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CHAPTER
ONE

LOCK TYPES AND THEIR RULES

1.1 Introduction

The kernel provides a variety of locking primitives which can be divided into two
categories:

* Sleeping locks
* CPU local locks
* Spinning locks

This document conceptually describes these lock types and provides rules for their
nesting, including the rules for use under PREEMPT RT.

1.2 Lock categories

1.2.1 Sleeping locks

Sleeping locks can only be acquired in preemptible task context.

Although implementations allow try lock() from other contexts, it is necessary to
carefully evaluate the safety of unlock() as well as of try lock(). Furthermore, it
is also necessary to evaluate the debugging versions of these primitives. In short,
don’ t acquire sleeping locks from other contexts unless there is no other option.

Sleeping lock types:
* mutex
* rt mutex
* semaphore
* rw _semaphore
* ww_mutex
* percpu rw_semaphore
On PREEMPT RT kernels, these lock types are converted to sleeping locks:
* local lock

* spinlock t
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* rwlock t

1.2.2 CPU local locks

* local lock

On non-PREEMPT RT kernels, local lock functions are wrappers around preemp-
tion and interrupt disabling primitives. Contrary to other locking mechanisms,
disabling preemption or interrupts are pure CPU local concurrency control mech-
anisms and not suited for inter-CPU concurrency control.

1.2.3 Spinning locks

* raw spinlock t
* bit spinlocks
On non-PREEMPT RT kernels, these lock types are also spinning locks:
* spinlock t
* rwlock t

Spinning locks implicitly disable preemption and the lock / unlock functions can
have suffixes which apply further protections:

_bh() Disable / enable bottom halves (soft interrupts)
_irq() Disable / enable interrupts
_irgsave/restore() | Save and disable / restore interrupt disabled state

1.3 Owner semantics

The aforementioned lock types except semaphores have strict owner semantics:
The context (task) that acquired the lock must release it.

rw_semaphores have a special interface which allows non-owner release for read-
ers.

1.4 rtmutex

RT-mutexes are mutexes with support for priority inheritance (PI).

PI has limitations on non-PREEMPT RT kernels due to preemption and interrupt
disabled sections.

PI clearly cannot preempt preemption-disabled or interrupt-disabled regions of
code, even on PREEMPT RT kernels. Instead, PREEMPT RT kernels execute most
such regions of code in preemptible task context, especially interrupt handlers and
soft interrupts. This conversion allows spinlock t and rwlock t to be implemented
via RT-mutexes.

2 Chapter 1. Lock types and their rules
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1.5 semaphore

semaphore is a counting semaphore implementation.

Semaphores are often used for both serialization and waiting, but new use cases
should instead use separate serialization and wait mechanisms, such as mutexes
and completions.

1.5.1 semaphores and PREEMPT_RT

PREEMPT RT does not change the semaphore implementation because counting
semaphores have no concept of owners, thus preventing PREEMPT RT from pro-
viding priority inheritance for semaphores. After all, an unknown owner cannot
be boosted. As a consequence, blocking on semaphores can result in priority in-
version.

1.6 rw_semaphore

rw_semaphore is a multiple readers and single writer lock mechanism.

On non-PREEMPT RT kernels the implementation is fair, thus preventing writer
starvation.

rw_semaphore complies by default with the strict owner semantics, but there exist
special-purpose interfaces that allow non-owner release for readers. These inter-
faces work independent of the kernel configuration.

1.6.1 rw_semaphore and PREEMPT_RT

PREEMPT RT kernels map rw _semaphore to a separate rt mutex-based imple-
mentation, thus changing the fairness:

Because an rw semaphore writer cannot grant its priority to multiple
readers, a preempted low-priority reader will continue holding its lock,
thus starving even high-priority writers. In contrast, because readers
can grant their priority to a writer, a preempted low-priority writer will
have its priority boosted until it releases the lock, thus preventing that
writer from starving readers.

1.7 local _lock

local lock provides a named scope to critical sections which are protected by dis-
abling preemption or interrupts.

On non-PREEMPT RT kernels local lock operations map to the preemption and
interrupt disabling and enabling primitives:

1.5. semaphore 3
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local lock(&llock) preempt disable()
local unlock(&llock) preempt _enable()
local lock irg(&llock) local irq disable()
local unlock irq(&llock) local irq enable()
local lock save(&llock) local irq save()
local lock restore(&llock) | local irq save()

The named scope of local lock has two advantages over the regular primitives:

* The lock name allows static analysis and is also a clear documentation of the
protection scope while the regular primitives are scopeless and opaque.

» If lockdep is enabled the local lock gains a lockmap which allows to validate
the correctness of the protection. This can detect cases where e.g. a function
using preempt disable() as protection mechanism is invoked from interrupt
or soft-interrupt context. Aside of that lockdep assert held(&llock) works as
with any other locking primitive.

1.7.1 local_lock and PREEMPT_RT

PREEMPT RT kernels map local lock to a per-CPU spinlock t, thus changing se-
mantics:

» All spinlock t changes also apply to local lock.

1.7.2 local_lock usage

local lock should be used in situations where disabling preemption or interrupts
is the appropriate form of concurrency control to protect per-CPU data structures
on a non PREEMPT RT kernel.

local lock is not suitable to protect against preemption or interrupts on a PRE-
EMPT RT kernel due to the PREEMPT RT specific spinlock t semantics.

1.8 raw_spinlock_t and spinlock_t

1.8.1 raw_spinlock_t

raw_spinlock t is a strict spinning lock implementation regardless of the kernel
configuration including PREEMPT RT enabled kernels.

raw _spinlock t is a strict spinning lock implementation in all kernels, including
PREEMPT RT kernels. Use raw spinlock t only in real critical core code, low-
level interrupt handling and places where disabling preemption or interrupts is
required, for example, to safely access hardware state. raw_spinlock t can some-
times also be used when the critical section is tiny, thus avoiding RT-mutex over-
head.

4 Chapter 1. Lock types and their rules
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1.8.2 spinlock_t

The semantics of spinlock t change with the state of PREEMPT RT.

On a non-PREEMPT RT kernel spinlock t is mapped to raw _spinlock t and has
exactly the same semantics.

1.8.3 spinlock_t and PREEMPT_RT

On a PREEMPT RT kernel spinlock t is mapped to a separate implementation
based on rt mutex which changes the semantics:

* Preemption is not disabled.

* The hard interrupt related suffixes for spin lock / spin unlock operations
(_irq, irgsave/ irqrestore) do not affect the CPU’ s interrupt disabled state.

* The soft interrupt related suffix (_bh()) still disables softirq handlers.
Non-PREEMPT RT kernels disable preemption to get this effect.

PREEMPT RT kernels use a per-CPU lock for serialization which keeps pre-
emption disabled. The lock disables softirq handlers and also prevents reen-
trancy due to task preemption.

PREEMPT RT kernels preserve all other spinlock t semantics:

» Tasks holding a spinlock t do not migrate. Non-PREEMPT RT kernels avoid
migration by disabling preemption. PREEMPT RT kernels instead disable mi-
gration, which ensures that pointers to per-CPU variables remain valid even
if the task is preempted.

» Task state is preserved across spinlock acquisition, ensuring that the task-
state rules apply to all kernel configurations. Non-PREEMPT RT kernels
leave task state untouched. However, PREEMPT RT must change task state
if the task blocks during acquisition. Therefore, it saves the current task state
before blocking and the corresponding lock wakeup restores it, as shown be-
low:

task->state = TASK INTERRUPTIBLE
lock()
block()

task->saved state = task->state

task->state = TASK UNINTERRUPTIBLE
schedule()

lock wakeup
task->state = task->saved state

Other types of wakeups would normally unconditionally set the task state
to RUNNING, but that does not work here because the task must remain
blocked until the lock becomes available. Therefore, when a non-lock wakeup
attempts to awaken a task blocked waiting for a spinlock, it instead sets the
saved state to RUNNING. Then, when the lock acquisition completes, the
lock wakeup sets the task state to the saved state, in this case setting it to
RUNNING:

1.8. raw_spinlock_t and spinlock_t 5
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lock()
block()
task->saved state
task->state
schedule()

task->state = TASK INTERRUPTIBLE

task->state
TASK _UNINTERRUPTIBLE

non lock wakeup
task->saved state

TASK_RUNNING

lock wakeup
task->state

task->saved state

This ensures that the real wakeup

1.9 rwlock t

cannot be lost.

rwlock t is a multiple readers and single writer lock mechanism.

Non-PREEMPT RT kernels implement rwlock t as a spinning lock and the suffix
rules of spinlock t apply accordingly. The implementation is fair, thus preventing

writer starvation.

1.9.1 rwlock t and PREEMPT _RT

PREEMPT RT kernels map rwlock tto a separate rt mutex-based implementation,

thus changing semantics:

* All the spinlock t changes also apply to rwlock t.

* Because an rwlock t writer cannot grant its priority to multiple readers, a
preempted low-priority reader will continue holding its lock, thus starving
even high-priority writers. In contrast, because readers can grant their pri-
ority to a writer, a preempted low-priority writer will have its priority boosted
until it releases the lock, thus preventing that writer from starving readers.

1.10 PREEMPT _RT caveats

1.10.1 local_lock on RT

The mapping of local lock to spinlock t on PREEMPT RT kernels has a few impli-
cations. For example, on a non-PREEMPT RT kernel the following code sequence

works as expected:

local lock irqg(&local lock);
raw _spin lock(&lock);

and is fully equivalent to:

raw _spin lock irq(&lock);

Chapter 1. Lock types and their rules
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On a PREEMPT RT kernel this code sequence breaks because local lock irq() is
mapped to a per-CPU spinlock t which neither disables interrupts nor preemption.
The following code sequence works perfectly correct on both PREEMPT RT and
non-PREEMPT RT kernels:

local lock irg(&local lock);
spin_lock(&lock);

Another caveat with local locks is that each local lock has a specific protection
scope. So the following substitution is wrong:

funcl()
{

local irq save(flags); -> local lock irgsave(&local lock 1, flags);
func3();
local irq restore(flags); -> local lock irqrestore(&local lock 1, flags);

}

func2()
{
local irqg save(flags); -> local lock irgsave(&local lock 2, flags);
func3();
local irq restore(flags); -> local lock irqgrestore(&local lock 2, flags);

}

func3()
{

lockdep assert irqs disabled();
access protected data();

}

On a non-PREEMPT RT kernel this works correctly, but on a PREEMPT RT ker-
nel local lock 1 and local lock 2 are distinct and cannot serialize the callers of
func3(). Also the lockdep assert will trigger on a PREEMPT RT kernel because
local lock irgsave() does not disable interrupts due to the PREEMPT RT-specific
semantics of spinlock t. The correct substitution is:

funcl()
{

local irq save(flags); -> local lock irgsave(&local lock, flags);
func3();
local irq restore(flags); -> local lock irqrestore(&local lock, flags);

}

func2()
{

local irqg save(flags); -> local lock irgsave(&local lock, flags);
func3();
local irqg restore(flags); -> local lock irqrestore(&local lock, flags);

}

func3()

{
lockdep assert held(&local lock);

access protected data();

}

1.10. PREEMPT_RT caveats 7
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1.10.2 spinlock_t and rwlock_t

The changes in spinlock t and rwlock t semantics on PREEMPT RT kernels have
a few implications. For example, on a non-PREEMPT RT kernel the following code
sequence works as expected:

local irqg disable();
spin_lock(&lock);

and is fully equivalent to:

spin lock irq(&lock);

Same applies to rwlock t and the irgsave() suffix variants.

On PREEMPT RT kernel this code sequence breaks because RT-mutex requires
a fully preemptible context. Instead, use spin lock irq() or spin lock irgsave()
and their unlock counterparts. In cases where the interrupt disabling and locking
must remain separate, PREEMPT RT offers a local lock mechanism. Acquiring the
local lock pins the task to a CPU, allowing things like per-CPU interrupt disabled
locks to be acquired. However, this approach should be used only where absolutely
necessary.

A typical scenario is protection of per-CPU variables in thread context:

struct foo *p = get cpu ptr(&varl);

spin_lock(&p->lock);
p->count += this cpu read(var2);

This is correct code on a non-PREEMPT RT kernel, but on a PREEMPT RT kernel
this breaks. The PREEMPT RT-specific change of spinlock t semantics does not
allow to acquire p->lock because get cpu ptr() implicitly disables preemption. The
following substitution works on both kernels:

struct foo *p;

migrate disable();

p = this cpu ptr(&varl);
spin_lock(&p->lock);

p->count += this cpu read(var2);

On a non-PREEMPT RT kernel migrate disable() maps to preempt disable()
which makes the above code fully equivalent. On a PREEMPT RT kernel mi-
grate disable() ensures that the task is pinned on the current CPU which in turn
guarantees that the per-CPU access to varl and var2 are staying on the same CPU.

The migrate disable() substitution is not valid for the following scenario:

func()

{

struct foo *p;

migrate disable();
p = this cpu ptr(&varl);
p->val = func2();

8 Chapter 1. Lock types and their rules
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While correct on a non-PREEMPT RT kernel, this breaks on PREEMPT RT be-
cause here migrate disable() does not protect against reentrancy from a preempt-
ing task. A correct substitution for this case is:

func()

{

struct foo *p;

local lock(&foo lock);
p = this cpu ptr(&varl);
p->val = func2();

On a non-PREEMPT RT kernel this protects against reentrancy by disabling pre-
emption. On a PREEMPT RT kernel this is achieved by acquiring the underlying
per-CPU spinlock.

1.10.3 raw_spinlock t on RT

Acquiring a raw spinlock t disables preemption and possibly also interrupts, so
the critical section must avoid acquiring a regular spinlock t or rwlock t, for
example, the critical section must avoid allocating memory. Thus, on a non-
PREEMPT RT kernel the following code works perfectly:

raw _spin lock(&lock);
p = kmalloc(sizeof(*p), GFP_ATOMIC);

But this code fails on PREEMPT RT kernels because the memory allocator is fully
preemptible and therefore cannot be invoked from truly atomic contexts. However,
it is perfectly fine to invoke the memory allocator while holding normal non-raw
spinlocks because they do not disable preemption on PREEMPT RT kernels:

spin_lock(&lock);
p = kmalloc(sizeof(*p), GFP_ATOMIC);

1.10.4 bit spinlocks

PREEMPT RT cannot substitute bit spinlocks because a single bit is too small to
accommodate an RT-mutex. Therefore, the semantics of bit spinlocks are pre-
served on PREEMPT RT kernels, so that the raw_spinlock t caveats also apply to
bit spinlocks.

Some bit spinlocks are replaced with regular spinlock t for PREEMPT RT using
conditional (#ifdef ed) code changes at the usage site. In contrast, usage-site
changes are not needed for the spinlock t substitution. Instead, conditionals in
header files and the core locking implemementation enable the compiler to do the
substitution transparently.

1.10. PREEMPT_RT caveats 9
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1.11 Lock type nesting rules

The most basic rules are:

* Lock types of the same lock category (sleeping, CPU local, spinning) can nest
arbitrarily as long as they respect the general lock ordering rules to prevent
deadlocks.

* Sleeping lock types cannot nest inside CPU local and spinning lock types.
* CPU local and spinning lock types can nest inside sleeping lock types.
* Spinning lock types can nest inside all lock types

These constraints apply both in PREEMPT RT and otherwise.

The fact that PREEMPT RT changes the lock category of spinlock t and rwlock t
from spinning to sleeping and substitutes local lock with a per-CPU spinlock t
means that they cannot be acquired while holding a raw spinlock. This results in
the following nesting ordering:

1) Sleeping locks
2) spinlock t, rwlock t, local lock
3) raw spinlock t and bit spinlocks

Lockdep will complain if these constraints are violated, both in PREEMPT RT and
otherwise.

10 Chapter 1. Lock types and their rules



CHAPTER
TWO

RUNTIME LOCKING CORRECTNESS VALIDATOR

started by Ingo Molnar <mingo@redhat.com>

additions by Arjan van de Ven <arjan@linux.intel.com>

2.1 Lock-class

The basic object the validator operates upon is a ‘class’ of locks.

A class of locks is a group of locks that are logically the same with respect to
locking rules, even if the locks may have multiple (possibly tens of thousands of)
instantiations. For example a lock in the inode struct is one class, while each inode
has its own instantiation of that lock class.

