Linux Livepatch Documentation

The kernel development community

Jul 14, 2020






CONTENTS







CHAPTER
ONE

LIVEPATCH

This document outlines basic information about kernel livepatching.

1.1 1. Motivation

There are many situations where users are reluctant to reboot a system. It may
be because their system is performing complex scientific computations or under
heavy load during peak usage. In addition to keeping systems up and running,
users want to also have a stable and secure system. Livepatching gives users
both by allowing for function calls to be redirected; thus, fixing critical functions
without a system reboot.

1.2 2. Kprobes, Ftrace, Livepatching

There are multiple mechanisms in the Linux kernel that are directly related to redi-
rection of code execution; namely: kernel probes, function tracing, and livepatch-
ing:

* The kernel probes are the most generic. The code can be redirected by
putting a breakpoint instruction instead of any instruction.

* The function tracer calls the code from a predefined location that is close to
the function entry point. This location is generated by the compiler using the
“pg’ gcc option.

* Livepatching typically needs to redirect the code at the very beginning of the
function entry before the function parameters or the stack are in any way
modified.

All three approaches need to modify the existing code at runtime. Therefore they
need to be aware of each other and not step over each other’ s toes. Most of
these problems are solved by using the dynamic ftrace framework as a base. A
Kprobe is registered as a ftrace handler when the function entry is probed, see
CONFIG KPROBES ON FTRACE. Also an alternative function from a live patch is
called with the help of a custom ftrace handler. But there are some limitations,
see below.




Linux Livepatch Documentation

1.3 3. Consistency model

Functions are there for a reason. They take some input parameters, get or release
locks, read, process, and even write some data in a defined way, have return values.
In other words, each function has a defined semantic.

Many fixes do not change the semantic of the modified functions. For example,
they add a NULL pointer or a boundary check, fix a race by adding a missing
memory barrier, or add some locking around a critical section. Most of these
changes are self contained and the function presents itself the same way to the
rest of the system. In this case, the functions might be updated independently one
by one.

But there are more complex fixes. For example, a patch might change ordering of
locking in multiple functions at the same time. Or a patch might exchange meaning
of some temporary structures and update all the relevant functions. In this case,
the affected unit (thread, whole kernel) need to start using all new versions of the
functions at the same time. Also the switch must happen only when it is safe to do
so, e.g. when the affected locks are released or no data are stored in the modified
structures at the moment.

The theory about how to apply functions a safe way is rather complex. The aim is
to define a so-called consistency model. It attempts to define conditions when the
new implementation could be used so that the system stays consistent.

Livepatch has a consistency model which is a hybrid of kGraft and kpatch: it uses
kGraft’ s per-task consistency and syscall barrier switching combined with kpatch’
s stack trace switching. There are also a number of fallback options which make
it quite flexible.

Patches are applied on a per-task basis, when the task is deemed safe to switch
over. When a patch is enabled, livepatch enters into a transition state where tasks
are converging to the patched state. Usually this transition state can complete in
a few seconds. The same sequence occurs when a patch is disabled, except the
tasks converge from the patched state to the unpatched state.

An interrupt handler inherits the patched state of the task it interrupts. The same
is true for forked tasks: the child inherits the patched state of the parent.

Livepatch uses several complementary approaches to determine when it s safe to
patch tasks:

1. The first and most effective approach is stack checking of sleeping tasks. If
no affected functions are on the stack of a given task, the task is patched. In
most cases this will patch most or all of the tasks on the first try. Otherwise
it’ 11 keep trying periodically. This option is only available if the architecture
has reliable stacks (HAVE RELIABLE STACKTRACE).

2. The second approach, if needed, is kernel exit switching. A task is switched
when it returns to user space from a system call, a user space IRQ, or a signal.
It" s useful in the following cases:

a) Patching I/O-bound user tasks which are sleeping on an affected function.
In this case you have to send SIGSTOP and SIGCONT to force it to exit
the kernel and be patched.

2 Chapter 1. Livepatch



Linux Livepatch Documentation

b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it
will get patched the next time it gets interrupted by an IRQ.

3. Foridle “swapper” tasks, since they don’ t ever exit the kernel, they instead
have a klp update patch state() call in the idle loop which allows them to be
patched before the CPU enters the idle state.

(Note there’ s not yet such an approach for kthreads.)

Architectures which don’ t have HAVE RELIABLE STACKTRACE solely rely on the
second approach. It’ s highly likely that some tasks may still be running with an
old version of the function, until that function returns. In this case you would have
to signal the tasks. This especially applies to kthreads. They may not be woken up
and would need to be forced. See below for more information.

Unless we can come up with another way to patch kthreads, architectures without
HAVE RELIABLE STACKTRACE are not considered fully supported by the kernel
livepatching.

The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in tran-
sition. Only a single patch can be in transition at a given time. A patch can remain
in transition indefinitely, if any of the tasks are stuck in the initial patch state.

A transition can be reversed and effectively canceled by writing the opposite
value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in
progress. Then all the tasks will attempt to converge back to the original patch
state.

There’ s also a /proc/<pid>/patch_state file which can be used to determine which
tasks are blocking completion of a patching operation. If a patch is in transition,
this file shows 0 to indicate the task is unpatched and 1 to indicate it’ s patched.
Otherwise, if no patch is in transition, it shows -1. Any tasks which are blocking the
transition can be signaled with SIGSTOP and SIGCONT to force them to change
their patched state. This may be harmful to the system though. Sending a fake
signal to all remaining blocking tasks is a better alternative. No proper signal
is actually delivered (there is no data in signal pending structures). Tasks are
interrupted or woken up, and forced to change their patched state. The fake signal
is automatically sent every 15 seconds.

