
Linux Leds Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

LED HANDLING UNDER LINUX

In its simplest form, the LED class just allows control of LEDs from userspace.
LEDs appear in /sys/class/leds/. The maximum brightness of the LED is defined in
max_brightness file. The brightness file will set the brightness of the LED (taking
a value 0-max_brightness). Most LEDs don’t have hardware brightness support
so will just be turned on for non-zero brightness settings.

The class also introduces the optional concept of an LED trigger. A trigger is
a kernel based source of led events. Triggers can either be simple or complex.
A simple trigger isn’t configurable and is designed to slot into existing subsys-
tems with minimal additional code. Examples are the disk-activity, nand-disk and
sharpsl-charge triggers. With led triggers disabled, the code optimises away.

Complex triggers while available to all LEDs have LED specific parameters and
work on a per LED basis. The timer trigger is an example. The timer trig-
ger will periodically change the LED brightness between LED_OFF and the
current brightness setting. The “on”and “off”time can be specified via
/sys/class/leds/<device>/delay_{on,off} in milliseconds. You can change the
brightness value of a LED independently of the timer trigger. However, if you
set the brightness value to LED_OFF it will also disable the timer trigger.

You can change triggers in a similar manner to the way an IO scheduler is chosen
(via /sys/class/leds/<device>/trigger). Trigger specific parameters can appear in
/sys/class/leds/<device> once a given trigger is selected.

1

Linux Leds Documentation

1.1 Design Philosophy

The underlying design philosophy is simplicity. LEDs are simple devices and the
aim is to keep a small amount of code giving as much functionality as possible.
Please keep this in mind when suggesting enhancements.

1.2 LED Device Naming

Is currently of the form:

“devicename:color:function”
• devicename: it should refer to a unique identifier created by the kernel, like

e.g. phyN for network devices or inputN for input devices, rather than
to the hardware; the information related to the product and the bus to
which given device is hooked is available in sysfs and can be retrieved
using get_led_device_info.sh script from tools/leds; generally this section
is expected mostly for LEDs that are somehow associated with other de-
vices.

• color: one of LED_COLOR_ID_* definitions from the header include/dt-
bindings/leds/common.h.

• function: one of LED_FUNCTION_* definitions from the header include/dt-
bindings/leds/common.h.

If required color or function is missing, please submit a patch to linux-
leds@vger.kernel.org.

It is possible that more than one LED with the same color and function will be
required for given platform, differing only with an ordinal number. In this case it
is preferable to just concatenate the predefined LED_FUNCTION_* name with re-
quired“-N”suffix in the driver. fwnode based drivers can use function-enumerator
property for that and then the concatenation will be handled automatically by the
LED core upon LED class device registration.

LED subsystem has also a protection against name clash, that may occur when
LED class device is created by a driver of hot-pluggable device and it doesn’t
provide unique devicename section. In this case numerical suffix (e.g.“_1”,“_2”
, “_3”etc.) is added to the requested LED class device name.
There might be still LED class drivers around using vendor or product name
for devicename, but this approach is now deprecated as it doesn’t convey any
added value. Product information can be found in other places in sysfs (see
tools/leds/get_led_device_info.sh).

Examples of proper LED names:

•“red:disk”
•“white:flash”
•“red:indicator”
•“phy1:green:wlan”

2 Chapter 1. LED handling under Linux

mailto:linux-leds@vger.kernel.org
mailto:linux-leds@vger.kernel.org

Linux Leds Documentation

•“phy3::wlan”
•“:kbd_backlight”
•“input5::kbd_backlight”
•“input3::numlock”
•“input3::scrolllock”
•“input3::capslock”
•“mmc1::status”
•“white:status”

get_led_device_info.sh script can be used for verifying if the LED name meets the
requirements pointed out here. It performs validation of the LED class devicename
sections and gives hints on expected value for a section in case the validation fails
for it. So far the script supports validation of associations between LEDs and
following types of devices:

• input devices

• ieee80211 compliant USB devices

The script is open to extensions.

There have been calls for LED properties such as color to be exported as individual
led class attributes. As a solution which doesn’t incur as much overhead, I suggest
these become part of the device name. The naming scheme above leaves scope
for further attributes should they be needed. If sections of the name don’t apply,
just leave that section blank.

1.3 Brightness setting API

LED subsystem core exposes following API for setting brightness:

• led_set_brightness: it is guaranteed not to sleep, passing LED_OFF stops
blinking,

• led_set_brightness_sync: for use cases when immediate effect is desired -
it can block the caller for the time required for accessing device regis-
ters and can sleep, passing LED_OFF stops hardware blinking, returns
-EBUSY if software blink fallback is enabled.

1.4 LED registration API

A driver wanting to register a LED classdev for use by other drivers /
userspace needs to allocate and fill a led_classdev struct and then call
[devm_]led_classdev_register. If the non devm version is used the driver must call
led_classdev_unregister from its remove function before free-ing the led_classdev
struct.

If the driver can detect hardware initiated brightness changes and
thus wants to have a brightness_hw_changed attribute then the

1.3. Brightness setting API 3

Linux Leds Documentation

LED_BRIGHT_HW_CHANGED flag must be set in flags before registering.
Calling led_classdev_notify_brightness_hw_changed on a classdev not registered
with the LED_BRIGHT_HW_CHANGED flag is a bug and will trigger a WARN_ON.

1.5 Hardware accelerated blink of LEDs

Some LEDs can be programmed to blink without any CPU interaction. To sup-
port this feature, a LED driver can optionally implement the blink_set() function
(see <linux/leds.h>). To set an LED to blinking, however, it is better to use the
API function led_blink_set(), as it will check and implement software fallback if
necessary.

To turn off blinking, use the API function led_brightness_set() with brightness
value LED_OFF, which should stop any software timers that may have been re-
quired for blinking.

