
Linux Kbuild Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

KCONFIG LANGUAGE

1.1 Introduction

The configuration database is a collection of configuration options organized in a
tree structure:

+- Code maturity level options
| +- Prompt for development and/or incomplete code/drivers
+- General setup
| +- Networking support
| +- System V IPC
| +- BSD Process Accounting
| +- Sysctl support
+- Loadable module support
| +- Enable loadable module support
| +- Set version information on all module symbols
| +- Kernel module loader
+- ...

Every entry has its own dependencies. These dependencies are used to determine
the visibility of an entry. Any child entry is only visible if its parent entry is also
visible.

1.2 Menu entries

Most entries define a config option; all other entries help to organize them. A
single configuration option is defined like this:

config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES
help

Usually, modules have to be recompiled whenever you switch to a new
kernel. ...

Every line starts with a key word and can be followed by multiple arguments.“con-
fig”starts a new config entry. The following lines define attributes for this config
option. Attributes can be the type of the config option, input prompt, dependen-
cies, help text and default values. A config option can be defined multiple times
with the same name, but every definition can have only a single input prompt and
the type must not conflict.

1

Linux Kbuild Documentation

1.3 Menu attributes

A menu entry can have a number of attributes. Not all of them are applicable
everywhere (see syntax).

• type definition: “bool”/”tristate”/”string”/”hex”/”int”
Every config option must have a type. There are only two basic types: tris-
tate and string; the other types are based on these two. The type definition
optionally accepts an input prompt, so these two examples are equivalent:

bool "Networking support"

and:

bool
prompt "Networking support"

• input prompt: “prompt”<prompt> [“if”<expr>]
Every menu entry can have at most one prompt, which is used to display to
the user. Optionally dependencies only for this prompt can be added with“if”
.

• default value: “default”<expr> [“if”<expr>]
A config option can have any number of default values. If multiple default
values are visible, only the first defined one is active. Default values are not
limited to the menu entry where they are defined. This means the default
can be defined somewhere else or be overridden by an earlier definition. The
default value is only assigned to the config symbol if no other value was set by
the user (via the input prompt above). If an input prompt is visible the default
value is presented to the user and can be overridden by him. Optionally,
dependencies only for this default value can be added with “if”.
The default value deliberately defaults to‘n’in order to avoid bloating
the build. With few exceptions, new config options should not change
this. The intent is for“make oldconfig”to add as little as possible to the
config from release to release.

Note: Things that merit “default y/m”include:
a) A new Kconfig option for something that used to always be built
should be “default y”.

b) A new gatekeeping Kconfig option that hides/shows other Kcon-
fig options (but does not generate any code of its own), should
be “default y”so people will see those other options.

c) Sub-driver behavior or similar options for a driver that is“default
n”. This allows you to provide sane defaults.

d) Hardware or infrastructure that everybody expects, such as
CONFIG_NET or CONFIG_BLOCK. These are rare exceptions.

• type definition + default value:

2 Chapter 1. Kconfig Language

Linux Kbuild Documentation

"def_bool"/"def_tristate" <expr> ["if" <expr>]

This is a shorthand notation for a type definition plus a value. Optionally
dependencies for this default value can be added with “if”.

• dependencies: “depends on”<expr>
This defines a dependency for this menu entry. If multiple dependencies are
defined, they are connected with ‘&&’. Dependencies are applied to all
other options within this menu entry (which also accept an“if”expression),
so these two examples are equivalent:

bool "foo" if BAR
default y if BAR

and:

depends on BAR
bool "foo"
default y

• reverse dependencies: “select”<symbol> [“if”<expr>]
While normal dependencies reduce the upper limit of a symbol (see below),
reverse dependencies can be used to force a lower limit of another symbol.
The value of the current menu symbol is used as the minimal value <symbol>
can be set to. If <symbol> is selected multiple times, the limit is set to the
largest selection. Reverse dependencies can only be used with boolean or
tristate symbols.

Note: select should be used with care. select will force a symbol to a value
without visiting the dependencies. By abusing select you are able to se-
lect a symbol FOO even if FOO depends on BAR that is not set. In general
use select only for non-visible symbols (no prompts anywhere) and for
symbols with no dependencies. That will limit the usefulness but on the
other hand avoid the illegal configurations all over.