The validator tracks the ‘usage state’ of lock-classes, and it tracks the dependen-
cies between different lock-classes. Lock usage indicates how a lock is used with
regard to its IRQ contexts, while lock dependency can be understood as lock or-
der, where L1 -> L2 suggests that a task is attempting to acquire L2 while holding
L1. From lockdep’ s perspective, the two locks (L1 and L2) are not necessarily
related; that dependency just means the order ever happened. The validator main-
tains a continuing effort to prove lock usages and dependencies are correct or the
validator will shoot a splat if incorrect.

A lock-class’ s behavior is constructed by its instances collectively: when the first
instance of a lock-class is used after bootup the class gets registered, then all
(subsequent) instances will be mapped to the class and hence their usages and
dependecies will contribute to those of the class. A lock-class does not go away
when a lock instance does, but it can be removed if the memory space of the lock
class (static or dynamic) is reclaimed, this happens for example when a module is
unloaded or a workqueue is destroyed.

11
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2.2 State

The validator tracks lock-class usage history and divides the usage into (4 usages
*n STATEs + 1) categories:

where the 4 usages can be: - ‘ever held in STATE context’ - ‘ever held as readlock
in STATE context’ - ‘ever held with STATE enabled’ - ‘ever held as readlock with
STATE enabled’

where the n STATEs are coded in kernel/locking/lockdep states.h and as of now
they include: - hardirq - softirq

where the last 1 category is: - ‘ever used’ [ == !unused ]

When locking rules are violated, these usage bits are presented in the locking error
messages, inside curlies, with a total of 2 * n STATESs bits. A contrived example:

modprobe/2287 is trying to acquire lock:
(&sio locks[i].lock){-.-.3}, at: [<c02867fd>] mutex lock+0x21/0x24

but task is already holding lock:
(&sio locks[i].lock){-.-.}, at: [<c02867fd>] mutex lock+0x21/0x24

For a given lock, the bit positions from left to right indicate the usage of the lock
and readlock (if exists), for each of the n STATESs listed above respectively, and the
character displayed at each bit position indicates:

acquired while irgs disabled and not in irq context
- acquired in irq context

acquired with irqs enabled

‘? | acquired in irq context with irqgs enabled.

The bits are illustrated with an example:

(&sio locks[i].lock){-.-.}, at: [<c02867fd>] mutex lock+0x21/0x24
|11
||| \-> softirqg disabled and not in softirq context
|| \--> acquired in softirq context
| \---> hardirq disabled and not in hardirq context
\----> acquired in hardirq context

For a given STATE, whether the lock is ever acquired in that STATE context and
whether that STATE is enabled yields four possible cases as shown in the table
below. The bit character is able to indicate which exact case is for the lock as of
the reporting time.

irq enabled irq disabled
ever in irq ?

never in irq

12 Chapter 2. Runtime locking correctness validator
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The character °- ‘suggests irq is disabled because if otherwise the charactor ‘?’
would have been shown instead. Similar deduction can be applied for ‘+’ too.

Unused locks (e.g., mutexes) cannot be part of the cause of an error.

2.3 Single-lock state rules:

Alock is irg-safe means it was ever used in an irq context, while a lock is irq-unsafe
means it was ever acquired with irq enabled.

A softirq-unsafe lock-class is automatically hardirg-unsafe as well. The following
states must be exclusive: only one of them is allowed to be set for any lock-class
based on its usage:

<hardirqg-safe> or <hardirq-unsafe>
<softirg-safe> or <softirqg-unsafe>

This is because if a lock can be used in irq context (irg-safe) then it cannot be
ever acquired with irq enabled (irg-unsafe). Otherwise, a deadlock may happen.
For example, in the scenario that after this lock was acquired but before released,
if the context is interrupted this lock will be attempted to acquire twice, which
creates a deadlock, referred to as lock recursion deadlock.

The validator detects and reports lock usage that violates these single-lock state
rules.

2.4 Multi-lock dependency rules:

The same lock-class must not be acquired twice, because this could lead to lock
recursion deadlocks.

Furthermore, two locks can not be taken in inverse order:

<L1l> -> <L2>
<L2> -> <L1>

because this could lead to a deadlock - referred to as lock inversion deadlock - as
attempts to acquire the two locks form a circle which could lead to the two contexts
waiting for each other permanently. The validator will find such dependency circle
in arbitrary complexity, i.e., there can be any other locking sequence between the
acquire-lock operations; the validator will still find whether these locks can be
acquired in a circular fashion.

Furthermore, the following usage based lock dependencies are not allowed be-
tween any two lock-classes:

<hardirg-safe> -> <hardirqg-unsafe>
<softirg-safe> -> <softirqg-unsafe>

The first rule comes from the fact that a hardirg-safe lock could be taken by a
hardirq context, interrupting a hardirq-unsafe lock - and thus could result in a

2.3. Single-lock state rules: 13
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lock inversion deadlock. Likewise, a softirg-safe lock could be taken by an softirq
context, interrupting a softirg-unsafe lock.

The above rules are enforced for any locking sequence that occurs in the kernel:
when acquiring a new lock, the validator checks whether there is any rule violation
between the new lock and any of the held locks.

When a lock-class changes its state, the following aspects of the above dependency
rules are enforced:

» ifa new hardirqg-safe lock is discovered, we check whether it took any hardirg-
unsafe lock in the past.

» if a new softirg-safe lock is discovered, we check whether it took any softirqg-
unsafe lock in the past.

* if a new hardirg-unsafe lock is discovered, we check whether any hardirg-safe
lock took it in the past.

* if a new softirg-unsafe lock is discovered, we check whether any softirqg-safe
lock took it in the past.

(Again, we do these checks too on the basis that an interrupt context could inter-
rupt any of the irg-unsafe or hardirg-unsafe locks, which could lead to a lock
inversion deadlock - even if that lock scenario did not trigger in practice yet.)

2.5 Exception: Nested data dependencies leading to
nested locking

There are a few cases where the Linux kernel acquires more than one instance of
the same lock-class. Such cases typically happen when there is some sort of hier-
archy within objects of the same type. In these cases there is an inherent “natural”
ordering between the two objects (defined by the properties of the hierarchy), and
the kernel grabs the locks in this fixed order on each of the objects.

An example of such an object hierarchy that results in “nested locking” is that of
a “whole disk” block-dev object and a “partition” block-dev object; the partition is
“part of” the whole device and as long as one always takes the whole disk lock as a
higher lock than the partition lock, the lock ordering is fully correct. The validator
does not automatically detect this natural ordering, as the locking rule behind the
ordering is not static.

In order to teach the validator about this correct usage model, new versions of the
various locking primitives were added that allow you to specify a “nesting level”
. An example call, for the block device mutex, looks like this:

enum bdev bd mutex lock class

{
BD MUTEX_ NORMAL,
BD MUTEX WHOLE,
BD MUTEX PARTITION
+;

mutex lock nested(&bdev->bd contains->bd mutex, BD MUTEX PARTITION);

14 Chapter 2. Runtime locking correctness validator
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In this case the locking is done on a bdev object that is known to be a partition.

The validator treats a lock that is taken in such a nested fashion as a separate
(sub)class for the purposes of validation.

Note: When changing code to use the nested() primitives, be careful and check
really thoroughly that the hierarchy is correctly mapped; otherwise you can get
false positives or false negatives.

2.6 Annotations

Two constructs can be used to annotate and check where and if certain locks must
be held: lockdep assert held*(&lock) and lockdep *pin lock(&lock).

As the name suggests, lockdep assert held* family of macros assert that a par-
ticular lock is held at a certain time (and generate a WARN() otherwise). This
annotation is largely used all over the kernel, e.g. kernel/sched/ core.c:

void update rq clock(struct rq *rq)

{
s64 delta;

lockdep assert held(&rg->lock);
[...]
}

where holding rq->lock is required to safely update a rq’ s clock.

The other family of macros is lockdep *pin lock(), which is admittedly only used
for rg->lock ATM. Despite their limited adoption these annotations generate a
WARN() if the lock of interest is “accidentally” unlocked. This turns out to be es-
pecially helpful to debug code with callbacks, where an upper layer assumes a lock
remains taken, but a lower layer thinks it can maybe drop and reacquire the lock (
“unwittingly” introducing races). lockdep pin lock() returns a ‘struct pin cookie’
that is then used by lockdep unpin lock() to check that nobody tampered with the
lock, e.g. kernel/sched/sched.h:

static inline void rq_pin lock(struct rq *rq, struct rq_flags *rf)

{
rf->cookie = lockdep pin lock(&rg->lock);
[...]

}

static inline void rq_unpin_ lock(struct rq *rq, struct rq flags *rf)
{
[...]
lockdep unpin lock(&rqg->lock, rf->cookie);

}

While comments about locking requirements might provide useful information, the
runtime checks performed by annotations are invaluable when debugging locking
problems and they carry the same level of details when inspecting code. Always
prefer annotations when in doubt!

2.6. Annotations 15
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2.7 Proof of 100% correctness:

The validator achieves perfect, mathematical ‘closure’ (proof of locking correct-
ness) in the sense that for every simple, standalone single-task locking sequence
that occurred at least once during the lifetime of the kernel, the validator proves it
with a 100% certainty that no combination and timing of these locking sequences
can cause any class of lock related deadlock.!

I.e. complex multi-CPU and multi-task locking scenarios do not have to occur in
practice to prove a deadlock: only the simple ‘component’ locking chains have
to occur at least once (anytime, in any task/context) for the validator to be able
to prove correctness. (For example, complex deadlocks that would normally need
more than 3 CPUs and a very unlikely constellation of tasks, irq-contexts and tim-
ings to occur, can be detected on a plain, lightly loaded single-CPU system as
well!)

This radically decreases the complexity of locking related QA of the kernel: what
has to be done during QA is to trigger as many “simple” single-task locking de-
pendencies in the kernel as possible, at least once, to prove locking correctness -
instead of having to trigger every possible combination of locking interaction be-
tween CPUs, combined with every possible hardirq and softirq nesting scenario
(which is impossible to do in practice).

2.8 Performance:

The above rules require massive amounts of runtime checking. If we did that
for every lock taken and for every irgs-enable event, it would render the system
practically unusably slow. The complexity of checking is O(N"2), so even with just
a few hundred lock-classes we’ d have to do tens of thousands of checks for every
event.

This problem is solved by checking any given ‘locking scenario’ (unique sequence of
locks taken after each other) only once. A simple stack of held locks is maintained,
and a lightweight 64-bit hash value is calculated, which hash is unique for every
lock chain. The hash value, when the chain is validated for the first time, is then
put into a hash table, which hash-table can be checked in a lockfree manner. If
the locking chain occurs again later on, the hash table tells us that we don’ t have
to validate the chain again.

! assuming that the validator itself is 100% correct, and no other part of the system corrupts the
state of the validator in any way. We also assume that all NMI/SMM paths [which could interrupt
even hardirg-disabled codepaths] are correct and do not interfere with the validator. We also assume
that the 64-bit ‘chain hash’ value is unique for every lock-chain in the system. Also, lock recursion
must not be higher than 20.

16 Chapter 2. Runtime locking correctness validator
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2.9 Troubleshooting:

The validator tracks a maximum of MAX LOCKDEP KEYS number of lock classes.
Exceeding this number will trigger the following lockdep warning:

(DEBUG _LOCKS WARN ON(id >= MAX LOCKDEP KEYS))

By default, MAX LOCKDEP KEYS is currently set to 8191, and typical desktop
systems have less than 1,000 lock classes, so this warning normally results from
lock-class leakage or failure to properly initialize locks. These two problems are
illustrated below:

1. Repeated module loading and unloading while running the validator will re-
sult in lock-class leakage. The issue here is that each load of the module will
create a new set of lock classes for that module’ s locks, but module unload-
ing does not remove old classes (see below discussion of reuse of lock classes
for why). Therefore, if that module is loaded and unloaded repeatedly, the
number of lock classes will eventually reach the maximum.

2. Using structures such as arrays that have large numbers of locks that are
not explicitly initialized. For example, a hash table with 8192 buckets
where each bucket has its own spinlock t will consume 8192 lock classes
-unless- each spinlock is explicitly initialized at runtime, for example, us-
ing the run-time spin lock init() as opposed to compile-time initializers such
as SPIN LOCK UNLOCKED(). Failure to properly initialize the per-bucket
spinlocks would guarantee lock-class overflow. In contrast, a loop that called
spin lock init() on each lock would place all 8192 locks into a single lock class.

The moral of this story is that you should always explicitly initialize your locks.

One might argue that the validator should be modified to allow lock classes to be
reused. However, if you are tempted to make this argument, first review the code
and think through the changes that would be required, keeping in mind that the
lock classes to be removed are likely to be linked into the lock-dependency graph.
This turns out to be harder to do than to say.

Of course, if you do run out of lock classes, the next thing to do is to find the
offending lock classes. First, the following command gives you the number of lock
classes currently in use along with the maximum:

grep "lock-classes" /proc/lockdep stats

This command produces the following output on a modest system:

lock-classes: 748 [max: 8191]

If the number allocated (748 above) increases continually over time, then there
is likely a leak. The following command can be used to identify the leaking lock
classes:

grep "BD" /proc/lockdep

Run the command and save the output, then compare against the output from a
later run of this command to identify the leakers. This same output can also help
you find situations where runtime lock initialization has been omitted.

2.9. Troubleshooting: 17
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CHAPTER
THREE

LOCK STATISTICS

3.1 What

As the name suggests, it provides statistics on locks.

3.2 Why

Because things like lock contention can severely impact performance.

3.3 How

Lockdep already has hooks in the lock functions and maps lock instances to lock
classes. We build on that (see Documentation/locking/lockdep-design.rst). The
graph below shows the relation between the lock functions and the various hooks
therein:

__acquire
|
lock
| \
| __contended
| |
| <wait>
| 7/
|/
|
__acquired
|
<hold>
|
__release
|
unlock
lock, unlock - the regular lock functions
_* - the hooks
<> - states
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With these hooks we provide the following statistics:
con-bounces
* number of lock contention that involved x-cpu data
contentions
* number of lock acquisitions that had to wait
wait time
min
¢ shortest (non-0) time we ever had to wait for a lock
max
* longest time we ever had to wait for a lock
total
* total time we spend waiting on this lock
avg
* average time spent waiting on this lock
acq-bounces
* number of lock acquisitions that involved x-cpu data
acquisitions
* number of times we took the lock
hold time
min
¢ shortest (non-0) time we ever held the lock
max
* longest time we ever held the lock
total
* total time this lock was held
avg
* average time this lock was held
These numbers are gathered per lock class, per read/write state (when applicable).

It also tracks 4 contention points per class. A contention point is a call site that
had to wait on lock acquisition.

20 Chapter 3. Lock Statistics
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3.3.1 Configuration

Lock statistics are enabled via CONFIG LOCK STAT.

3.3.2 Usage

Enable collection of statistics:

# echo 1 >/proc/sys/kernel/lock stat

Disable collection of statistics:

# echo 0 >/proc/sys/kernel/lock stat

Look at the current lock statistics:

( line numbers not part of actual output, done for clarity in the,
—explanation

below )
# less /proc/lock stat

01 lock stat version 0.4

O e R P PP P
03 class name con-bounces contentions
—waittime-min waittime-max waittime-total waittime-avg acq-bounces,,
— acquisitions holdtime-min holdtime-max holdtime-total holdtime-
—avg

O R R T T
05

06 &mm->mmap_sem-W: 46 84
- 0.26 939.10 16371.53 194.90 47291,
- 2922365 0.16 2220301.69 17464026916.32 5975.
99

07 &mm->mmap_sem-R: 37 100
- 1.31 299502.61 325629.52 3256.30 212344
- 34316685 0.10 7744 .91 95016910.20 2.
77

08 e

09 &mm->mmap_sem 1 [
~<ffffffff811502a7>] khugepaged scan mm slot+0x57/0x280

10 &mm->mmap_sem 96 [
o<ffffffff815351c4>]  do page fault+0x1d4/0x510

11 &mm->mmap_sem 34 [
o<ffffffff81113d77>]1 vm mmap pgoff+0x87/0xd0O

12 &mm->mmap_sem 17 [
<ffffffff81127e71>] vm munmap+0x41/0x80

13 e

14 &mm->mmap sem 1 [

~<ffffffff81046fda>] dup mmap+0x2a/0x3f0

(continues on next page)
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(continued from previous page)

15 &mm->mmap_sem 60 [
<ffffffff81129e29>] SyS mprotect+0xe9/0x250

16 &mm->mmap_sem 41 [
~<ffffffff815351c4>]  do page fault+0x1d4/0x510

17 &mm->mmap_sem 68 [
w<ffffffff81113d77>] vm mmap pgoff+0x87/0xd0

18

S
20

21 unix_ table lock: 110 112 |
< 0.21 49.24 163.91 1.46 21094,
- 66312 0.12 624.42 31589.81 0.
48

22 e

23 unix_table lock 45 [
~<ffffffff8150ad8e>] unix createl+0x16e/0x1b0O

24 unix_ table lock 47 [
<ffffffff8150b111>] unix release sock+0x31/0x250

25 unix_ table lock 15 [
o<ffffffff8150ca37>] unix find other+0x117/0x230

26 unix_ table lock 5 [
o<ffffffff8150a09f>] unix autobind+0x11f/0x1b0O

27 e

28 unix table lock 39 [
<ffffffff8150b111>] unix release sock+0x31/0x250

29 unix_ table lock 49 [
~<ffffffff8150ad8e>] unix createl+0x16e/0x1b0O

30 unix table lock 20 [
w<ffffffff8150ca37>] unix find other+0x117/0x230

31 unix_ table lock 4 [

<ffffffff8150a09f>] unix autobind+0x11f/0x1b0O

This excerpt shows the first two lock class statistics. Line 01 shows the output
version - each time the format changes this will be updated. Line 02-04 show the
header with column descriptions. Lines 05-18 and 20-31 show the actual statistics.
These statistics come in two parts; the actual stats separated by a short separator
(line 08, 13) from the contention points.