Administrator can also affect a transition through
/sys/kernel/livepatch/<patch>/force attribute. Writing 1 there clears
TIF PATCH PENDING flag of all tasks and thus forces the tasks to the patched
state. Important note! The force attribute is intended for cases when the
transition gets stuck for a long time because of a blocking task. Administrator
is expected to collect all necessary data (namely stack traces of such blocking
tasks) and request a clearance from a patch distributor to force the transition.
Unauthorized usage may cause harm to the system. It depends on the nature
of the patch, which functions are (un)patched, and which functions the blocking
tasks are sleeping in (/proc/<pid>/stack may help here). Removal (rmmod) of
patch modules is permanently disabled when the force feature is used. It cannot
be guaranteed there is no task sleeping in such module. It implies unbounded
reference count if a patch module is disabled and enabled in a loop.

Moreover, the usage of force may also affect future applications of live patches
and cause even more harm to the system. Administrator should first consider to

1.3. 3. Consistency model 3



Linux Livepatch Documentation

simply cancel a transition (see above). If force is used, reboot should be planned
and no more live patches applied.

1.3.1 3.1 Adding consistency model support to new architectures

For adding consistency model support to new architectures, there are a few op-
tions:

1) Add CONFIG HAVE RELIABLE STACKTRACE. This means porting objtool,
and for non-DWARF unwinders, also making sure there’ s a way for the stack
tracing code to detect interrupts on the stack.

2) Alternatively, ensure that every kthread has a call to klp update patch state()
in a safe location. Kthreads are typically in an infinite loop which does some
action repeatedly. The safe location to switch the kthread’ s patch state would
be at a designated point in the loop where there are no locks taken and all
data structures are in a well-defined state.

The location is clear when using workqueues or the kthread worker API.
These kthreads process independent actions in a generic loop.

It’ s much more complicated with kthreads which have a custom loop. There
the safe location must be carefully selected on a case-by-case basis.

In that case, arches without HAVE RELIABLE STACKTRACE would still be
able to use the non-stack-checking parts of the consistency model:

a) patching user tasks when they cross the kernel/user space boundary; and
b) patching kthreads and idle tasks at their designated patch points.

This option isn’ t as good as option 1 because it requires signaling user tasks
and waking kthreads to patch them. But it could still be a good backup option
for those architectures which don’ t have reliable stack traces yet.

1.4 4. Livepatch module

Livepatches are distributed using kernel modules, see
samples/livepatch/livepatch-sample.c.

The module includes a new implementation of functions that we want to replace.
In addition, it defines some structures describing the relation between the original
and the new implementation. Then there is code that makes the kernel start using
the new code when the livepatch module is loaded. Also there is code that cleans
up before the livepatch module is removed. All this is explained in more details in
the next sections.

4 Chapter 1. Livepatch



Linux Livepatch Documentation

1.4.1 4.1. New functions

New versions of functions are typically just copied from the original sources. A
good practice is to add a prefix to the names so that they can be distinguished
from the original ones, e.g. in a backtrace. Also they can be declared as static
because they are not called directly and do not need the global visibility.

The patch contains only functions that are really modified. But they might want to
access functions or data from the original source file that may only be locally acces-
sible. This can be solved by a special relocation section in the generated livepatch
module, see Documentation/livepatch/module-elf-format.rst for more details.

1.4.2 4.2. Metadata

The patch is described by several structures that split the information into three
levels:

» struct klp func is defined for each patched function. It describes the relation
between the original and the new implementation of a particular function.

The structure includes the name, as a string, of the original function. The
function address is found via kallsyms at runtime.

Then it includes the address of the new function. It is defined directly by
assigning the function pointer. Note that the new function is typically defined
in the same source file.

As an optional parameter, the symbol position in the kallsyms database can
be used to disambiguate functions of the same name. This is not the absolute
position in the database, but rather the order it has been found only for a
particular object ( vimlinux or a kernel module ). Note that kallsyms allows
for searching symbols according to the object name.

» struct klp object defines an array of patched functions (struct klp func) in the
same object. Where the object is either vmlinux (NULL) or a module name.

The structure helps to group and handle functions for each object together.
Note that patched modules might be loaded later than the patch itself and
the relevant functions might be patched only when they are available.

» struct klp patch defines an array of patched objects (struct klp object).

This structure handles all patched functions consistently and eventually, syn-
chronously. The whole patch is applied only when all patched symbols are
found. The only exception are symbols from objects (kernel modules) that
have not been loaded yet.

For more details on how the patch is applied on a per-task basis, see the
“Consistency model” section.

1.4. 4. Livepatch module 5



Linux Livepatch Documentation

1.5 5. Livepatch life-cycle

Livepatching can be described by five basic operations: loading, enabling, replac-
ing, disabling, removing.

Where the replacing and the disabling operations are mutually exclusive. They
have the same result for the given patch but not for the system.

1.5.1 5.1. Loading

The only reasonable way is to enable the patch when the livepatch kernel module
is being loaded. For this, klp enable patch() has to be called in the module init()
callback. There are two main reasons:

First, only the module has an easy access to the related struct klp patch.

Second, the error code might be used to refuse loading the module when the patch
cannot get enabled.

1.5.2 5.2. Enabling

The livepatch gets enabled by calling klp enable patch() from the module init()
callback. The system will start using the new implementation of the patched func-
tions at this stage.

First, the addresses of the patched functions are found according to their names.
The special relocations, mentioned in the section “New functions” , are applied.
The relevant entries are created under /sys/kernel/livepatch/<name>. The patch
is rejected when any above operation fails.

Second, livepatch enters into a transition state where tasks are converging to the
patched state. If an original function is patched for the first time, a function spe-
cific struct klp ops is created and an universal ftrace handler is registered'. This
stage is indicated by a value of ‘1’ in /sys/kernel/livepatch/<name>/transition.
For more information about this process, see the “Consistency model” section.