• weak reverse dependencies: “imply”<symbol> [“if”<expr>]
This is similar to“select”as it enforces a lower limit on another symbol except
that the“implied”symbol’s valuemay still be set to n from a direct dependency
or with a visible prompt.

Given the following example:

config FOO
tristate "foo"
imply BAZ

config BAZ
tristate "baz"
depends on BAR

The following values are possible:

1.3. Menu attributes 3

Linux Kbuild Documentation

FOO BAR BAZ’s default choice for BAZ
n y n N/m/y
m y m M/y/n
y y y Y/m/n
n m n N/m
m m m M/n
y m n M/n
y n – N

This is useful e.g. with multiple drivers that want to indicate their ability to
hook into a secondary subsystem while allowing the user to configure that
subsystem out without also having to unset these drivers.

Note: If the combination of FOO=y and BAR=m causes a link error, you can
guard the function call with IS_REACHABLE():

foo_init()
{

if (IS_REACHABLE(CONFIG_BAZ))
baz_register(&foo);

...
}

Note: If the feature provided by BAZ is highly desirable for FOO, FOO should
imply not only BAZ, but also its dependency BAR:

config FOO
tristate "foo"
imply BAR
imply BAZ

• limiting menu display: “visible if”<expr>
This attribute is only applicable to menu blocks, if the condition is false, the
menu block is not displayed to the user (the symbols contained there can still
be selected by other symbols, though). It is similar to a conditional“prompt”
attribute for individual menu entries. Default value of “visible”is true.

• numerical ranges: “range”<symbol> <symbol> [“if”<expr>]
This allows to limit the range of possible input values for int and hex symbols.
The user can only input a value which is larger than or equal to the first
symbol and smaller than or equal to the second symbol.

• help text: “help”
This defines a help text. The end of the help text is determined by the inden-
tation level, this means it ends at the first line which has a smaller indentation
than the first line of the help text.

• misc options: “option”<symbol>[=<value>]
Various less common options can be defined via this option syntax, which can
modify the behaviour of the menu entry and its config symbol. These options
are currently possible:

4 Chapter 1. Kconfig Language

Linux Kbuild Documentation

–“defconfig_list”This declares a list of default entries which can be used
when looking for the default configuration (which is used when the main
.config doesn’t exists yet.)

–“modules”This declares the symbol to be used as the MODULES symbol,
which enables the third modular state for all config symbols. At most one
symbol may have the “modules”option set.

–“allnoconfig_y”This declares the symbol as one that should have the value
y when using“allnoconfig”. Used for symbols that hide other symbols.

1.4 Menu dependencies

Dependencies define the visibility of a menu entry and can also reduce the input
range of tristate symbols. The tristate logic used in the expressions uses one more
state than normal boolean logic to express the module state. Dependency expres-
sions have the following syntax:

<expr> ::= <symbol> (1)
<symbol> '=' <symbol> (2)
<symbol> '!=' <symbol> (3)
<symbol1> '<' <symbol2> (4)
<symbol1> '>' <symbol2> (4)
<symbol1> '<=' <symbol2> (4)
<symbol1> '>=' <symbol2> (4)
'(' <expr> ')' (5)
'!' <expr> (6)
<expr> '&&' <expr> (7)
<expr> '||' <expr> (8)

Expressions are listed in decreasing order of precedence.

(1) Convert the symbol into an expression. Boolean and tristate symbols are sim-
ply converted into the respective expression values. All other symbol types
result in ‘n’.

(2) If the values of both symbols are equal, it returns ‘y’, otherwise ‘n’.
(3) If the values of both symbols are equal, it returns ‘n’, otherwise ‘y’.
(4) If value of <symbol1> is respectively lower, greater, lower-or-equal, or

greater-or-equal than value of <symbol2>, it returns ‘y’, otherwise ‘n’
.

(5) Returns the value of the expression. Used to override precedence.

(6) Returns the result of (2-/expr/).

(7) Returns the result of min(/expr/, /expr/).

(8) Returns the result of max(/expr/, /expr/).

An expression can have a value of ‘n’, ‘m’or ‘y’(or 0, 1, 2 respectively for
calculations). A menu entry becomes visible when its expression evaluates to‘m’
or ‘y’.