Lines 09-12 show the first 4 recorded contention points (the code which tries to
get the lock) and lines 14-17 show the first 4 recorded contended points (the lock
holder). It is possible that the max con-bounces point is missing in the statistics.

The first lock (05-18) is a read/write lock, and shows two lines above the short
separator. The contention points don’ t match the column descriptors, they have
two: contentions and [<IP>] symbol. The second set of contention points are the
points we’ re contending with.

The integer part of the time values is in us.

Dealing with nested locks, subclasses may appear:

T (continues,qn next, page)
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33

34 &rg->lock:

i 0.43 190.53 103881.26

= 3453404 0.00 401.11
3 e

36 &rg->lock
<FFFFFFFf8103bFc4>] task rq_lock+0x43/0x75
37 &rq->lock
L<ffffffff8104ba65>] try to wake up+0x127/0x2
38 &rg->lock

o <ffffffff8103c4c5>] select task rq fair+0x1f
39 &rg->lock
<ffffffff81045f98>] scheduler tick+0x46/0x1f
40 e

41 &rg->lock

L <fFFfFfff8103bfcd>] task _rq_lock+0x43/0x75
42 &rg->lock
~<ffffffff8104ba65>] try to wake up+0x127/0x2
43 &rg->lock
~<ffffffff8103ed4b>] double rq_lock+0x42/0x54
a4 &rg->lock

L <ffffffff81340524>] schedule+0x157/0x7b8

45

BB e e
47

48 &rq->lock/1:

o 0.33 388.73 136294.31

- 38404 0.00 37.93
49 e

50 &rg->lock/1
~<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
X1 e

52 &rq->lock/1

L <ffffffff8103ed4b>] double rq_lock+0x42/0x54
53 &rq->lock/1
~<fFFfffff81340524>] schedule+Bx157/0x7b8
54 &rq->lock/1
~<ffffffff8103ed58>] double rq lock+dx4f/0x54
55 &rq->lock/1
~<ffffffff8104ba65>] try to wake up+0x127/0x2

13128
7.91
13224683.11

13128
97454
3.82

(=]

645

297
5a

360
0/0x74a

428
b

77
174

5a
4715

893

1526
11.86
109388.53

11526

5645
1224
4336

181
5a

Line 48 shows statistics for the second subclass (/1) of &rqg->lock class (subclass
starts from 0), since in this case, as line 50 suggests, double rq lock actually ac-

quires a nested lock of two spinlocks.

View the top contending locks:

# grep : /proc/lock stat | head
clockevents lock:
< 0.15 46882.81 1784540466.34
- 3879161 0.00 2260.97
tick broadcast lock:
- 0.18 2257.43 39364622.71
. 4242696 0.00 2263.79

2926159 2947636 ,
605.41 3381345
53178395.68 13.71
346460 346717 .
113.54 3642919
49173646.60 11.59

(continues on next page)
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(continued from previous page)

&mapping->i mmap mutex:

- 3.36 645530.05 31767507988.39
— 8893984 0.17 2254.15
&rg->lock:
- 0.18 606.09 842160.68
-~ 10436146 0.00 728.72
&(&zone->1ru_lock) ->rlock:
o 0.16 59.18 188253.78
— 3809894 0.15 391.40
tasklist lock-W:
< 0.23 1189.42 428980.51
- 510106 0.16 653.51
tasklist lock-R:
< 0.20 1310.05 215511.12
- 241258 0.14 1162.33
rcu _node 1:

- 0.16 635.41 193616.41
-~ 1865423 0.00 764.26
&(&dentry->d lockref.lock)->rlock:

- 0.15 1302.08 88851.96

— 12527025 0.10 1910.75
rcu node 0:

- 0.16 786.55 1555573.00

< 244254 0.00 398.87

203896
155800.21
14110121.02

135014

6.15
17606683.41
93000
1.98
3559518.81
40667
10.43
3939674.91
21298
10.12
1179779.23
47656
3.95
1656226.96
39791
2.21
3379714.27
29203
51.74
428872.51

203899

3361776
1.59

136909

1540728
1.69
94934
1199912
0.93
41130
270278
7.72
21305
186204
4.89
49022
844888
0.89
40179
2790851
0.27
30064
88963
1.76

Clear the statistics:

# echo 0 > /proc/lock stat

24
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CHAPTER
FOUR

KERNEL LOCK TORTURE TEST OPERATION

4.1 CONFIG_LOCK_TORTURE_TEST

The CONFIG LOCK TORTURE TEST config option provides a kernel module that
runs torture tests on core kernel locking primitives. The kernel module, ‘locktor-
ture’ , may be built after the fact on the running kernel to be tested, if desired. The
tests periodically output status messages via printk(), which can be examined via
the dmesg (perhaps grepping for “torture” ). The test is started when the module
is loaded, and stops when the module is unloaded. This program is based on how
RCU is tortured, via rcutorture.

This torture test consists of creating a number of kernel threads which acquire
the lock and hold it for specific amount of time, thus simulating different critical
region behaviors. The amount of contention on the lock can be simulated by either
enlarging this critical region hold time and/or creating more kthreads.

4.2 Module Parameters

This module has the following parameters:

4.2.1 Locktorture-specific
nwriters_stress Number of kernel threads that will stress exclusive lock owner-
ship (writers). The default value is twice the number of online CPUs.

nreaders_stress Number of kernel threads that will stress shared lock ownership
(readers). The default is the same amount of writer locks. If the user did not
specify nwriters stress, then both readers and writers be the amount of online
CPUs.

torture_type Type of lock to torture. By default, only spinlocks will be tortured.
This module can torture the following locks, with string values as follows:

* “lock_busted” : Simulates a buggy lock implementation.

* “spin_lock” : spin lock() and spin unlock() pairs.

« “spin_lock_irq” : spin_lock irq() and spin_unlock irq() pairs.
* “rw_lock” : read/write lock() and unlock() rwlock pairs.

* “rw lock_irq” : read/write lock irq() and unlock irq() rwlock pairs.

25
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e “mutex_lock” : mutex lock() and mutex unlock() pairs.

e “rtmutex_lock” : rtmutex lock() and rtmutex unlock() pairs. Kernel
must have CONFIG RT MUTEX=y.

* “rwsem_lock” : read/write down() and up() semaphore pairs.

4.2.2 Torture-framework (RCU + locking)

shutdown_secs The number of seconds to run the test before terminating the
test and powering off the system. The default is zero, which disables test
termination and system shutdown. This capability is useful for automated
testing.

onoff_interval The number of seconds between each attempt to execute a ran-
domly selected CPU-hotplug operation. Defaults to zero, which disables CPU
hotplugging. In CONFIG_ HOTPLUG CPU=n kernels, locktorture will silently
refuse to do any CPU-hotplug operations regardless of what value is specified
for onoff interval.

onoff holdoff The number of seconds to wait until starting CPU-hotplug opera-
tions. This would normally only be used when locktorture was built into the
kernel and started automatically at boot time, in which case it is useful in
order to avoid confusing boot-time code with CPUs coming and going. This
parameter is only useful if CONFIG HOTPLUG CPU is enabled.

stat_interval Number of seconds between statistics-related printk()s. By default,
locktorture will report stats every 60 seconds. Setting the interval to zero
causes the statistics to be printed -only- when the module is unloaded.

stutter The length of time to run the test before pausing for this same period of
time. Defaults to “stutter=5", so as to run and pause for (roughly) five-second
intervals. Specifying “stutter=0" causes the test to run continuously without
pausing.

shuffle_interval The number of seconds to keep the test threads affinitied to a
particular subset of the CPUs, defaults to 3 seconds. Used in conjunction
with test no idle hz.

verbose Enable verbose debugging printing, via printk(). Enabled by default.
This extra information is mostly related to high-level errors and reports from
the main ‘torture’ framework.

4.3 Statistics

Statistics are printed in the following format:

spin_lock-torture: Writes: Total: 93746064 Max/Min: 0/0 Fail: ©
(A) (B) (C) (D) (E)

(A): Lock type that is being tortured -- torture type parameter.

(B): Number of writer lock acquisitions. If dealing with a read/write

(continues on next page)
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(continued from previous page)

primitive a second "Reads" statistics line is printed.
(C): Number of times the lock was acquired.
(D): Min and max number of times threads failed to acquire the lock.

(E): true/false values if there were errors acquiring the lock. This should
-only- be positive if there is a bug in the locking primitive's
implementation. Otherwise a lock should never fail (i.e., spin_

—lock()).

Of course, the same applies for (C), above. A dummy example of this is
the "lock busted" type.

4.4 Usage

The following script may be used to torture locks:

#!/bin/sh

modprobe locktorture
sleep 3600

rmmod locktorture
dmesg | grep torture:

The output can be manually inspected for the error flag of “!!!” . One could of
course create a more elaborate script that automatically checked for such errors.
The “rmmod” command forces a “SUCCESS”, “FAILURE”, or “RCU HOTPLUG” in-
dication to be printk()ed. The first two are self-explanatory, while the last indicates
that while there were no locking failures, CPU-hotplug problems were detected.

Also see: Documentation/RCU/torture.txt

4.4. Usage 27
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CHAPTER
FIVE

GENERIC MUTEX SUBSYSTEM

started by Ingo Molnar <mingo@redhat.com>

updated by Davidlohr Bueso <davidlohr@hp.com>

5.1 What are mutexes?

In the Linux kernel, mutexes refer to a particular locking primitive that enforces
serialization on shared memory systems, and not only to the generic term referring
to ‘mutual exclusion’ found in academia or similar theoretical text books. Mutexes
are sleeping locks which behave similarly to binary semaphores, and were intro-
duced in 2006[1] as an alternative to these. This new data structure provided a
number of advantages, including simpler interfaces, and at that time smaller code
(see Disadvantages).

[1] http://lwn.net/Articles/164802/

5.2 Implementation

Mutexes are represented by ‘struct mutex’ , defined in include/linux/mutex.h
and implemented in kernel/locking/mutex.c. These locks use an atomic variable
(->owner) to keep track of the lock state during its lifetime. Field owner actu-
ally contains struct task struct * to the current lock owner and it is therefore
NULL if not currently owned. Since task struct pointers are aligned at at least
L1 CACHE BYTES, low bits (3) are used to store extra state (e.g., if waiter list is
non-empty). In its most basic form it also includes a wait-queue and a spinlock
that serializes access to it. Furthermore, CONFIG MUTEX SPIN ON OWNER=y
systems use a spinner MCS lock (->o0s(q), described below in (ii).

When acquiring a mutex, there are three possible paths that can be taken, depend-
ing on the state of the lock:

(i) fastpath: tries to atomically acquire the lock by cmpxchg()ing the owner with
the current task. This only works in the uncontended case (cmpxchg() checks
against OUL, so all 3 state bits above have to be 0). If the lock is contended
it goes to the next possible path.

(ii) midpath: aka optimistic spinning, tries to spin for acquisition while the lock
owner is running and there are no other tasks ready to run that have higher
priority (need resched). The rationale is that if the lock owner is running, it
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is likely to release the lock soon. The mutex spinners are queued up using
MCS lock so that only one spinner can compete for the mutex.

The MCS lock (proposed by Mellor-Crummey and Scott) is a simple spinlock
with the desirable properties of being fair and with each cpu trying to acquire
the lock spinning on a local variable. It avoids expensive cacheline bouncing
that common test-and-set spinlock implementations incur. An MCS-like lock
is specially tailored for optimistic spinning for sleeping lock implementation.
An important feature of the customized MCS lock is that it has the extra prop-
erty that spinners are able to exit the MCS spinlock queue when they need
to reschedule. This further helps avoid situations where MCS spinners that
need to reschedule would continue waiting to spin on mutex owner, only to
go directly to slowpath upon obtaining the MCS lock.

(iii) slowpath: last resort, if the lock is still unable to be acquired, the task is
added to the wait-queue and sleeps until woken up by the unlock path. Under
normal circumstances it blocks as TASK UNINTERRUPTIBLE.

While formally kernel mutexes are sleepable locks, it is path (ii) that makes them
more practically a hybrid type. By simply not interrupting a task and busy-waiting
for a few cycles instead of immediately sleeping, the performance of this lock has
been seen to significantly improve a number of workloads. Note that this technique
is also used for rw-semaphores.

5.3 Semantics

The mutex subsystem checks and enforces the following rules:
* Only one task can hold the mutex at a time.
* Only the owner can unlock the mutex.
* Multiple unlocks are not permitted.
* Recursive locking/unlocking is not permitted.
* A mutex must only be initialized via the API (see below).
* A task may not exit with a mutex held.
* Memory areas where held locks reside must not be freed.
* Held mutexes must not be reinitialized.

* Mutexes may not be used in hardware or software interrupt contexts such as
tasklets and timers.

These semantics are fully enforced when CONFIG DEBUG MUTEXES is enabled.
In addition, the mutex debugging code also implements a number of other features
that make lock debugging easier and faster:

* Uses symbolic names of mutexes, whenever they are printed in debug output.

* Point-of-acquire tracking, symbolic lookup of function names, list of all locks
held in the system, printout of them.

* Owner tracking.
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* Detects self-recursing locks and prints out all relevant info.

* Detects multi-task circular deadlocks and prints out all affected locks and
tasks (and only those tasks).

5.4 Interfaces

Statically define the mutex:

DEFINE_MUTEX(name) ;

Dynamically initialize the mutex:

mutex_init(mutex);

Acquire the mutex, uninterruptible:

void mutex lock(struct mutex *lock);
void mutex lock nested(struct mutex *lock, unsigned int subclass);
int mutex trylock(struct mutex *lock);

Acquire the mutex, interruptible:

int mutex lock interruptible nested(struct mutex *lock,
unsigned int subclass);
int mutex lock interruptible(struct mutex *lock);

Acquire the mutex, interruptible, if dec to O:

int atomic_dec_and mutex lock(atomic_t *cnt, struct mutex *lock);

Unlock the mutex:

void mutex unlock(struct mutex *lock);

Test if the mutex is taken:

int mutex is locked(struct mutex *lock);

5.5 Disadvantages

Unlike its original design and purpose, ‘struct mutex’ is among the largest locks
in the kernel. E.g: on x86-64 it is 32 bytes, where ‘struct semaphore’ is 24 bytes
and rw _semaphore is 40 bytes. Larger structure sizes mean more CPU cache and
memory footprint.
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5.6 When to use mutexes

Unless the strict semantics of mutexes are unsuitable and/or the critical region
prevents the lock from being shared, always prefer them to any other locking prim-

itive.
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SIX

RT-MUTEX IMPLEMENTATION DESIGN

Copyright (c) 2006 Steven Rostedt
Licensed under the GNU Free Documentation License, Version 1.2

This document tries to describe the design of the rtmutex.c implementation.
It doesn’ t describe the reasons why rtmutex.c exists. For that please see
Documentation/locking/rt-mutex.rst. Although this document does explain prob-
lems that happen without this code, but that is in the concept to understand what
the code actually is doing.

The goal of this document is to help others understand the priority inheritance
(PI) algorithm that is used, as well as reasons for the decisions that were made to
implement PI in the manner that was done.

