Linux Maintainer
Documentation

The kernel development community

Jul 14, 2020

CONTENTS

Linux Maintainer Documentation

This document is the humble beginning of a manual for kernel maintainers. There
is a lot yet to go here! Please feel free to propose (and write) additions to this
manual.

CONTENTS 1

Linux Maintainer Documentation

2 CONTENTS

CHAPTER
ONE

CONFIGURE GIT

This chapter describes maintainer level git configuration.

Tagged branches used in Documentation/maintainer/pull-requests.rst should be
signed with the developers public GPG key. Signed tags can be created by passing
the -u flag to git tag. However, since you would usually use the same key for the
same project, you can set it once with

git config user.signingkey "keyname"

Alternatively, edit your .git/config or ~/.gitconfig file by hand:

[user]
name = Jane Developer
email = jd@domain.org
signingkey = jd@domain.org

You may need to tell git to use gpg2

lgpgl
program = /path/to/gpg2

You may also like to tell gpg which tty to use (add to your shell rc file)

export GPG TTY=$(tty)

1.1 Creating commit links to lore.kernel.org

The web site http://lore.kernel.org is meant as a grand archive of all mail list traf-
fic concerning or influencing the kernel development. Storing archives of patches
here is a recommended practice, and when a maintainer applies a patch to a sub-
system tree, it is a good idea to provide a Link: tag with a reference back to the lore
archive so that people that browse the commit history can find related discussions
and rationale behind a certain change. The link tag will look like this:

Link: https://lore.kernel.org/r/<message-id>

This can be configured to happen automatically any time you issue git am by
adding the following hook into your git:

http://lore.kernel.org
https://lore.kernel.org/r

Linux Maintainer Documentation

$ git config am.messageid true
$ cat >.git/hooks/applypatch-msg <<'EOF'
#!/bin/sh
. git-sh-setup
perl -pi -e 's|”Message-Id:\s*<?([">]+)>?$|Link: https://lore.kernel.org/r/
~$1]g; ' "$1"
test -x "$GIT DIR/hooks/commit-msg" &&
exec "$GIT DIR/hooks/commit-msg" ${1+"$@"}

EOF
$ chmod a+x .git/hooks/applypatch-msg

4 Chapter 1. Configure Git

CHAPTER
TWO

REBASING AND MERGING

Maintaining a subsystem, as a general rule, requires a familiarity with the Git
source-code management system. Git is a powerful tool with a lot of features; as
is often the case with such tools, there are right and wrong ways to use those
features. This document looks in particular at the use of rebasing and merging.
Maintainers often get in trouble when they use those tools incorrectly, but avoiding
problems is not actually all that hard.

One thing to be aware of in general is that, unlike many other projects, the kernel
community is not scared by seeing merge commits in its development history. In-
deed, given the scale of the project, avoiding merges would be nearly impossible.
Some problems encountered by maintainers result from a desire to avoid merges,
while others come from merging a little too often.

2.1 Rebasing

“Rebasing” is the process of changing the history of a series of commits within
a repository. There are two different types of operations that are referred to as
rebasing since both are done with the git rebase command, but there are signif-
icant differences between them:

* Changing the parent (starting) commit upon which a series of patches is built.
For example, a rebase operation could take a patch set built on the previous
kernel release and base it, instead, on the current release. We’ 1l call this
operation “reparenting” in the discussion below.

* Changing the history of a set of patches by fixing (or deleting) broken com-
mits, adding patches, adding tags to commit changelogs, or changing the or-
der in which commits are applied. In the following text, this type of operation
will be referred to as “history modification”

The term “rebasing” will be used to refer to both of the above operations. Used
properly, rebasing can yield a cleaner and clearer development history; used im-
properly, it can obscure that history and introduce bugs.

There are a few rules of thumb that can help developers to avoid the worst perils
of rebasing:

* History that has been exposed to the world beyond your private system should
usually not be changed. Others may have pulled a copy of your tree and built
on it; modifying your tree will create pain for them. If work is in need of

Linux Maintainer Documentation

rebasing, that is usually a sign that it is not yet ready to be committed to a
public repository.

