
Linux Misc-devices
Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

Linux Misc-devices Documentation

This documentation contains information for assorted devices that do not fit into
other categories.

Table of contents

CONTENTS 1

Linux Misc-devices Documentation

2 CONTENTS

CHAPTER

ONE

KERNEL DRIVER EEPROM

Supported chips:

• Any EEPROM chip in the designated address range

Prefix: ‘eeprom’
Addresses scanned: I2C 0x50 - 0x57

Datasheets: Publicly available from:

Atmel (www.atmel.com), Catalyst (www.catsemi.com),
Fairchild (www.fairchildsemi.com), Mi-
crochip (www.microchip.com), Philips
(www.semiconductor.philips.com), Rohm (www.rohm.com),
ST (www.st.com), Xicor (www.xicor.com), and others.

Chip Size
(bits)

Address

24C01 1K 0x50 (shadows at 0x51 - 0x57)
24C01A 1K 0x50 - 0x57 (Typical device on DIMMs)
24C02 2K 0x50 - 0x57
24C04 4K 0x50, 0x52, 0x54, 0x56 (additional data at

0x51, 0x53, 0x55, 0x57)
24C08 8K 0x50, 0x54 (additional data at 0x51, 0x52,

0x53, 0x55, 0x56, 0x57)
24C16 16K 0x50 (additional data at 0x51 - 0x57)
Sony 2K 0x57
Atmel 34C02B

2K
0x50 - 0x57, SW write protect at 0x30-37

Cata-
lyst

34FC02
2K

0x50 - 0x57, SW write protect at 0x30-37

Cata-
lyst

34RC02
2K

0x50 - 0x57, SW write protect at 0x30-37

Fairchild 34W02
2K

0x50 - 0x57, SW write protect at 0x30-37

Mi-
crochip

24AA52
2K

0x50 - 0x57, SW write protect at 0x30-37

ST M34C02
2K

0x50 - 0x57, SW write protect at 0x30-37

Authors:

3

Linux Misc-devices Documentation

• Frodo Looijaard <frodol@dds.nl>,

• Philip Edelbrock <phil@netroedge.com>,

• Jean Delvare <jdelvare@suse.de>,

• Greg Kroah-Hartman <greg@kroah.com>,

• IBM Corp.

1.1 Description

This is a simple EEPROMmodule meant to enable reading the first 256 bytes of an
EEPROM (on a SDRAM DIMM for example). However, it will access serial EEP-
ROMs on any I2C adapter. The supported devices are generically called 24Cxx,
and are listed above; however the numbering for these industry-standard devices
may vary by manufacturer.

This module was a programming exercise to get used to the new project organiza-
tion laid out by Frodo, but it should be at least completely effective for decoding
the contents of EEPROMs on DIMMs.

DIMMS will typically contain a 24C01A or 24C02, or the 34C02 variants. The
other devices will not be found on a DIMM because they respond to more than one
address.

DDC Monitors may contain any device. Often a 24C01, which responds to all 8
addresses, is found.

Recent Sony Vaio laptops have an EEPROM at 0x57. We couldn’t get the specifi-
cation, so it is guess work and far from being complete.

The Microchip 24AA52/24LCS52, ST M34C02, and others support an additional
software write protect register at 0x30 - 0x37 (0x20 less than the memory loca-
tion). The chip responds to “write quick”detection at this address but does not
respond to byte reads. If this register is present, the lower 128 bytes of the mem-
ory array are not write protected. Any byte data write to this address will write
protect the memory array permanently, and the device will no longer respond at
the 0x30-37 address. The eeprom driver does not support this register.

1.2 Lacking functionality

• Full support for larger devices (24C04, 24C08, 24C16). These are not typi-
cally found on a PC. These devices will appear as separate devices at multiple
addresses.

• Support for really large devices (24C32, 24C64, 24C128, 24C256, 24C512).
These devices require two-byte address fields and are not supported.

• Enable Writing. Again, no technical reason why not, but making it easy to
change the contents of the EEPROMs (on DIMMs anyway) also makes it easy
to disable the DIMMs (potentially preventing the computer from booting) un-
til the values are restored somehow.

4 Chapter 1. Kernel driver eeprom

mailto:frodol@dds.nl
mailto:phil@netroedge.com
mailto:jdelvare@suse.de
mailto:greg@kroah.com

Linux Misc-devices Documentation

1.3 Use

After inserting the module (and any other required SMBus/i2c modules), you
should have some EEPROM directories in /sys/bus/i2c/devices/* of names
such as“0-0050”. Inside each of these is a series of files, the eeprom file contains
the binary data from EEPROM.

1.3. Use 5

Linux Misc-devices Documentation

6 Chapter 1. Kernel driver eeprom

CHAPTER

TWO

IBM VIRTUAL MANAGEMENT CHANNEL KERNEL DRIVER
(IBMVMC)

Authors Dave Engebretsen <engebret@us.ibm.com>, Adam
Reznechek <adreznec@linux.vnet.ibm.com>, Steven
Royer <seroyer@linux.vnet.ibm.com>, Bryant G. Ly
<bryantly@linux.vnet.ibm.com>,

2.1 Introduction

Note: Knowledge of virtualization technology is required to understand this doc-
ument.

A good reference document would be:

https://openpowerfoundation.org/wp-content/uploads/2016/05/LoPAPR_DRAFT_
v11_24March2016_cmt1.pdf

The Virtual Management Channel (VMC) is a logical device which provides an in-
terface between the hypervisor and a management partition. This interface is like
a message passing interface. This management partition is intended to provide an
alternative to systems that use a Hardware Management Console (HMC) - based
system management.

The primary hardware management solution that is developed by IBM relies on an
appliance server named the Hardware Management Console (HMC), packaged as
an external tower or rack-mounted personal computer. In a Power Systems envi-
ronment, a single HMC can manage multiple POWER processor-based systems.

2.1.1 Management Application

In the management partition, a management application exists which enables a
system administrator to configure the system’s partitioning characteristics via
a command line interface (CLI) or Representational State Transfer Application
(REST API’s).
The management application runs on a Linux logical partition on a POWER8 or
newer processor-based server that is virtualized by PowerVM. System configura-
tion, maintenance, and control functions which traditionally require an HMC can
be implemented in the management application using a combination of HMC to
hypervisor interfaces and existing operating system methods. This tool provides a

7

mailto:engebret@us.ibm.com
mailto:adreznec@linux.vnet.ibm.com
mailto:seroyer@linux.vnet.ibm.com
mailto:bryantly@linux.vnet.ibm.com
https://openpowerfoundation.org/wp-content/uploads/2016/05/LoPAPR_DRAFT_v11_24March2016_cmt1.pdf
https://openpowerfoundation.org/wp-content/uploads/2016/05/LoPAPR_DRAFT_v11_24March2016_cmt1.pdf

Linux Misc-devices Documentation

subset of the functions implemented by the HMC and enables basic partition con-
figuration. The set of HMC to hypervisor messages supported by the management
application component are passed to the hypervisor over a VMC interface, which
is defined below.