6.1 Unbounded Priority Inversion

Priority inversion is when a lower priority process executes while a higher priority
process wants to run. This happens for several reasons, and most of the time it
can’ t be helped. Anytime a high priority process wants to use a resource that a
lower priority process has (a mutex for example), the high priority process must
wait until the lower priority process is done with the resource. This is a priority
inversion. What we want to prevent is something called unbounded priority inver-
sion. That is when the high priority process is prevented from running by a lower
priority process for an undetermined amount of time.

The classic example of unbounded priority inversion is where you have three pro-
cesses, let’ s call them processes A, B, and C, where A is the highest priority
process, C is the lowest, and B is in between. A tries to grab a lock that C owns
and must wait and lets C run to release the lock. But in the meantime, B executes,
and since B is of a higher priority than C, it preempts C, but by doing so, it is in fact
preempting A which is a higher priority process. Now there’ s no way of knowing
how long A will be sleeping waiting for C to release the lock, because for all we
know, B is a CPU hog and will never give C a chance to release the lock. This is
called unbounded priority inversion.

Here’ s a little ASCII art to show the problem:

grab lock L1 (owned by ()

|
A ---+

(continues on next page)
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(continued from previous page)

C preempted by B
|

C 4---t

B now keeps A from running.

6.2 Priority Inheritance (PIl)

There are several ways to solve this issue, but other ways are out of scope for this
document. Here we only discuss PI.

PI is where a process inherits the priority of another process if the other process
blocks on a lock owned by the current process. To make this easier to understand,
let’ s use the previous example, with processes A, B, and C again.

This time, when A blocks on the lock owned by C, C would inherit the priority of A.
So now if B becomes runnable, it would not preempt C, since C now has the high
priority of A. As soon as C releases the lock, it loses its inherited priority, and A
then can continue with the resource that C had.

6.3 Terminology

Here I explain some terminology that is used in this document to help describe the
design that is used to implement PI.

PI chain

* The PI chain is an ordered series of locks and processes that cause pro-
cesses to inherit priorities from a previous process that is blocked on one
of its locks. This is described in more detail later in this document.

mutex

* In this document, to differentiate from locks that implement PI and spin
locks that are used in the PI code, from now on the PI locks will be called

a mutex.
lock
* In this document from now on, I will use the term lock when referring to
spin locks that are used to protect parts of the PI algorithm. These locks
disable preemption for UP (when CONFIG PREEMPT is enabled) and on
SMP prevents multiple CPUs from entering critical sections simultane-
ously.
spin lock
* Same as lock above.
waiter
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* A waiteris a struct that is stored on the stack of a blocked process. Since
the scope of the waiter is within the code for a process being blocked on
the mutex, it is fine to allocate the waiter on the process’ s stack (local
variable). This structure holds a pointer to the task, as well as the mutex
that the task is blocked on. It also has rbtree node structures to place
the task in the waiters rbtree of a mutex as well as the pi waiters rbtree
of a mutex owner task (described below).

waiter is sometimes used in reference to the task that is waiting on a
mutex. This is the same as waiter->task.

waiters

» A list of processes that are blocked on a mutex.
top waiter

* The highest priority process waiting on a specific mutex.
top pi waiter

* The highest priority process waiting on one of the mutexes that a specific
process owns.

Note: task and process are used interchangeably in this document, mostly to dif-
ferentiate between two processes that are being described together.

6.4 Pl chain

The PI chain is a list of processes and mutexes that may cause priority inheritance
to take place. Multiple chains may converge, but a chain would never diverge,
since a process can’ t be blocked on more than one mutex at a time.

Example:

Process: A, B, C, D, E
Mutexes: L1, L2, L3, L4

A owns: L1
B blocked on L1
B owns L2
C blocked on L2
C owns L3
D blocked on L3
D owns L4
E blocked on L4

The chain would be:

E->L4->D->L3->C->L2->B->L1->A

To show where two chains merge, we could add another process F and another
mutex L5 where B owns L5 and F is blocked on mutex L5.

The chain for F would be:
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F->L5->B->L1->A

Since a process may own more than one mutex, but never be blocked on more than
one, the chains merge.

Here we show both chains:

E->L4->D->L3->C->L2-+
|
+->B->L1->A

|
F->L5-+

For PI to work, the processes at the right end of these chains (or we may also call
it the Top of the chain) must be equal to or higher in priority than the processes
to the left or below in the chain.

Also since a mutex may have more than one process blocked on it, we can have
multiple chains merge at mutexes. If we add another process G that is blocked on
mutex L2:

G->L2->B->L1->A

And once again, to show how this can grow I will show the merging chains again:

E->L4->D->L3->C-+
+->L2-+
| |
G-+ +->B->L1->A

|
F->L5-+

If process G has the highest priority in the chain, then all the tasks up the chain
(A and B in this example), must have their priorities increased to that of G.

6.5 Mutex Waiters Tree

Every mutex keeps track of all the waiters that are blocked on itself. The mutex
has a rbtree to store these waiters by priority. This tree is protected by a spin lock
that is located in the struct of the mutex. This lock is called wait lock.

6.6 Task Pl Tree

To keep track of the PI chains, each process has its own PI rbtree. This is a tree of
all top waiters of the mutexes that are owned by the process. Note that this tree
only holds the top waiters and not all waiters that are blocked on mutexes owned
by the process.

The top of the task’ s PI tree is always the highest priority task that is waiting on
a mutex that is owned by the task. So if the task has inherited a priority, it will
always be the priority of the task that is at the top of this tree.
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This tree is stored in the task structure of a process as a rbtree called pi waiters. It
is protected by a spin lock also in the task structure, called pi lock. This lock may
also be taken in interrupt context, so when locking the pi lock, interrupts must be
disabled.

6.7 Depth of the Pl Chain

The maximum depth of the PI chain is not dynamic, and could actually be defined.
But is very complex to figure it out, since it depends on all the nesting of mutexes.
Let’ s look at the example where we have 3 mutexes, L1, L2, and L3, and four
separate functions funcl, func2, func3 and func4. The following shows a locking
order of L1->L2->L3, but may not actually be directly nested that way:

void funcl(void)

{
mutex lock(L1);
/* do anything */
mutex_unlock(L1);
}
void func2(void)
{
mutex lock(L1);
mutex lock(L2);
/* do something */
mutex_unlock(L2);
mutex_unlock(L1);
}
void func3(void)
{
mutex lock(L2);
mutex lock(L3);
/* do something else */
mutex_unlock(L3);
mutex_unlock(L2);
}
void func4(void)
{
mutex lock(L3);
/* do something again */
mutex_unlock(L3);
¥

Now we add 4 processes that run each of these functions separately. Processes A,
B, C, and D which run functions funcl, func2, func3 and func4 respectively, and
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such that D runs first and A last. With D being preempted in func4 in the “do
something again” area, we have a locking that follows:

D owns L3
C blocked on L3
C owns L2
B blocked on L2
B owns L1
A blocked on L1

And thus we have the chain A->L1->B->L2->C->L3->D.

This gives us a PI depth of 4 (four processes), but looking at any of the functions
individually, it seems as though they only have at most a locking depth of two. So,
although the locking depth is defined at compile time, it still is very difficult to find
the possibilities of that depth.

Now since mutexes can be defined by user-land applications, we don’ t want a DOS
type of application that nests large amounts of mutexes to create a large PI chain,
and have the code holding spin locks while looking at a large amount of data. So
to prevent this, the implementation not only implements a maximum lock depth,
but also only holds at most two different locks at a time, as it walks the PI chain.
More about this below.

6.8 Mutex owner and flags

The mutex structure contains a pointer to the owner of the mutex. If the mutex
is not owned, this owner is set to NULL. Since all architectures have the task
structure on at least a two byte alignment (and if this is not true, the rtmutex.c
code will be broken!), this allows for the least significant bit to be used as a flag.
Bit 0 is used as the “Has Waiters” flag. It s set whenever there are waiters on a
mutex.

See Documentation/locking/rt-mutex.rst for further details.

6.9 cmpxchg Tricks

Some architectures implement an atomic cmpxchg (Compare and Exchange). This
is used (when applicable) to keep the fast path of grabbing and releasing mutexes
short.

cmpxchg is basically the following function performed atomically:

unsigned long cmpxchg(unsigned long *A, unsigned long *B, unsigned long,,

~*C)

{
unsigned long T = *A;
if (*A == *B) {

XA = *C;
}

return T;

(continues on next page)
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(continued from previous page)

}
#define cmpxchg(a,b,c) cmpxchg(&a,&b,&c)

This is really nice to have, since it allows you to only update a variable if the
variable is what you expect it to be. You know if it succeeded if the return value
(the old value of A) is equal to B.

The macro rt mutex cmpxchg is used to try to lock and unlock mutexes. If the
architecture does not support CMPXCHG, then this macro is simply set to fail
every time. But if CMPXCHG is supported, then this will help out extremely to
keep the fast path short.

The use of rt mutex cmpxchg with the flags in the owner field help optimize the
system for architectures that support it. This will also be explained later in this
document.

6.10 Priority adjustments

The implementation of the PI code in rtmutex.c has several places that a process
must adjust its priority. With the help of the pi waiters of a process this is rather
easy to know what needs to be adjusted.

The functions implementing the task adjustments are rt mutex adjust prio and
rt mutex setprio. rt mutex setprio is only used in rt mutex adjust prio.

rt mutex adjust prio examines the priority of the task, and the highest priority
process that is waiting any of mutexes owned by the task. Since the pi waiters of
a task holds an order by priority of all the top waiters of all the mutexes that the
task owns, we simply need to compare the top pi waiter to its own normal/deadline
priority and take the higher one. Then rt mutex setprio is called to adjust the
priority of the task to the new priority. Note that rt mutex setprio is defined in
kernel/sched/core.c to implement the actual change in priority.

Note: For the “prio” field in task struct, the lower the number, the higher the
priority. A “prio” of 5 is of higher priority than a “prio” of 10.

It is interesting to note that rt mutex adjust prio can either increase or decrease
the priority of the task. In the case that a higher priority process has just blocked
on a mutex owned by the task, rt mutex adjust prio would increase/boost the task’
s priority. But if a higher priority task were for some reason to leave the mutex
(timeout or signal), this same function would decrease/unboost the priority of the
task. That is because the pi waiters always contains the highest priority task that
is waiting on a mutex owned by the task, so we only need to compare the priority
of that top pi waiter to the normal priority of the given task.
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6.11 High level overview of the Pl chain walk

The PI chain walk is implemented by the function rt mutex adjust prio chain.

The implementation has gone through several iterations, and has ended up with
what we believe is the best. It walks the PI chain by only grabbing at most two
locks at a time, and is very efficient.

The rt mutex adjust prio chain can be used either to boost or lower process pri-
orities.

rt mutex adjust prio chain is called with a task to be checked for PI (de)boosting
(the owner of a mutex that a process is blocking on), a flag to check for deadlock-
ing, the mutex that the task owns, a pointer to a waiter that is the process’ s waiter
struct that is blocked on the mutex (although this parameter may be NULL for de-
boosting), a pointer to the mutex on which the task is blocked, and a top task as
the top waiter of the mutex.

For this explanation, I will not mention deadlock detection. This explanation will
try to stay at a high level.

When this function is called, there are no locks held. That also means that the
state of the owner and lock can change when entered into this function.

Before this function is called, the task has already had rt mutex adjust prio per-
formed on it. This means that the task is set to the priority that it should be at,
but the rbtree nodes of the task’ s waiter have not been updated with the new
priorities, and this task may not be in the proper locations in the pi waiters and
waiters trees that the task is blocked on. This function solves all that.

The main operation of this function is summarized by Thomas Gleixner in rtmu-
tex.c. See the ‘Chain walk basics and protection scope’ comment for further
details.

6.12 Taking of a mutex (The walk through)

OK, now let’ s take a look at the detailed walk through of what happens when
taking a mutex.

The first thing that is tried is the fast taking of the mutex. This is done when we
have CMPXCHG enabled (otherwise the fast taking automatically fails). Only when
the owner field of the mutex is NULL can the lock be taken with the CMPXCHG
and nothing else needs to be done.

If there is contention on the lock, we go about the slow path (rt mutex slowlock).

The slow path function is where the task’ s waiter structure is created on the stack.
This is because the waiter structure is only needed for the scope of this function.
The waiter structure holds the nodes to store the task on the waiters tree of the
mutex, and if need be, the pi waiters tree of the owner.

The wait lock of the mutex is taken since the slow path of unlocking the mutex
also takes this lock.
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We then call try to take rt mutex. This is where the architecture that does not
implement CMPXCHG would always grab the lock (if there’ s no contention).

try to take rt mutex is used every time the task tries to grab a mutex in the slow
path. The first thing that is done here is an atomic setting of the “Has Waiters”
flag of the mutex’ s owner field. By setting this flag now, the current owner of
the mutex being contended for can’ t release the mutex without going into the
slow unlock path, and it would then need to grab the wait lock, which this code
currently holds. So setting the “Has Waiters” flag forces the current owner to
synchronize with this code.

The lock is taken if the following are true:
1) The lock has no owner
2) The current task is the highest priority against all other waiters of the lock

If the task succeeds to acquire the lock, then the task is set as the owner of the
lock, and if the lock still has waiters, the top waiter (highest priority task waiting
on the lock) is added to this task’ s pi waiters tree.

If the lock is not taken by try to take rt mutex(), then the
task blocks on rt mutex() function is called. This will add the task to the
lock’ s waiter tree and propagate the pi chain of the lock as well as the lock’ s
owner s pi waiters tree. This is described in the next section.

6.13 Task blocks on mutex

The accounting of a mutex and process is done with the waiter structure of the
process. The “task” field is set to the process, and the “lock” field to the mutex.
The rbtree node of waiter are initialized to the processes current priority.

Since the wait lock was taken at the entry of the slow lock, we can safely add the
waiter to the task waiter tree. If the current process is the highest priority process
currently waiting on this mutex, then we remove the previous top waiter process
(if it exists) from the pi waiters of the owner, and add the current process to that
tree. Since the pi waiter of the owner has changed, we call rt mutex adjust prio
on the owner to see if the owner should adjust its priority accordingly.

If the owner is also blocked on a lock, and had its pi waiters changed (or dead-
lock checking is on), we unlock the wait lock of the mutex and go ahead and run
rt mutex adjust prio chain on the owner, as described earlier.

Now all locks are released, and if the current process is still blocked on a mutex
(waiter “task” field is not NULL), then we go to sleep (call schedule).
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6.14 Waking up in the loop

The task can then wake up for a couple of reasons:
1) The previous lock owner released the lock, and the task now is top waiter
2) we received a signal or timeout

In both cases, the task will try again to acquire the lock. If it does, then it will take
itself off the waiters tree and set itself back to the TASK RUNNING state.

In first case, if the lock was acquired by another task before this task could get
the lock, then it will go back to sleep and wait to be woken again.

The second case is only applicable for tasks that are grabbing a mutex that
can wake up before getting the lock, either due to a signal or a timeout (i.e.
rt mutex timed futex lock()). When woken, it will try to take the lock again, if
it succeeds, then the task will return with the lock held, otherwise it will return
with -EINTR if the task was woken by a signal, or -ETIMEDOUT if it timed out.

6.15 Unlocking the Mutex

The unlocking of a mutex also has a fast path for those architectures with CMPX-
CHG. Since the taking of a mutex on contention always sets the “Has Waiters” flag
of the mutex’ s owner, we use this to know if we need to take the slow path when
unlocking the mutex. If the mutex doesn’ t have any waiters, the owner field of
the mutex would equal the current process and the mutex can be unlocked by just
replacing the owner field with NULL.

If the owner field has the “Has Waiters” bit set (or CMPXCHG is not available),
the slow unlock path is taken.

The first thing done in the slow unlock path is to take the wait lock of the mutex.
This synchronizes the locking and unlocking of the mutex.

A check is made to see if the mutex has waiters or not. On architectures that do
not have CMPXCHG, this is the location that the owner of the mutex will determine
if a waiter needs to be awoken or not. On architectures that do have CMPXCHG,
that check is done in the fast path, but it is still needed in the slow path too. If a
waiter of a mutex woke up because of a signal or timeout between the time the
owner failed the fast path CMPXCHG check and the grabbing of the wait lock, the
mutex may not have any waiters, thus the owner still needs to make this check. If
there are no waiters then the mutex owner field is set to NULL, the wait lock is
released and nothing more is needed.

If there are waiters, then we need to wake one up.

On the wake up code, the pi lock of the current owner is taken. The top waiter of
the lock is found and removed from the waiters tree of the mutex as well as the
pi_waiters tree of the current owner. The “Has Waiters” bit is marked to prevent
lower priority tasks from stealing the lock.