That said, there are always exceptions. Some trees (linux-next being a signif-
icant example) are frequently rebased by their nature, and developers know
not to base work on them. Developers will sometimes expose an unstable
branch for others to test with or for automated testing services. If you do
expose a branch that may be unstable in this way, be sure that prospective
users know not to base work on it.

* Do not rebase a branch that contains history created by others. If you have
pulled changes from another developer’ s repository, you are now a custodian
of their history. You should not change it. With few exceptions, for example,
a broken commit in a tree like this should be explicitly reverted rather than
disappeared via history modification.

* Do not reparent a tree without a good reason to do so. Just being on a newer
base or avoiding a merge with an upstream repository is not generally a good
reason.

* If you must reparent a repository, do not pick some random kernel commit as
the new base. The kernel is often in a relatively unstable state between re-
lease points; basing development on one of those points increases the chances
of running into surprising bugs. When a patch series must move to a new
base, pick a stable point (such as one of the -rc releases) to move to.

* Realize that reparenting a patch series (or making significant history mod-
ifications) changes the environment in which it was developed and, likely,
invalidates much of the testing that was done. A reparented patch series
should, as a general rule, be treated like new code and retested from the
beginning.

A frequent cause of merge-window trouble is when Linus is presented with a patch
series that has clearly been reparented, often to a random commit, shortly before
the pull request was sent. The chances of such a series having been adequately
tested are relatively low - as are the chances of the pull request being acted upon.

If, instead, rebasing is limited to private trees, commits are based on a well-known
starting point, and they are well tested, the potential for trouble is low.

2.2 Merging

Merging is a common operation in the kernel development process; the 5.1 devel-
opment cycle included 1,126 merge commits - nearly 9% of the total. Kernel work
is accumulated in over 100 different subsystem trees, each of which may contain
multiple topic branches; each branch is usually developed independently of the
others. So naturally, at least one merge will be required before any given branch
finds its way into an upstream repository.

Many projects require that branches in pull requests be based on the current trunk
so that no merge commits appear in the history. The kernel is not such a project;
any rebasing of branches to avoid merges will, most likely, lead to trouble.

Subsystem maintainers find themselves having to do two types of merges: from

6 Chapter 2. Rebasing and merging

Linux Maintainer Documentation

lower-level subsystem trees and from others, either sibling trees or the mainline.
The best practices to follow differ in those two situations.

2.2.1 Merging from lower-level trees

Larger subsystems tend to have multiple levels of maintainers, with the lower-
level maintainers sending pull requests to the higher levels. Acting on such a pull
request will almost certainly generate a merge commit; that is as it should be. In
fact, subsystem maintainers may want to use the -no-ff flag to force the addition
of a merge commit in the rare cases where one would not normally be created
so that the reasons for the merge can be recorded. The changelog for the merge
should, for any kind of merge, say why the merge is being done. For a lower-level
tree, “why” is usually a summary of the changes that will come with that pull.

Maintainers at all levels should be using signed tags on their pull requests, and
upstream maintainers should verify the tags when pulling branches. Failure to do
so threatens the security of the development process as a whole.

As per the rules outlined above, once you have merged somebody else’ s history
into your tree, you cannot rebase that branch, even if you otherwise would be able
to.

2.2.2 Merging from sibling or upstream trees

While merges from downstream are common and unremarkable, merges from
other trees tend to be a red flag when it comes time to push a branch upstream.
Such merges need to be carefully thought about and well justified, or there’ s a
good chance that a subsequent pull request will be rejected.

It is natural to want to merge the master branch into a repository; this type of
merge is often called a “back merge” . Back merges can help to make sure that
there are no conflicts with parallel development and generally gives a warm, fuzzy
feeling of being up-to-date. But this temptation should be avoided almost all of the
time.

Why is that? Back merges will muddy the development history of your own branch.
They will significantly increase your chances of encountering bugs from elsewhere
in the community and make it hard to ensure that the work you are managing is
stable and ready for upstream. Frequent merges can also obscure problems with
the development process in your tree; they can hide interactions with other trees
that should not be happening (often) in a well-managed branch.

That said, back merges are occasionally required; when that happens, be sure to
document why it was required in the commit message. As always, merge to a well-
known stable point, rather than to some random commit. Even then, you should
not back merge a tree above your immediate upstream tree; if a higher-level back
merge is really required, the upstream tree should do it first.