Finally, once all tasks have been patched, the ‘transition’ value changesto ‘0’ .

! Note that functions might be patched multiple times. The ftrace handler is registered only once
for a given function. Further patches just add an entry to the list (see field func_stack) of the struct
klp ops. The right implementation is selected by the ftrace handler, see the “Consistency model”
section.

That said, it is highly recommended to use cumulative livepatches because they help keeping
the consistency of all changes. In this case, functions might be patched two times only during the
transition period.

6 Chapter 1. Livepatch



Linux Livepatch Documentation

1.5.3 5.3. Replacing

All enabled patches might get replaced by a cumulative patch that has the .replace
flag set.

Once the new patch is enabled and the ‘transition’ finishes then all the functions
(struct klp func) associated with the replaced patches are removed from the cor-
responding struct klp ops. Also the ftrace handler is unregistered and the struct
klp ops is freed when the related function is not modified by the new patch and
func stack list becomes empty.

See Documentation/livepatch/cumulative-patches.rst for more details.

1.5.4 5.4. Disabling

Enabled patches might get disabled by writing ‘0 to
/sys/kernel/livepatch/<name>/enabled.

First, livepatch enters into a transition state where tasks are converging to the
unpatched state. The system starts using either the code from the previously en-
abled patch or even the original one. This stage is indicated by a value of ‘1’
in /sys/kernel/livepatch/<name>/transition. For more information about this pro-
cess, see the “Consistency model” section.

Second, once all tasks have been unpatched, the ‘transition’ value changesto ‘0’ .
All the functions (struct klp func) associated with the to-be-disabled patch are re-
moved from the corresponding struct klp ops. The ftrace handler is unregistered
and the struct klp ops is freed when the func stack list becomes empty.

Third, the sysfs interface is destroyed.

1.5.5 5.5. Removing

Module removal is only safe when there are no users of functions provided by
the module. This is the reason why the force feature permanently disables the
removal. Only when the system is successfully transitioned to a new patch state
(patched/unpatched) without being forced it is guaranteed that no task sleeps or
runs in the old code.

1.6 6. Sysfs

Information about the registered patches can be found under /sys/kernel/livepatch.
The patches could be enabled and disabled by writing there.

/sys/kernel/livepatch/<patch>/force attributes allow administrator to affect a
patching operation.

See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.

1.6. 6. Sysfs 7



Linux Livepatch Documentation

1.7 7. Limitations

The current Livepatch implementation has several limitations:
* Only functions that can be traced could be patched.

Livepatch is based on the dynamic ftrace. In particular, functions implement-
ing ftrace or the livepatch ftrace handler could not be patched. Otherwise,
the code would end up in an infinite loop. A potential mistake is prevented
by marking the problematic functions by “notrace” .

» Livepatch works reliably only when the dynamic ftrace is located at the very
beginning of the function.

The function need to be redirected before the stack or the function parame-
ters are modified in any way. For example, livepatch requires using -fentry
gcc compiler option on x86 64.

One exception is the PPC port. It uses relative addressing and TOC. Each
function has to handle TOC and save LR before it could call the ftrace handler.
This operation has to be reverted on return. Fortunately, the generic ftrace
code has the same problem and all this is handled on the ftrace level.

* Kretprobes using the ftrace framework conflict with the patched functions.

Both kretprobes and livepatches use a ftrace handler that modifies the return
address. The first user wins. Either the probe or the patch is rejected when
the handler is already in use by the other.

* Kprobes in the original function are ignored when the code is redirected to
the new implementation.

There is a work in progress to add warnings about this situation.

8 Chapter 1. Livepatch



CHAPTER
TWO

(UN)PATCHING CALLBACKS

Livepatch (un)patch-callbacks provide a mechanism for livepatch modules to exe-
cute callback functions when a kernel object is (un)patched. They can be consid-
ered a power feature that extends livepatching abilities to include:

* Safe updates to global data
e “Patches” to init and probe functions
* Patching otherwise unpatchable code (i.e. assembly)

In most cases, (un)patch callbacks will need to be used in conjunction with memory
barriers and kernel synchronization primitives, like mutexes/spinlocks, or even
stop machine(), to avoid concurrency issues.

2.1 1. Motivation

Callbacks differ from existing kernel facilities:
¢ Module init/exit code doesn’ t run when disabling and re-enabling a patch.
¢ A module notifier can’ t stop a to-be-patched module from loading.

Callbacks are part of the klp object structure and their implementation is specific
to that klp object. Other livepatch objects may or may not be patched, irrespective
of the target klp object’ s current state.

2.2 2. Callback types

Callbacks can be registered for the following livepatch actions:
* Pre-patch
- before a klp object is patched
* Post-patch
- after a klp object has been patched and is active across all tasks
* Pre-unpatch

- before a klp object is unpatched (ie, patched code is active), used to
clean up post-patch callback resources




Linux Livepatch Documentation

* Post-unpatch

- after a klp object has been patched, all code has been restored and no
tasks are running patched code, used to cleanup pre-patch callback
resources

2.3 3. How it works

Each callback is optional, omitting one does not preclude specifying any other.
However, the livepatching core executes the handlers in symmetry: pre-patch
callbacks have a post-unpatch counterpart and post-patch callbacks have a pre-
unpatch counterpart. An unpatch callback will only be executed if its correspond-
ing patch callback was executed. Typical use cases pair a patch handler that ac-
quires and configures resources with an unpatch handler tears down and releases
those same resources.

A callback is only executed if its host klp object is loaded. For in-kernel vmlinux
targets, this means that callbacks will always execute when a livepatch is en-
abled/disabled. For patch target kernel modules, callbacks will only execute if
the target module is loaded. When a module target is (un)loaded, its callbacks will
execute only if the livepatch module is enabled.