The blink_set() function should choose a user friendly blinking value if it is called
with *delay_on==0 && *delay_off==0 parameters. In this case the driver should
give back the chosen value through delay_on and delay_off parameters to the leds
subsystem.

Setting the brightness to zero with brightness_set() callback function should com-
pletely turn off the LED and cancel the previously programmed hardware blinking
function, if any.

1.6 Known Issues

The LED Trigger core cannot be a module as the simple trigger functions would
cause nightmare dependency issues. I see this as a minor issue compared to the
benefits the simple trigger functionality brings. The rest of the LED subsystem
can be modular.

1.7 Future Development

At the moment, a trigger can’t be created specifically for a single LED. There are
a number of cases where a trigger might only be mappable to a particular LED
(ACPI?). The addition of triggers provided by the LED driver should cover this
option and be possible to add without breaking the current interface.

4 Chapter 1. LED handling under Linux

CHAPTER

TWO

FLASH LED HANDLING UNDER LINUX

Some LED devices provide two modes - torch and flash. In the LED sub-
system those modes are supported by LED class (see Documentation/leds/leds-
class.rst) and LED Flash class respectively. The torch mode related features
are enabled by default and the flash ones only if a driver declares it by setting
LED_DEV_CAP_FLASH flag.

In order to enable the support for flash LEDs CONFIG_LEDS_CLASS_FLASH sym-
bol must be defined in the kernel config. A LED Flash class driver must be regis-
tered in the LED subsystem with led_classdev_flash_register function.

Following sysfs attributes are exposed for controlling flash LED devices: (see
Documentation/ABI/testing/sysfs-class-led-flash)

• flash_brightness

• max_flash_brightness

• flash_timeout

• max_flash_timeout

• flash_strobe

• flash_fault

2.1 V4L2 flash wrapper for flash LEDs

A LED subsystem driver can be controlled also from the level of VideoForLinux2
subsystem. In order to enable this CONFIG_V4L2_FLASH_LED_CLASS symbol has
to be defined in the kernel config.

The driver must call the v4l2_flash_init function to get registered in the V4L2 sub-
system. The function takes six arguments:

• dev: flash device, e.g. an I2C device
• of_node: of_node of the LED, may be NULL if the same as device’s
• fled_cdev: LED flash class device to wrap
• iled_cdev: LED flash class device representing indicator LED associated

with fled_cdev, may be NULL

• ops: V4L2 specific ops

5

Linux Leds Documentation

– external_strobe_set defines the source of the flash LED strobe -
V4L2_CID_FLASH_STROBE control or external source, typically
a sensor, which makes it possible to synchronise the flash strobe
start with exposure start,

– intensity_to_led_brightness and led_brightness_to_intensity
perform enum led_brightness <-> V4L2 intensity conversion in
a device specific manner - they can be used for devices with
non-linear LED current scale.

• config: configuration for V4L2 Flash sub-device
– dev_name the name of the media entity, unique in the system,
– flash_faults bitmask of flash faults that the LED flash class device

can report; corresponding LED_FAULT* bit definitions are avail-
able in <linux/led-class-flash.h>,

– torch_intensity constraints for the LED in TORCH mode in mi-
croamperes,

– indicator_intensity constraints for the indicator LED in microam-
peres,

– has_external_strobe determines whether the flash strobe source
can be switched to external,

On remove the v4l2_flash_release function has to be called, which takes one argu-
ment - struct v4l2_flash pointer returned previously by v4l2_flash_init. This func-
tion can be safely called with NULL or error pointer argument.

Please refer to drivers/leds/leds-max77693.c for an exemplary usage of the v4l2
flash wrapper.

Once the V4L2 sub-device is registered by the driver which created the Media
controller device, the sub-device node acts just as a node of a native V4L2 flash
API device would. The calls are simply routed to the LED flash API.

Opening the V4L2 flash sub-device makes the LED subsystem sysfs interface un-
available. The interface is re-enabled after the V4L2 flash sub-device is closed.

6 Chapter 2. Flash LED handling under Linux

CHAPTER

THREE

ONE-SHOT LED TRIGGER

This is a LED trigger useful for signaling the user of an event where there are no
clear trap points to put standard led-on and led-off settings. Using this trigger, the
application needs only to signal the trigger when an event has happened, than the
trigger turns the LED on and than keeps it off for a specified amount of time.

This trigger is meant to be usable both for sporadic and dense events. In the first
case, the trigger produces a clear single controlled blink for each event, while in
the latter it keeps blinking at constant rate, as to signal that the events are arriving
continuously.

A one-shot LED only stays in a constant state when there are no events. An addi-
tional“invert”property specifies if the LED has to stay off (normal) or on (inverted)
when not rearmed.

The trigger can be activated from user space on led class devices as shown below:

echo oneshot > trigger

This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot

Example use-case: network devices, initialization:

echo oneshot > trigger # set trigger for this led
echo 33 > delay_on # blink at 1 / (33 + 33) Hz on continuous traffic
echo 33 > delay_off

interface goes up:

echo 1 > invert # set led as normally-on, turn the led on

packet received/transmitted:

echo 1 > shot # led starts blinking, ignored if already blinking

interface goes down:

echo 0 > invert # set led as normally-off, turn the led off

7

Linux Leds Documentation

8 Chapter 3. One-shot LED Trigger

CHAPTER

FOUR

LED TRANSIENT TRIGGER

The leds timer trigger does not currently have an interface to activate a one shot
timer. The current support allows for setting two timers, one for specifying how
long a state to be on, and the second for how long the state to be off. The delay_on
value specifies the time period an LED should stay in on state, followed by a de-
lay_off value that specifies how long the LED should stay in off state. The on and
off cycle repeats until the trigger gets deactivated. There is no provision for one
time activation to implement features that require an on or off state to be held just
once and then stay in the original state forever.