One of the most frequent causes of merge-related trouble is when a maintainer
merges with the upstream in order to resolve merge conflicts before sending a
pull request. Again, this temptation is easy enough to understand, but it should
absolutely be avoided. This is especially true for the final pull request: Linus is
adamant that he would much rather see merge conflicts than unnecessary back

2.2. Merging 7

Linux Maintainer Documentation

merges. Seeing the conflicts lets him know where potential problem areas are.
He does a lot of merges (382 in the 5.1 development cycle) and has gotten quite
good at conflict resolution - often better than the developers involved.

So what should a maintainer do when there is a conflict between their subsystem
branch and the mainline? The most important step is to warn Linus in the pull
request that the conflict will happen; if nothing else, that demonstrates an aware-
ness of how your branch fits into the whole. For especially difficult conflicts, create
and push a separate branch to show how you would resolve things. Mention that
branch in your pull request, but the pull request itself should be for the unmerged
branch.

Even in the absence of known conflicts, doing a test merge before sending a pull
request is a good idea. It may alert you to problems that you somehow didn’ t see
from linux-next and helps to understand exactly what you are asking upstream to
do.

Another reason for doing merges of upstream or another subsystem tree is to re-
solve dependencies. These dependency issues do happen at times, and sometimes
a cross-merge with another tree is the best way to resolve them; as always, in such
situations, the merge commit should explain why the merge has been done. Take
a moment to do it right; people will read those changelogs.

Often, though, dependency issues indicate that a change of approach is needed.
Merging another subsystem tree to resolve a dependency risks bringing in other
bugs and should almost never be done. If that subsystem tree fails to be pulled
upstream, whatever problems it had will block the merging of your tree as well.
Preferable alternatives include agreeing with the maintainer to carry both sets of
changes in one of the trees or creating a topic branch dedicated to the prerequi-
site commits that can be merged into both trees. If the dependency is related to
major infrastructural changes, the right solution might be to hold the dependent
commits for one development cycle so that those changes have time to stabilize in
the mainline.

2.3 Finally

It is relatively common to merge with the mainline toward the beginning of the
development cycle in order to pick up changes and fixes done elsewhere in the
tree. As always, such a merge should pick a well-known release point rather than
some random spot. If your upstream-bound branch has emptied entirely into the
mainline during the merge window, you can pull it forward with a command like:

git merge v5.2-rcl”0

The “~0” will cause Git to do a fast-forward merge (which should be possible in
this situation), thus avoiding the addition of a spurious merge commit.

The guidelines laid out above are just that: guidelines. There will always be situa-
tions that call out for a different solution, and these guidelines should not prevent
developers from doing the right thing when the need arises. But one should al-
ways think about whether the need has truly arisen and be prepared to explain
why something abnormal needs to be done.

8 Chapter 2. Rebasing and merging

CHAPTER
THREE

CREATING PULL REQUESTS

This chapter describes how maintainers can create and submit pull requests to
other maintainers. This is useful for transferring changes from one maintainers
tree to another maintainers tree.

This document was written by Tobin C. Harding (who at that time, was not an
experienced maintainer) primarily from comments made by Greg Kroah-Hartman
and Linus Torvalds on LKML. Suggestions and fixes by Jonathan Corbet and Mauro
Carvalho Chehab. Misrepresentation was unintentional but inevitable, please di-
rect abuse to Tobin C. Harding <me@tobin.cc>.

Original email thread:

http://lkml.kernel.org/r/20171114110500.GA21175@kroah.com

3.1 Create Branch

To start with you will need to have all the changes you wish to include in the pull
request on a separate branch. Typically you will base this branch off of a branch
in the developers tree whom you intend to send the pull request to.

In order to create the pull request you must first tag the branch that you have
just created. It is recommended that you choose a meaningful tag name, in a way
that you and others can understand, even after some time. A good practice is to
include in the name an indicator of the subsystem of origin and the target kernel
version.

Greg offers the following. A pull request with miscellaneous stuff for drivers/char,
to be applied at the Kernel version 4.15-rcl could be named as char-misc-4.
15-rcl. If such tag would be produced from a branch named char-misc-next,
you would be using the following command:

git tag -s char-misc-4.15-rcl char-misc-next

that will create a signed tag called char-misc-4.15-rcl based on the last
commit in the char-misc-next branch, and sign it with your gpg key (see
Documentation/maintainer/configure-git.rst).