The VMC enables the management partition to provide basic partitioning func-
tions:

• Logical Partitioning Configuration

• Start, and stop actions for individual partitions

• Display of partition status

• Management of virtual Ethernet

• Management of virtual Storage

• Basic system management

2.1.2 Virtual Management Channel (VMC)

A logical device, called the Virtual Management Channel (VMC), is defined for
communicating between the management application and the hypervisor. It ba-
sically creates the pipes that enable virtualization management software. This
device is presented to a designated management partition as a virtual device.

This communication device uses Command/Response Queue (CRQ) and the Re-
mote Direct Memory Access (RDMA) interfaces. A three-way handshake is defined
that must take place to establish that both the hypervisor and management parti-
tion sides of the channel are running prior to sending/receiving any of the protocol
messages.

This driver also utilizes Transport Event CRQs. CRQ messages are sent when the
hypervisor detects one of the peer partitions has abnormally terminated, or one
side has called H_FREE_CRQ to close their CRQ. Two new classes of CRQ mes-
sages are introduced for the VMC device. VMC Administrative messages are used
for each partition using the VMC to communicate capabilities to their partner.
HMC Interface messages are used for the actual flow of HMC messages between
the management partition and the hypervisor. As most HMC messages far ex-
ceed the size of a CRQ buffer, a virtual DMA (RMDA) of the HMC message data
is done prior to each HMC Interface CRQ message. Only the management parti-
tion drives RDMA operations; hypervisors never directly cause the movement of
message data.

2.1.3 Terminology

RDMA Remote Direct Memory Access is DMA transfer from the server to its client
or from the server to its partner partition. DMA refers to both physical I/O to
and from memory operations and to memory to memory move operations.

CRQ Command/Response Queue a facility which is used to communicate between
partner partitions. Transport events which are signaled from the hypervisor
to partition are also reported in this queue.

8 Chapter 2. IBM Virtual Management Channel Kernel Driver (IBMVMC)

Linux Misc-devices Documentation

2.2 Example Management Partition VMC Driver Inter-
face

This section provides an example for the management application implementation
where a device driver is used to interface to the VMC device. This driver consists of
a new device, for example /dev/ibmvmc, which provides interfaces to open, close,
read, write, and perform ioctl’s against the VMC device.

2.2.1 VMC Interface Initialization

The device driver is responsible for initializing the VMC when the driver is loaded.
It first creates and initializes the CRQ. Next, an exchange of VMC capabilities is
performed to indicate the code version and number of resources available in both
the management partition and the hypervisor. Finally, the hypervisor requests that
the management partition create an initial pool of VMC buffers, one buffer for each
possible HMC connection, which will be used for management application session
initialization. Prior to completion of this initialization sequence, the device returns
EBUSY to open() calls. EIO is returned for all open() failures.

Management Partition Hypervisor
CRQ INIT

-->
CRQ INIT COMPLETE

<--
CAPABILITIES

-->
CAPABILITIES RESPONSE

<--
ADD BUFFER (HMC IDX=0,1,..) _

<-- |
ADD BUFFER RESPONSE | - Perform # HMCs Iterations

--> -

2.2.2 VMC Interface Open

After the basic VMC channel has been initialized, an HMC session level connection
can be established. The application layer performs an open() to the VMC device
and executes an ioctl() against it, indicating the HMC ID (32 bytes of data) for
this session. If the VMC device is in an invalid state, EIO will be returned for the
ioctl(). The device driver creates a new HMC session value (ranging from 1 to 255)
and HMC index value (starting at index 0 and ranging to 254) for this HMC ID.
The driver then does an RDMA of the HMC ID to the hypervisor, and then sends
an Interface Open message to the hypervisor to establish the session over the
VMC. After the hypervisor receives this information, it sends Add Buffer messages
to the management partition to seed an initial pool of buffers for the new HMC
connection. Finally, the hypervisor sends an Interface Open Response message,
to indicate that it is ready for normal runtime messaging. The following illustrates
this VMC flow:

2.2. Example Management Partition VMC Driver Interface 9

Linux Misc-devices Documentation

Management Partition Hypervisor
RDMA HMC ID

-->
Interface Open

-->
Add Buffer _

<-- |
Add Buffer Response | - Perform N Iterations

--> -
Interface Open Response

<--

2.2.3 VMC Interface Runtime

During normal runtime, the management application and the hypervisor exchange
HMC messages via the Signal VMC message and RDMA operations. When send-
ing data to the hypervisor, the management application performs a write() to the
VMC device, and the driver RDMA’s the data to the hypervisor and then sends
a Signal Message. If a write() is attempted before VMC device buffers have been
made available by the hypervisor, or no buffers are currently available, EBUSY is
returned in response to the write(). A write() will return EIO for all other errors,
such as an invalid device state. When the hypervisor sends a message to the man-
agement, the data is put into a VMC buffer and an Signal Message is sent to the
VMC driver in the management partition. The driver RDMA’s the buffer into the
partition and passes the data up to the appropriate management application via a
read() to the VMC device. The read() request blocks if there is no buffer available
to read. The management application may use select() to wait for the VMC device
to become ready with data to read.

Management Partition Hypervisor
MSG RDMA

-->
SIGNAL MSG

-->
SIGNAL MSG

<--
MSG RDMA

<--

2.2.4 VMC Interface Close

HMC session level connections are closed by the management partition when the
application layer performs a close() against the device. This action results in an
Interface Close message flowing to the hypervisor, which causes the session to be
terminated. The device driver must free any storage allocated for buffers for this
HMC connection.

Management Partition Hypervisor
INTERFACE CLOSE

-->
(continues on next page)

10 Chapter 2. IBM Virtual Management Channel Kernel Driver (IBMVMC)

Linux Misc-devices Documentation

(continued from previous page)
INTERFACE CLOSE RESPONSE

<--

2.3 Additional Information

For more information on the documentation for CRQ Messages, VMC Messages,
HMC interface Buffers, and signal messages please refer to the Linux on Power
Architecture Platform Reference. Section F.

2.3. Additional Information 11

Linux Misc-devices Documentation

12 Chapter 2. IBM Virtual Management Channel Kernel Driver (IBMVMC)

CHAPTER

THREE

KERNEL DRIVER ICS932S401

Supported chips:

• IDT ICS932S401

Prefix: ‘ics932s401’
Addresses scanned: I2C 0x69

Datasheet: Publicly available at the IDT website

Author: Darrick J. Wong

3.1 Description

This driver implements support for the IDT ICS932S401 chip family.

This chip has 4 clock outputs–a base clock for the CPU (which is likely multiplied to
get the real CPU clock), a system clock, a PCI clock, a USB clock, and a reference
clock. The driver reports selected and actual frequency. If spread spectrum mode
is enabled, the driver also reports by what percent the clock signal is being spread,
which should be between 0 and -0.5%. All frequencies are reported in KHz.

The ICS932S401 monitors all inputs continuously. The driver will not read the
registers more often than once every other second.

