutex:

socket_state_t socket;
u_int state;
u_short lock_count;
pccard_mem_map cis_mem;
void __iomem *cis_virt;
struct { } irq;
io_window_t io[];
pccard_mem_map win[];
struct list_head cis_cache;
size_t fake_cis_len;
u8 *fake_cis;
u_int irq_mask;

(continues on next page)

6 Chapter 3. Locking



Linux Pcmcia Documentation

(continued from previous page)
void (*zoom_video);
int (*power_hook);
u8 resource...;
struct list_head devices_list;
u8 device_count;
struct pcmcia_state;

3.3.3 3. Per PCMCIA-device Data:

The“main”struct pcmcia_device is protected as follows (read-only fields or single-
use fields not mentioned):

• by pcmcia_socket->ops_mutex:

struct list_head socket_device_list;
struct config_t *function_config;
u16 _irq:1;
u16 _io:1;
u16 _win:4;
u16 _locked:1;
u16 allow_func_id_match:1;
u16 suspended:1;
u16 _removed:1;

• by the PCMCIA driver:

io_req_t io;
irq_req_t irq;
config_req_t conf;
window_handle_t win;

3.3. C) Protection 7



Linux Pcmcia Documentation

8 Chapter 3. Locking



CHAPTER

FOUR

DRIVER CHANGES

This file details changes in 2.6 which affect PCMCIA card driver authors:

• pcmcia_loop_config() and autoconfiguration (as of 2.6.36) If struct
pcmcia_device *p_dev->config_flags is set accordingly, pcm-
cia_loop_config() now sets up certain configuration values automatically,
though the driver may still override the settings in the callback function.
The following autoconfiguration options are provided at the moment:

– CONF_AUTO_CHECK_VCC : check for matching Vcc
– CONF_AUTO_SET_VPP : set Vpp
– CONF_AUTO_AUDIO : auto-enable audio line, if required
– CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
– CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])

• pcmcia_request_configuration -> pcmcia_enable_device (as of 2.6.36)
pcmcia_request_configuration() got renamed to pcmcia_enable_device(),
as it mirrors pcmcia_disable_device(). Configuration settings are
now stored in struct pcmcia_device, e.g. in the fields config_flags,
config_index, config_base, vpp.

• pcmcia_request_window changes (as of 2.6.36) Instead of win_req_t,
drivers are now requested to fill out struct pcmcia_device *p_dev-
>resource[2,3,4,5] for up to four ioport ranges. After a call to pcm-
cia_request_window(), the regions found there are reserved and may be
used immediately – until pcmcia_release_window() is called.

• pcmcia_request_io changes (as of 2.6.36) Instead of io_req_t, drivers are
now requested to fill out struct pcmcia_device *p_dev->resource[0,1] for
up to two ioport ranges. After a call to pcmcia_request_io(), the ports
found there are reserved, after calling pcmcia_request_configuration(),
they may be used.

• No dev_info_t, no cs_types.h (as of 2.6.36) dev_info_t and a few other
typedefs are removed. No longer use them in PCMCIA device drivers.
Also, do not include pcmcia/cs_types.h, as this file is gone.

• No dev_node_t (as of 2.6.35) There is no more need to fill out a
“dev_node_t”structure.

• New IRQ request rules (as of 2.6.35) Instead of the old pcm-
cia_request_irq() interface, drivers may now choose between:

9



Linux Pcmcia Documentation

– calling request_irq/free_irq directly. Use the IRQ from *p_dev->irq.

– use pcmcia_request_irq(p_dev, handler_t); the PCMCIA core will
clean up automatically on calls to pcmcia_disable_device() or device
ejection.

• no cs_error / CS_CHECK / CONFIG_PCMCIA_DEBUG (as of 2.6.33)
Instead of the cs_error() callback or the CS_CHECK() macro, please
use Linux-style checking of return values, and – if necessary – debug
messages using “dev_dbg()”or “pr_debug()”.