Linus will only accept pull requests based on a signed tag. Other maintainers may
differ.

mailto:me@tobin.cc

Linux Maintainer Documentation

When you run the above command git will drop you into an editor and ask you to
describe the tag. In this case, you are describing a pull request, so outline what is
contained here, why it should be merged, and what, if any, testing has been done.
All of this information will end up in the tag itself, and then in the merge commit
that the maintainer makes if/when they merge the pull request. So write it up well,
as it will be in the kernel tree for forever.

As said by Linus:

Anyway, at least to me, the important part is the *message*. I want
to understand what I'm pulling, and why I should pull it. I also
want to use that message as the message for the merge, so it should
not just make sense to me, but make sense as a historical record
too.

Note that if there is something odd about the pull request, that
should very much be in the explanation. If you're touching files
that you don't maintain, explain why . I will see it in the
diffstat anyway, and if you didn't mention it, I'll just be extra
suspicious. And when you send me new stuff after the merge window
(or even bug-fixes, but ones that look scary), explain not just
what they do and why they do it, but explain the timing . What
happened that this didn't go through the merge window..

I will take both what you write in the email pull request and in
the signed tag, so depending on your workflow, you can either
describe your work in the signed tag (which will also automatically
make it into the pull request email), or you can make the signed
tag just a placeholder with nothing interesting in it, and describe
the work later when you actually send me the pull request.

And yes, I will edit the message. Partly because I tend to do just
trivial formatting (the whole indentation and quoting etc), but
partly because part of the message may make sense for me at pull
time (describing the conflicts and your personal issues for sending
it right now), but may not make sense in the context of a merge
commit message, so I will try to make it all make sense. I will
also fix any speeling mistaeks and bad grammar I notice,
particularly for non-native speakers (but also for native ones

;7). But I may miss some, or even add some.

Linus

Greg gives, as an example pull request:

Char/Misc patches for 4.15-rcl

Here is the big char/misc patch set for the 4.15-rcl merge window.
Contained in here is the normal set of new functions added to all
of these crazy drivers, as well as the following brand new
subsystems:

- time_travel controller: Finally a set of drivers for the
latest time travel bus architecture that provides i/o to
the CPU before it asked for it, allowing uninterrupted
processing

- relativity shifters: due to the affect that the
time_travel controllers have on the overall system, there

(continues on next page)

10 Chapter 3. Creating Pull Requests

Linux Maintainer Documentation

(continued from previous page)

was a need for a new set of relativity shifter drivers to
accommodate the newly formed black holes that would
threaten to suck CPUs into them. This subsystem handles
this in a way to successfully neutralize the problems.
There is a Kconfig option to force these to be enabled
when needed, so problems should not occur.

All of these patches have been successfully tested in the latest
linux-next releases, and the original problems that it found have
all been resolved (apologies to anyone living near Canberra for the
lack of the Kconfig options in the earlier versions of the
linux-next tree creations.)

Signed-off-by: Your-name-here <your email@domain>

The tag message format is just like a git commit id. One line at the top for a
“summary subject” and be sure to sign-off at the bottom.

Now that you have a local signed tag, you need to push it up to where it can be
retrieved:

git push origin char-misc-4.15-rcl

3.2 Create Pull Request

The last thing to do is create the pull request message. git handily will do this for
you with the git request-pull command, but it needs a bit of help determining
what you want to pull, and on what to base the pull against (to show the correct
changes to be pulled and the diffstat). The following command(s) will generate a
pull request:

git request-pull master git://git.kernel.org/pub/scm/linux/kernel/git/
—gregkh/char-misc.git/ char-misc-4.15-rcl

Quoting Greg:

This is asking git to compare the difference from the
‘char-misc-4.15-rcl' tag location, to the head of the 'master!’
branch (which in my case points to the last location in Linus's
tree that I diverged from, usually a -rc release) and to use the
git:// protocol to pull from. If you wish to use https://, that
can be used here instead as well (but note that some people behind
firewalls will have problems with https git pulls).

If the char-misc-4.15-rcl tag is not present in the repo that I am
asking to be pulled from, git will complain saying it is not there,
a handy way to remember to actually push it to a public location.