3.2 Special Features

The clocks could be reprogrammed to increase system speed. I will not help you
do this, as you risk damaging your system!

13

Linux Misc-devices Documentation

14 Chapter 3. Kernel driver ics932s401

CHAPTER

FOUR

KERNEL DRIVER ISL29003

Supported chips:

• Intersil ISL29003

Prefix: ‘isl29003’
Addresses scanned: none

Datasheet: http://www.intersil.com/data/fn/fn7464.pdf

Author: Daniel Mack <daniel@caiaq.de>

4.1 Description

The ISL29003 is an integrated light sensor with a 16-bit integrating type ADC,
I2C user programmable lux range select for optimized counts/lux, and I2C multi-
function control and monitoring capabilities. The internal ADC provides 16-bit
resolution while rejecting 50Hz and 60Hz flicker caused by artificial light sources.

The driver allows to set the lux range, the bit resolution, the operational mode
(see below) and the power state of device and can read the current lux value, of
course.

4.2 Detection

The ISL29003 does not have an ID register which could be used to identify it, so
the detection routine will just try to read from the configured I2C address and
consider the device to be present as soon as it ACKs the transfer.

4.3 Sysfs entries

range:

0: 0 lux to 1000 lux (default)
1: 0 lux to 4000 lux
2: 0 lux to 16,000 lux
3: 0 lux to 64,000 lux

15

http://www.intersil.com/data/fn/fn7464.pdf
mailto:daniel@caiaq.de

Linux Misc-devices Documentation

resolution:

0: 2^16 cycles (default)
1: 2^12 cycles
2: 2^8 cycles
3: 2^4 cycles

mode:

0: diode1’s current (unsigned 16bit) (default)
1: diode1’s current (unsigned 16bit)
2: difference between diodes (l1 - l2, signed 15bit)

power_state:

0: device is disabled (default)
1: device is enabled

lux (read only): returns the value from the last sensor reading

16 Chapter 4. Kernel driver isl29003

CHAPTER

FIVE

KERNEL DRIVER LIS3LV02D

Supported chips:

• STMicroelectronics LIS3LV02DL, LIS3LV02DQ (12 bits precision)

• STMicroelectronics LIS302DL, LIS3L02DQ, LIS331DL (8 bits) and
LIS331DLH (16 bits)

Authors:
• Yan Burman <burman.yan@gmail.com>

• Eric Piel <eric.piel@tremplin-utc.net>

5.1 Description

This driver provides support for the accelerometer found in various HP laptops
sporting the feature officially called “HP Mobile Data Protection System 3D”or
“HP 3D DriveGuard”. It detects automatically laptops with this sensor. Known
models (full list can be found in drivers/platform/x86/hp_accel.c) will have their
axis automatically oriented on standard way (eg: you can directly play neverball).
The accelerometer data is readable via /sys/devices/platform/lis3lv02d. Reported
values are scaled to mg values (1/1000th of earth gravity).

Sysfs attributes under /sys/devices/platform/lis3lv02d/:

position
• 3D position that the accelerometer reports. Format: “(x,y,z)”

rate
• read reports the sampling rate of the accelerometer device in HZ. write
changes sampling rate of the accelerometer device. Only values which
are supported by HW are accepted.

selftest
• performs selftest for the chip as specified by chip manufacturer.

This driver also provides an absolute input class device, allowing the laptop to act
as a pinball machine-esque joystick. Joystick device can be calibrated. Joystick
device can be in two different modes. By default output values are scaled between
-32768 .. 32767. In joystick raw mode, joystick and sysfs position entry have the

17

mailto:burman.yan@gmail.com
mailto:eric.piel@tremplin-utc.net

Linux Misc-devices Documentation

same scale. There can be small difference due to input system fuzziness feature.
Events are also available as input event device.

Selftest is meant only for hardware diagnostic purposes. It is not meant to be
used during normal operations. Position data is not corrupted during selftest but
interrupt behaviour is not guaranteed to work reliably. In test mode, the sensing
element is internally moved little bit. Selftest measures difference between nor-
mal mode and test mode. Chip specifications tell the acceptance limit for each
type of the chip. Limits are provided via platform data to allow adjustment of the
limits without a change to the actual driver. Seltest returns either “OK x y z”
or “FAIL x y z”where x, y and z are measured difference between modes. Axes
are not remapped in selftest mode. Measurement values are provided to help HW
diagnostic applications to make final decision.

On HP laptops, if the led infrastructure is activated, support for a led indicating
disk protection will be provided as /sys/class/leds/hp::hddprotect.

Another feature of the driver is misc device called “freefall”that acts similar to
/dev/rtc and reacts on free-fall interrupts received from the device. It supports
blocking operations, poll/select and fasync operation modes. You must read 1
bytes from the device. The result is number of free-fall interrupts since the last
successful read (or 255 if number of interrupts would not fit). See the freefall.c
file for an example on using the device.

5.2 Axes orientation

For better compatibility between the various laptops. The values reported by the
accelerometer are converted into a“standard”organisation of the axes (aka“can
play neverball out of the box”):
• When the laptop is horizontal the position reported is about 0 for X and Y and
a positive value for Z

• If the left side is elevated, X increases (becomes positive)

• If the front side (where the touchpad is) is elevated, Y decreases (becomes
negative)

• If the laptop is put upside-down, Z becomes negative

If your laptop model is not recognized (cf“dmesg”), you can send an email to the
maintainer to add it to the database. When reporting a new laptop, please include
the output of“dmidecode”plus the value of /sys/devices/platform/lis3lv02d/position
in these four cases.

18 Chapter 5. Kernel driver lis3lv02d

Linux Misc-devices Documentation

5.3 Q&A

Q: How do I safely simulate freefall? I have an HP “portable workstation”which
has about 3.5kg and a plastic case, so letting it fall to the ground is out of question
⋯
A: The sensor is pretty sensitive, so your hands can do it. Lift it into free space,
follow the fall with your hands for like 10 centimeters. That should be enough to
trigger the detection.

5.3. Q&A 19

Linux Misc-devices Documentation

20 Chapter 5. Kernel driver lis3lv02d

CHAPTER

SIX

KERNEL DRIVER MAX6875

Supported chips:

• Maxim MAX6874, MAX6875

Prefix: ‘max6875’
Addresses scanned: None (see below)

Datasheet: http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf

Author: Ben Gardner <bgardner@wabtec.com>

6.1 Description

The Maxim MAX6875 is an EEPROM-programmable power-supply se-
quencer/supervisor. It provides timed outputs that can be used as a watchdog, if
properly wired. It also provides 512 bytes of user EEPROM.

At reset, the MAX6875 reads the configuration EEPROM into its configuration
registers. The chip then begins to operate according to the values in the registers.

The Maxim MAX6874 is a similar, mostly compatible device, with more inputs and
outputs:

• vin gpi vout

MAX6874 6 4 8
MAX6875 4 3 5

See the datasheet for more information.