1.4. Menu dependencies 5

Linux Kbuild Documentation

There are two types of symbols: constant and non-constant symbols. Non-constant
symbols are the most common ones and are defined with the‘config’statement.
Non-constant symbols consist entirely of alphanumeric characters or underscores.
Constant symbols are only part of expressions. Constant symbols are always sur-
rounded by single or double quotes. Within the quote, any other character is al-
lowed and the quotes can be escaped using ‘’.

1.5 Menu structure

The position of a menu entry in the tree is determined in two ways. First it can be
specified explicitly:

menu "Network device support"
depends on NET

config NETDEVICES
...

endmenu

All entries within the“menu”⋯“endmenu”block become a submenu of“Network
device support”. All subentries inherit the dependencies from the menu entry, e.g.
this means the dependency “NET”is added to the dependency list of the config
option NETDEVICES.

The other way to generate the menu structure is done by analyzing the dependen-
cies. If a menu entry somehow depends on the previous entry, it can be made a
submenu of it. First, the previous (parent) symbol must be part of the dependency
list and then one of these two conditions must be true:

• the child entry must become invisible, if the parent is set to ‘n’
• the child entry must only be visible, if the parent is visible:

config MODULES
bool "Enable loadable module support"

config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES

comment "module support disabled"
depends on !MODULES

MODVERSIONS directly depends on MODULES, this means it’s only visible if
MODULES is different from ‘n’. The comment on the other hand is only visible
when MODULES is set to ‘n’.

6 Chapter 1. Kconfig Language

Linux Kbuild Documentation

1.6 Kconfig syntax

The configuration file describes a series of menu entries, where every line starts
with a keyword (except help texts). The following keywords end a menu entry:

• config

• menuconfig

• choice/endchoice

• comment

• menu/endmenu

• if/endif

• source

The first five also start the definition of a menu entry.

config:

"config" <symbol>
<config options>

This defines a config symbol <symbol> and accepts any of above attributes as
options.

menuconfig:

"menuconfig" <symbol>
<config options>

This is similar to the simple config entry above, but it also gives a hint to front ends,
that all suboptions should be displayed as a separate list of options. To make sure
all the suboptions will really show up under the menuconfig entry and not outside
of it, every item from the <config options> list must depend on the menuconfig
symbol. In practice, this is achieved by using one of the next two constructs:

(1):
menuconfig M
if M

config C1
config C2

endif

(2):
menuconfig M
config C1

depends on M
config C2

depends on M

In the following examples (3) and (4), C1 and C2 still have the M dependency,
but will not appear under menuconfig M anymore, because of C0, which doesn’t
depend on M:

1.6. Kconfig syntax 7

Linux Kbuild Documentation

(3):
menuconfig M

config C0
if M

config C1
config C2

endif

(4):
menuconfig M
config C0
config C1

depends on M
config C2

depends on M

choices:

"choice" [symbol]
<choice options>
<choice block>
"endchoice"

This defines a choice group and accepts any of the above attributes as options.
A choice can only be of type bool or tristate. If no type is specified for a choice,
its type will be determined by the type of the first choice element in the group or
remain unknown if none of the choice elements have a type specified, as well.

While a boolean choice only allows a single config entry to be selected, a tristate
choice also allows any number of config entries to be set to ‘m’. This can be
used if multiple drivers for a single hardware exists and only a single driver can
be compiled/loaded into the kernel, but all drivers can be compiled as modules.

A choice accepts another option“optional”, which allows to set the choice to‘n’
and no entry needs to be selected. If no [symbol] is associated with a choice, then
you can not have multiple definitions of that choice. If a [symbol] is associated to
the choice, then you may define the same choice (i.e. with the same entries) in
another place.

comment:

"comment" <prompt>
<comment options>

This defines a comment which is displayed to the user during the configuration
process and is also echoed to the output files. The only possible options are de-
pendencies.

menu:

"menu" <prompt>
<menu options>
<menu block>
"endmenu"

This defines a menu block, see“Menu structure”above for more information. The

8 Chapter 1. Kconfig Language

Linux Kbuild Documentation

only possible options are dependencies and “visible”attributes.
if:

"if" <expr>
<if block>
"endif"

This defines an if block. The dependency expression <expr> is appended to all
enclosed menu entries.

source:

"source" <prompt>

This reads the specified configuration file. This file is always parsed.

mainmenu:

"mainmenu" <prompt>

This sets the config program’s title bar if the config program chooses to use it. It
should be placed at the top of the configuration, before any other statement.