The pre-patch callback, if specified, is expected to return a status code (0 for suc-
cess, -ERRNO on error). An error status code indicates to the livepatching core
that patching of the current klp object is not safe and to stop the current patching
request. (When no pre-patch callback is provided, the transition is assumed to be
safe.) If a pre-patch callback returns failure, the kernel’ s module loader will:

* Refuse to load a livepatch, if the livepatch is loaded after targeted code.
or:
* Refuse to load a module, if the livepatch was already successfully loaded.

No post-patch, pre-unpatch, or post-unpatch callbacks will be executed for a given
klp object if the object failed to patch, due to a failed pre patch callback or for any
other reason.

If a patch transition is reversed, no pre-unpatch handlers will be run (this follows
the previously mentioned symmetry - pre-unpatch callbacks will only occur if their
corresponding post-patch callback executed).

If the object did successfully patch, but the patch transition never started for some
reason (e.g., if another object failed to patch), only the post-unpatch callback will
be called.

10 Chapter 2. (Un)patching Callbacks



Linux Livepatch Documentation

2.4 4. Use cases

Sample livepatch modules demonstrating the callback API can be found in sam-
ples/livepatch/ directory. These samples were modified for use in kselftests and
can be found in the lib/livepatch directory.

2.4.1 Global data update

A pre-patch callback can be useful to update a global variable. For example,
75ff39ccclbd ( “tcp: make challenge acks less predictable” ) changes a global
sysctl, as well as patches the tcp send challenge ack() function.

In this case, if we’ re being super paranoid, it might make sense
to patch the data after patching is complete with a post-patch call-
back, so that tcp send challenge ack() could first be changed to read
sysctl tcp challenge ack limit with READ ONCE.

2.4.2 _init and probe function patches support

Although init and probe functions are not directly livepatch-able, it may be pos-
sible to implement similar updates via pre/post-patch callbacks.

The commit 48900cb6af42 ("virtio-net: drop NETIF F FRAGLIST") change
the way that virtnet probe() initialized its driver’ s net device features. A pre/post-
patch callback could iterate over all such devices, making a similar change to their
hw features value. (Client functions of the value may need to be updated accord-

ingly.)

2.4. 4. Use cases 11



Linux Livepatch Documentation

12 Chapter 2. (Un)patching Callbacks



CHAPTER
THREE

ATOMIC REPLACE & CUMULATIVE PATCHES

There might be dependencies between livepatches. If multiple patches need to
do different changes to the same function(s) then we need to define an order in
which the patches will be installed. And function implementations from any newer
livepatch must be done on top of the older ones.

This might become a maintenance nightmare. Especially when more patches mod-
ified the same function in different ways.

An elegant solution comes with the feature called “Atomic Replace” . It allows
creation of so called “Cumulative Patches”. They include all wanted changes from
all older livepatches and completely replace them in one transition.

3.1 Usage

The atomic replace can be enabled by setting “replace” flag in struct klp patch,
for example:

static struct klp patch patch = {
.mod = THIS MODULE,
.objs = objs,
.replace = true,

1

All processes are then migrated to use the code only from the new patch. Once
the transition is finished, all older patches are automatically disabled.

Ftrace handlers are transparently removed from functions that are no longer mod-
ified by the new cumulative patch.

As a result, the livepatch authors might maintain sources only for one cumulative
patch. It helps to keep the patch consistent while adding or removing various fixes
or features.

Users could keep only the last patch installed on the system after the transition to
has finished. It helps to clearly see what code is actually in use. Also the livepatch
might then be seen as a “normal” module that modifies the kernel behavior. The
only difference is that it can be updated at runtime without breaking its function-
ality.

13




Linux Livepatch Documentation

3.2 Features

The atomic replace allows:

* Atomically revert some functions in a previous patch while upgrading other

functions.

* Remove eventual performance impact caused by core redirection for func-

tions that are no longer patched.

* Decrease user confusion about dependencies between livepatches.

3.3 Limitations:

* Once the operation finishes, there is no straightforward way to reverse it and

restore the replaced patches atomically.

A good practice is to set .replace flag in any released livepatch. Then re-
adding an older livepatch is equivalent to downgrading to that patch. This is
safe as long as the livepatches do not do extra modifications in (un)patching
callbacks or in the module init() or module exit() functions, see below.

Also note that the replaced patch can be removed and loaded again only when
the transition was not forced.

Only the (un)patching callbacks from the new cumulative livepatch are ex-
ecuted. Any callbacks from the replaced patches are ignored.

In other words, the cumulative patch is responsible for doing any actions that
are necessary to properly replace any older patch.

As a result, it might be dangerous to replace newer cumulative patches by
older ones. The old livepatches might not provide the necessary callbacks.

This might be seen as a limitation in some scenarios. But it makes life easier
in many others. Only the new cumulative livepatch knows what fixes/features
are added/removed and what special actions are necessary for a smooth tran-
sition.

In any case, it would be a nightmare to think about the order of the various
callbacks and their interactions if the callbacks from all enabled patches were
called.

There is no special handling of shadow variables. Livepatch authors must
create their own rules how to pass them from one cumulative patch to the
other. Especially that they should not blindly remove them in module exit()
functions.

A good practice might be to remove shadow variables in the post-unpatch
callback. It is called only when the livepatch is properly disabled.

14

Chapter 3. Atomic Replace & Cumulative Patches



CHAPTER
FOUR

LIVEPATCH MODULE ELF FORMAT

This document outlines the Elf format requirements that livepatch modules must
follow.