Without one shot timer interface, user space can still use timer trigger to set a
timer to hold a state, however when user space application crashes or goes away
without deactivating the timer, the hardware will be left in that state permanently.

As a specific example of this use-case, let’s look at vibrate feature on phones.
Vibrate function on phones is implemented using PWMpins on SoC or PMIC. There
is a need to activate one shot timer to control the vibrate feature, to prevent user
space crashes leaving the phone in vibrate mode permanently causing the battery
to drain.

Transient trigger addresses the need for one shot timer activation. The transient
trigger can be enabled and disabled just like the other leds triggers.

When an led class device driver registers itself, it can specify all leds triggers
it supports and a default trigger. During registration, activation routine for the
default trigger gets called. During registration of an led class device, the LED
state does not change.

When the driver unregisters, deactivation routine for the currently active trigger
will be called, and LED state is changed to LED_OFF.

Driver suspend changes the LED state to LED_OFF and resume doesn’t change
the state. Please note that there is no explicit interaction between the suspend
and resume actions and the currently enabled trigger. LED state changes are
suspended while the driver is in suspend state. Any timers that are active at the
time driver gets suspended, continue to run, without being able to actually change
the LED state. Once driver is resumed, triggers start functioning again.

LED state changes are controlled using brightness which is a common led class de-
vice property. When brightness is set to 0 from user space via echo 0 > brightness,
it will result in deactivating the current trigger.

Transient trigger uses standard register and unregister interfaces. During trigger
registration, for each led class device that specifies this trigger as its default trig-

9

Linux Leds Documentation

ger, trigger activation routine will get called. During registration, the LED state
does not change, unless there is another trigger active, in which case LED state
changes to LED_OFF.

During trigger unregistration, LED state gets changed to LED_OFF.

Transient trigger activation routine doesn’t change the LED state. It creates its
properties and does its initialization. Transient trigger deactivation routine, will
cancel any timer that is active before it cleans up and removes the properties it
created. It will restore the LED state to non-transient state. When driver gets
suspended, irrespective of the transient state, the LED state changes to LED_OFF.

Transient trigger can be enabled and disabled from user space on led class devices,
that support this trigger as shown below:

echo transient > trigger
echo none > trigger

NOTE: Add a new property trigger state to control the state.
This trigger exports three properties, activate, state, and duration. When transient
trigger is activated these properties are set to default values.

• duration allows setting timer value in msecs. The initial value is 0.

• activate allows activating and deactivating the timer specified by duration as
needed. The initial and default value is 0. This will allow duration to be set
after trigger activation.

• state allows user to specify a transient state to be held for the specified du-
ration.

activate
– one shot timer activate mechanism. 1 when activated, 0 when
deactivated. default value is zero when transient trigger is
enabled, to allow duration to be set.

activate state indicates a timer with a value of specified du-
ration running. deactivated state indicates that there is no
active timer running.

duration
– one shot timer value. When activate is set, duration value
is used to start a timer that runs once. This value doesn’t
get changed by the trigger unless user does a set via echo
new_value > duration

state
– transient state to be held. It has two values 0 or 1. 0 maps
to LED_OFF and 1 maps to LED_FULL. The specified state is
held for the duration of the one shot timer and then the state
gets changed to the non-transient state which is the inverse of
transient state. If state = LED_FULL, when the timer runs out
the state will go back to LED_OFF. If state = LED_OFF, when
the timer runs out the state will go back to LED_FULL. Please
note that current LED state is not checked prior to changing

10 Chapter 4. LED Transient Trigger

Linux Leds Documentation

the state to the specified state. Driver could map these values
to inverted depending on the default states it defines for the
LED in its brightness_set() interface which is called from the
led brightness_set() interfaces to control the LED state.

When timer expires activate goes back to deactivated state, duration is left at the
set value to be used when activate is set at a future time. This will allow user
app to set the time once and activate it to run it once for the specified value as
needed. When timer expires, state is restored to the non-transient state which is
the inverse of the transient state:

echo 1 >
activate

starts timer = duration when duration is not 0.

echo 0 >
activate

cancels currently running timer.

echo n >
duration

stores timer value to be used upon next activate. Currently
active timer if any, continues to run for the specified time.

echo 0 >
duration

stores timer value to be used upon next activate. Currently
active timer if any, continues to run for the specified time.

echo 1 >
state

stores desired transient state LED_FULL to be held for the
specified duration.

echo 0 >
state

stores desired transient state LED_OFF to be held for the
specified duration.

4.1 What is not supported

• Timer activation is one shot and extending and/or shortening the timer is not
supported.

4.2 Examples

use-case 1:

echo transient > trigger
echo n > duration
echo 1 > state

repeat the following step as needed:

echo 1 > activate - start timer = duration to run once
echo 1 > activate - start timer = duration to run once
echo none > trigger

This trigger is intended to be used for for the following example use cases:

• Control of vibrate (phones, tablets etc.) hardware by user space app.

• Use of LED by user space app as activity indicator.

4.1. What is not supported 11

Linux Leds Documentation

• Use of LED by user space app as a kind of watchdog indicator – as long as
the app is alive, it can keep the LED illuminated, if it dies the LED will be
extinguished automatically.

• Use by any user space app that needs a transient GPIO output.

12 Chapter 4. LED Transient Trigger

CHAPTER

FIVE

USB PORT LED TRIGGER

This LED trigger can be used for signalling to the user a presence of USB device
in a given port. It simply turns on LED when device appears and turns it off when
it disappears.

It requires selecting USB ports that should be observed. All available ones are
listed as separated entries in a “ports”subdirectory. Selecting is handled by
echoing “1”to a chosen port.
Please note that this trigger allows selecting multiple USB ports for a single LED.

This can be useful in two cases:

5.1 1) Device with single USB LED and few physical ports

In such a case LED will be turned on as long as there is at least one connected
USB device.