‘#’Kconfig source file comment:
An unquoted‘#’character anywhere in a source file line indicates the beginning
of a source file comment. The remainder of that line is a comment.

1.7 Kconfig hints

This is a collection of Kconfig tips, most of which aren’t obvious at first glance
and most of which have become idioms in several Kconfig files.

1.7.1 Adding common features and make the usage configurable

It is a common idiom to implement a feature/functionality that are relevant for
some architectures but not all. The recommended way to do so is to use a config
variable named HAVE_* that is defined in a common Kconfig file and selected by
the relevant architectures. An example is the generic IOMAP functionality.

We would in lib/Kconfig see:

Generic IOMAP is used to ...
config HAVE_GENERIC_IOMAP

config GENERIC_IOMAP
depends on HAVE_GENERIC_IOMAP && FOO

And in lib/Makefile we would see:

obj-$(CONFIG_GENERIC_IOMAP) += iomap.o

For each architecture using the generic IOMAP functionality we would see:

1.7. Kconfig hints 9

Linux Kbuild Documentation

config X86
select ...
select HAVE_GENERIC_IOMAP
select ...

Note: we use the existing config option and avoid creating a new config variable
to select HAVE_GENERIC_IOMAP.

Note: the use of the internal config variable HAVE_GENERIC_IOMAP, it is in-
troduced to overcome the limitation of select which will force a config option
to ‘y’no matter the dependencies. The dependencies are moved to the symbol
GENERIC_IOMAP and we avoid the situation where select forces a symbol equals
to ‘y’.

1.7.2 Adding features that need compiler support

There are several features that need compiler support. The recommended way to
describe the dependency on the compiler feature is to use“depends on”followed
by a test macro:

config STACKPROTECTOR
bool "Stack Protector buffer overflow detection"
depends on $(cc-option,-fstack-protector)
...

If you need to expose a compiler capability to makefiles and/or C source files,
CC_HAS_ is the recommended prefix for the config option:

config CC_HAS_STACKPROTECTOR_NONE
def_bool $(cc-option,-fno-stack-protector)

1.7.3 Build as module only

To restrict a component build to module-only, qualify its config symbol with “de-
pends on m”. E.g.:
config FOO

depends on BAR && m

limits FOO to module (=m) or disabled (=n).

1.7.4 Kconfig recursive dependency limitations

If you’ve hit the Kconfig error:“recursive dependency detected”you’ve run into
a recursive dependency issue with Kconfig, a recursive dependency can be sum-
marized as a circular dependency. The kconfig tools need to ensure that Kconfig
files comply with specified configuration requirements. In order to do that kcon-
fig must determine the values that are possible for all Kconfig symbols, this is
currently not possible if there is a circular relation between two or more Kconfig
symbols. For more details refer to the “Simple Kconfig recursive issue”subsec-
tion below. Kconfig does not do recursive dependency resolution; this has a few

10 Chapter 1. Kconfig Language

Linux Kbuild Documentation

implications for Kconfig file writers. We’ll first explain why this issues exists and
then provide an example technical limitation which this brings upon Kconfig de-
velopers. Eager developers wishing to try to address this limitation should read
the next subsections.

1.7.5 Simple Kconfig recursive issue

Read: Documentation/kbuild/Kconfig.recursion-issue-01

Test with:

make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01␣
↪→allnoconfig

1.7.6 Cumulative Kconfig recursive issue

Read: Documentation/kbuild/Kconfig.recursion-issue-02

Test with:

make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02␣
↪→allnoconfig

1.7.7 Practical solutions to kconfig recursive issue

Developers who run into the recursive Kconfig issue have two options at their
disposal. We document them below and also provide a list of historical issues
resolved through these different solutions.

a) Remove any superfluous “select FOO”or “depends on FOO”
b) Match dependency semantics:

b1) Swap all “select FOO”to “depends on FOO”or,
b2) Swap all “depends on FOO”to “select FOO”

The resolution to a) can be tested with the sample Kconfig file
Documentation/kbuild/Kconfig.recursion-issue-01 through the removal of the
“select CORE”from CORE_BELL_A_ADVANCED as that is implicit already since
CORE_BELL_A depends on CORE. At times it may not be possible to remove some
dependency criteria, for such cases you can work with solution b).