4.1 1. Background and motivation

Formerly, livepatch required separate architecture-specific code to write reloca-
tions. However, arch-specific code to write relocations already exists in the mod-
ule loader, so this former approach produced redundant code. So, instead of dupli-
cating code and re-implementing what the module loader can already do, livepatch
leverages existing code in the module loader to perform the all the arch-specific
relocation work. Specifically, livepatch reuses the apply relocate add() function
in the module loader to write relocations. The patch module Elf format described
in this document enables livepatch to be able to do this. The hope is that this will
make livepatch more easily portable to other architectures and reduce the amount
of arch-specific code required to port livepatch to a particular architecture.

Since apply relocate add() requires access to a module’ s section header table,
symbol table, and relocation section indices, EIf information is preserved for
livepatch modules (see section 5). Livepatch manages its own relocation sections
and symbols, which are described in this document. The EIf constants used to
mark livepatch symbols and relocation sections were selected from OS-specific
ranges according to the definitions from glibc.

4.1.1 Why does livepatch need to write its own relocations?

A typical livepatch module contains patched versions of functions that can refer-
ence non-exported global symbols and non-included local symbols. Relocations
referencing these types of symbols cannot be left in as-is since the kernel module
loader cannot resolve them and will therefore reject the livepatch module. Fur-
thermore, we cannot apply relocations that affect modules not yet loaded at patch
module load time (e.g. a patch to a driver that is not loaded). Formerly, livepatch
solved this problem by embedding special “dynrela” (dynamic rela) sections in the
resulting patch module Elf output. Using these dynrela sections, livepatch could
resolve symbols while taking into account its scope and what module the sym-
bol belongs to, and then manually apply the dynamic relocations. However this
approach required livepatch to supply arch-specific code in order to write these
relocations. In the new format, livepatch manages its own SHT RELA relocation
sections in place of dynrela sections, and the symbols that the relas reference are

15



Linux Livepatch Documentation

special livepatch symbols (see section 2 and 3). The arch-specific livepatch relo-
cation code is replaced by a call to apply relocate add().

4.2 2. Livepatch modinfo field

Livepatch modules are required to have the “livepatch” modinfo attribute. See
the sample livepatch module in samples/livepatch/ for how this is done.

Livepatch modules can be identified by users by using the ‘modinfo’ command
and looking for the presence of the “livepatch” field. This field is also used by the
kernel module loader to identify livepatch modules.

4.2.1 Example:

Modinfo output:

% modinfo livepatch-meminfo.ko

filename: livepatch-meminfo.ko
livepatch: Y

license: GPL

depends:

vermagic: 4.3.0+ SMP mod unload

4.3 3. Livepatch relocation sections

A livepatch module manages its own Elf relocation sections to apply relocations to
modules as well as to the kernel (vimmlinux) at the appropriate time. For example, if
a patch module patches a driver that is not currently loaded, livepatch will apply
the corresponding livepatch relocation section(s) to the driver once it loads.

Each “object” (e.g. vmlinux, or a module) within a patch module may have multiple
livepatch relocation sections associated with it (e.g. patches to multiple functions
within the same object). There is a 1-1 correspondence between a livepatch re-
location section and the target section (usually the text section of a function) to
which the relocation(s) apply. It is also possible for a livepatch module to have no
livepatch relocation sections, as in the case of the sample livepatch module (see
samples/livepatch).

Since EIf information is preserved for livepatch modules (see Section 5), a
livepatch relocation section can be applied simply by passing in the appropriate
section index to apply relocate add(), which then uses it to access the relocation
section and apply the relocations.

Every symbol referenced by a rela in a livepatch relocation section is a livepatch
symbol. These must be resolved before livepatch can call apply relocate add().
See Section 3 for more information.

16 Chapter 4. Livepatch module EIf format




Linux Livepatch Documentation

4.4 3.1 Livepatch relocation section format

Livepatch relocation sections must be marked with the SHF RELA LIVEPATCH
section flag. See include/uapi/linux/elf.h for the definition. The module loader
recognizes this flag and will avoid applying those relocation sections at patch mod-
ule load time. These sections must also be marked with SHF ALLOC, so that the
module loader doesn’ t discard them on module load (i.e. they will be copied into
memory along with the other SHF ALLOC sections).

The name of a livepatch relocation section must conform to the following format:

.klp.rela.objname.section name

AN A AN N

| N || |
[A] [B] [C]

[A] The relocation section name is prefixed with the string “Xklp.rela.”

[B] The name of the object (i.e. “vmlinux” or name of module) to which the
relocation section belongs follows immediately after the prefix.

[C] The actual name of the section to which this relocation section applies.

4.4.1 Examples:

Livepatch relocation section names:

.klp.rela.ext4.text.ext4 attr store
.klp.rela.vmlinux.text.cmdline proc_show

‘readelf -sections’ output for a patch module that patches vimlinux and
modules 9p, btrfs, ext4:

Section Headers:

[Nr] Name Type Address
— Off Size ES Flg Lk Inf Al

[ snip ]

[29] .Kklp.rela.9p.text.caches.show RELA
—0000000000000000 002d58 0000cO 18 AIo 64 9 8

[30] .klp.rela.btrfs.text.btrfs.feature.attr.show RELA
—0000000000000000 002e18 000060 18 AIo 64 11 8

[ snip ]

[34] .klp.rela.ext4.text.extd.attr.store RELA
—0000000000000000 002fd8 0000d8 18 AIo 64 13 8

[35] .klp.rela.ext4.text.ext4.attr.show RELA
—0000000000000000 0030bO 000150 18 AIo 64 15 8

[36] .klp.rela.vmlinux.text.cmdline.proc.show RELA
—0000000000000000 003200 000018 18 AIo 64 17 8

[37] .klp.rela.vmlinux.text.meminfo.proc.show RELA
—0000000000000000 003218 0000f0 18 AIo 64 19 8

[ snip ] n

—

N

[*] u

—

(continues on next page)

4.4. 3.1 Livepatch relocation section format 17




Linux Livepatch Documentation

(continued from previous page)

|

[*] Livepatch relocation sections are SHT RELA sections but with a few special
characteristics. Notice that they are marked SHF ALLOC ( “A” ) so that they
will not be discarded when the module is loaded into memory, as well as with
the SHF RELA LIVEPATCH flag ( “0” - for OS-specific).