21

http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf
mailto:bgardner@wabtec.com

Linux Misc-devices Documentation

6.2 Sysfs entries

eeprom - 512 bytes of user-defined EEPROM space.

6.3 General Remarks

Valid addresses for the MAX6875 are 0x50 and 0x52.

Valid addresses for the MAX6874 are 0x50, 0x52, 0x54 and 0x56.

The driver does not probe any address, so you explicitly instantiate the devices.

Example:

$ modprobe max6875
$ echo max6875 0x50 > /sys/bus/i2c/devices/i2c-0/new_device

The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple
addresses. For example, for address 0x50, it also reserves 0x51. The even-address
instance is called ‘max6875’, the odd one is ‘dummy’.

6.4 Programming the chip using i2c-dev

Use the i2c-dev interface to access and program the chips.

Reads and writes are performed differently depending on the address range.

The configuration registers are at addresses 0x00 - 0x45.

Use i2c_smbus_write_byte_data() to write a register and
i2c_smbus_read_byte_data() to read a register.

The command is the register number.

Examples:

To write a 1 to register 0x45:

i2c_smbus_write_byte_data(fd, 0x45, 1);

To read register 0x45:

value = i2c_smbus_read_byte_data(fd, 0x45);

The configuration EEPROM is at addresses 0x8000 - 0x8045.

The user EEPROM is at addresses 0x8100 - 0x82ff.

Use i2c_smbus_write_word_data() to write a byte to EEPROM.

The command is the upper byte of the address: 0x80, 0x81, or 0x82. The data
word is the lower part of the address or’d with data << 8:
cmd = address >> 8;
val = (address & 0xff) | (data << 8);

22 Chapter 6. Kernel driver max6875

Linux Misc-devices Documentation

Example:

To write 0x5a to address 0x8003:

i2c_smbus_write_word_data(fd, 0x80, 0x5a03);

Reading data from the EEPROM is a little more complicated.

Use i2c_smbus_write_byte_data() to set the read address and then
i2c_smbus_read_byte() or i2c_smbus_read_i2c_block_data() to read the data.

Example:

To read data starting at offset 0x8100, first set the address:

i2c_smbus_write_byte_data(fd, 0x81, 0x00);

And then read the data:

value = i2c_smbus_read_byte(fd);

or:

count = i2c_smbus_read_i2c_block_data(fd, 0x84, 16, buffer);

The block read should read 16 bytes.

0x84 is the block read command.

See the datasheet for more details.

6.4. Programming the chip using i2c-dev 23

Linux Misc-devices Documentation

24 Chapter 6. Kernel driver max6875

CHAPTER

SEVEN

INTEL MANY INTEGRATED CORE (MIC) ARCHITECTURE

7.1 Intel Many Integrated Core (MIC) architecture
overview

An Intel MIC X100 device is a PCIe form factor add-in coprocessor card based
on the Intel Many Integrated Core (MIC) architecture that runs a Linux OS. It is a
PCIe endpoint in a platform and therefore implements the three required standard
address spaces i.e. configuration, memory and I/O. The host OS loads a device
driver as is typical for PCIe devices. The card itself runs a bootstrap after reset
that transfers control to the card OS downloaded from the host driver. The host
driver supports OSPM suspend and resume operations. It shuts down the card
during suspend and reboots the card OS during resume. The card OS as shipped
by Intel is a Linux kernel with modifications for the X100 devices.

Since it is a PCIe card, it does not have the ability to host hardware devices for
networking, storage and console. We provide these devices on X100 coprocessors
thus enabling a self-bootable equivalent environment for applications. A key ben-
efit of our solution is that it leverages the standard virtio framework for network,
disk and console devices, though in our case the virtio framework is used across
a PCIe bus. A Virtio Over PCIe (VOP) driver allows creating user space backends
or devices on the host which are used to probe virtio drivers for these devices on
the MIC card. The existing VRINGH infrastructure in the kernel is used to access
virtio rings from the host. The card VOP driver allows card virtio drivers to com-
municate with their user space backends on the host via a device page. Ring 3
apps on the host can add, remove and configure virtio devices. A thin MIC specific
virtio_config_ops is implemented which is borrowed heavily from previous similar
implementations in lguest and s390.

MIC PCIe card has a dma controller with 8 channels. These channels are shared
between the host s/w and the card s/w. 0 to 3 are used by host and 4 to 7 by card.
As the dma device doesn’t show up as PCIe device, a virtual bus called mic bus
is created and virtual dma devices are created on it by the host/card drivers. On
host the channels are private and used only by the host driver to transfer data for
the virtio devices.

The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a low level
communications API across PCIe currently implemented for MIC. More details are
available at scif_overview.txt.

The Coprocessor State Management (COSM) driver on the host allows for boot,
shutdown and reset of Intel MIC devices. It communicates with a COSM “client”

25

Linux Misc-devices Documentation

driver on the MIC cards over SCIF to perform these functions.

Here is a block diagram of the various components described above. The virtio
backends are situated on the host rather than the card given better single threaded
performance for the host compared to MIC, the ability of the host to initiate DMA’
s to/from the card using the MIC DMA engine and the fact that the virtio block
storage backend can only be on the host:

+----------+ | +----------+
| Card OS | | | Host OS |
+----------+ | +----------+

|
+-------+ +--------+ +------+ | +---------+ +--------+ +--------+
Virtio		Virtio		Virtio			Virtio		Virtio		Virtio
Net		Console		Block			Net		Console		Block
Driver		Driver		Driver			backend		backend		backend
+---+---+ +---+----+ +--+---+ | +---------+ +----+---+ +--------+

| | | | | | |
| | | |User | | |
| | | |------|------------|--+------|-------
+---------+---------+ |Kernel |

| | |
+---------+ +---+----+ +------+ | +------+ +------+ +--+---+ +-------+
|MIC DMA | | VOP | | SCIF | | | SCIF | | COSM | | VOP | |MIC DMA|
+---+-----+ +---+----+ +--+---+ | +--+---+ +--+---+ +------+ +----+--+

| | | | | | |
+---+-----+ +---+----+ +--+---+ | +--+---+ +--+---+ +------+ +----+--+
|MIC | | VOP | |SCIF | | |SCIF | | COSM | | VOP | | MIC |
|HW Bus | | HW Bus| |HW Bus| | |HW Bus| | Bus | |HW Bus| |HW Bus |
+---------+ +--------+ +--+---+ | +--+---+ +------+ +------+ +-------+

+-----------+--+			+---------------+				
	Intel MIC					Intel MIC	
	Card Driver					Host Driver	
+---+--------------+------+ | +----+---------------+-----+

| | |
+---+
| |
| PCIe Bus |
+---+

7.2 Symmetric Communication Interface (SCIF)

The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a low
level communications API across PCIe currently implemented for MIC. Currently
SCIF provides inter-node communication within a single host platform, where a
node is a MIC Coprocessor or Xeon based host. SCIF abstracts the details of
communicating over the PCIe bus while providing an API that is symmetric across
all the nodes in the PCIe network. An important design objective for SCIF is to
deliver the maximum possible performance given the communication abilities of
the hardware. SCIF has been used to implement an offload compiler runtime and
OFED support for MPI implementations for MIC coprocessors.