5.2 2) Device with a physical port handled by few con-
trollers

Some devices may have one controller per PHY standard. E.g. USB 3.0 physical
port may be handled by ohci-platform, ehci-platform and xhci-hcd. If there is only
one LED user will most likely want to assign ports from all 3 hubs.

This trigger can be activated from user space on led class devices as shown below:

echo usbport > trigger

This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-usbport

Example use-case:

echo usbport > trigger
echo 1 > ports/usb1-port1
echo 1 > ports/usb2-port1
cat ports/usb1-port1
echo 0 > ports/usb1-port1

13

Linux Leds Documentation

14 Chapter 5. USB port LED trigger

CHAPTER

SIX

USERSPACE LEDS

The uleds driver supports userspace LEDs. This can be useful for testing triggers
and can also be used to implement virtual LEDs.

6.1 Usage

When the driver is loaded, a character device is created at /dev/uleds. To create a
new LED class device, open /dev/uleds and write a uleds_user_dev structure to it
(found in kernel public header file linux/uleds.h):

#define LED_MAX_NAME_SIZE 64

struct uleds_user_dev {
char name[LED_MAX_NAME_SIZE];

};

A new LED class device will be created with the name given. The name can be any
valid sysfs device node name, but consider using the LED class naming convention
of “devicename:color:function”.
The current brightness is found by reading a single byte from the character device.
Values are unsigned: 0 to 255. Reading will block until the brightness changes.
The device node can also be polled to notify when the brightness value changes.

The LED class device will be removed when the open file handle to /dev/uleds is
closed.

Multiple LED class devices are created by opening additional file handles to
/dev/uleds.

See tools/leds/uledmon.c for an example userspace program.

15

Linux Leds Documentation

16 Chapter 6. Userspace LEDs

CHAPTER

SEVEN

LEDS BLINKM DRIVER

The leds-blinkm driver supports the devices of the BlinkM family.

They are RGB-LEDmodules driven by a (AT)tiny microcontroller and communicate
through I2C. The default address of these modules is 0x09 but this can be changed
through a command. By this you could dasy-chain up to 127 BlinkMs on an I2C
bus.

The device accepts RGB and HSB color values through separate commands. Also
you can store blinking sequences as“scripts”in the controller and run them. Also
fading is an option.

The interface this driver provides is 2-fold:

7.1 a) LED class interface for use with triggers

The registration follows the scheme:

blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>

$ ls -h /sys/class/leds/blinkm-6-*
/sys/class/leds/blinkm-6-9-blue:
brightness device max_brightness power subsystem trigger uevent

/sys/class/leds/blinkm-6-9-green:
brightness device max_brightness power subsystem trigger uevent

/sys/class/leds/blinkm-6-9-red:
brightness device max_brightness power subsystem trigger uevent

(same is /sys/bus/i2c/devices/6-0009/leds)

We can control the colors separated into red, green and blue and assign triggers
on each color.

E.g.:

$ cat blinkm-6-9-blue/brightness
05

$ echo 200 > blinkm-6-9-blue/brightness
$

(continues on next page)

17

Linux Leds Documentation

(continued from previous page)
$ modprobe ledtrig-heartbeat
$ echo heartbeat > blinkm-6-9-green/trigger
$

7.2 b) Sysfs group to control rgb, fade, hsb, scripts ⋯

This extended interface is available as folder blinkm in the sysfs folder of the I2C
device. E.g. below /sys/bus/i2c/devices/6-0009/blinkm

$ ls -h /sys/bus/i2c/devices/6-0009/blinkm/ blue green red test

Currently supported is just setting red, green, blue and a test sequence.

E.g.:

$ cat *
00
00
00
#Write into test to start test sequence!#

$ echo 1 > test
$

$ echo 255 > red
$

as of 6/2012

dl9pf <at> gmx <dot> de

18 Chapter 7. Leds BlinkM driver

CHAPTER

EIGHT

KERNEL DRIVER FOR LM3556

• Texas Instrument: 1.5 A Synchronous Boost LED Flash Driver w/ High-Side
Current Source

• Datasheet: http://www.national.com/ds/LM/LM3556.pdf

Authors:
• Daniel Jeong

Contact:Daniel Jeong(daniel.jeong-at-ti.com, gshark.jeong-at-gmail.com)

8.1 Description

There are 3 functions in LM3556, Flash, Torch and Indicator.

8.1.1 Flash Mode

In Flash Mode, the LED current source(LED) provides 16 target current lev-
els from 93.75 mA to 1500 mA.The Flash currents are adjusted via the CUR-
RENT CONTROL REGISTER(0x09).Flash mode is activated by the ENABLE REG-
ISTER(0x0A), or by pulling the STROBE pin HIGH.

LM3556 Flash can be controlled through sys/class/leds/flash/brightness file

• if STROBE pin is enabled, below example control brightness only, and ON /
OFF will be controlled by STROBE pin.

Flash Example:

OFF:

#echo 0 > sys/class/leds/flash/brightness

93.75 mA:

#echo 1 > sys/class/leds/flash/brightness

⋯
1500 mA:

#echo 16 > sys/class/leds/flash/brightness

19

http://www.national.com/ds/LM/LM3556.pdf

Linux Leds Documentation

8.1.2 Torch Mode

In Torch Mode, the current source(LED) is programmed via the CURRENT CON-
TROL REGISTER(0x09).Torch Mode is activated by the ENABLE REGISTER(0x0A)
or by the hardware TORCH input.

LM3556 torch can be controlled through sys/class/leds/torch/brightness file. * if
TORCH pin is enabled, below example control brightness only, and ON / OFF will
be controlled by TORCH pin.

