
Linux Openrisc Documentation

The kernel development community

Jul 14, 2020





CONTENTS

i



ii



CHAPTER

ONE

OPENRISC LINUX

This is a port of Linux to the OpenRISC class of microprocessors; the initial target
architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k).

For information about OpenRISC processors and ongoing development:

website http://openrisc.io
email openrisc@lists.librecores.org

1.1 Build instructions for OpenRISC toolchain and Linux

In order to build and run Linux for OpenRISC, you’ll need at least a basic toolchain
and, perhaps, the architectural simulator. Steps to get these bits in place are
outlined here.

1) Toolchain

Toolchain binaries can be obtained from openrisc.io or our github releases page.
Instructions for building the different toolchains can be found on openrisc.io or
Stafford’s toolchain build and release scripts.

binaries https://github.com/openrisc/or1k-gcc/releases
toolchains https://openrisc.io/software
building https://github.com/stffrdhrn/or1k-toolchain-build

2) Building

Build the Linux kernel as usual:

make ARCH=openrisc CROSS_COMPILE="or1k-linux-" defconfig
make ARCH=openrisc CROSS_COMPILE="or1k-linux-"

3) Running on FPGA (optional)

The OpenRISC community typically uses FuseSoC to manage building and pro-
gramming an SoC into an FPGA. The below is an example of programming a De0
Nano development board with the OpenRISC SoC. During the build FPGA RTL is
code downloaded from the FuseSoC IP cores repository and built using the FPGA
vendor tools. Binaries are loaded onto the board with openocd.

1

http://openrisc.io
mailto:openrisc@lists.librecores.org
https://github.com/openrisc/or1k-gcc/releases
https://openrisc.io/software
https://github.com/stffrdhrn/or1k-toolchain-build


Linux Openrisc Documentation

git clone https://github.com/olofk/fusesoc
cd fusesoc
sudo pip install -e .

fusesoc init
fusesoc build de0_nano
fusesoc pgm de0_nano

openocd -f interface/altera-usb-blaster.cfg \
-f board/or1k_generic.cfg

telnet localhost 4444
> init
> halt; load_image vmlinux ; reset

4) Running on a Simulator (optional)

QEMU is a processor emulator which we recommend for simulating the OpenRISC
platform. Please follow the OpenRISC instructions on the QEMU website to get
Linux running on QEMU. You can build QEMU yourself, but your Linux distribution
likely provides binary packages to support OpenRISC.

qemu open-
risc

https://wiki.qemu.org/Documentation/Platforms/
OpenRISC

1.2 Terminology

In the code, the following particles are used on symbols to limit the scope to more
or less specific processor implementations:

openrisc: the OpenRISC class of processors
or1k: the OpenRISC 1000 family of processors
or1200: the OpenRISC 1200 processor

1.3 History

18-11-2003 Matjaz Breskvar (phoenix@bsemi.com) initial port of linux to
OpenRISC/or32 architecture. all the core stuff is implemented and seams
usable.

08-12-2003 Matjaz Breskvar (phoenix@bsemi.com) complete change of TLB
miss handling. rewrite of exceptions handling. fully functional sash-3.6 in
default initrd. a much improved version with changes all around.

10-04-2004 Matjaz Breskvar (phoenix@bsemi.com) alot of bugfixes all over.
ethernet support, functional http and telnet servers. running many standard
linux apps.

2 Chapter 1. OpenRISC Linux

https://wiki.qemu.org/Documentation/Platforms/OpenRISC
https://wiki.qemu.org/Documentation/Platforms/OpenRISC
mailto:phoenix@bsemi.com
mailto:phoenix@bsemi.com
mailto:phoenix@bsemi.com


Linux Openrisc Documentation

26-06-2004 Matjaz Breskvar (phoenix@bsemi.com) port to 2.6.x

30-11-2004 Matjaz Breskvar (phoenix@bsemi.com) lots of bugfixes and en-
hancments. added opencores framebuffer driver.

09-10-2010 Jonas Bonn (jonas@southpole.se) major rewrite to bring up to
par with upstream Linux 2.6.36

1.3. History 3

mailto:phoenix@bsemi.com
mailto:phoenix@bsemi.com
mailto:jonas@southpole.se


Linux Openrisc Documentation

4 Chapter 1. OpenRISC Linux



CHAPTER

TWO

TODO

The OpenRISC Linux port is fully functional and has been tracking upstream since
2.6.35. There are, however, remaining items to be completed within the coming
months. Here’s a list of known-to-be-less-than-stellar items that are due for in-
vestigation shortly, i.e. our TODO list:

• Implement the rest of the DMA API⋯dma_map_sg, etc.

• Finish the renaming cleanup⋯there are references to or32 in the code which
was an older name for the architecture. The name we’ve settled on is or1k
and this change is slowly trickling through the stack. For the time being, or32
is equivalent to or1k.

5