26 Chapter 7. Intel Many Integrated Core (MIC) architecture

Linux Misc-devices Documentation

7.2.1 SCIF API Components

The SCIF API has the following parts:

1. Connection establishment using a client server model

2. Byte stream messaging intended for short messages

3. Node enumeration to determine online nodes

4. Poll semantics for detection of incoming connections and messages

5. Memory registration to pin down pages

6. Remote memory mapping for low latency CPU accesses via mmap

7. Remote DMA (RDMA) for high bandwidth DMA transfers

8. Fence APIs for RDMA synchronization

SCIF exposes the notion of a connection which can be used by peer processes on
nodes in a SCIF PCIe“network”to sharememory“windows”and to communicate. A
process in a SCIF node initiates a SCIF connection to a peer process on a different
node via a SCIF “endpoint”. SCIF endpoints support messaging APIs which are
similar to connection oriented socket APIs. Connected SCIF endpoints can also
register local memory which is followed by data transfer using either DMA, CPU
copies or remote memory mapping via mmap. SCIF supports both user and kernel
mode clients which are functionally equivalent.

7.2.2 SCIF Performance for MIC

DMA bandwidth comparison between the TCP (over ethernet over PCIe) stack
versus SCIF shows the performance advantages of SCIF for HPC applications and
runtimes:

Comparison of TCP and SCIF based BW

Throughput (GB/sec)
8 + PCIe Bandwidth ******

+ TCP ######
7 + ************************************** SCIF %%%%%%

| %%%%%%%%%%%%%%%%%%%
6 + %%%%
| %%
| %%%

5 + %%
| %%

4 + %%
| %%

3 + %%
| %

2 + %%
| %%
| %

1 +
+ ######################################

0 +++---+++--+--+-+--+--+-++-+--+-++-+--+-++-+-
(continues on next page)

7.2. Symmetric Communication Interface (SCIF) 27

Linux Misc-devices Documentation

(continued from previous page)
1 10 100 1000 10000 100000

Transfer Size (KBytes)

SCIF allows memory sharing via mmap(..) between processes on different PCIe
nodes and thus provides bare-metal PCIe latency. The round trip SCIF mmap la-
tency from the host to an x100 MIC for an 8 byte message is 0.44 usecs.

SCIF has a user space library which is a thin IOCTLwrapper providing a user space
API similar to the kernel API in scif.h. The SCIF user space library is distributed
@ https://software.intel.com/en-us/mic-developer

Here is some pseudo code for an example of how two applications on two PCIe
nodes would typically use the SCIF API:

Process A (on node A) Process B (on node B)

/* get online node information */
scif_get_node_ids(..) scif_get_node_ids(..)
scif_open(..) scif_open(..)
scif_bind(..) scif_bind(..)
scif_listen(..)
scif_accept(..) scif_connect(..)
/* SCIF connection established */

/* Send and receive short messages */
scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)

/* Register memory */
scif_register(..) scif_register(..)

/* RDMA */
scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)

/* Fence DMAs */
scif_fence_signal(..) scif_fence_signal(..)

mmap(..) mmap(..)

/* Access remote registered memory */

/* Close the endpoints */
scif_close(..) scif_close(..)

28 Chapter 7. Intel Many Integrated Core (MIC) architecture

https://software.intel.com/en-us/mic-developer

CHAPTER

EIGHT

INTRODUCTION OF UACCE

Uacce (Unified/User-space-access-intended Accelerator Framework) targets to
provide Shared Virtual Addressing (SVA) between accelerators and processes. So
accelerator can access any data structure of the main cpu. This differs from the
data sharing between cpu and io device, which share only data content rather than
address. Because of the unified address, hardware and user space of process can
share the same virtual address in the communication. Uacce takes the hardware
accelerator as a heterogeneous processor, while IOMMU share the same CPU page
tables and as a result the same translation from va to pa.

__________________________ __________________________
User application (CPU)		Hardware Accelerator
__________________________		__________________________

| |
| va | va
V V

__________ __________
MMU		IOMMU
__________		__________

| |
| |
V pa V pa

| |
| Memory |
|_______________________________________|

29

Linux Misc-devices Documentation

30 Chapter 8. Introduction of Uacce

CHAPTER

NINE

ARCHITECTURE

Uacce is the kernel module, taking charge of iommu and address sharing. The
user drivers and libraries are called WarpDrive.

The uacce device, built around the IOMMU SVA API, can access multiple address
spaces, including the one without PASID.

A virtual concept, queue, is used for the communication. It provides a FIFO-like
interface. And it maintains a unified address space between the application and
all involved hardware.

___________________ _____________
↪→___

| | user API | ␣
↪→ |

| WarpDrive library | ------------> | user␣
↪→driver |

|___________________| |_____________
↪→___|

| |
| |
| queue fd |
| |
| |
v |

___________________ _________ |
| | | | |␣
↪→mmap memory
| Other framework | | uacce | | r/
↪→w interface
| crypto/nic/others | |_________| |
|___________________| |

register	register
_________________ __________	
------------- | Device Driver | | IOMMU | |

|_________________| |__________| |
| |
| V
| _____________

↪→______
| | ␣

↪→ | (continues on next page)

31

Linux Misc-devices Documentation

(continued from previous page)
-------------------------- | ␣

↪→Device(Hardware) |
|_____________

↪→______|

32 Chapter 9. Architecture

CHAPTER

TEN

HOW DOES IT WORK

Uacce uses mmap and IOMMU to play the trick.

Uacce creates a chrdev for every device registered to it. New queue is created
when user application open the chrdev. The file descriptor is used as the user
handle of the queue. The accelerator device present itself as an Uacce object,
which exports as a chrdev to the user space. The user application communicates
with the hardware by ioctl (as control path) or share memory (as data path).

The control path to the hardware is via file operation, while data path is via mmap
space of the queue fd.

The queue file address space:

/**
* enum uacce_qfrt: qfrt type
* @UACCE_QFRT_MMIO: device mmio region
* @UACCE_QFRT_DUS: device user share region
*/

enum uacce_qfrt {
UACCE_QFRT_MMIO = 0,
UACCE_QFRT_DUS = 1,

};

All regions are optional and differ from device type to type. Each region can be
mmapped only once, otherwise -EEXIST returns.

The device mmio region is mapped to the hardware mmio space. It is generally
used for doorbell or other notification to the hardware. It is not fast enough as
data channel.

The device user share region is used for share data buffer between user process
and device.