The output of 'git request-pull' will contain the location of the
git tree and specific tag to pull from, and the full text
description of that tag (which is why you need to provide good
information in that tag). It will also create a diffstat of the

(continues on next page)

3.2. Create Pull Request 11

Linux Maintainer Documentation

(continued from previous page)

pull request, and a shortlog of the individual commits that the
pull request will provide.

Linus responded that he tends to prefer the git:// protocol. Other maintainers
may have different preferences. Also, note that if you are creating pull requests
without a signed tag then https:// may be a better choice. Please see the original
thread for the full discussion.

3.3 Submit Pull Request

A pull request is submitted in the same way as an ordinary patch. Send as inline
email to the maintainer and CC LKML and any sub-system specific lists if required.
Pull requests to Linus typically have a subject line something like:

[GIT PULL] <subsystem> changes for v4.15-rcl

12 Chapter 3. Creating Pull Requests

CHAPTER
FOUR

MAINTAINER ENTRY PROFILE

The Maintainer Entry Profile supplements the top-level process documents
(submitting-patches, submitting drivers---) with subsystem/device-driver-local cus-
toms as well as details about the patch submission life-cycle. A contributor uses
this document to level set their expectations and avoid common mistakes; main-
tainers may use these profiles to look across subsystems for opportunities to con-
verge on common practices.

4.1 Overview

Provide an introduction to how the subsystem operates. While MAINTAINERS
tells the contributor where to send patches for which files, it does not convey
other subsystem-local infrastructure and mechanisms that aid development.

Example questions to consider:

» Are there notifications when patches are applied to the local tree, or merged
upstream?

* Does the subsystem have a patchwork instance? Are patchwork state changes
notified?

* Any bots or CI infrastructure that watches the list, or automated testing feed-
back that the subsystem uses to gate acceptance?

* Git branches that are pulled into -next?
* What branch should contributors submit against?

* Links to any other Maintainer Entry Profiles? For example a device-driver
may point to an entry for its parent subsystem. This makes the contributor
aware of obligations a maintainer may have have for other maintainers in the
submission chain.

13

Linux Maintainer Documentation

4.2 Submit Checklist Addendum

List mandatory and advisory criteria, beyond the common “submit-checklist” , for
a patch to be considered healthy enough for maintainer attention. For example:
“pass checkpatch.pl with no errors, or warning. Pass the unit test detailed at $URI”

The Submit Checklist Addendum can also include details about the status of re-
lated hardware specifications. For example, does the subsystem require published
specifications at a certain revision before patches will be considered.

4.3 Key Cycle Dates

One of the common misunderstandings of submitters is that patches can be sent at
any time before the merge window closes and can still be considered for the next
-rcl. The reality is that most patches need to be settled in soaking in linux-next
in advance of the merge window opening. Clarify for the submitter the key dates
(in terms of -rc release week) that patches might be considered for merging and
when patches need to wait for the next -rc. At a minimum:

* Last -rc for new feature submissions: New feature submissions targeting the
next merge window should have their first posting for consideration before
this point. Patches that are submitted after this point should be clear that
they are targeting the NEXT+1 merge window, or should come with suffi-
cient justification why they should be considered on an expedited schedule.
A general guideline is to set expectation with contributors that new feature
submissions should appear before -rc5.

* Last -rc to merge features: Deadline for merge decisions Indicate to contrib-
utors the point at which an as yet un-applied patch set will need to wait for
the NEXT+1 merge window. Of course there is no obligation to ever accept
any given patchset, but if the review has not concluded by this point the ex-
pectation is the contributor should wait and resubmit for the following merge
window.

Optional:

» First -rc at which the development baseline branch, listed in the overview
section, should be considered ready for new submissions.

4.4 Review Cadence

One of the largest sources of contributor angst is how soon to ping after a patchset
has been posted without receiving any feedback. In addition to specifying how
long to wait before a resubmission this section can also indicate a preferred style
of update like, resend the full series, or privately send a reminder email. This
section might also list how review works for this code area and methods to get
feedback that are not directly from the maintainer.

14 Chapter 4. Maintainer Entry Profile

Linux Maintainer Documentation

4.5 Existing profiles

For now, existing maintainer profiles are listed here; we will likely want to do
something different in the near future.