‘readelf -relocs’ output for a patch module:

Relocation section '.klp.rela.btrfs.text.btrfs feature attr show' at,
—offset Ox2ba@ contains 4 entries:

Offset Info Type Symbol's Value
—Symbol's Name + Addend
000000000000001f 000000500000002 R X86 64 PC32 0000000000000000,,
—.klp.sym.vmlinux.printk,0 - 4
0000000000000028 0000003d0OOOOOOD R X86 64 32S 0000000000000000
—.klp.sym.btrfs.btrfs ktype,0 + 0
0000000000000036 0000003bOOEEOOO2 R X86 64 PC32 0000000000000000,,
—.klp.sym.btrfs.can modify feature.isra.3,0 - 4
000000000000004c 0000004900000002 R X86 64 PC32 0000000000000000
—.klp.sym.vmlinux.snprintf,0 - 4
[ snip ] o
=
= [*]

[*] Every symbol referenced by a relocation is a livepatch symbol.

4.5 4. Livepatch symbols

Livepatch symbols are symbols referred to by livepatch relocation sections. These
are symbols accessed from new versions of functions for patched objects, whose
addresses cannot be resolved by the module loader (because they are local or un-
exported global syms). Since the module loader only resolves exported syms, and
not every symbol referenced by the new patched functions is exported, livepatch
symbols were introduced. They are used also in cases where we cannot immedi-
ately know the address of a symbol when a patch module loads. For example, this
is the case when livepatch patches a module that is not loaded yet. In this case,
the relevant livepatch symbols are resolved simply when the target module loads.
In any case, for any livepatch relocation section, all livepatch symbols referenced
by that section must be resolved before livepatch can call apply relocate add() for
that reloc section.

Livepatch symbols must be marked with SHN LIVEPATCH so that the module
loader can identify and ignore them. Livepatch modules keep these symbols in
their symbol tables, and the symbol table is made accessible through module-
>symtab.

18 Chapter 4. Livepatch module EIf format



Linux Livepatch Documentation

4.6 4.1 A livepatch module’ s symbol table

Normally, a stripped down copy of a module’ s symbol table (containing only “core”
symbols) is made available through module->symtab (See layout symtab() in ker-
nel/module.c). For livepatch modules, the symbol table copied into memory on
module load must be exactly the same as the symbol table produced when the
patch module was compiled. This is because the relocations in each livepatch re-
location section refer to their respective symbols with their symbol indices, and
the original symbol indices (and thus the symtab ordering) must be preserved in
order for apply relocate add() to find the right symbol.

For example, take this particular rela from a livepatch module::

Relocation section '.klp.rela.btrfs.text.btrfs feature attr show' at,
—offset Ox2ba® contains 4 entries:

Offset Info Type Symbol's Value
—Symbol's Name + Addend
000000000000001f 0000005€00000002 R X86 64 PC32 0000000000000000

~.klp.sym.vmlinux.printk,0 - 4

This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol
—index is encoded

in '"Info'. Here its symbol index is 0x5e, which is 94 in decimal, which,
—refers to the

symbol index 94.

And in this patch module's corresponding symbol table, symbol index 94,
—refers to that very symbol:

[ snip ]

94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT 0S [0xff20] .klp.sym.
—vmlinux.printk,0

[ snip ]

4.7 4.2 Livepatch symbol format

Livepatch symbols must have their section index marked as SHN LIVEPATCH, so
that the module loader can identify them and not attempt to resolve them. See
include/uapi/linux/elf.h for the actual definitions.

Livepatch symbol names must conform to the following format:

.klp.sym.objname.symbol name, sympos

| || || ||
[A] [B] [C] (D]

[A] The symbol name is prefixed with the string “klp.sym.”

[B] The name of the object (i.e. “vmlinux” or name of module) to which the symbol
belongs follows immediately after the prefix.

[C] The actual name of the symbol.

[D] The position of the symbol in the object (as according to kallsyms) This is
used to differentiate duplicate symbols within the same object. The symbol

4.6. 4.1 A livepatch module’ s symbol table 19




Linux Livepatch Documentation

position is expressed numerically (0, 1, 2:--). The symbol position of a unique
symbol is 0.

4.7.1 Examples:

Livepatch symbol names:

.klp.sym.vmlinux.snprintf,0
.klp.sym.vmlinux.printk, 0
.klp.sym.btrfs.btrfs ktype,0

‘readelf -symbols” output for a patch module:

Symbol table '.symtab' contains 127 entries:

Num: Value Size Type Bind Vis Ndx Name
[ snip ]
73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT 0S [0xff20] .klp.sym.
—vmlinux.snprintf,©
74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT 0S [0xff20] .klp.sym.
—vmlinux.capable, 0
75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT 0S [0Oxff20] .klp.sym.
—vmlinux.find next bit,0
76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT 0S [0xff20] .klp.sym.
—vmlinux.si swapinfo,0
[ snip ] ~

[*]

[*] Note that the ‘Ndx’ (Section index) for these symbols is SHN LIVEPATCH
(0xff20). “OS” means OS-specific.

4.8 5. Symbol table and EIf section access

A livepatch module’ s symbol table is accessible through module->symtab.