33

Linux Misc-devices Documentation

34 Chapter 10. How does it work

CHAPTER

ELEVEN

THE UACCE REGISTER API

The register API is defined in uacce.h.

struct uacce_interface {
char name[UACCE_MAX_NAME_SIZE];
unsigned int flags;
const struct uacce_ops *ops;

};

According to the IOMMU capability, uacce_interface flags can be:

/**
* UACCE Device flags:
* UACCE_DEV_SVA: Shared Virtual Addresses
* Support PASID
* Support device page faults (PCI PRI or SMMU Stall)
*/

#define UACCE_DEV_SVA BIT(0)

struct uacce_device *uacce_alloc(struct device *parent,
struct uacce_interface *interface);

int uacce_register(struct uacce_device *uacce);
void uacce_remove(struct uacce_device *uacce);

uacce_register results can be:

a. If uacce module is not compiled, ERR_PTR(-ENODEV)

b. Succeed with the desired flags

c. Succeed with the negotiated flags, for example

uacce_interface.flags = UACCE_DEV_SVA but uacce->flags =
~UACCE_DEV_SVA

So user driver need check return value as well as the negotiated uacce-
>flags.

35

Linux Misc-devices Documentation

36 Chapter 11. The Uacce register API

CHAPTER

TWELVE

THE USER DRIVER

The queue file mmap space will need a user driver to wrap the communication
protocol. Uacce provides some attributes in sysfs for the user driver to match the
right accelerator accordingly. More details in Documentation/ABI/testing/sysfs-
driver-uacce.

37

Linux Misc-devices Documentation

38 Chapter 12. The user driver

CHAPTER

THIRTEEN

XILINX SD-FEC DRIVER

13.1 Overview

This driver supports SD-FEC Integrated Block for Zynq Ultrascale+™ RFSoCs.

For a full description of SD-FEC core features, see the SD-FEC Product Guide
(PG256)

This driver supports the following features:

• Retrieval of the Integrated Block configuration and status information

• Configuration of LDPC codes

• Configuration of Turbo decoding

• Monitoring errors

Missing features, known issues, and limitations of the SD-FEC driver are as fol-
lows:

• Only allows a single open file handler to any instance of the driver at any time

• Reset of the SD-FEC Integrated Block is not controlled by this driver

• Does not support shared LDPC code table wraparound

The device tree entry is described in: linux-xlnx/Documentation/devicetree/bindings/misc/xlnx,sd-
fec.txt

13.1.1 Modes of Operation

The driver works with the SD-FEC core in two modes of operation:

• Run-time configuration

• Programmable Logic (PL) initialization

39

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=sd_fec;v=latest;d=pg256-sdfec-integrated-block.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=sd_fec;v=latest;d=pg256-sdfec-integrated-block.pdf
https://github.com/Xilinx/linux-xlnx/blob/master/Documentation/devicetree/bindings/misc/xlnx%2Csd-fec.txt
https://github.com/Xilinx/linux-xlnx/blob/master/Documentation/devicetree/bindings/misc/xlnx%2Csd-fec.txt

Linux Misc-devices Documentation

Run-time Configuration

For Run-time configuration the role of driver is to allow the software application
to do the following:

• Load the configuration parameters for either Turbo decode or LDPC encode
or decode

• Activate the SD-FEC core

• Monitor the SD-FEC core for errors

• Retrieve the status and configuration of the SD-FEC core

Programmable Logic (PL) Initialization

For PL initialization, supporting logic loads configuration parameters for either
the Turbo decode or LDPC encode or decode. The role of the driver is to allow the
software application to do the following:

• Activate the SD-FEC core

• Monitor the SD-FEC core for errors

• Retrieve the status and configuration of the SD-FEC core

13.2 Driver Structure

The driver provides a platform device where the probe and remove operations are
provided.

• probe: Updates configuration register with device-tree entries plus deter-
mines the current activate state of the core, for example, is the core bypassed
or has the core been started.

The driver defines the following driver file operations to provide user application
interfaces:

• open: Implements restriction that only a single file descriptor can be open
per SD-FEC instance at any time

• release: Allows another file descriptor to be open, that is after current file
descriptor is closed

• poll: Provides a method to monitor for SD-FEC Error events

• unlocked_ioctl: Provides the the following ioctl commands that allows the
application configure the SD-FEC core:

– XSDFEC_START_DEV

– XSDFEC_STOP_DEV

– XSDFEC_GET_STATUS

– XSDFEC_SET_IRQ

– XSDFEC_SET_TURBO

40 Chapter 13. Xilinx SD-FEC Driver

Linux Misc-devices Documentation

– XSDFEC_ADD_LDPC_CODE_PARAMS

– XSDFEC_GET_CONFIG

– XSDFEC_SET_ORDER

– XSDFEC_SET_BYPASS

– XSDFEC_IS_ACTIVE

– XSDFEC_CLEAR_STATS

– XSDFEC_SET_DEFAULT_CONFIG

13.3 Driver Usage

13.3.1 Overview

After opening the driver, the user should find out what operations need to be per-
formed to configure and activate the SD-FEC core and determine the configuration
of the driver. The following outlines the flow the user should perform:

• Determine Configuration

• Set the order, if not already configured as desired

• Set Turbo decode, LPDC encode or decode parameters, depending on how
the SD-FEC core is configured plus if the SD-FEC has not been configured
for PL initialization

• Enable interrupts, if not already enabled

• Bypass the SD-FEC core, if required

• Start the SD-FEC core if not already started

• Get the SD-FEC core status

• Monitor for interrupts

• Stop the SD-FEC core

Note: When monitoring for interrupts if a critical error is detected where a reset
is required, the driver will be required to load the default configuration.

13.3.2 Determine Configuration

Determine the configuration of the SD-FEC core by using the ioctl
XSDFEC_GET_CONFIG.

13.3. Driver Usage 41

Linux Misc-devices Documentation

13.3.3 Set the Order

Setting the order determines how the order of Blocks can change from input to
output.

Setting the order is done by using the ioctl XSDFEC_SET_ORDER

Setting the order can only be done if the following restrictions are met:

• The state member of struct xsdfec_status filled by the ioctl
XSDFEC_GET_STATUS indicates the SD-FEC core has not STARTED

13.3.4 Add LDPC Codes

The following steps indicate how to add LDPC codes to the SD-FEC core:

• Use the auto-generated parameters to fill the struct xsdfec_ldpc_params
for the desired LDPC code.

• Set the SC, QA, and LA table offsets for the LPDC parameters and the param-
eters in the structure struct xsdfec_ldpc_params

• Set the desired Code Id value in the structure struct xsdfec_ldpc_params

• Add the LPDC Code Parameters using the ioctl
XSDFEC_ADD_LDPC_CODE_PARAMS

• For the applied LPDC Code Parameter use the function
xsdfec_calculate_shared_ldpc_table_entry_size() to calculate the
size of shared LPDC code tables. This allows the user to determine the
shared table usage so when selecting the table offsets for the next LDPC
code parameters unused table areas can be selected.

• Repeat for each LDPC code parameter.