Torch Example:

OFF:

#echo 0 > sys/class/leds/torch/brightness

46.88 mA:

#echo 1 > sys/class/leds/torch/brightness

⋯
375 mA:

#echo 8 > sys/class/leds/torch/brightness

8.1.3 Indicator Mode

Indicator pattern can be set through sys/class/leds/indicator/pattern file, and 4
patterns are pre-defined in indicator_pattern array.

According to N-lank, Pulse time and N Period values, different pattern wiill be
generated.If you want new patterns for your own device, change indicator_pattern
array with your own values and INDIC_PATTERN_SIZE.

Please refer datasheet for more detail about N-Blank, Pulse time and N Period.

Indicator pattern example:

pattern 0:

#echo 0 > sys/class/leds/indicator/pattern

⋯
pattern 3:

#echo 3 > sys/class/leds/indicator/pattern

Indicator brightness can be controlled through sys/class/leds/indicator/brightness
file.

Example:

OFF:

20 Chapter 8. Kernel driver for lm3556

Linux Leds Documentation

#echo 0 > sys/class/leds/indicator/brightness

5.86 mA:

#echo 1 > sys/class/leds/indicator/brightness

⋯
46.875mA:

#echo 8 > sys/class/leds/indicator/brightness

8.2 Notes

Driver expects it is registered using the i2c_board_info mechanism. To register
the chip at address 0x63 on specific adapter, set the platform data according to
include/linux/platform_data/leds-lm3556.h, set the i2c board info

Example:

static struct i2c_board_info board_i2c_ch4[] __initdata = {
{

I2C_BOARD_INFO(LM3556_NAME, 0x63),
.platform_data = &lm3556_pdata,

},
};

and register it in the platform init function

Example:

board_register_i2c_bus(4, 400,
board_i2c_ch4, ARRAY_SIZE(board_i2c_ch4));

8.2. Notes 21

Linux Leds Documentation

22 Chapter 8. Kernel driver for lm3556

CHAPTER

NINE

KERNEL DRIVER LP3944

• National Semiconductor LP3944 Fun-light Chip

Prefix: ‘lp3944’
Addresses scanned: None (see the Notes section below)

Datasheet:

Publicly available at the National Semiconductor website http://
www.national.com/pf/LP/LP3944.html

Authors: Antonio Ospite <ospite@studenti.unina.it>

9.1 Description

The LP3944 is a helper chip that can drive up to 8 leds, with two programmable
DIM modes; it could even be used as a gpio expander but this driver assumes it is
used as a led controller.

The DIM modes are used to set _blink_ patterns for leds, the pattern is specified
supplying two parameters:

• period: from 0s to 1.6s

• duty cycle: percentage of the period the led is on, from 0 to 100

Setting a led in DIM0 or DIM1 mode makes it blink according to the pattern. See
the datasheet for details.

LP3944 can be found on Motorola A910 smartphone, where it drives the rgb leds,
the camera flash light and the lcds power.

9.2 Notes

The chip is usedmainly in embedded contexts, so this driver expects it is registered
using the i2c_board_info mechanism.

To register the chip at address 0x60 on adapter 0, set the platform data according
to include/linux/leds-lp3944.h, set the i2c board info:

23

http://www.national.com/pf/LP/LP3944.html
http://www.national.com/pf/LP/LP3944.html
mailto:ospite@studenti.unina.it

Linux Leds Documentation

static struct i2c_board_info a910_i2c_board_info[] __initdata = {
{

I2C_BOARD_INFO("lp3944", 0x60),
.platform_data = &a910_lp3944_leds,

},
};

and register it in the platform init function:

i2c_register_board_info(0, a910_i2c_board_info,
ARRAY_SIZE(a910_i2c_board_info));

24 Chapter 9. Kernel driver lp3944

CHAPTER

TEN

KERNEL DRIVER FOR LP5521

• National Semiconductor LP5521 led driver chip

• Datasheet: http://www.national.com/pf/LP/LP5521.html

Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo

Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)

10.1 Description

LP5521 can drive up to 3 channels. Leds can be controlled directly via the led
class control interface. Channels have generic names: lp5521:channelx, where x
is 0 .. 2

All three channels can be also controlled using the engine micro programs. More
details of the instructions can be found from the public data sheet.

LP5521 has the internal programmemory for running various LED patterns. There
are two ways to run LED patterns.

1) Legacy interface - enginex_mode and enginex_load Control interface for the
engines:

x is 1 .. 3

enginex_mode: disabled, load, run
enginex_load: store program (visible only in engine load mode)

Example (start to blink the channel 2 led):

cd /sys/class/leds/lp5521:channel2/device
echo "load" > engine3_mode
echo "037f4d0003ff6000" > engine3_load
echo "run" > engine3_mode

To stop the engine:

echo "disabled" > engine3_mode

2) Firmware interface - LP55xx common interface

For the details, please refer to ‘firmware’section in leds-lp55xx.txt
sysfs contains a selftest entry.

25

http://www.national.com/pf/LP/LP5521.html

Linux Leds Documentation

The test communicates with the chip and checks that the clock mode is automati-
cally set to the requested one.

Each channel has its own led current settings.

• /sys/class/leds/lp5521:channel0/led_current - RW

• /sys/class/leds/lp5521:channel0/max_current - RO

Format: 10x mA i.e 10 means 1.0 mA

example platform data:

static struct lp55xx_led_config lp5521_led_config[] = {
{

.name = "red",
.chan_nr = 0,
.led_current = 50,

.max_current = 130,
}, {

.name = "green",
.chan_nr = 1,
.led_current = 0,

.max_current = 130,
}, {

.name = "blue",
.chan_nr = 2,
.led_current = 0,

.max_current = 130,
}

};

static int lp5521_setup(void)
{

/* setup HW resources */
}

static void lp5521_release(void)
{

/* Release HW resources */
}

static void lp5521_enable(bool state)
{

/* Control of chip enable signal */
}

static struct lp55xx_platform_data lp5521_platform_data = {
.led_config = lp5521_led_config,
.num_channels = ARRAY_SIZE(lp5521_led_config),
.clock_mode = LP55XX_CLOCK_EXT,
.setup_resources = lp5521_setup,
.release_resources = lp5521_release,
.enable = lp5521_enable,

};

Note: chan_nr can have values between 0 and 2. The name of each channel can
be configurable. If the name field is not defined, the default name will be
set to‘xxxx:channelN’(XXXX : pdata->label or i2c client name, N : channel

26 Chapter 10. Kernel driver for lp5521

Linux Leds Documentation

number)

If the current is set to 0 in the platform data, that channel is disabled and it is not
visible in the sysfs.