Since apply relocate add() requires access to a module’ s section headers, symbol
table, and relocation section indices, Elf information is preserved for livepatch
modules and is made accessible by the module loader through module->klp info,
which is a klp modinfo struct. When a livepatch module loads, this struct is filled
in by the module loader. Its fields are documented below:

struct klp _modinfo {
Elf Ehdr hdr; /* Elf header */
Elf Shdr *sechdrs; /* Section header table */
char *secstrings; /* String table for the section headers */
unsigned int symndx; /* The symbol table section index */

20 Chapter 4. Livepatch module EIf format




CHAPTER
FIVE

SHADOW VARIABLES

Shadow variables are a simple way for livepatch modules to associate additional
“shadow” data with existing data structures. Shadow data is allocated separately
from parent data structures, which are left unmodified. The shadow variable API
described in this document is used to allocate/add and remove/free shadow vari-
ables to/from their parents.

The implementation introduces a global, in-kernel hashtable that associates point-
ers to parent objects and a numeric identifier of the shadow data. The numeric
identifier is a simple enumeration that may be used to describe shadow variable
version, class or type, etc. More specifically, the parent pointer serves as the
hashtable key while the numeric id subsequently filters hashtable queries. Mul-
tiple shadow variables may attach to the same parent object, but their numeric
identifier distinguishes between them.

5.1 1. Brief APl summary

(See the full API usage docbook notes in livepatch/shadow.c.)

A hashtable references all shadow variables. These references are stored and
retrieved through a <obj, id> pair.

* The klp shadow variable data structure encapsulates both tracking meta-data
and shadow-data:

- meta-data
* obj - pointer to parent object
* id - data identifier

- datal[] - storage for shadow data

It is important to note that the klp shadow alloc() and klp shadow get or alloc()
are zeroing the variable by default. They also allow to call a custom constructor
function when a non-zero value is needed. Callers should provide whatever mutual
exclusion is required.

Note that the constructor is called under klp shadow lock spinlock. It allows to
do actions that can be done only once when a new variable is allocated.

* klp shadow get() - retrieve a shadow variable data pointer - search hashtable
for <obj, id> pair

21



Linux Livepatch Documentation

* klp shadow alloc() - allocate and add a new shadow variable - search
hashtable for <obj, id> pair

- if exists
* WARN and return NULL

- if <obj, id> doesn’ t already exist
* allocate a new shadow variable

* initialize the variable using a custom constructor and data when pro-
vided

* add <obj, id> to the global hashtable

* klp shadow get or alloc() - get existing or alloc a new shadow variable -
search hashtable for <obj, id> pair

- if exists
* return existing shadow variable
- if <obj, id> doesn’ t already exist
* allocate a new shadow variable

* initialize the variable using a custom constructor and data when pro-
vided

* add <obj, id> pair to the global hashtable

* klp shadow free() - detach and free a <obj, id> shadow variable - find and
remove a <obj, id> reference from global hashtable

- if found
* call destructor function if defined
* free shadow variable

* klp shadow free all() - detach and free all <, id> shadow variables - find and
remove any <, id> references from global hashtable

- if found
* call destructor function if defined

* free shadow variable

5.2 2. Use cases

(See the example shadow variable livepatch modules in samples/livepatch/ for full
working demonstrations.)

For the following use-case examples, consider commit 1d147bfa6429 (“mac80211:
fix AP powersave TX vs. wakeup race” ), which added a spinlock to
net/mac80211/sta_info.h :: struct sta info. Each use-case example can be con-
sidered a stand-alone livepatch implementation of this fix.

22 Chapter 5. Shadow Variables



Linux Livepatch Documentation

5.2.1 Matching parent’ s lifecycle

If parent data structures are frequently created and destroyed, it may be easiest
to align their shadow variables lifetimes to the same allocation and release func-
tions. In this case, the parent data structure is typically allocated, initialized, then
registered in some manner. Shadow variable allocation and setup can then be
considered part of the parent’ s initialization and should be completed before the
parent “goes live” (ie, any shadow variable get-API requests are made for this
<obj, id> pair.)

For commit 1d147bfa6429, when a parent sta_info structure is allocated, allocate
a shadow copy of the ps lock pointer, then initialize it:

#define PS LOCK 1
struct sta_info *sta info _alloc(struct ieee80211 sub if data *sdata,
const u8 *addr, gfp_t gfp)
{
struct sta info *sta;
spinlock t *ps lock;

/* Parent structure is created */
sta = kzalloc(sizeof(*sta) + hw->sta data size, gfp);

/* Attach a corresponding shadow variable, then initialize it */
ps_lock = klp shadow alloc(sta, PS LOCK, sizeof(*ps lock), gfp,
NULL, NULL);
if (!ps_lock)
goto shadow fail;
spin lock init(ps_lock);

When requiring a ps lock, query the shadow variable API to retrieve one for a
specific struct sta info::

void ieee80211 sta ps deliver wakeup(struct sta info *sta)

{
spinlock t *ps lock;

/* sync with ieee80211 tx h unicast ps buf */
ps lock = klp shadow get(sta, PS LOCK);
if (ps_lock)

spin_lock(ps_ lock);

When the parent sta info structure is freed, first free the shadow variable:

void sta info free(struct ieeeB80211 local *local, struct sta info *sta)

{
klp shadow free(sta, PS LOCK, NULL);
kfree(sta);

5.2. 2. Use cases 23




Linux Livepatch Documentation

5.2.2 In-flight parent objects

Sometimes it may not be convenient or possible to allocate shadow variables along-
side their parent objects. Or a livepatch fix may require shadow varibles to only
a subset of parent object instances. In these cases, the klp shadow get or alloc()
call can be used to attach shadow variables to parents already in-flight.