Finally we unlock the pi lock of the pending owner and wake it up.
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6.16 Contact

For updates on this document, please email Steven Rostedt
<rostedt@goodmis.org>
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CHAPTER
SEVEN

RT-MUTEX SUBSYSTEM WITH Pl SUPPORT

RT-mutexes with priority inheritance are used to support PI-futexes, which enable
pthread mutex t priority inheritance attributes (PTHREAD PRIO INHERIT). [See
Documentation/locking/pi-futex.rst for more details about PI-futexes.]

This technology was developed in the -rt tree and streamlined for pthread mutex
support.

7.1 Basic principles:

RT-mutexes extend the semantics of simple mutexes by the priority inheritance
protocol.

A low priority owner of a rt-mutex inherits the priority of a higher priority waiter
until the rt-mutex is released. If the temporarily boosted owner blocks on a rt-
mutex itself it propagates the priority boosting to the owner of the other rt mutex
it gets blocked on. The priority boosting is immediately removed once the rt mutex
has been unlocked.

This approach allows us to shorten the block of high-prio tasks on mutexes which
protect shared resources. Priority inheritance is not a magic bullet for poorly
designed applications, but it allows well-designed applications to use userspace
locks in critical parts of an high priority thread, without losing determinism.

The enqueueing of the waiters into the rtmutex waiter tree is done in priority order.
For same priorities FIFO order is chosen. For each rtmutex, only the top priority
waiter is enqueued into the owner’ s priority waiters tree. This tree too queues in
priority order. Whenever the top priority waiter of a task changes (for example it
timed out or got a signal), the priority of the owner task is readjusted. The priority
enqueueing is handled by “pi waiters” .

RT-mutexes are optimized for fastpath operations and have no internal locking
overhead when locking an uncontended mutex or unlocking a mutex without wait-
ers. The optimized fastpath operations require cmpxchg support. [If that is not
available then the rt-mutex internal spinlock is used]

The state of the rt-mutex is tracked via the owner field of the rt-mutex structure:

lock->owner holds the task struct pointer of the owner. Bit 0 is used to keep track
of the “lock has waiters” state:
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owner bit0| Notes

NULL 0 lock is free (fast acquire possible)

NULL 1 lock is free and has waiters and the top waiter is going
to take the lock!

task- 0 lock is held (fast release possible)

pointer

task- 1 lock is held and has waiters?

pointer

The fast atomic compare exchange based acquire and release is only possible when
bit 0 of lock->owner is 0.

BTW, there is still technically a “Pending Owner”, it’ s just not called that anymore.
The pending owner happens to be the top waiter of a lock that has no owner and
has been woken up to grab the lock.

! It also can be a transitional state when grabbing the lock with ->wait lock is held. To prevent
any fast path cmpxchg to the lock, we need to set the bit0 before looking at the lock, and the owner
may be NULL in this small time, hence this can be a transitional state.

2 There is a small time when bit 0 is set but there are no waiters. This can happen when grabbing
the lock in the slow path. To prevent a cmpxchg of the owner releasing the lock, we need to set this
bit before looking at the lock.
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CHAPTER
EIGHT

LOCKING LESSONS

8.1 Lesson 1: Spin locks

The most basic primitive for locking is spinlock:

static DEFINE SPINLOCK(xxx_ lock);
unsigned long flags;
spin lock irgsave(&xxx lock, flags);

. critical section here ..
spin_unlock irqrestore(&xxx_lock, flags);

The above is always safe. It will disable interrupts locally , but the spinlock itself
will guarantee the global lock, so it will guarantee that there is only one thread-of-
control within the region(s) protected by that lock. This works well even under UP
also, so the code does not need to worry about UP vs SMP issues: the spinlocks
work correctly under both.

NOTE! Implications of spin locks for memory are further described in:
Documentation/memory-barriers.txt
(5) ACQUIRE operations.
(6) RELEASE operations.

The above is usually pretty simple (you usually need and want only one spinlock
for most things - using more than one spinlock can make things a lot more complex
and even slower and is usually worth it only for sequences that you know need to
be split up: avoid it at all cost if you aren’ t sure).

This is really the only really hard part about spinlocks: once you start using spin-
locks they tend to expand to areas you might not have noticed before, because
you have to make sure the spinlocks correctly protect the shared data structures
everywhere they are used. The spinlocks are most easily added to places that are
completely independent of other code (for example, internal driver data structures
that nobody else ever touches).

NOTE! The spin-lock is safe only when you also use the lock itself to do
locking across CPU’ s, which implies that EVERYTHING that touches a
shared variable has to agree about the spinlock they want to use.
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8.2 Lesson 2: reader-writer spinlocks.

If your data accesses have a very natural pattern where you usually tend to mostly
read from the shared variables, the reader-writer locks (rw_lock) versions of the
spinlocks are sometimes useful. They allow multiple readers to be in the same
critical region at once, but if somebody wants to change the variables it has to get
an exclusive write lock.

NOTE! reader-writer locks require more atomic memory operations than
simple spinlocks. Unless the reader critical section is long, you are bet-
ter off just using spinlocks.

The routines look the same as above:

rwlock t xxx_lock = RW LOCK UNLOCKED (xxx_lock);
unsigned long flags;

read lock irgsave(&xxx lock, flags);
. critical section that only reads the info ...
read unlock irqrestore(&xxx lock, flags);

write lock irgsave(&xxx_lock, flags);
read and write exclusive access to the info ...
write unlock irqrestore(&xxx lock, flags);

The above kind of lock may be useful for complex data structures like linked lists,
especially searching for entries without changing the list itself. The read lock
allows many concurrent readers. Anything that changes the list will have to get
the write lock.

NOTE! RCU is better for list traversal, but requires careful attention to
design detail (see Documentation/RCU/listRCU.rst).

Also, you cannot “upgrade” a read-lock to a write-lock, so if you at any time
need to do any changes (even if you don’ t do it every time), you have to get the
write-lock at the very beginning.

NOTE! We are working hard to remove reader-writer spinlocks in most
cases, so please don’ t add a new one without consensus. (Instead, see
Documentation/RCU/rcu.rst for complete information.)

8.3 Lesson 3: spinlocks revisited.

The single spin-lock primitives above are by no means the only ones. They are
the most safe ones, and the ones that work under all circumstances, but partly
because they are safe they are also fairly slow. They are slower than they’ d need
to be, because they do have to disable interrupts (which is just a single instruction
on a x86, but it s an expensive one - and on other architectures it can be worse).

If you have a case where you have to protect a data structure across several CPU’
s and you want to use spinlocks you can potentially use cheaper versions of the
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spinlocks. IFF you know that the spinlocks are never used in interrupt handlers,
you can use the non-irq versions:

spin_lock(&lock);

spin_unlock(&lock);

(and the equivalent read-write versions too, of course). The spinlock will guaran-
tee the same kind of exclusive access, and it will be much faster. This is useful
if you know that the data in question is only ever manipulated from a “process
context” , ie no interrupts involved.

The reasons you mustn’ t use these versions if you have interrupts that play with
the spinlock is that you can get deadlocks:

spin lock(&lock);

<- interrupt comes in:
spin_lock(&lock);

where an interrupt tries to lock an already locked variable. This is ok if the other
interrupt happens on another CPU, but it is not ok if the interrupt happens on
the same CPU that already holds the lock, because the lock will obviously never
be released (because the interrupt is waiting for the lock, and the lock-holder is
interrupted by the interrupt and will not continue until the interrupt has been
processed).

(This is also the reason why the irg-versions of the spinlocks only need to disable
the local interrupts - it’ s ok to use spinlocks in interrupts on other CPU’ s,
because an interrupt on another CPU doesn’ t interrupt the CPU that holds the
lock, so the lock-holder can continue and eventually releases the lock).

Linus

8.4 Reference information:

For dynamic initialization, use spin_lock init() or rwlock init() as appropriate:

spinlock t xxx_lock;
rwlock t xxx_rw lock;

static int init xxx init(void)
{
spin_ lock init(&xxx_lock);
rwlock init(&xxx_rw_lock);

}

module init(xxx init);

For static initialization, use DEFINE SPINLOCK() / DEFINE RWLOCK() or
__SPIN LOCK UNLOCKED() /  RW LOCK UNLOCKED() as appropriate.
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CHAPTER
NINE

WOUND/WAIT DEADLOCK-PROOF MUTEX DESIGN

Please read mutex-design.txt first, as it applies to wait/wound mutexes too.

9.1 Motivation for WW-Mutexes

GPU’ s do operations that commonly involve many buffers. Those buffers can be
shared across contexts/processes, exist in different memory domains (for example
VRAM vs system memory), and so on. And with PRIME / dmabuf, they can even be
shared across devices. So there are a handful of situations where the driver needs
to wait for buffers to become ready. If you think about this in terms of waiting on
a buffer mutex for it to become available, this presents a problem because there
is no way to guarantee that buffers appear in a execbuf/batch in the same order
in all contexts. That is directly under control of userspace, and a result of the
sequence of GL calls that an application makes. Which results in the potential for
deadlock. The problem gets more complex when you consider that the kernel may
need to migrate the buffer(s) into VRAM before the GPU operates on the buffer(s),
which may in turn require evicting some other buffers (and you don’ t want to
evict other buffers which are already queued up to the GPU), but for a simplified
understanding of the problem you can ignore this.

The algorithm that the TTM graphics subsystem came up with for dealing with
this problem is quite simple. For each group of buffers (execbuf) that need to be
locked, the caller would be assigned a unique reservation id/ticket, from a global
counter. In case of deadlock while locking all the buffers associated with a exechuf,
the one with the lowest reservation ticket (i.e. the oldest task) wins, and the one
with the higher reservation id (i.e. the younger task) unlocks all of the buffers that
it has already locked, and then tries again.

In the RDBMS literature, a reservation ticket is associated with a transaction.
and the deadlock handling approach is called Wait-Die. The name is based on
the actions of a locking thread when it encounters an already locked mutex. If
the transaction holding the lock is younger, the locking transaction waits. If the
transaction holding the lock is older, the locking transaction backs off and dies.
Hence Wait-Die. There is also another algorithm called Wound-Wait: If the trans-
action holding the lock is younger, the locking transaction wounds the transaction
holding the lock, requesting it to die. If the transaction holding the lock is older,
it waits for the other transaction. Hence Wound-Wait. The two algorithms are
both fair in that a transaction will eventually succeed. However, the Wound-Wait
algorithm is typically stated to generate fewer backoffs compared to Wait-Die, but
is, on the other hand, associated with more work than Wait-Die when recovering
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from a backoff. Wound-Wait is also a preemptive algorithm in that transactions are
wounded by other transactions, and that requires a reliable way to pick up up the
wounded condition and preempt the running transaction. Note that this is not the
same as process preemption. A Wound-Wait transaction is considered preempted
when it dies (returning -EDEADLK) following a wound.

9.2 Concepts

Compared to normal mutexes two additional concepts/objects show up in the lock
interface for w/w mutexes:

Acquire context: To ensure eventual forward progress it is important the a task
trying to acquire locks doesn’ t grab a new reservation id, but keeps the one it
acquired when starting the lock acquisition. This ticket is stored in the acquire
context. Furthermore the acquire context keeps track of debugging state to catch
w/w mutex interface abuse. An acquire context is representing a transaction.

W/w class: In contrast to normal mutexes the lock class needs to be explicit for
w/w mutexes, since it is required to initialize the acquire context. The lock class
also specifies what algorithm to use, Wound-Wait or Wait-Die.

Furthermore there are three different class of w/w lock acquire functions:
* Normal lock acquisition with a context, using ww_mutex lock.

* Slowpath lock acquisition on the contending lock, used by the task that just
killed its transaction after having dropped all already acquired locks. These
functions have the slow postfix.

From a simple semantics point-of-view the slow functions are not strictly
required, since simply calling the normal ww mutex lock functions on the
contending lock (after having dropped all other already acquired locks) will
work correctly. After all if no other ww mutex has been acquired yet there’
s no deadlock potential and hence the ww_mutex lock call will block and not
prematurely return -EDEADLK. The advantage of the slow functions is in
interface safety:

- ww mutex lock has a  must check int return type, whereas
ww mutex lock slow has a void return type. Note that since ww
mutex code needs loops/retries anyway the must check doesn’ t result
in spurious warnings, even though the very first lock operation can
never fail.

- When full debugging is enabled ww _mutex lock slow checks that all ac-
quired ww mutex have been released (preventing deadlocks) and makes
sure that we block on the contending lock (preventing spinning through
the -EDEADLK slowpath until the contended lock can be acquired).

* Functions to only acquire a single w/w mutex, which results in the exact same
semantics as a normal mutex. This is done by calling ww mutex lock with a
NULL context.

Again this is not strictly required. But often you only want to acquire a single
lock in which case it’ s pointless to set up an acquire context (and so better
to avoid grabbing a deadlock avoidance ticket).
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Of course, all the usual variants for handling wake-ups due to signals are also
provided.

9.3 Usage

The algorithm (Wait-Die vs Wound-Wait) is chosen by using either DE-
FINE WW_CLASS() (Wound-Wait) or DEFINE WD CLASS() (Wait-Die) As a rough
rule of thumb, use Wound-Wait iff you expect the number of simultaneous com-
peting transactions to be typically small, and you want to reduce the number of
rollbacks.

Three different ways to acquire locks within the same w/w class. Common defini-
tions for methods #1 and #2:

static DEFINE WW CLASS(ww class);

struct obj {
struct ww mutex lock;
/* obj data */

}

struct obj entry {
struct list head head;
struct obj *obj;

b

Method 1, using a list in execbuf->buffers that’ s not allowed to be reordered. This
is useful if a list of required objects is already tracked somewhere. Furthermore
the lock helper can use propagate the -EALREADY return code back to the caller
as a signal that an object is twice on the list. This is useful if the list is constructed
from userspace input and the ABI requires userspace to not have duplicate entries
(e.g. for a gpu commandbuffer submission ioctl):

int lock objs(struct list head *list, struct ww acquire ctx *ctx)
{
struct obj *res obj = NULL;
struct obj entry *contended entry = NULL;
struct obj entry *entry;

ww_acquire init(ctx, &ww class);

retry:
list for each entry (entry, list, head) {
if (entry->obj == res obj) {
res obj = NULL;
continue;
}
ret = ww mutex lock(&entry->obj->lock, ctx);
if (ret < 0) {
contended entry = entry;
goto err;

(continues on next page)
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(continued from previous page)

ww_acquire_done(ctx);

return 0;
err:
list for each entry continue reverse (entry, list, head)
ww_mutex unlock(&entry->obj->lock);
if (res_obj)
ww_mutex unlock(&res obj->lock);
if (ret == -EDEADLK) {
/* we lost out in a seqno race, lock and retry.. */
ww_mutex lock slow(&contended entry->obj->lock, ctx);
res obj = contended entry->obj;
goto retry;
}
ww_acquire fini(ctx);
return ret;
}

Method 2, using a list in execbuf->buffers that can be reordered. Same semantics
of duplicate entry detection using -EALREADY as method 1 above. But the list-
reordering allows for a bit more idiomatic code:

int lock objs(struct list head *list, struct ww acquire ctx *ctx)

{

struct obj entry *entry, *entry2;
ww acquire init(ctx, &ww class);
list for _each _entry (entry, list, head) {
ret = ww mutex lock(&entry->obj->lock, ctx);
if (ret < 0) {
entry2 = entry;

list for each entry continue reverse (entry2, list,,

—head)
ww_mutex unlock(&entry2->obj->lock);
if (ret != -EDEADLK) {
ww_acquire fini(ctx);
return ret;
}

/* we lost out in a seqno race, lock and retry.. */
ww _mutex lock slow(&entry->obj->lock, ctx);

/*
* Move buf to head of the list, this will point
* buf->next to the first unlocked entry,
* restarting the for loop.
*/
list del(&entry->head);
list add(&entry->head, list);

(continues on next page)
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(continued from previous page)

}

ww_acquire_done(ctx);
return 0;

}

Unlocking works the same way for both methods #1 and #2:

void unlock objs(struct list head *list, struct ww acquire ctx *ctx)

{

struct obj entry *entry;

list for _each _entry (entry, list, head)
ww_mutex unlock(&entry->obj->lock);

ww_acquire fini(ctx);

}

Method 3 is useful if the list of objects is constructed ad-hoc and not upfront, e.g.
when adjusting edges in a graph where each node has its own ww mutex lock,
and edges can only be changed when holding the locks of all involved nodes. w/w
mutexes are a natural fit for such a case for two reasons:

* They can handle lock-acquisition in any order which allows us to start walking
a graph from a starting point and then iteratively discovering new edges and
locking down the nodes those edges connect to.