10.1. Description 27

Linux Leds Documentation

28 Chapter 10. Kernel driver for lp5521

CHAPTER

ELEVEN

KERNEL DRIVER FOR LP5523

• National Semiconductor LP5523 led driver chip

• Datasheet: http://www.national.com/pf/LP/LP5523.html

Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo Contact: Samu Onkalo
(samu.p.onkalo-at-nokia.com)

11.1 Description

LP5523 can drive up to 9 channels. Leds can be controlled directly via the led
class control interface. The name of each channel is configurable in the platform
data - name and label. There are three options to make the channel name.

a) Define the ‘name’in the platform data

To make specific channel name, then use ‘name’platform data.

• /sys/class/leds/R1 (name: ‘R1’)
• /sys/class/leds/B1 (name: ‘B1’)
b) Use the ‘label’with no ‘name’field

For one device name with channel number, then use ‘label’. -
/sys/class/leds/RGB:channelN (label: ‘RGB’, N: 0 ~ 8)
c) Default

If both fields are NULL, ‘lp5523’is used by default. -
/sys/class/leds/lp5523:channelN (N: 0 ~ 8)

LP5523 has the internal programmemory for running various LED patterns. There
are two ways to run LED patterns.

1) Legacy interface - enginex_mode, enginex_load and enginex_leds

Control interface for the engines:

x is 1 .. 3

enginex_mode: disabled, load, run
enginex_load: microcode load
enginex_leds: led mux control

29

http://www.national.com/pf/LP/LP5523.html

Linux Leds Documentation

cd /sys/class/leds/lp5523:channel2/device
echo "load" > engine3_mode
echo "9d80400004ff05ff437f0000" > engine3_load
echo "111111111" > engine3_leds
echo "run" > engine3_mode

To stop the engine:

echo "disabled" > engine3_mode

2) Firmware interface - LP55xx common interface

For the details, please refer to ‘firmware’section in leds-lp55xx.txt
LP5523 has three master faders. If a channel is mapped to one of the master
faders, its output is dimmed based on the value of the master fader.

For example:

echo "123000123" > master_fader_leds

creates the following channel-fader mappings:

channel 0,6 to master_fader1
channel 1,7 to master_fader2
channel 2,8 to master_fader3

Then, to have 25% of the original output on channel 0,6:

echo 64 > master_fader1

To have 0% of the original output (i.e. no output) channel 1,7:

echo 0 > master_fader2

To have 100% of the original output (i.e. no dimming) on channel 2,8:

echo 255 > master_fader3

To clear all master fader controls:

echo "000000000" > master_fader_leds

Selftest uses always the current from the platform data.

Each channel contains led current settings. -
/sys/class/leds/lp5523:channel2/led_current - RW - /sys/class/leds/lp5523:channel2/max_current
- RO

Format: 10x mA i.e 10 means 1.0 mA

Example platform data:

static struct lp55xx_led_config lp5523_led_config[] = {
{

.name = "D1",

.chan_nr = 0,
(continues on next page)

30 Chapter 11. Kernel driver for lp5523

Linux Leds Documentation

(continued from previous page)
.led_current = 50,
.max_current = 130,

},
...

{
.chan_nr = 8,
.led_current = 50,
.max_current = 130,

}
};

static int lp5523_setup(void)
{

/* Setup HW resources */
}

static void lp5523_release(void)
{

/* Release HW resources */
}

static void lp5523_enable(bool state)
{

/* Control chip enable signal */
}

static struct lp55xx_platform_data lp5523_platform_data = {
.led_config = lp5523_led_config,
.num_channels = ARRAY_SIZE(lp5523_led_config),
.clock_mode = LP55XX_CLOCK_EXT,
.setup_resources = lp5523_setup,
.release_resources = lp5523_release,
.enable = lp5523_enable,

};

Note chan_nr can have values between 0 and 8.

11.1. Description 31

Linux Leds Documentation

32 Chapter 11. Kernel driver for lp5523

CHAPTER

TWELVE

KERNEL DRIVER FOR LP5562

• TI LP5562 LED Driver

Author: Milo(Woogyom) Kim <milo.kim@ti.com>

12.1 Description

LP5562 can drive up to 4 channels. R/G/B and White. LEDs can be
controlled directly via the led class control interface.

All four channels can be also controlled using the engine micro pro-
grams. LP5562 has the internal program memory for running various
LED patterns. For the details, please refer to ‘firmware’section in
leds-lp55xx.txt

12.2 Device attribute

engine_mux 3 Engines are allocated in LP5562, but the number of channel is 4.
Therefore each channel should be mapped to the engine number.

Value: RGB or W

This attribute is used for programming LED data with the firmware interface.
Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine
mux, so additional sysfs is required

LED Map

Red ⋯ Engine 1 (fixed)
Green ⋯ Engine 2 (fixed)
Blue ⋯ Engine 3 (fixed)
White ⋯ Engine 1 or 2 or 3 (selective)

33

mailto:milo.kim@ti.com

Linux Leds Documentation

12.3 How to load the program data using engine_mux

Before loading the LP5562 program data, engine_mux should be written
between the engine selection and loading the firmware. Engine mux has
two different mode, RGB and W. RGB is used for loading RGB program
data, W is used for W program data.