The two different resolutions for b) can be tested in the sample Kconfig file
Documentation/kbuild/Kconfig.recursion-issue-02.

Below is a list of examples of prior fixes for these types of recursive issues; all
errors appear to involve one or more“select”statements and one or more“depends
on”.

1.7. Kconfig hints 11

Linux Kbuild Documentation

commit fix
06b718c01208 select A -> depends on A
c22eacfe82f9 depends on A -> depends on B
6a91e854442c select A -> depends on A
118c565a8f2e select A -> select B
f004e5594705 select A -> depends on A
c7861f37b4c6 depends on A -> (null)
80c69915e5fb select A -> (null) (1)
c2218e26c0d0 select A -> depends on A (1)
d6ae99d04e1c select A -> depends on A
95ca19cf8cbf select A -> depends on A
8f057d7bca54 depends on A -> (null)
8f057d7bca54 depends on A -> select A
a0701f04846e select A -> depends on A
0c8b92f7f259 depends on A -> (null)
e4e9e0540928 select A -> depends on A (2)
7453ea886e87 depends on A > (null) (1)
7b1fff7e4fdf select A -> depends on A
86c747d2a4f0 select A -> depends on A
d9f9ab51e55e select A -> depends on A
0c51a4d8abd6 depends on A -> select A (3)
e98062ed6dc4 select A -> depends on A (3)
91e5d284a7f1 select A -> (null)

(1) Partial (or no) quote of error.

(2) That seems to be the gist of that fix.

(3) Same error.

1.7.8 Future kconfig work

Work on kconfig is welcomed on both areas of clarifying semantics and on evalu-
ating the use of a full SAT solver for it. A full SAT solver can be desirable to enable
more complex dependency mappings and / or queries, for instance on possible
use case for a SAT solver could be that of handling the current known recursive
dependency issues. It is not known if this would address such issues but such
evaluation is desirable. If support for a full SAT solver proves too complex or that
it cannot address recursive dependency issues Kconfig should have at least clear
and well defined semantics which also addresses and documents limitations or
requirements such as the ones dealing with recursive dependencies.

Further work on both of these areas is welcomed on Kconfig. We elaborate on both
of these in the next two subsections.

12 Chapter 1. Kconfig Language

Linux Kbuild Documentation

1.7.9 Semantics of Kconfig

The use of Kconfig is broad, Linux is now only one of Kconfig’s users: one study has
completed a broad analysis of Kconfig use in 12 projects0. Despite its widespread
use, and although this document does a reasonable job in documenting basic Kcon-
fig syntax a more precise definition of Kconfig semantics is welcomed. One project
deduced Kconfig semantics through the use of the xconfig configurator1. Work
should be done to confirm if the deduced semantics matches our intended Kconfig
design goals.

Having well defined semantics can be useful for tools for practical evaluation of
dependencies, for instance one such case was work to express in boolean abstrac-
tion of the inferred semantics of Kconfig to translate Kconfig logic into boolean
formulas and run a SAT solver on this to find dead code / features (always inac-
tive), 114 dead features were found in Linux using this methodology1 (Section 8:
Threats to validity).

Confirming this could prove useful as Kconfig stands as one of the the leading in-
dustrial variability modeling languages12. Its study would help evaluate practical
uses of such languages, their use was only theoretical and real world requirements
were not well understood. As it stands though only reverse engineering techniques
have been used to deduce semantics from variability modeling languages such as
Kconfig3.