* Due to the -EALREADY return code signalling that a given objects is already
held there’ s no need for additional book-keeping to break cycles in the graph
or keep track off which looks are already held (when using more than one
node as a starting point).

Note that this approach differs in two important ways from the above methods:

* Since the list of objects is dynamically constructed (and might very well be
different when retrying due to hitting the -EDEADLK die condition) there’ s
no need to keep any object on a persistent list when it’ s not locked. We can
therefore move the list head into the object itself.

* On the other hand the dynamic object list construction also means that the
-EALREADY return code can’ t be propagated.

Note also that methods #1 and #2 and method #3 can be combined, e.g. to first
lock a list of starting nodes (passed in from userspace) using one of the above
methods. And then lock any additional objects affected by the operations using
method #3 below. The backoff/retry procedure will be a bit more involved, since
when the dynamic locking step hits -EDEADLK we also need to unlock all the ob-
jects acquired with the fixed list. But the w/w mutex debug checks will catch any
interface misuse for these cases.

Also, method 3 can’ t fail the lock acquisition step since it doesn’ t return -
EALREADY. Of course this would be different when using the interruptible vari-
ants, but that’ s outside of the scope of these examples here:
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struct obj {
struct ww mutex ww_mutex;
struct list head locked list;
}

static DEFINE WW CLASS(ww class);

void  unlock objs(struct list head *list)

{

struct obj *entry, *temp;

list for each entry safe (entry, temp, list, locked list) {
/* need to do that before unlocking, since only the current
—lock holder is
allowed to use object */
list del(&entry->locked list);
ww_mutex unlock(entry->ww mutex)

}
void lock objs(struct list head *list, struct ww acquire ctx *ctx)
{

struct obj *obj;

ww_acquire init(ctx, &ww class);

retry:
/* re-init loop start state */
loop {
/* magic code which walks over a graph and decides which,
—objects
* to lock */
ret = ww mutex lock(obj->ww mutex, ctx);
if (ret == -EALREADY) {
/* we have that one already, get to the next object,
X/
continue;
}
if (ret == -EDEADLK) {
__unlock objs(list);
ww mutex lock slow(obj, ctx);
list add(&entry->locked list, list);
goto retry;
}
/* locked a new object, add it to the list */
list add tail(&entry->locked list, list);
}
ww_acquire done(ctx);
return 0;
}

void unlock objs(struct list head *list, struct ww acquire ctx *ctx)

(continues on next page)
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(continued from previous page)

}

__unlock objs(list);
ww_acquire fini(ctx);

Method 4: Only lock one single objects. In that case deadlock detection and pre-
vention is obviously overkill, since with grabbing just one lock you can’ t produce
a deadlock within just one class. To simplify this case the w/w mutex api can be
used with a NULL context.

9.4 Implementation Details

9.4.

1 Design:

ww_mutex currently encapsulates a struct mutex, this means no extra
overhead for normal mutex locks, which are far more common. As such
there is only a small increase in code size if wait/wound mutexes are not
used.

We maintain the following invariants for the wait list:

(1) Waiters with an acquire context are sorted by stamp order; waiters
without an acquire context are interspersed in FIFO order.

(2) For Wait-Die, among waiters with contexts, only the first one can
have other locks acquired already (ctx->acquired > 0). Note that
this waiter may come after other waiters without contexts in the
list.

The Wound-Wait preemption is implemented with a lazy-preemption
scheme: The wounded status of the transaction is checked only when
there is contention for a new lock and hence a true chance of deadlock.
In that situation, if the transaction is wounded, it backs off, clears the
wounded status and retries. A great benefit of implementing preemption
in this way is that the wounded transaction can identify a contending
lock to wait for before restarting the transaction. Just blindly restarting
the transaction would likely make the transaction end up in a situation
where it would have to back off again.

In general, not much contention is expected. The locks are typically
used to serialize access to resources for devices, and optimization focus
should therefore be directed towards the uncontended cases.

9.4.

Implementation Details
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9.4.2 Lockdep:

Special care has been taken to warn for as many cases of api
abuse as possible. Some common api abuses will be caught with
CONFIG DEBUG MUTEXES, but CONFIG PROVE LOCKING is recom-
mended.

Some of the errors which will be warned about:
» Forgetting to call ww_acquire fini or ww_acquire_init.
* Attempting to lock more mutexes after ww_acquire done.

* Attempting to lock the wrong mutex after -EDEADLK and un-
locking all mutexes.

* Attempting to lock the right mutex after -EDEADLK, before un-
locking all mutexes.

* Calling ww mutex lock slow before -EDEADLK was returned.
* Unlocking mutexes with the wrong unlock function.
* Calling one of the ww_acquire * twice on the same context.

* Using a different ww class for the mutex than for the
WW_acquire ctx.

* Normal lockdep errors that can result in deadlocks.
Some of the lockdep errors that can result in deadlocks:

* Calling ww_acquire init to initialize a second ww_acquire ctx
before having called ww_acquire fini on the first.

» ‘normal’ deadlocks that can occur.

FIXME: Update this section once we have the TASK DEADLOCK task state flag
magic implemented.
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TEN

PROPER LOCKING UNDER A PREEMPTIBLE KERNEL:
KEEPING KERNEL CODE PREEMPT-SAFE

Author Robert Love <rml@tech9.net>

10.1 Introduction

A preemptible kernel creates new locking issues. The issues are the same as those
under SMP: concurrency and reentrancy. Thankfully, the Linux preemptible ker-
nel model leverages existing SMP locking mechanisms. Thus, the kernel requires
explicit additional locking for very few additional situations.

This document is for all kernel hackers. Developing code in the kernel requires
protecting these situations.

10.1.1 RULE #1: Per-CPU data structures need explicit protection

Two similar problems arise. An example code snippet:

struct this needs locking tux[NR CPUS];
tux[smp processor id()] = some value;
/* task is preempted here... */
something = tux[smp processor id()];

First, since the data is per-CPU, it may not have explicit SMP locking, but require
it otherwise. Second, when a preempted task is finally rescheduled, the previous
value of smp processor id may not equal the current. You must protect these
situations by disabling preemption around them.

You can also use put cpu() and get cpu(), which will disable preemption.
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10.1.2 RULE #2: CPU state must be protected.

Under preemption, the state of the CPU must be protected. This is arch- depen-
dent, but includes CPU structures and state not preserved over a context switch.
For example, on x86, entering and exiting FPU mode is now a critical section that
must occur while preemption is disabled. Think what would happen if the kernel
is executing a floating-point instruction and is then preempted. Remember, the
kernel does not save FPU state except for user tasks. Therefore, upon preemp-
tion, the FPU registers will be sold to the lowest bidder. Thus, preemption must
be disabled around such regions.

Note, some FPU functions are already explicitly preempt safe. For example, ker-
nel fpu begin and kernel fpu end will disable and enable preemption.

10.1.3 RULE #3: Lock acquire and release must be performed by
same task

A lock acquired in one task must be released by the same task. This means you
can’ t do oddball things like acquire a lock and go off to play while another task
releases it. If you want to do something like this, acquire and release the task in
the same code path and have the caller wait on an event by the other task.

10.2 Solution

Data protection under preemption is achieved by disabling preemption for the
duration of the critical region.

preempt _enable() decrement the preempt counter

preempt disable() increment the preempt counter

preempt enable no resched() decrement, but do not immediately preempt
preempt check resched() if needed, reschedule

preempt count() return the preempt counter

The functions are nestable. In other words, you can call preempt disable n-times
in a code path, and preemption will not be reenabled until the n-th call to pre-
empt enable. The preempt statements define to nothing if preemption is not en-
abled.

Note that you do not need to explicitly prevent preemption if you are holding any
locks or interrupts are disabled, since preemption is implicitly disabled in those
cases.

But keep in mind that ‘irgs disabled’ is a fundamentally unsafe way of disabling
preemption - any cond resched() or cond resched lock() might trigger a resched-
ule if the preempt count is 0. A simple printk() might trigger a reschedule. So
use this implicit preemption-disabling property only if you know that the affected
codepath does not do any of this. Best policy is to use this only for small, atomic
code that you wrote and which calls no complex functions.

Example:
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cpucache t *cc; /* this is per-CPU */
preempt disable();
cc = cc_data(searchp);
if (cc && cc->avail) {
__free block(searchp, cc entry(cc), cc->avail);
cc->avail = 0;
}
preempt enable();
return 0;

Notice how the preemption statements must encompass every reference of the
critical variables. Another example:

int buf[NR CPUST];

set cpu val(buf);

if (buf[smp processor id()] == -1) printf(KERN_INFO "wee!\n");
spin_ lock(&buf lock);

/* o0 X/

This code is not preempt-safe, but see how easily we can fix it by simply moving
the spin lock up two lines.

10.3 Preventing preemption using interrupt disabling

It is possible to prevent a preemption event using local irq disable and lo-
cal irqg save. Note, when doing so, you must be very careful to not cause an event
that would set need resched and result in a preemption check. When in doubt,
rely on locking or explicit preemption disabling.

Note in 2.5 interrupt disabling is now only per-CPU (e.g. local).

An additional concern is proper usage of local irq disable and local irqg save.
These may be used to protect from preemption, however, on exit, if preemption
may be enabled, a test to see if preemption is required should be done. If these
are called from the spin lock and read/write lock macros, the right thing is done.
They may also be called within a spin-lock protected region, however, if they are
ever called outside of this context, a test for preemption should be made. Do note
that calls from interrupt context or bottom half/ tasklets are also protected by
preemption locks and so may use the versions which do not check preemption.
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CHAPTER
ELEVEN

LIGHTWEIGHT PI-FUTEXES

We are calling them lightweight for 3 reasons:

* in the user-space fastpath a PI-enabled futex involves no kernel work (or any
other PI complexity) at all. No registration, no extra kernel calls - just pure
fast atomic ops in userspace.

* even in the slowpath, the system call and scheduling pattern is very similar
to normal futexes.

* the in-kernel PI implementation is streamlined around the mutex abstraction,
with strict rules that keep the implementation relatively simple: only a single
owner may own a lock (i.e. no read-write lock support), only the owner may
unlock a lock, no recursive locking, etc.

11.1 Priority Inheritance - why?

The short reply: user-space PI helps achieving/improving determinism for user-
space applications. In the best-case, it can help achieve determinism and well-
bound latencies. Even in the worst-case, PI will improve the statistical distribution
of locking related application delays.

11.2 The longer reply

Firstly, sharing locks between multiple tasks is a common programming technique
that often cannot be replaced with lockless algorithms. As we can see it in the ker-
nel [which is a quite complex program in itself], lockless structures are rather the
exception than the norm - the current ratio of lockless vs. locky code for shared
data structures is somewhere between 1:10 and 1:100. Lockless is hard, and the
complexity of lockless algorithms often endangers to ability to do robust reviews
of said code. I.e. critical RT apps often choose lock structures to protect critical
data structures, instead of lockless algorithms. Furthermore, there are cases (like
shared hardware, or other resource limits) where lockless access is mathemati-
cally impossible.

Media players (such as Jack) are an example of reasonable application design with
multiple tasks (with multiple priority levels) sharing short-held locks: for example,
a highprio audio playback thread is combined with medium-prio construct-audio-
data threads and low-prio display-colory-stuff threads. Add video and decoding to
the mix and we’ ve got even more priority levels.
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So once we accept that synchronization objects (locks) are an unavoidable fact of
life, and once we accept that multi-task userspace apps have a very fair expectation
of being able to use locks, we’ ve got to think about how to offer the option of a
deterministic locking implementation to user-space.

Most of the technical counter-arguments against doing priority inheritance only
apply to kernel-space locks. But user-space locks are different, there we cannot
disable interrupts or make the task non-preemptible in a critical section, so the ‘use
spinlocks’ argument does not apply (user-space spinlocks have the same priority
inversion problems as other user-space locking constructs). Fact is, pretty much
the only technique that currently enables good determinism for userspace locks
(such as futex-based pthread mutexes) is priority inheritance:

Currently (without PI), if a high-prio and a low-prio task shares a lock [this is a
quite common scenario for most non-trivial RT applications], even if all critical
sections are coded carefully to be deterministic (i.e. all critical sections are short
in duration and only execute a limited number of instructions), the kernel cannot
guarantee any deterministic execution of the high-prio task: any medium-priority
task could preempt the low-prio task while it holds the shared lock and executes
the critical section, and could delay it indefinitely.

11.3 Implementation

As mentioned before, the userspace fastpath of Pl-enabled pthread mutexes in-
volves no kernel work at all - they behave quite similarly to normal futex-based
locks: a 0 value means unlocked, and a value==TID means locked. (This is the
same method as used by list-based robust futexes.) Userspace uses atomic ops to
lock/unlock these mutexes without entering the kernel.

To handle the slowpath, we have added two new futex ops:
» FUTEX LOCK PI
« FUTEX UNLOCK PI

If the lock-acquire fastpath fails, [i.e. an atomic transition from 0 to TID fails],
then FUTEX LOCK PI is called. The kernel does all the remaining work: if there
is no futex-queue attached to the futex address yet then the code looks up the task
that owns the futex [it has put its own TID into the futex value], and attaches a
‘PI state’ structure to the futex-queue. The pi state includes an rt-mutex, which
is a Pl-aware, kernel-based synchronization object. The ‘other’ task is made the
owner of the rt-mutex, and the FUTEX WAITERS bit is atomically set in the futex
value. Then this task tries to lock the rt-mutex, on which it blocks. Once it returns,
it has the mutex acquired, and it sets the futex value to its own TID and returns.
Userspace has no other work to perform - it now owns the lock, and futex value
contains FUTEX WAITERS|TID.

If the unlock side fastpath succeeds, [i.e. userspace manages to do a TID -> 0
atomic transition of the futex value], then no kernel work is triggered.

If the unlock fastpath fails (because the FUTEX WAITERS bit is set), then FU-
TEX UNLOCK PI is called, and the kernel unlocks the futex on the behalf of
userspace - and it also unlocks the attached pi state->rt mutex and thus wakes
up any potential waiters.
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Note that under this approach, contrary to previous PI-futex approaches, there is
no prior ‘registration’ of a PI-futex. [which is not quite possible anyway, due to
existing ABI properties of pthread mutexes.]

Also, under this scheme, ‘robustness’ and ‘PI’ are two orthogonal properties
of futexes, and all four combinations are possible: futex, robust-futex, PI-futex,
robust+PI-futex.

More details about priority inheritance can be found in Documentation/locking/rt-
mutex.rst.
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CHAPTER
TWELVE

FUTEX REQUEUE PI

Requeueing of tasks from a non-PI futex to a PI futex requires special handling in
order to ensure the underlying rt mutex is never left without an owner if it has
waiters; doing so would break the PI boosting logic [see rt-mutex-desgin.txt] For
the purposes of brevity, this action will be referred to as “requeue pi” throughout
this document. Priority inheritance is abbreviated throughout as “PI” .

12.1 Motivation

Without requeue pi, the glibc implementation of pthread cond broadcast() must
resort to waking all the tasks waiting on a pthread condvar and letting them try
to sort out which task gets to run first in classic thundering-herd formation. An
ideal implementation would wake the highest-priority waiter, and leave the rest to
the natural wakeup inherent in unlocking the mutex associated with the condvar.

Consider the simplified glibc calls:

/* caller must lock mutex */
pthread cond wait(cond, mutex)

{
lock(cond-> data. lock);
unlock(mutex);
do {
unlock(cond-> data. Tlock);
futex wait(cond-> data. futex);
lock(cond-> data. lock);
} while(...)
unlock(cond-> data. lock);
lock(mutex);

}

pthread cond broadcast(cond)

{
lock(cond-> data. lock);
unlock(cond-> data. lock);
futex requeue(cond->data. futex, cond->mutex);

}

Once pthread cond broadcast() requeues the tasks, the cond->mutex has waiters.
Note that pthread cond wait() attempts to lock the mutex only after it has returned
to user space. This will leave the underlying rt mutex with waiters, and no owner,
breaking the previously mentioned PI-boosting algorithms.
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In order to support Pl-aware pthread condvar’ s, the kernel needs to be able to
requeue tasks to PI futexes. This support implies that upon a successful futex wait
system call, the caller would return to user space already holding the PI futex. The
glibc implementation would be modified as follows:

/* caller must lock mutex */
pthread cond wait pi(cond, mutex)
{

lock(cond-> data. lock);

unlock(mutex) ;

do {

unlock(cond-> data. lock);

futex wait requeue pi(cond-> data. futex);

lock(cond-> data. lock);

} while(...)

unlock(cond-> data. lock);

/* the kernel acquired the mutex for us */

}

pthread cond broadcast pi(cond)

{
lock(cond-> data. lock);
unlock(cond-> data. lock);

futex requeue pi(cond->data. futex, cond->mutex);

}

The actual glibc implementation will likely test for PI and make the nec-
essary changes inside the existing calls rather than creating new calls for
the PI cases. Similar changes are needed for pthread cond timedwait() and
pthread cond signal().