Adding LDPC codes can only be done if the following restrictions are met:

• The code member of struct xsdfec_config filled by the ioctl
XSDFEC_GET_CONFIG indicates the SD-FEC core is configured as LDPC

• The code_wr_protect of struct xsdfec_config filled by the ioctl
XSDFEC_GET_CONFIG indicates that write protection is not enabled

• The state member of struct xsdfec_status filled by the ioctl
XSDFEC_GET_STATUS indicates the SD-FEC core has not started

13.3.5 Set Turbo Decode

Configuring the Turbo decode parameters is done by using the ioctl
XSDFEC_SET_TURBO using auto-generated parameters to fill the struct
xsdfec_turbo for the desired Turbo code.

Adding Turbo decode can only be done if the following restrictions are met:

• The code member of struct xsdfec_config filled by the ioctl
XSDFEC_GET_CONFIG indicates the SD-FEC core is configured as TURBO

42 Chapter 13. Xilinx SD-FEC Driver

Linux Misc-devices Documentation

• The state member of struct xsdfec_status filled by the ioctl
XSDFEC_GET_STATUS indicates the SD-FEC core has not STARTED

13.3.6 Enable Interrupts

Enabling or disabling interrupts is done by using the ioctl XSDFEC_SET_IRQ. The
members of the parameter passed, struct xsdfec_irq, to the ioctl are used to set
and clear different categories of interrupts. The category of interrupt is controlled
as following:

• enable_isr controls the tlast interrupts

• enable_ecc_isr controls the ECC interrupts

If the code member of struct xsdfec_config filled by the ioctl
XSDFEC_GET_CONFIG indicates the SD-FEC core is configured as TURBO then
the enabling ECC errors is not required.

13.3.7 Bypass the SD-FEC

Bypassing the SD-FEC is done by using the ioctl XSDFEC_SET_BYPASS

Bypassing the SD-FEC can only be done if the following restrictions are met:

• The state member of struct xsdfec_status filled by the ioctl
XSDFEC_GET_STATUS indicates the SD-FEC core has not STARTED

13.3.8 Start the SD-FEC core

Start the SD-FEC core by using the ioctl XSDFEC_START_DEV

13.3.9 Get SD-FEC Status

Get the SD-FEC status of the device by using the ioctl XSDFEC_GET_STATUS, which
will fill the struct xsdfec_status

13.3.10 Monitor for Interrupts

• Use the poll system call to monitor for an interrupt. The poll system call waits
for an interrupt to wake it up or times out if no interrupt occurs.

• On return Poll revents will indicate whether stats and/or state have been updated

– POLLPRI indicates a critical error and the user should use
XSDFEC_GET_STATUS and XSDFEC_GET_STATS to confirm

– POLLRDNORM indicates a non-critical error has occurred and the user
should use XSDFEC_GET_STATS to confirm

• Get stats by using the ioctl XSDFEC_GET_STATS

13.3. Driver Usage 43

Linux Misc-devices Documentation

– For critical error the isr_err_count or uecc_count member of
struct xsdfec_stats is non-zero

– For non-critical errors the cecc_count member of struct
xsdfec_stats is non-zero

• Get state by using the ioctl XSDFEC_GET_STATUS
– For a critical error the state of xsdfec_status will indicate a Reset
Is Required

• Clear stats by using the ioctl XSDFEC_CLEAR_STATS

If a critical error is detected where a reset is required. The application is required
to call the ioctl XSDFEC_SET_DEFAULT_CONFIG, after the reset and it is not required
to call the ioctl XSDFEC_STOP_DEV

Note: Using poll system call prevents busy looping using XSDFEC_GET_STATS and
XSDFEC_GET_STATUS

13.3.11 Stop the SD-FEC Core

Stop the device by using the ioctl XSDFEC_STOP_DEV

13.3.12 Set the Default Configuration

Load default configuration by using the ioctl XSDFEC_SET_DEFAULT_CONFIG to re-
store the driver.

13.3.13 Limitations

Users should not duplicate SD-FEC device file handlers, for example fork() or dup()
a process that has a created an SD-FEC file handler.

13.4 Driver IOCTLs

XSDFEC_START_DEV

Description
ioctl to start SD-FEC core

This fails if the XSDFEC_SET_ORDER ioctl has not been previously called

XSDFEC_STOP_DEV

Description
ioctl to stop the SD-FEC core

XSDFEC_GET_STATUS

Description
ioctl that returns status of SD-FEC core

44 Chapter 13. Xilinx SD-FEC Driver

Linux Misc-devices Documentation

XSDFEC_SET_IRQ

Parameters
struct xsdfec_irq * Pointer to the struct xsdfec_irq that contains the interrupt

settings for the SD-FEC core

Description
ioctl to enable or disable irq

XSDFEC_SET_TURBO

Parameters
struct xsdfec_turbo * Pointer to the struct xsdfec_turbo that contains the

Turbo decode settings for the SD-FEC core

Description
ioctl that sets the SD-FEC Turbo parameter values

This can only be used when the driver is in the XSDFEC_STOPPED state

XSDFEC_ADD_LDPC_CODE_PARAMS

Parameters
struct xsdfec_ldpc_params * Pointer to the struct xsdfec_ldpc_params that

contains the LDPC code parameters to be added to the SD-FEC Block

Description ioctl to add an LDPC code to the SD-FEC LDPC codes
This can only be used when:

• Driver is in the XSDFEC_STOPPED state

• SD-FEC core is configured as LPDC

• SD-FEC Code Write Protection is disabled

XSDFEC_GET_CONFIG

Parameters
struct xsdfec_config * Pointer to the struct xsdfec_config that contains the

current configuration settings of the SD-FEC Block

Description
ioctl that returns SD-FEC core configuration

XSDFEC_SET_ORDER

Parameters
struct unsigned long * Pointer to the unsigned long that contains a value from

the enum xsdfec_order

Description
ioctl that sets order, if order of blocks can change from input to output

This can only be used when the driver is in the XSDFEC_STOPPED state

XSDFEC_SET_BYPASS

13.4. Driver IOCTLs 45

Linux Misc-devices Documentation

Parameters
struct bool * Pointer to bool that sets the bypass value, where false results in

normal operation and false results in the SD-FEC performing the configured
operations (same number of cycles) but output data matches the input data

Description
ioctl that sets bypass.

This can only be used when the driver is in the XSDFEC_STOPPED state

XSDFEC_IS_ACTIVE

Parameters
struct bool * Pointer to bool that returns true if the SD-FEC is processing data
Description
ioctl that determines if SD-FEC is processing data

XSDFEC_CLEAR_STATS

Description
ioctl that clears error stats collected during interrupts

XSDFEC_GET_STATS

Parameters
struct xsdfec_stats * Pointer to the struct xsdfec_stats that will contain the

updated stats values

Description
ioctl that returns SD-FEC core stats

This can only be used when the driver is in the XSDFEC_STOPPED state

XSDFEC_SET_DEFAULT_CONFIG

Description
ioctl that returns SD-FEC core to default config, use after a reset

This can only be used when the driver is in the XSDFEC_STOPPED state

13.5 Driver Type Definitions

enum xsdfec_code
Code Type.

Constants
XSDFEC_TURBO_CODE Driver is configured for Turbo mode.