1.7.10 Full SAT solver for Kconfig

Although SAT solvers4 haven’t yet been used by Kconfig directly, as noted in
the previous subsection, work has been done however to express in boolean ab-
straction the inferred semantics of Kconfig to translate Kconfig logic into boolean
formulas and run a SAT solver on it5. Another known related project is CADOS6
(former VAMOS7) and the tools, mainly undertaker8, which has been introduced
first with9. The basic concept of undertaker is to extract variability models from
Kconfig and put them together with a propositional formula extracted from CPP
#ifdefs and build-rules into a SAT solver in order to find dead code, dead files, and
dead symbols. If using a SAT solver is desirable on Kconfig one approach would be
to evaluate repurposing such efforts somehow on Kconfig. There is enough inter-
est from mentors of existing projects to not only help advise how to integrate this
work upstream but also help maintain it long term. Interested developers should
visit:

http://kernelnewbies.org/KernelProjects/kconfig-sat

0 http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
1 http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
2 http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf
3 http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf
4 http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf
5 http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
6 https://cados.cs.fau.de
7 https://vamos.cs.fau.de
8 https://undertaker.cs.fau.de
9 https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf

1.7. Kconfig hints 13

http://kernelnewbies.org/KernelProjects/kconfig-sat
http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf
http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf
http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf
http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
https://cados.cs.fau.de
https://vamos.cs.fau.de
https://undertaker.cs.fau.de
https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf

Linux Kbuild Documentation

14 Chapter 1. Kconfig Language

CHAPTER

TWO

KCONFIG MACRO LANGUAGE

2.1 Concept

The basic idea was inspired by Make. When we look at Make, we notice sort of
two languages in one. One language describes dependency graphs consisting of
targets and prerequisites. The other is a macro language for performing textual
substitution.

There is clear distinction between the two language stages. For example, you can
write a makefile like follows:

APP := foo
SRC := foo.c
CC := gcc

$(APP): $(SRC)
$(CC) -o $(APP) $(SRC)

The macro language replaces the variable references with their expanded form,
and handles as if the source file were input like follows:

foo: foo.c
gcc -o foo foo.c

Then, Make analyzes the dependency graph and determines the targets to be up-
dated.

The idea is quite similar in Kconfig - it is possible to describe a Kconfig file like
this:

CC := gcc

config CC_HAS_FOO
def_bool $(shell, $(srctree)/scripts/gcc-check-foo.sh $(CC))

The macro language in Kconfig processes the source file into the following inter-
mediate:

config CC_HAS_FOO
def_bool y

Then, Kconfigmoves onto the evaluation stage to resolve inter-symbol dependency
as explained in kconfig-language.rst.

15

Linux Kbuild Documentation

2.2 Variables

Like in Make, a variable in Kconfig works as a macro variable. A macro variable
is expanded “in place”to yield a text string that may then be expanded further.
To get the value of a variable, enclose the variable name in $(). The parentheses
are required even for single-letter variable names; $X is a syntax error. The curly
brace form as in ${CC} is not supported either.

There are two types of variables: simply expanded variables and recursively ex-
panded variables.

A simply expanded variable is defined using the := assignment operator. Its right-
hand side is expanded immediately upon reading the line from the Kconfig file.

A recursively expanded variable is defined using the = assignment operator. Its
righthand side is simply stored as the value of the variable without expanding it in
any way. Instead, the expansion is performed when the variable is used.

There is another type of assignment operator; += is used to append text to a
variable. The righthand side of += is expanded immediately if the lefthand side
was originally defined as a simple variable. Otherwise, its evaluation is deferred.

The variable reference can take parameters, in the following form:

$(name,arg1,arg2,arg3)

You can consider the parameterized reference as a function. (more precisely,
“user-defined function”in contrast to “built-in function”listed below).
Useful functions must be expanded when they are used since the same function
is expanded differently if different parameters are passed. Hence, a user-defined
function is defined using the = assignment operator. The parameters are refer-
enced within the body definition with $(1), $(2), etc.

In fact, recursively expanded variables and user-defined functions are the same
internally. (In other words,“variable”is“function with zero argument”.) When
we say “variable”in a broad sense, it includes “user-defined function”.

2.3 Built-in functions

Like Make, Kconfig provides several built-in functions. Every function takes a
particular number of arguments.

In Make, every built-in function takes at least one argument. Kconfig allows zero
argument for built-in functions, such as $(fileno), $(lineno). You could consider
those as “built-in variable”, but it is just a matter of how we call it after all. Let’
s say “built-in function”here to refer to natively supported functionality.
Kconfig currently supports the following built-in functions.