12.2 Implementation

In order to ensure the rt mutex has an owner if it has waiters, it is necessary
for both the requeue code, as well as the waiting code, to be able to acquire the
rt mutex before returning to user space. The requeue code cannot simply wake the
waiter and leave it to acquire the rt mutex as it would open a race window between
the requeue call returning to user space and the waiter waking and starting to run.
This is especially true in the uncontended case.

The solution involves two new rt mutex helper routines,
rt mutex start proxy lock() and rt mutex finish proxy lock(), which allow
the requeue code to acquire an uncontended rt_ mutex on behalf of the waiter and
to enqueue the waiter on a contended rt mutex. Two new system calls provide
the kernel<->user interface to requeue pi: FUTEX WAIT REQUEUE PI and
FUTEX CMP REQUEUE PI.

FUTEX WAIT REQUEUE PI is called by the waiter (pthread cond wait() and
pthread cond timedwait()) to block on the initial futex and wait to be requeued
to a Pl-aware futex. The implementation is the result of a high-speed collision
between futex wait() and futex lock pi(), with some extra logic to check for the
additional wake-up scenarios.

FUTEX CMP REQUEUE Pl is called by the waker (pthread cond broadcast() and
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pthread cond signal()) to requeue and possibly wake the waiting tasks. Internally,
this system call is still handled by futex requeue (by passing requeue pi=1). Be-
fore requeueing, futex requeue() attempts to acquire the requeue target PI futex
on behalf of the top waiter. If it can, this waiter is woken. futex requeue() then
proceeds to requeue the remaining nr wake+nr requeue tasks to the PI futex,
calling rt mutex start proxy lock() prior to each requeue to prepare the task as
a waiter on the underlying rt mutex. It is possible that the lock can be acquired
at this stage as well, if so, the next waiter is woken to finish the acquisition of the
lock.

FUTEX CMP REQUEUE PI accepts nr wake and nr requeue as arguments, but
their sum is all that really matters. futex requeue() will wake or requeue up
to nr wake + nr requeue tasks. It will wake only as many tasks as it can ac-
quire the lock for, which in the majority of cases should be 0 as good pro-
gramming practice dictates that the caller of either pthread cond broadcast()
or pthread cond signal() acquire the mutex prior to making the call. FU-
TEX CMP REQUEUE PI requires that nr wake=1. nr requeue should be
INT MAX for broadcast and 0 for signal.
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CHAPTER
THIRTEEN

HARDWARE SPINLOCK FRAMEWORK

13.1 Introduction

Hardware spinlock modules provide hardware assistance for synchronization and
mutual exclusion between heterogeneous processors and those not operating un-
der a single, shared operating system.

For example, OMAP4 has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP, each
of which is running a different Operating System (the master, A9, is usually running
Linux and the slave processors, the M3 and the DSP, are running some flavor of
RTOS).

A generic hwspinlock framework allows platform-independent drivers to use the
hwspinlock device in order to access data structures that are shared between re-
mote processors, that otherwise have no alternative mechanism to accomplish syn-
chronization and mutual exclusion operations.

This is necessary, for example, for Inter-processor communications: on OMAP4,
cpu-intensive multimedia tasks are offloaded by the host to the remote M3 and/or
C64x+ slave processors (by an IPC subsystem called Syslink).

To achieve fast message-based communications, a minimal kernel support is
needed to deliver messages arriving from a remote processor to the appropriate
user process.

This communication is based on simple data structures that is shared between the
remote processors, and access to it is synchronized using the hwspinlock module
(remote processor directly places new messages in this shared data structure).

A common hwspinlock interface makes it possible to have generic, platform- inde-
pendent, drivers.

13.2 User API

struct hwspinlock *hwspin lock request(void);

Dynamically assign an hwspinlock and return its address, or NULL in case an un-
used hwspinlock isn’t available. Users of this API will usually want to communicate
the lock’ s id to the remote core before it can be used to achieve synchronization.

Should be called from a process context (might sleep).
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struct hwspinlock *hwspin lock request specific(unsigned int id);

Assign a specific hwspinlock id and return its address, or NULL if that hwspinlock
is already in use. Usually board code will be calling this function in order to reserve
specific hwspinlock ids for predefined purposes.

Should be called from a process context (might sleep).

int of hwspin lock get id(struct device node *np, int index);

Retrieve the global lock id for an OF phandle-based specific lock. This func-
tion provides a means for DT users of a hwspinlock module to get the global
lock id of a specific hwspinlock, so that it can be requested using the normal
hwspin lock request specific() APL

The function returns a lock id number on success, -EPROBE DEFER if the hwspin-
lock device is not yet registered with the core, or other error values.

Should be called from a process context (might sleep).

int hwspin lock free(struct hwspinlock *hwlock);

Free a previously-assigned hwspinlock; returns 0 on success, or an appropriate
error code on failure (e.g. -EINVAL if the hwspinlock is already free).

Should be called from a process context (might sleep).

int hwspin lock timeout(struct hwspinlock *hwlock, unsigned int timeout);

Lock a previously-assigned hwspinlock with a timeout limit (specified in msecs).
If the hwspinlock is already taken, the function will busy loop waiting for it to be
released, but give up when the timeout elapses. Upon a successful return from
this function, preemption is disabled so the caller must not sleep, and is advised
to release the hwspinlock as soon as possible, in order to minimize remote cores
polling on the hardware interconnect.

Returns 0 when successful and an appropriate error code otherwise (most notably
-ETIMEDOUT if the hwspinlock is still busy after timeout msecs). The function will
never sleep.

int hwspin lock timeout irq(struct hwspinlock *hwlock, unsigned int,
~timeout);

Lock a previously-assigned hwspinlock with a timeout limit (specified in msecs).
If the hwspinlock is already taken, the function will busy loop waiting for it to be
released, but give up when the timeout elapses. Upon a successful return from
this function, preemption and the local interrupts are disabled, so the caller must
not sleep, and is advised to release the hwspinlock as soon as possible.

Returns 0 when successful and an appropriate error code otherwise (most notably
-ETIMEDOUT if the hwspinlock is still busy after timeout msecs). The function will
never sleep.

int hwspin_lock timeout irqgsave(struct hwspinlock *hwlock, unsigned int to,
unsigned long *flags);

72 Chapter 13. Hardware Spinlock Framework




Linux Locking Documentation

Lock a previously-assigned hwspinlock with a timeout limit (specified in msecs).
If the hwspinlock is already taken, the function will busy loop waiting for it to be
released, but give up when the timeout elapses. Upon a successful return from this
function, preemption is disabled, local interrupts are disabled and their previous
state is saved at the given flags placeholder. The caller must not sleep, and is
advised to release the hwspinlock as soon as possible.

Returns 0 when successful and an appropriate error code otherwise (most notably
-ETIMEDOUT if the hwspinlock is still busy after timeout msecs).

The function will never sleep.

int hwspin lock timeout raw(struct hwspinlock *hwlock, unsigned int
—~timeout);

Lock a previously-assigned hwspinlock with a timeout limit (specified in msecs).
If the hwspinlock is already taken, the function will busy loop waiting for it to be
released, but give up when the timeout elapses.

Caution: User must protect the routine of getting hardware lock with mutex or
spinlock to avoid dead-lock, that will let user can do some time-consuming or sleep-
able operations under the hardware lock.

Returns 0 when successful and an appropriate error code otherwise (most notably
-ETIMEDOUT if the hwspinlock is still busy after timeout msecs).

The function will never sleep.

int hwspin_lock timeout in_atomic(struct hwspinlock *hwlock, unsigned int,,
—~to);

Lock a previously-assigned hwspinlock with a timeout limit (specified in msecs).
If the hwspinlock is already taken, the function will busy loop waiting for it to be
released, but give up when the timeout elapses.

This function shall be called only from an atomic context and the timeout value
shall not exceed a few msecs.

Returns 0 when successful and an appropriate error code otherwise (most notably
-ETIMEDOUT if the hwspinlock is still busy after timeout msecs).

The function will never sleep.

int hwspin_trylock(struct hwspinlock *hwlock);

Attempt to lock a previously-assigned hwspinlock, but immediately fail if it is al-
ready taken.

Upon a successful return from this function, preemption is disabled so caller must
not sleep, and is advised to release the hwspinlock as soon as possible, in order to
minimize remote cores polling on the hardware interconnect.

Returns 0 on success and an appropriate error code otherwise (most notably -
EBUSY if the hwspinlock was already taken). The function will never sleep.

int hwspin trylock irg(struct hwspinlock *hwlock);
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Attempt to lock a previously-assigned hwspinlock, but immediately fail if it is al-
ready taken.

Upon a successful return from this function, preemption and the local interrupts
are disabled so caller must not sleep, and is advised to release the hwspinlock as
soon as possible.

Returns 0 on success and an appropriate error code otherwise (most notably -
EBUSY if the hwspinlock was already taken).

The function will never sleep.

int hwspin trylock irqgsave(struct hwspinlock *hwlock, unsigned long,
~*flags);

Attempt to lock a previously-assigned hwspinlock, but immediately fail if it is al-
ready taken.

Upon a successful return from this function, preemption is disabled, the local inter-
rupts are disabled and their previous state is saved at the given flags placeholder.
The caller must not sleep, and is advised to release the hwspinlock as soon as
possible.

Returns 0 on success and an appropriate error code otherwise (most notably -
EBUSY if the hwspinlock was already taken). The function will never sleep.

int hwspin trylock raw(struct hwspinlock *hwlock);

Attempt to lock a previously-assigned hwspinlock, but immediately fail if it is al-
ready taken.

Caution: User must protect the routine of getting hardware lock with mutex or
spinlock to avoid dead-lock, that will let user can do some time-consuming or sleep-
able operations under the hardware lock.

Returns 0 on success and an appropriate error code otherwise (most notably -
EBUSY if the hwspinlock was already taken). The function will never sleep.

int hwspin_trylock in atomic(struct hwspinlock *hwlock);

Attempt to lock a previously-assigned hwspinlock, but immediately fail if it is al-
ready taken.

This function shall be called only from an atomic context.

Returns 0 on success and an appropriate error code otherwise (most notably -
EBUSY if the hwspinlock was already taken). The function will never sleep.

void hwspin unlock(struct hwspinlock *hwlock);

Unlock a previously-locked hwspinlock. Always succeed, and can be called from
any context (the function never sleeps).

Note: code should never unlock an hwspinlock which is already unlocked (there
is no protection against this).
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void hwspin unlock irq(struct hwspinlock *hwlock);

Unlock a previously-locked hwspinlock and enable local interrupts. The caller
should never unlock an hwspinlock which is already unlocked.

Doing so is considered a bug (there is no protection against this). Upon a success-
ful return from this function, preemption and local interrupts are enabled. This
function will never sleep.

void
hwspin unlock irqrestore(struct hwspinlock *hwlock, unsigned long *flags);

Unlock a previously-locked hwspinlock.

The caller should never unlock an hwspinlock which is already unlocked. Doing so
is considered a bug (there is no protection against this). Upon a successful return
from this function, preemption is reenabled, and the state of the local interrupts
is restored to the state saved at the given flags. This function will never sleep.

void hwspin unlock raw(struct hwspinlock *hwlock);

Unlock a previously-locked hwspinlock.

The caller should never unlock an hwspinlock which is already unlocked. Doing so
is considered a bug (there is no protection against this). This function will never
sleep.

void hwspin_unlock in_atomic(struct hwspinlock *hwlock);

Unlock a previously-locked hwspinlock.

The caller should never unlock an hwspinlock which is already unlocked. Doing so
is considered a bug (there is no protection against this). This function will never
sleep.

int hwspin lock get id(struct hwspinlock *hwlock);

Retrieve id number of a given hwspinlock. This is needed when an hwspinlock
is dynamically assigned: before it can be used to achieve mutual exclusion with a
remote cpu, the id number should be communicated to the remote task with which
we want to synchronize.

Returns the hwspinlock id number, or -EINVAL if hwlock is null.

13.3 Typical usage

#include <linux/hwspinlock.h>
#include <linux/err.h>

int hwspinlock examplel(void)

{
struct hwspinlock *hwlock;
int ret;

(continues on next page)
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(continued from previous page)

}

/* dynamically assign a hwspinlock */
hwlock = hwspin lock request();
if (!'hwlock)

id = hwspin lock get id(hwlock);
/* probably need to communicate id to a remote processor now */

/* take the lock, spin for 1 sec if it's already taken */
ret = hwspin lock timeout(hwlock, 1000);
if (ret)

/*
* we took the lock, do our thing now, but do NOT sleep
*/

/* release the lock */
hwspin unlock(hwlock);

/* free the lock */

ret = hwspin lock free(hwlock);
if (ret)

return ret;

int hwspinlock example2(void)

{

struct hwspinlock *hwlock;
int ret;

/*

* assign a specific hwspinlock id - this should be called early
* by board init code.

*/

hwlock = hwspin lock request specific(PREDEFINED LOCK ID);

if (!hwlock)

/* try to take it, but don't spin on it */
ret = hwspin trylock(hwlock);
if ('ret) {
pr_info("lock is already taken\n");
return -EBUSY;
}

/*
* we took the lock, do our thing now, but do NOT sleep
*/

/* release the lock */
hwspin unlock(hwlock);

(continues on next page)
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/* free the lock */
ret = hwspin lock free(hwlock);
if (ret)

return ret;

13.4 API for implementors

int hwspin lock register(struct hwspinlock device *bank, struct device,
~*dev B

const struct hwspinlock ops *ops, int base_id, int num_
—locks);

To be called from the underlying platform-specific implementation, in order to
register a new hwspinlock device (which is usually a bank of numerous locks).
Should be called from a process context (this function might sleep).

Returns 0 on success, or appropriate error code on failure.

int hwspin lock unregister(struct hwspinlock device *bank);

To be called from the underlying vendor-specific implementation, in order to un-
register an hwspinlock device (which is usually a bank of numerous locks).

Should be called from a process context (this function might sleep).

Returns the address of hwspinlock on success, or NULL on error (e.g. if the
hwspinlock is still in use).

13.5 Important structs

struct hwspinlock device is a device which usually contains a bank of hardware
locks. It is registered by the underlying hwspinlock implementation using the
hwspin lock register() APL.

/**

* struct hwspinlock device - a device which usually spans numerous,
—hwspinlocks

@dev: underlying device, will be used to invoke runtime PM api
@ops: platform-specific hwspinlock handlers

@base id: id index of the first lock in this device

@num_locks: number of locks in this device

@lock: dynamically allocated array of 'struct hwspinlock'

* K X X ¥

*/
struct hwspinlock device {
struct device *dev;
const struct hwspinlock ops *ops;
int base id;
int num_locks;

(continues on next page)
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(continued from previous page)

struct hwspinlock lock[0O];
I

struct hwspinlock device contains an array of hwspinlock structs, each of which
represents a single hardware lock:

/**
* struct hwspinlock - this struct represents a single hwspinlock instance
@bank: the hwspinlock device structure which owns this lock
@lock: initialized and used by hwspinlock core
@priv: private data, owned by the underlying platform-specific,
~hwspinlock drv
*/
struct hwspinlock {

struct hwspinlock device *bank;

spinlock t lock;

void *priv;

* % x

1

When registering a bank of locks, the hwspinlock driver only needs to set the priv
members of the locks. The rest of the members are set and initialized by the
hwspinlock core itself.

13.6 Implementation callbacks

There are three possible callbacks defined in ‘struct hwspinlock ops’

struct hwspinlock ops {
int (*trylock) (struct hwspinlock *lock);
void (*unlock) (struct hwspinlock *lock);
void (*relax) (struct hwspinlock *lock);

}

The first two callbacks are mandatory:

The ->trylock() callback should make a single attempt to take the lock, and return
0 on failure and 1 on success. This callback may not sleep.

The ->unlock() callback releases the lock. It always succeed, and it, too, may not
sleep.