• New CIS tuple access (as of 2.6.33) Instead of pcm-
cia_get_{first,next}_tuple(), pcmcia_get_tuple_data() and pcm-
cia_parse_tuple(), a driver shall use “pcmcia_get_tuple()”if it is
only interested in one (raw) tuple, or“pcmcia_loop_tuple()”if it is inter-
ested in all tuples of one type. To decode the MAC from CISTPL_FUNCE,
a new helper “pcmcia_get_mac_from_cis()”was added.

• New configuration loop helper (as of 2.6.28) By calling pcm-
cia_loop_config(), a driver can iterate over all available configura-
tion options. During a driver’s probe() phase, one doesn’t need to
use pcmcia_get_{first,next}_tuple, pcmcia_get_tuple_data and pcm-
cia_parse_tuple directly in most if not all cases.

• New release helper (as of 2.6.17) Instead of calling pcm-
cia_release_{configuration,io,irq,win}, all that’s necessary now is
calling pcmcia_disable_device. As there is no valid reason left to call
pcmcia_release_io and pcmcia_release_irq, the exports for them were
removed.

• Unify detach and REMOVAL event code, as well as attach and INSERTION
code (as of 2.6.16):

void (*remove) (struct pcmcia_device *dev);
int (*probe) (struct pcmcia_device *dev);

• Move suspend, resume and reset out of event handler (as of 2.6.16):

int (*suspend) (struct pcmcia_device *dev);
int (*resume) (struct pcmcia_device *dev);

should be initialized in struct pcmcia_driver, and handle (SUSPEND == RE-
SET_PHYSICAL) and (RESUME == CARD_RESET) events

• event handler initialization in struct pcmcia_driver (as of 2.6.13) The
event handler is notified of all events, and must be initialized as the
event() callback in the driver’s struct pcmcia_driver.

• pcmcia/version.h should not be used (as of 2.6.13) This file will be re-
moved eventually.

• in-kernel device<->driver matching (as of 2.6.13) PCMCIA devices and
their correct drivers can now be matched in kernelspace. See ‘devic-
etable.txt’for details.

• Device model integration (as of 2.6.11) A struct pcmcia_device is reg-
istered with the device model core, and can be used (e.g. for

10 Chapter 4. Driver changes



Linux Pcmcia Documentation

SET_NETDEV_DEV) by using handle_to_dev(client_handle_t * handle).

• Convert internal I/O port addresses to unsigned int (as of 2.6.11)
ioaddr_t should be replaced by unsigned int in PCMCIA card drivers.

• irq_mask and irq_list parameters (as of 2.6.11) The irq_mask and
irq_list parameters should no longer be used in PCMCIA card drivers.
Instead, it is the job of the PCMCIA core to determine which IRQ should
be used. Therefore, link->irq.IRQInfo2 is ignored.

• client->PendingEvents is gone (as of 2.6.11) client->PendingEvents is
no longer available.

• client->Attributes are gone (as of 2.6.11) client->Attributes is unused,
therefore it is removed from all PCMCIA card drivers

• core functions no longer available (as of 2.6.11) The following func-
tions have been removed from the kernel source because they are
unused by all in-kernel drivers, and no external driver was reported to
rely on them:

pcmcia_get_first_region()
pcmcia_get_next_region()
pcmcia_modify_window()
pcmcia_set_event_mask()
pcmcia_get_first_window()
pcmcia_get_next_window()

• device list iteration upon module removal (as of 2.6.10) It is no longer
necessary to iterate on the driver’s internal client list and call the -
>detach() function upon module removal.

• Resource management. (as of 2.6.8) Although the PCMCIA subsystem
will allocate resources for cards, it no longer marks these resources busy.
This means that driver authors are now responsible for claiming your re-
sources as per other drivers in Linux. You should use request_region()
to mark your IO regions in-use, and request_mem_region() to mark your
memory regions in-use. The name argument should be a pointer to your
driver name. Eg, for pcnet_cs, name should point to the string“pcnet_cs”
.

• CardServices is gone CardServices() in 2.4 is just a big switch statement to
call various services. In 2.6, all of those entry points are exported and called
directly (except for pcmcia_report_error(), just use cs_error() instead).

• struct pcmcia_driver You need to use struct pcmcia_driver and pcm-
cia_{un,}register_driver instead of {un,}register_pccard_driver

11