XSDFEC_LDPC_CODE Driver is configured for LDPC mode.

Description

46 Chapter 13. Xilinx SD-FEC Driver

Linux Misc-devices Documentation

This enum is used to indicate the mode of the driver. The mode is determined by
checking which codes are set in the driver. Note that the mode cannot be changed
by the driver.

enum xsdfec_order
Order

Constants
XSDFEC_MAINTAIN_ORDER Maintain order execution of blocks.

XSDFEC_OUT_OF_ORDER Out-of-order execution of blocks.

Description
This enum is used to indicate whether the order of blocks can change from input
to output.

enum xsdfec_turbo_alg
Turbo Algorithm Type.

Constants
XSDFEC_MAX_SCALE Max Log-Map algorithm with extrinsic scaling. When scaling

is set to this is equivalent to the Max Log-Map algorithm.

XSDFEC_MAX_STAR Log-Map algorithm.

XSDFEC_TURBO_ALG_MAX Used to indicate out of bound Turbo algorithms.

Description
This enum specifies which Turbo Decode algorithm is in use.

enum xsdfec_state
State.

Constants
XSDFEC_INIT Driver is initialized.

XSDFEC_STARTED Driver is started.

XSDFEC_STOPPED Driver is stopped.

XSDFEC_NEEDS_RESET Driver needs to be reset.

XSDFEC_PL_RECONFIGURE Programmable Logic needs to be recofigured.

Description
This enum is used to indicate the state of the driver.

enum xsdfec_axis_width
AXIS_WIDTH.DIN Setting for 128-bit width.

Constants
XSDFEC_1x128b DIN data input stream consists of a 128-bit lane

XSDFEC_2x128b DIN data input stream consists of two 128-bit lanes

XSDFEC_4x128b DIN data input stream consists of four 128-bit lanes

13.5. Driver Type Definitions 47

Linux Misc-devices Documentation

Description
This enum is used to indicate the AXIS_WIDTH.DIN setting for 128-bit width. The
number of lanes of the DIN data input stream depends upon the AXIS_WIDTH.DIN
parameter.

enum xsdfec_axis_word_include
Words Configuration.

Constants
XSDFEC_FIXED_VALUE Fixed, the DIN_WORDS AXI4-Stream interface is removed

from the IP instance and is driven with the specified number of words.

XSDFEC_IN_BLOCK In Block, configures the IP instance to expect a single
DIN_WORDS value per input code block. The DIN_WORDS interface is
present.

XSDFEC_PER_AXI_TRANSACTION Per Transaction, configures the IP instance to ex-
pect one DIN_WORDS value per input transaction on the DIN interface. The
DIN_WORDS interface is present.

XSDFEC_AXIS_WORDS_INCLUDE_MAX Used to indicate out of bound Words Configu-
rations.

Description
This enum is used to specify the DIN_WORDS configuration.

struct xsdfec_turbo
User data for Turbo codes.

Definition

struct xsdfec_turbo {
__u32 alg;
__u8 scale;

};

Members
alg Specifies which Turbo decode algorithm to use

scale Specifies the extrinsic scaling to apply when the Max Scale algorithm has
been selected

Description
Turbo code structure to communicate parameters to XSDFEC driver.

struct xsdfec_ldpc_params
User data for LDPC codes.

Definition

struct xsdfec_ldpc_params {
__u32 n;
__u32 k;
__u32 psize;
__u32 nlayers;

(continues on next page)

48 Chapter 13. Xilinx SD-FEC Driver

Linux Misc-devices Documentation

(continued from previous page)
__u32 nqc;
__u32 nmqc;
__u32 nm;
__u32 norm_type;
__u32 no_packing;
__u32 special_qc;
__u32 no_final_parity;
__u32 max_schedule;
__u32 sc_off;
__u32 la_off;
__u32 qc_off;
__u32 *sc_table;
__u32 *la_table;
__u32 *qc_table;
__u16 code_id;

};

Members
n Number of code word bits

k Number of information bits

psize Size of sub-matrix

nlayers Number of layers in code

nqc Quasi Cyclic Number

nmqc Number of M-sized QC operations in parity check matrix

nm Number of M-size vectors in N

norm_type Normalization required or not

no_packing Determines if multiple QC ops should be performed

special_qc Sub-Matrix property for Circulant weight > 0

no_final_parity Decide if final parity check needs to be performed

max_schedule Experimental code word scheduling limit

sc_off SC offset

la_off LA offset

qc_off QC offset

sc_table Pointer to SC Table which must be page aligned

la_table Pointer to LA Table which must be page aligned

qc_table Pointer to QC Table which must be page aligned

code_id LDPC Code

Description
This structure describes the LDPC code that is passed to the driver by the appli-
cation.

13.5. Driver Type Definitions 49

Linux Misc-devices Documentation

struct xsdfec_status
Status of SD-FEC core.

Definition

struct xsdfec_status {
__u32 state;
__s8 activity;

};

Members
state State of the SD-FEC core

activity Describes if the SD-FEC instance is Active

struct xsdfec_irq
Enabling or Disabling Interrupts.

Definition

struct xsdfec_irq {
__s8 enable_isr;
__s8 enable_ecc_isr;

};

Members
enable_isr If true enables the ISR

enable_ecc_isr If true enables the ECC ISR

struct xsdfec_config
Configuration of SD-FEC core.

Definition

struct xsdfec_config {
__u32 code;
__u32 order;
__u32 din_width;
__u32 din_word_include;
__u32 dout_width;
__u32 dout_word_include;
struct xsdfec_irq irq;
__s8 bypass;
__s8 code_wr_protect;

};

Members
code The codes being used by the SD-FEC instance

order Order of Operation

din_width Width of the DIN AXI4-Stream

din_word_include How DIN_WORDS are inputted

dout_width Width of the DOUT AXI4-Stream

dout_word_include HOW DOUT_WORDS are outputted

50 Chapter 13. Xilinx SD-FEC Driver

Linux Misc-devices Documentation

irq Enabling or disabling interrupts

bypass Is the core being bypassed

code_wr_protect Is write protection of LDPC codes enabled

struct xsdfec_stats
Stats retrived by ioctl XSDFEC_GET_STATS. Used to buffer atomic_t variables
from struct xsdfec_dev. Counts are accumulated until the user clears them.

Definition

struct xsdfec_stats {
__u32 isr_err_count;
__u32 cecc_count;
__u32 uecc_count;

};

Members
isr_err_count Count of ISR errors

cecc_count Count of Correctable ECC errors (SBE)

uecc_count Count of Uncorrectable ECC errors (MBE)

struct xsdfec_ldpc_param_table_sizes
Used to store sizes of SD-FEC table entries for an individual LPDC code pa-
rameter.

Definition

struct xsdfec_ldpc_param_table_sizes {
__u32 sc_size;
__u32 la_size;
__u32 qc_size;

};

Members
sc_size Size of SC table used

la_size Size of LA table used

qc_size Size of QC table used

13.5. Driver Type Definitions 51