For commit 1d147bfa6429, a good spot to allocate a shadow spinlock is inside
ieee80211 sta ps deliver wakeup():

int ps lock shadow ctor(void *obj, void *shadow data, void *ctor data)

{

spinlock t *lock = shadow data;

spin_lock init(lock);
return 0;

}

#define PS LOCK 1
void ieee80211 sta ps deliver wakeup(struct sta info *sta)

{
spinlock t *ps lock;

/* sync with ieee80211 tx h unicast ps buf */

ps_lock = klp shadow get or alloc(sta, PS_LOCK,
sizeof(*ps lock), GFP_ATOMIC,
ps_lock shadow ctor, NULL);

if (ps_lock)
spin_lock(ps_lock);

This usage will create a shadow variable, only if needed, otherwise it will use one
that was already created for this <obj, id> pair.

Like the previous use-case, the shadow spinlock needs to be cleaned up. A shadow
variable can be freed just before its parent object is freed, or even when the
shadow variable itself is no longer required.

5.2.3 Other use-cases

Shadow variables can also be used as a flag indicating that a data structure was
allocated by new, livepatched code. In this case, it doesn’ t matter what data value
the shadow variable holds, its existence suggests how to handle the parent object.

24 Chapter 5. Shadow Variables




Linux Livepatch Documentation

5.3 3. References

e https://github.com/dynup/kpatch

The livepatch implementation is based on the kpatch version of shadow vari-
ables.

» http://files.mkgnu.net/files/dynamos/doc/papers/dynamos_eurosys 07.pdf

Dynamic and Adaptive Updates of Non-Quiescent Subsystems in Commodity
Operating System Kernels (Kritis Makris, Kyung Dong Ryu 2007) presented
a datatype update technique called “shadow data structures” .

5.3. 3. References 25


https://github.com/dynup/kpatch
http://files.mkgnu.net/files/dynamos/doc/papers/dynamos_eurosys_07.pdf

Linux Livepatch Documentation

26 Chapter 5. Shadow Variables



CHAPTER
SIX

SYSTEM STATE CHANGES

Some users are really reluctant to reboot a system. This brings the need to provide
more livepatches and maintain some compatibility between them.

Maintaining more livepatches is much easier with cumulative livepatches. Each
new livepatch completely replaces any older one. It can keep, add, and even re-
move fixes. And it is typically safe to replace any version of the livepatch with any
other one thanks to the atomic replace feature.

The problems might come with shadow variables and callbacks. They might
change the system behavior or state so that it is no longer safe to go back and
use an older livepatch or the original kernel code. Also any new livepatch must
be able to detect what changes have already been done by the already installed
livepatches.

This is where the livepatch system state tracking gets useful. It allows to:
» store data needed to manipulate and restore the system state

* define compatibility between livepatches using a change id and version

6.1 1. Livepatch system state API

The state of the system might get modified either by several livepatch callbacks or
by the newly used code. Also it must be possible to find changes done by already
installed livepatches.

Each modified state is described by struct klp state, see include/linux/livepatch.h.

Each livepatch defines an array of struct klp states. They mention all states that
the livepatch modifies.

The livepatch author must define the following two fields for each struct klp_state:
e id
- Non-zero number used to identify the affected system state.
* version

- Number describing the variant of the system state change that is sup-
ported by the given livepatch.

The state can be manipulated using two functions:

* klp get state(patch, id)

27



Linux Livepatch Documentation

- Get struct klp state associated with the given livepatch and state id.
* klp get prev state(id)

- Get struct klp state associated with the given feature id and already in-
stalled livepatches.

6.2 2. Livepatch compatibility

The system state version is used to prevent loading incompatible livepatches. The
check is done when the livepatch is enabled. The rules are:

* Any completely new system state modification is allowed.

* System state modifications with the same or higher version are allowed for
already modified system states.

* Cumulative livepatches must handle all system state modifications from al-
ready installed livepatches.

* Non-cumulative livepatches are allowed to touch already modified system
states.

6.3 3. Supported scenarios

Livepatches have their life-cycle and the same is true for the system state changes.
Every compatible livepatch has to support the following scenarios:

* Modify the system state when the livepatch gets enabled and the state has
not been already modified by a livepatches that are being replaced.

» Take over or update the system state modification when is has already been
done by a livepatch that is being replaced.

* Restore the original state when the livepatch is disabled.

* Restore the previous state when the transition is reverted. It might be the
original system state or the state modification done by livepatches that were
being replaced.

* Remove any already made changes when error occurs and the livepatch can-
not get enabled.

6.4 4. Expected usage

System states are usually modified by livepatch callbacks. The expected role of
each callback is as follows:

pre patch()

* Allocate state->data when necessary. The allocation might fail and
pre patch() is the only callback that could stop loading of the livepatch. The
allocation is not needed when the data are already provided by previously
installed livepatches.

28 Chapter 6. System State Changes



Linux Livepatch Documentation

* Do any other preparatory action that is needed by the new code even before
the transition gets finished. For example, initialize state->data.

The system state itself is typically modified in post patch() when the entire
system is able to handle it.

* Clean up its own mess in case of error. It might be done by a custom code or
by calling post unpatch() explicitly.

post patch()
* Copy state->data from the previous livepatch when they are compatible.

* Do the actual system state modification. Eventually allow the new code to
use it.

* Make sure that state->data has all necessary information.
* Free state->data from replaces livepatches when they are not longer needed.
pre unpatch()
* Prevent the code, added by the livepatch, relying on the system state change.
* Revert the system state modification..
post unpatch()

* Distinguish transition reverse and livepatch disabling by checking
klp get prev state().

* In case of transition reverse, restore the previous system state. It might mean
doing nothing.

* Remove any not longer needed setting or data.

Note: pre unpatch() typically does symmetric operations to post patch(). Except
that it is called only when the livepatch is being disabled. Therefore it does not
need to care about any previously installed livepatch.

post unpatch() typically does symmetric operations to pre patch(). It might be
called also during the transition reverse. Therefore it has to handle the state of
the previously installed livepatches.

6.4. 4. Expected usage 29