4.5.1 Documentation subsystem maintainer entry profile

The documentation “subsystem” is the central coordinating point for the kernel’ s
documentation and associated infrastructure. It covers the hierarchy under Docu-
mentation/ (with the exception of Documentation/devicetree), various utilities un-
der scripts/ and, at least some of the time, LICENSES/.

It’ s worth noting, though, that the boundaries of this subsystem are rather fuzzier
than normal. Many other subsystem maintainers like to keep control of portions of
Documentation/, and many more freely apply changes there when it is convenient.
Beyond that, much of the kernel’ s documentation is found in the source as ker-
neldoc comments; those are usually (but not always) maintained by the relevant
subsystem maintainer.

The mailing list for documentation is linux-doc@vger.kernel.org. Patches should
be made against the docs-next tree whenever possible.

Submit checklist addendum

When making documentation changes, you should actually build the documenta-
tion and ensure that no new errors or warnings have been introduced. Generating
HTML documents and looking at the result will help to avoid unsightly misunder-
standings about how things will be rendered.

Key cycle dates

Patches can be sent anytime, but response will be slower than usual during the
merge window. The docs tree tends to close late before the merge window opens,
since the risk of regressions from documentation patches is low.

Review cadence

I am the sole maintainer for the documentation subsystem, and I am doing the
work on my own time, so the response to patches will occasionally be slow. I try
to always send out a notification when a patch is merged (or when I decide that
one cannot be). Do not hesitate to send a ping if you have not heard back within a
week of sending a patch.

4.5. Existing profiles 15

mailto:linux-doc@vger.kernel.org

Linux Maintainer Documentation

4.5.2 LIBNVDIMM Maintainer Entry Profile
Overview

The libnvdimm subsystem manages persistent memory across multiple architec-
tures. The mailing list is tracked by patchwork here: https://patchwork.kernel.
org/project/linux-nvdimm/list/ ---and that instance is configured to give feedback
to submitters on patch acceptance and upstream merge. Patches are merged to ei-
ther the ‘libnvdimm-fixes’or ‘libnvdimm-for-next’branch. Those branches are avail-
able here: https://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm.git/

In general patches can be submitted against the latest -rc; however, if the incoming
code change is dependent on other pending changes then the patch should be
based on the libnvdimm-for-next branch. However, since persistent memory sits
at the intersection of storage and memory there are cases where patches are more
suitable to be merged through a Filesystem or the Memory Management tree.
When in doubt copy the nvdimm list and the maintainers will help route.

Submissions will be exposed to the kbuild robot for compile regression testing. It
helps to get a success notification from that infrastructure before submitting, but
it is not required.

Submit Checklist Addendum

There are unit tests for the subsystem via the ndctl utility: https://github.com/
pmem/ndctl Those tests need to be passed before the patches go upstream, but
not necessarily before initial posting. Contact the list if you need help getting the
test environment set up.

ACPI Device Specific Methods (DSM)

Before patches enabling a new DSM family will be considered, it must be assigned
a format-interface-code from the NVDIMM Sub-team of the ACPI Specification
Working Group. In general, the stance of the subsystem is to push back on the
proliferation of NVDIMM command sets, so do strongly consider implementing
support for an existing command set. See drivers/acpi/nfit/nfit.h for the set of
supported command sets.

Key Cycle Dates

New submissions can be sent at any time, but if they intend to hit the next merge
window they should be sent before -rc4, and ideally stabilized in the libnvdimm-for-
next branch by -rc6. Of course if a patch set requires more than 2 weeks of review,
-rc4 is already too late and some patches may require multiple development cycles
to review.

16 Chapter 4. Maintainer Entry Profile

https://patchwork.kernel.org/project/linux-nvdimm/list/
https://patchwork.kernel.org/project/linux-nvdimm/list/
https://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm.git/
https://github.com/pmem/ndctl
https://github.com/pmem/ndctl

Linux Maintainer Documentation

Review Cadence

In general, please wait up to one week before pinging for feedback. A private mail
reminder is preferred. Alternatively ask for other developers that have Reviewed-
by tags for libnvdimm changes to take a look and offer their opinion.

4.5. Existing profiles 17