The ->relax() callback is optional. It is called by hwspinlock core while spinning on
a lock, and can be used by the underlying implementation to force a delay between
two successive invocations of ->trylock(). It may not sleep.
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PERCPU RW SEMAPHORES

Percpu rw semaphores is a new read-write semaphore design that is optimized for
locking for reading.

The problem with traditional read-write semaphores is that when multiple cores
take the lock for reading, the cache line containing the semaphore is bouncing
between L1 caches of the cores, causing performance degradation.

Locking for reading is very fast, it uses RCU and it avoids any atomic instruction in
the lock and unlock path. On the other hand, locking for writing is very expensive,
it calls synchronize rcu() that can take hundreds of milliseconds.

The lock is declared with “struct percpu rw semaphore” type. The lock is ini-
tialized percpu init rwsem, it returns 0 on success and -ENOMEM on allocation
failure. The lock must be freed with percpu free rwsem to avoid memory leak.

The lock is locked for read with percpu down read, percpu up read and for write
with percpu down write, percpu up_ write.

The idea of using RCU for optimized rw-lock was introduced by Eric Du-
mazet <eric.dumazet@gmail.com>. The code was written by Mikulas Patocka
<mpatocka@redhat.com>
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A DESCRIPTION OF WHAT ROBUST FUTEXES ARE

Started by Ingo Molnar <mingo@redhat.com>

15.1 Background

what are robust futexes? To answer that, we first need to understand what futexes
are: normal futexes are special types of locks that in the noncontended case can
be acquired/released from userspace without having to enter the kernel.

A futex is in essence a user-space address, e.g. a 32-bit lock variable field. If
userspace notices contention (the lock is already owned and someone else wants
to grab it too) then the lock is marked with a value that says “there’ s a waiter
pending” , and the sys futex(FUTEX WAIT) syscall is used to wait for the other
guy to release it. The kernel creates a ‘futex queue’ internally, so that it can later
on match up the waiter with the waker - without them having to know about each
other. When the owner thread releases the futex, it notices (via the variable value)
that there were waiter(s) pending, and does the sys futex(FUTEX WAKE) syscall
to wake them up. Once all waiters have taken and released the lock, the futex is
again back to ‘uncontended’ state, and there’ s no in-kernel state associated with
it. The kernel completely forgets that there ever was a futex at that address. This
method makes futexes very lightweight and scalable.

“Robustness” is about dealing with crashes while holding a lock: if a process exits
prematurely while holding a pthread mutex t lock that is also shared with some
other process (e.g. yum segfaults while holding a pthread mutex t, or yum is kill
-9-ed), then waiters for that lock need to be notified that the last owner of the lock
exited in some irregular way.

To solve such types of problems, “robust mutex” userspace APIs were created:
pthread mutex lock() returns an error value if the owner exits prematurely - and
the new owner can decide whether the data protected by the lock can be recovered
safely.

There is a big conceptual problem with futex based mutexes though: itis the kernel
that destroys the owner task (e.g. due to a SEGFAULT), but the kernel cannot help
with the cleanup: if there is no ‘futex queue’ (and in most cases there is none,
futexes being fast lightweight locks) then the kernel has no information to clean
up after the held lock! Userspace has no chance to clean up after the lock either -
userspace is the one that crashes, so it has no opportunity to clean up. Catch-22.
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In practice, when e.g. yum is kill -9-ed (or segfaults), a system reboot is needed to
release that futex based lock. This is one of the leading bugreports against yum.

To solve this problem, the traditional approach was to extend the vma (vir-
tual memory area descriptor) concept to have a notion of ‘pending robust fu-
texes attached to this area’ . This approach requires 3 new syscall variants to
sys_futex(): FUTEX REGISTER, FUTEX DEREGISTER and FUTEX RECOVER. At
do_exit() time, all vmas are searched to see whether they have a robust head set.
This approach has two fundamental problems left:

* it has quite complex locking and race scenarios. The vma-based approach
had been pending for years, but they are still not completely reliable.

* they have to scan every vma at sys exit() time, per thread!

The second disadvantage is a real killer: pthread exit() takes around 1 mi-
crosecond on Linux, but with thousands (or tens of thousands) of vmas every
pthread exit() takes a millisecond or more, also totally destroying the CPU’ s L1
and L2 caches!

This is very much noticeable even for normal process sys exit group() calls: the
kernel has to do the vima scanning unconditionally! (this is because the kernel has
no knowledge about how many robust futexes there are to be cleaned up, because
a robust futex might have been registered in another task, and the futex variable
might have been simply mmap()-ed into this process’ s address space).

This huge overhead forced the creation of CONFIG FUTEX ROBUST so that nor-
mal kernels can turn it off, but worse than that: the overhead makes robust futexes
impractical for any type of generic Linux distribution.

So something had to be done.

15.2 New approach to robust futexes

At the heart of this new approach there is a per-thread private list of robust locks
that userspace is holding (maintained by glibc) - which userspace list is registered
with the kernel via a new syscall [this registration happens at most once per thread
lifetime]. At do exit() time, the kernel checks this user-space list: are there any
robust futex locks to be cleaned up?

In the common case, at do _exit() time, there is no list registered, so the cost of
robust futexes is just a simple current->robust list != NULL comparison. If the
thread has registered a list, then normally the list is empty. If the thread/process
crashed or terminated in some incorrect way then the list might be non-empty: in
this case the kernel carefully walks the list [not trusting it], and marks all locks
that are owned by this thread with the FUTEX OWNER DIED bit, and wakes up
one waiter (if any).

The list is guaranteed to be private and per-thread at do exit() time, so it can be
accessed by the kernel in a lockless way.

There is one race possible though: since adding to and removing from the list is
done after the futex is acquired by glibc, there is a few instructions window for the
thread (or process) to die there, leaving the futex hung. To protect against this
possibility, userspace (glibc) also maintains a simple per-thread ‘list op pending’
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field, to allow the kernel to clean up if the thread dies after acquiring the lock, but
just before it could have added itself to the list. Glibc sets this list op pending field
before it tries to acquire the futex, and clears it after the list-add (or list-remove)
has finished.

That’ s all that is needed - all the rest of robust-futex cleanup is done in userspace
[just like with the previous patches].

Ulrich Drepper has implemented the necessary glibc support for this new mecha-
nism, which fully enables robust mutexes.

Key differences of this userspace-list based approach, compared to the vma based
method:

e it’ s much, much faster: at thread exit time, there’ s no need to loop over
every vma (!), which the VM-based method has to do. Only a very simple ‘is
the list empty’ op is done.

* no VM changes are needed - ‘struct address space’ is left alone.

* no registration of individual locks is needed: robust mutexes don’ t need
any extra per-lock syscalls. Robust mutexes thus become a very lightweight
primitive - so they don’ t force the application designer to do a hard choice
between performance and robustness - robust mutexes are just as fast.

* no per-lock kernel allocation happens.
* no resource limits are needed.
* no kernel-space recovery call (FUTEX RECOVER) is needed.

» the implementation and the locking is “obvious”, and there are no interactions
with the VM.

15.3 Performance

I have benchmarked the time needed for the kernel to process a list of 1 million
(1) held locks, using the new method [on a 2GHz CPU]:

* with FUTEX WAIT set [contended mutex]: 130 msecs
» without FUTEX WAIT set [uncontended mutex]: 30 msecs

I have also measured an approach where glibc does the lock notification [which
it currently does for !pshared robust mutexes], and that took 256 msecs - clearly
slower, due to the 1 million FUTEX WAKE syscalls userspace had to do.

(1 million held locks are unheard of - we expect at most a handful of locks to be
held at a time. Nevertheless it’ s nice to know that this approach scales nicely.)
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15.4 Implementation details

The patch adds two new syscalls: one to register the userspace list, and one to
query the registered list pointer:

asmlinkage long
sys set robust list(struct robust list head user *head,
size t len);

asmlinkage long
sys _get robust list(int pid, struct robust list head _ user **head ptr,
size t user *len ptr);

List registration is very fast: the pointer is simply stored in current->robust list.
[Note that in the future, if robust futexes become widespread, we could extend
sys clone() to register a robust-list head for new threads, without the need of an-
other syscall.]

So there is virtually zero overhead for tasks not using robust futexes, and even
for robust futex users, there is only one extra syscall per thread lifetime, and the
cleanup operation, if it happens, is fast and straightforward. The kernel doesn’ t
have any internal distinction between robust and normal futexes.

If a futex is found to be held at exit time, the kernel sets the following bit of the
futex word:

#define FUTEX OWNER DIED 0x40000000

and wakes up the next futex waiter (if any). User-space does the rest of the
cleanup.

Otherwise, robust futexes are acquired by glibc by putting the TID into the futex
field atomically. Waiters set the FUTEX WAITERS bit:

#define FUTEX WAITERS 0x80000000

and the remaining bits are for the TID.

15.5 Testing, architecture support

I’ ve tested the new syscalls on x86 and x86 64, and have made sure the parsing
of the userspace list is robust [ ;-) ] even if the list is deliberately corrupted.

i386 and x86 64 syscalls are wired up at the moment, and Ulrich has tested the
new glibc code (on x86 64 and i386), and it works for his robust-mutex testcases.

All other architectures should build just fine too - but they won’ t have the new
syscalls yet.

Architectures need to implement the new futex atomic cmpxchg inatomic() inline
function before writing up the syscalls.
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Author Started by Paul Jackson <pj@sgi.com>

Robust futexes provide a mechanism that is used in addition to normal futexes,
for kernel assist of cleanup of held locks on task exit.

The interesting data as to what futexes a thread is holding is kept on a linked list
in user space, where it can be updated efficiently as locks are taken and dropped,
without kernel intervention. The only additional kernel intervention required for
robust futexes above and beyond what is required for futexes is:

1) a one time call, per thread, to tell the kernel where its list of held ro-
bust futexes begins, and

2) internal kernel code at exit, to handle any listed locks held by the exiting
thread.

The existing normal futexes already provide a “Fast Userspace Locking” mecha-
nism, which handles uncontested locking without needing a system call, and han-
dles contested locking by maintaining a list of waiting threads in the kernel. Op-
tions on the sys futex(2) system call support waiting on a particular futex, and
waking up the next waiter on a particular futex.

For robust futexes to work, the user code (typically in a library such as glibc linked
with the application) has to manage and place the necessary list elements exactly
as the kernel expects them. If it fails to do so, then improperly listed locks will
not be cleaned up on exit, probably causing deadlock or other such failure of the
other threads waiting on the same locks.

A thread that anticipates possibly using robust futexes should first issue the sys-
tem call:

asmlinkage long
sys _set robust list(struct robust list head _ user *head, size t len);

The pointer ‘head’ points to a structure in the threads address space consisting
of three words. Each word is 32 bits on 32 bit arch’ s, or 64 bits on 64 bit arch’
s, and local byte order. Each thread should have its own thread private ‘head’ .

If a thread is running in 32 bit compatibility mode on a 64 native arch kernel,
then it can actually have two such structures - one using 32 bit words for 32 bit
compatibility mode, and one using 64 bit words for 64 bit native mode. The kernel,
if it is a 64 bit kernel supporting 32 bit compatibility mode, will attempt to process
both lists on each task exit, if the corresponding sys set robust list() call has been
made to setup that list.
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The first word in the memory structure at ‘head’ contains a pointer to a
single linked list of ‘lock entries’ , one per lock, as described below. If
the list is empty, the pointer will point to itself, ‘head’ . The last ‘lock
entry’ points back to the ‘head’ .

The second word, called ‘offset’ , specifies the offset from the address
of the associated ‘lock entry’ , plus or minus, of what will be called the
‘lock word’ , from that ‘lock entry’ . The °‘lock word’ is always a 32 bit
word, unlike the other words above. The ‘lock word’ holds 2 flag bits in
the upper 2 bits, and the thread id (TID) of the thread holding the lock in
the bottom 30 bits. See further below for a description of the flag bits.

The third word, called ‘list op pending’ , contains transient copy of the
address of the ‘lock entry’ , during list insertion and removal, and is
needed to correctly resolve races should a thread exit while in the middle
of a locking or unlocking operation.

Each ‘lock entry’ on the single linked list starting at ‘head’ consists of just a
single word, pointing to the next ‘lock entry’ , or back to ‘head’ if there are no
more entries. In addition, nearby to each ‘lock entry’ , at an offset from the ‘lock
entry’ specified by the ‘offset’ word, is one ‘lock word’ .

The ‘lock word’is always 32 bits, and is intended to be the same 32 bit lock variable
used by the futex mechanism, in conjunction with robust futexes. The kernel will
only be able to wakeup the next thread waiting for a lock on a threads exit if that
next thread used the futex mechanism to register the address of that ‘lock word’
with the kernel.

For each futex lock currently held by a thread, if it wants this robust futex support
for exit cleanup of that lock, it should have one ‘lock entry’ on this list, with its
associated ‘lock word’at the specified ‘offset’. Should a thread die while holding any
such locks, the kernel will walk this list, mark any such locks with a bit indicating
their holder died, and wakeup the next thread waiting for that lock using the futex
mechanism.

When a thread has invoked the above system call to indicate it anticipates using
robust futexes, the kernel stores the passed in ‘head’ pointer for that task. The
task may retrieve that value later on by using the system call:

asmlinkage long
sys get robust list(int pid, struct robust list head user **head ptr,
size t user *len ptr);

It is anticipated that threads will use robust futexes embedded in larger, user level
locking structures, one per lock. The kernel robust futex mechanism doesn’ t care
what else is in that structure, so long as the ‘offset’ to the ‘lock word’ is the same
for all robust futexes used by that thread. The thread should link those locks it
currently holds using the ‘lock entry’pointers. It may also have other links between
the locks, such as the reverse side of a double linked list, but that doesn’ t matter
to the kernel.

By keeping its locks linked this way, on a list starting with a ‘head’ pointer known
to the kernel, the kernel can provide to a thread the essential service available
for robust futexes, which is to help clean up locks held at the time of (a perhaps
unexpectedly) exit.
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Actual locking and unlocking, during normal operations, is handled entirely by
user level code in the contending threads, and by the existing futex mechanism
to wait for, and wakeup, locks. The kernels only essential involvement in ro-
bust futexes is to remember where the list ‘head’ is, and to walk the list on thread
exit, handling locks still held by the departing thread, as described below.

There may exist thousands of futex lock structures in a threads shared memory,
on various data structures, at a given point in time. Only those lock structures for
locks currently held by that thread should be on that thread’ s robust futex linked
lock list a given time.

A given futex lock structure in a user shared memory region may be held at differ-
ent times by any of the threads with access to that region. The thread currently
holding such a lock, if any, is marked with the threads TID in the lower 30 bits of
the ‘lock word’ .

When adding or removing a lock from its list of held locks, in order for the kernel
to correctly handle lock cleanup regardless of when the task exits (perhaps it gets
an unexpected signal 9 in the middle of manipulating this list), the user code must
observe the following protocol on ‘lock entry’ insertion and removal:

On insertion:
1) setthe ‘list op pending’ word to the address of the ‘lock entry’ to be inserted,
2) acquire the futex lock,

3) add the lock entry, with its thread id (TID) in the bottom 30 bits of the ‘lock
word’ , to the linked list starting at ‘head’ , and

4) clear the ‘list op pending’ word.
On removal:
1) setthe ‘list op pending’ word to the address of the ‘lock entry’ to be removed,
2) remove the lock entry for this lock from the ‘head’ list,
3) release the futex lock, and
4) clear the ‘lock op pending’ word.

On exit, the kernel will consider the address stored in ‘list op pending’ and the
address of each ‘lock word’ found by walking the list starting at ‘head’ . For
each such address, if the bottom 30 bits of the ‘lock word’ at offset ‘offset’ from
that address equals the exiting threads TID, then the kernel will do two things:

1) if bit 31 (0x80000000) is set in that word, then attempt a futex wakeup on
that address, which will waken the next thread that has used to the futex
mechanism to wait on that address, and

2) atomically set bit 30 (0x40000000) in the ‘lock word’ .

In the above, bit 31 was set by futex waiters on that lock to indicate they were
waiting, and bit 30 is set by the kernel to indicate that the lock owner died holding
the lock.

The kernel exit code will silently stop scanning the list further if at any point:

1) the ‘head’ pointer or an subsequent linked list pointer is not a valid address
of a user space word
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2) the calculated location of the ‘lock word’ (address plus ‘offset’ ) is not the
valid address of a 32 bit user space word

3) if the list contains more than 1 million (subject to future kernel configuration
changes) elements.

When the kernel sees a list entry whose ‘lock word’ doesn’ t have the current
threads TID in the lower 30 bits, it does nothing with that entry, and goes on to
the next entry.
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