For example, run blinking green channel pattern:

echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for␣
↪→green channel
echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux␣
↪→for RGB
echo 1 > /sys/class/firmware/lp5562/loading
echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
echo 0 > /sys/class/firmware/lp5562/loading
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine

To run a blinking white pattern:

echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
echo 1 > /sys/class/firmware/lp5562/loading
echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
echo 0 > /sys/class/firmware/lp5562/loading
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine

12.4 How to load the predefined patterns

Please refer to ‘leds-lp55xx.txt”

12.5 Setting Current of Each Channel

Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
The ‘led_current’and ‘max_current’are used.

12.6 Example of Platform data

static struct lp55xx_led_config lp5562_led_config[] = {
{

.name = "R",

.chan_nr = 0,

.led_current = 20,

.max_current = 40,
},
{

.name = "G",

.chan_nr = 1,

.led_current = 20,
(continues on next page)

34 Chapter 12. Kernel driver for lp5562

Linux Leds Documentation

(continued from previous page)
.max_current = 40,

},
{

.name = "B",

.chan_nr = 2,

.led_current = 20,

.max_current = 40,
},
{

.name = "W",

.chan_nr = 3,

.led_current = 20,

.max_current = 40,
},

};

static int lp5562_setup(void)
{

/* setup HW resources */
}

static void lp5562_release(void)
{

/* Release HW resources */
}

static void lp5562_enable(bool state)
{

/* Control of chip enable signal */
}

static struct lp55xx_platform_data lp5562_platform_data = {
.led_config = lp5562_led_config,
.num_channels = ARRAY_SIZE(lp5562_led_config),
.setup_resources = lp5562_setup,
.release_resources = lp5562_release,
.enable = lp5562_enable,

};

To configure the platform specific data, lp55xx_platform_data structure is used

If the current is set to 0 in the platform data, that channel is disabled and it is not
visible in the sysfs.

12.6. Example of Platform data 35

Linux Leds Documentation

36 Chapter 12. Kernel driver for lp5562

CHAPTER

THIRTEEN

LP5521/LP5523/LP55231/LP5562/LP8501 COMMON
DRIVER

Authors: Milo(Woogyom) Kim <milo.kim@ti.com>

13.1 Description

LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.

Register access via the I2C Device initialization/deinitialization Create
LED class devices for multiple output channels Device attributes for
user-space interface Program memory for running LED patterns

The LP55xx common driver provides these features using exported functions.

lp55xx_init_device() / lp55xx_deinit_device() lp55xx_register_leds()
/ lp55xx_unregister_leds() lp55xx_regsister_sysfs() /
lp55xx_unregister_sysfs()

(Driver Structure Data)

In lp55xx common driver, two different data structure is used.

• lp55xx_led control multi output LED channels such as led current, channel
index.

• lp55xx_chip general chip control such like the I2C and platform data.

For example, LP5521 has maximum 3 LED channels. LP5523/55231 has 9 output
channels:

lp55xx_chip for LP5521 ... lp55xx_led #1
lp55xx_led #2
lp55xx_led #3

lp55xx_chip for LP5523 ... lp55xx_led #1
lp55xx_led #2

.

.
lp55xx_led #9

(Chip Dependent Code)

To support device specific configurations, special structure ‘lpxx_device_config’
is used.

37

mailto:milo.kim@ti.com

Linux Leds Documentation

• Maximum number of channels

• Reset command, chip enable command

• Chip specific initialization

• Brightness control register access

• Setting LED output current

• Program memory address access for running patterns

• Additional device specific attributes

(Firmware Interface)

LP55xx family devices have the internal programmemory for running various LED
patterns.

This pattern data is saved as a file in the user-land or hex byte string is written
into the memory through the I2C.

LP55xx common driver supports the firmware interface.

LP55xx chips have three program engines.

To load and run the pattern, the programming sequence is following.

(1) Select an engine number (1/2/3)

(2) Mode change to load

(3) Write pattern data into selected area

(4) Mode change to run

The LP55xx common driver provides simple interfaces as below.

select_engine: Select which engine is used for running program
run_engine: Start program which is loaded via the firmware interface

firmware: Load program data

In case of LP5523, one more command is required,‘enginex_leds’. It is used for
selecting LED output(s) at each engine number. In more details, please refer to
‘leds-lp5523.txt’.
For example, run blinking pattern in engine #1 of LP5521:

echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp5521/loading
echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
echo 0 > /sys/class/firmware/lp5521/loading
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine

For example, run blinking pattern in engine #3 of LP55231

Two LEDs are configured as pattern output channels:

echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp55231/loading
echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data

(continues on next page)

38 Chapter 13. LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver

Linux Leds Documentation

(continued from previous page)
echo 0 > /sys/class/firmware/lp55231/loading
echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine

To start blinking patterns in engine #2 and #3 simultaneously:

for idx in 2 3
do
echo $idx > /sys/class/leds/red/device/select_engine
sleep 0.1
echo 1 > /sys/class/firmware/lp5521/loading
echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
echo 0 > /sys/class/firmware/lp5521/loading
done
echo 1 > /sys/class/leds/red/device/run_engine

Here is another example for LP5523.

Full LED strings are selected by ‘engine2_leds’:
echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp5523/loading
echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
echo 0 > /sys/class/firmware/lp5523/loading
echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine

As soon as‘loading’is set to 0, registered callback is called. Inside the callback,
the selected engine is loaded andmemory is updated. To run programmed pattern,
‘run_engine’attribute should be enabled.
The pattern sequence of LP8501 is similar to LP5523.

However pattern data is specific.

Ex 1) Engine 1 is used:

echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
echo 1 > /sys/class/firmware/lp8501/loading
echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
echo 0 > /sys/class/firmware/lp8501/loading
echo 1 > /sys/bus/i2c/devices/xxxx/run_engine

Ex 2) Engine 2 and 3 are used at the same time:

echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
sleep 1
echo 1 > /sys/class/firmware/lp8501/loading
echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
echo 0 > /sys/class/firmware/lp8501/loading
sleep 1
echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
sleep 1
echo 1 > /sys/class/firmware/lp8501/loading
echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
echo 0 > /sys/class/firmware/lp8501/loading

(continues on next page)

13.1. Description 39

Linux Leds Documentation

(continued from previous page)
sleep 1
echo 1 > /sys/class/leds/d1/device/run_engine

(‘run_engine’and ‘firmware_cb’)
The sequence of running the program data is common.

But each device has own specific register addresses for commands.

To support this,‘run_engine’and‘firmware_cb’are configurable in each driver.
run_engine: Control the selected engine
firmware_cb: The callback function after loading the firmware is done.

Chip specific commands for loading and updating program memory.

(Predefined pattern data)

Without the firmware interface, LP55xx driver provides another method for load-
ing a LED pattern. That is ‘predefined’pattern.
A predefined pattern is defined in the platform data and load it(or them) via the
sysfs if needed.

To use the predefined pattern concept,‘patterns’and‘num_patterns’should be
configured.

Example of predefined pattern data:

/* mode_1: blinking data */
static const u8 mode_1[] = {

0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
};

/* mode_2: always on */
static const u8 mode_2[] = { 0x40, 0xFF, };

struct lp55xx_predef_pattern board_led_patterns[] = {
{

.r = mode_1,

.size_r = ARRAY_SIZE(mode_1),
},
{

.b = mode_2,

.size_b = ARRAY_SIZE(mode_2),
},

}

struct lp55xx_platform_data lp5562_pdata = {
...

.patterns = board_led_patterns,

.num_patterns = ARRAY_SIZE(board_led_patterns),
};

Then, mode_1 and mode_2 can be run via through the sysfs:

40 Chapter 13. LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver

Linux Leds Documentation

echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED␣
↪→pattern
echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on

To stop running pattern:

echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern

13.1. Description 41

Linux Leds Documentation

42 Chapter 13. LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver

CHAPTER

FOURTEEN

KERNEL DRIVER FOR MELLANOX SYSTEMS LEDS

Provide system LED support for the nexMellanox systems:“msx6710”,“msx6720”
,“msb7700”,“msn2700”,“msx1410”,“msn2410”,“msb7800”,“msn2740”
, “msn2100”.

14.1 Description

Driver provides the following LEDs for the systems “msx6710”, “msx6720”,
“msb7700”,“msn2700”,“msx1410”,“msn2410”,“msb7800”,“msn2740”:

• mlxcpld:fan1:green

• mlxcpld:fan1:red

• mlxcpld:fan2:green

• mlxcpld:fan2:red

• mlxcpld:fan3:green

• mlxcpld:fan3:red

• mlxcpld:fan4:green

• mlxcpld:fan4:red

• mlxcpld:psu:green

• mlxcpld:psu:red

• mlxcpld:status:green

• mlxcpld:status:red

“status”
• CPLD reg offset: 0x20

• Bits [3:0]

“psu”
• CPLD reg offset: 0x20

• Bits [7:4]

“fan1”
• CPLD reg offset: 0x21

43

Linux Leds Documentation

• Bits [3:0]

“fan2”
• CPLD reg offset: 0x21

• Bits [7:4]

“fan3”
• CPLD reg offset: 0x22

• Bits [3:0]

“fan4”
• CPLD reg offset: 0x22

• Bits [7:4]

Color mask for all the above LEDs:

[bit3,bit2,bit1,bit0] or [bit7,bit6,bit5,bit4]:

• [0,0,0,0] = LED OFF

• [0,1,0,1] = Red static ON

• [1,1,0,1] = Green static ON

• [0,1,1,0] = Red blink 3Hz

• [1,1,1,0] = Green blink 3Hz

• [0,1,1,1] = Red blink 6Hz

• [1,1,1,1] = Green blink 6Hz

Driver provides the following LEDs for the system “msn2100”:
• mlxcpld:fan:green

• mlxcpld:fan:red

• mlxcpld:psu1:green

• mlxcpld:psu1:red

• mlxcpld:psu2:green

• mlxcpld:psu2:red

• mlxcpld:status:green

• mlxcpld:status:red

• mlxcpld:uid:blue

“status”
• CPLD reg offset: 0x20

• Bits [3:0]

“fan”
• CPLD reg offset: 0x21

44 Chapter 14. Kernel driver for Mellanox systems LEDs

Linux Leds Documentation

• Bits [3:0]

“psu1”
• CPLD reg offset: 0x23

• Bits [3:0]

“psu2”
• CPLD reg offset: 0x23

• Bits [7:4]

“uid”
• CPLD reg offset: 0x24

• Bits [3:0]

Color mask for all the above LEDs, excepted uid:

[bit3,bit2,bit1,bit0] or [bit7,bit6,bit5,bit4]:

• [0,0,0,0] = LED OFF

• [0,1,0,1] = Red static ON

• [1,1,0,1] = Green static ON

• [0,1,1,0] = Red blink 3Hz

• [1,1,1,0] = Green blink 3Hz

• [0,1,1,1] = Red blink 6Hz

• [1,1,1,1] = Green blink 6Hz

Color mask for uid LED: [bit3,bit2,bit1,bit0]:
• [0,0,0,0] = LED OFF

• [1,1,0,1] = Blue static ON

• [1,1,1,0] = Blue blink 3Hz

• [1,1,1,1] = Blue blink 6Hz

Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle). For 3Hz
duty cylce is about 167 msec, for 6Hz is about 83 msec.

14.1. Description 45