• $(shell,command)

The“shell”function accepts a single argument that is expanded
and passed to a subshell for execution. The standard output
of the command is then read and returned as the value of the

16 Chapter 2. Kconfig macro language

Linux Kbuild Documentation

function. Every newline in the output is replaced with a space.
Any trailing newlines are deleted. The standard error is not
returned, nor is any program exit status.

• $(info,text)

The “info”function takes a single argument and prints it to
stdout. It evaluates to an empty string.

• $(warning-if,condition,text)

The“warning-if”function takes two arguments. If the condition
part is “y”, the text part is sent to stderr. The text is prefixed
with the name of the current Kconfig file and the current line
number.

• $(error-if,condition,text)

The“error-if”function is similar to“warning-if”, but it terminates
the parsing immediately if the condition part is “y”.

• $(filename)

The‘filename’takes no argument, and $(filename) is expanded
to the file name being parsed.

• $(lineno)

The ‘lineno’takes no argument, and $(lineno) is expanded to
the line number being parsed.

2.4 Make vs Kconfig

Kconfig adopts Make-like macro language, but the function call syntax is slightly
different.

A function call in Make looks like this:

$(func-name arg1,arg2,arg3)

The function name and the first argument are separated by at least onewhitespace.
Then, leadingwhitespaces are trimmed from the first argument, while whitespaces
in the other arguments are kept. You need to use a kind of trick to start the first
parameter with spaces. For example, if you want to make “info”function print ”
hello”, you can write like follows:
empty :=
space := $(empty) $(empty)
$(info $(space)$(space)hello)

Kconfig uses only commas for delimiters, and keeps all whitespaces in the function
call. Some people prefer putting a space after each comma delimiter:

$(func-name, arg1, arg2, arg3)

In this case,“func-name”will receive”arg1”,”arg2”,”arg3”. The presence of
leading spaces may matter depending on the function. The same applies to Make

2.4. Make vs Kconfig 17

Linux Kbuild Documentation

- for example, $(subst .c, .o, $(sources)) is a typical mistake; it replaces“.c”with
”.o”.
In Make, a user-defined function is referenced by using a built-in function, ‘call’
, like this:

$(call my-func,arg1,arg2,arg3)

Kconfig invokes user-defined functions and built-in functions in the same way. The
omission of ‘call’makes the syntax shorter.
In Make, some functions treat commas verbatim instead of argument separators.
For example, $(shell echo hello, world) runs the command “echo hello, world”.
Likewise, $(info hello, world) prints“hello, world”to stdout. You could say this is
useful inconsistency.

In Kconfig, for simpler implementation and grammatical consistency, commas that
appear in the $() context are always delimiters. It means:

$(shell, echo hello, world)

is an error because it is passing two parameters where the‘shell’function accepts
only one. To pass commas in arguments, you can use the following trick:

comma := ,
$(shell, echo hello$(comma) world)

2.5 Caveats

A variable (or function) cannot be expanded across tokens. So, you cannot use
a variable as a shorthand for an expression that consists of multiple tokens. The
following works:

RANGE_MIN := 1
RANGE_MAX := 3

config FOO
int "foo"
range $(RANGE_MIN) $(RANGE_MAX)

But, the following does not work:

RANGES := 1 3

config FOO
int "foo"
range $(RANGES)

A variable cannot be expanded to any keyword in Kconfig. The following does not
work:

MY_TYPE := tristate

(continues on next page)

18 Chapter 2. Kconfig macro language

Linux Kbuild Documentation

(continued from previous page)
config FOO

$(MY_TYPE) "foo"
default y

Obviously from the design, $(shell command) is expanded in the textual substitu-
tion phase. You cannot pass symbols to the ‘shell’function.
The following does not work as expected:

config ENDIAN_FLAG
string
default "-mbig-endian" if CPU_BIG_ENDIAN
default "-mlittle-endian" if CPU_LITTLE_ENDIAN

config CC_HAS_ENDIAN_FLAG
def_bool $(shell $(srctree)/scripts/gcc-check-flag ENDIAN_FLAG)

Instead, you can do like follows so that any function call is statically expanded:

config CC_HAS_ENDIAN_FLAG
bool
default $(shell $(srctree)/scripts/gcc-check-flag -mbig-endian) if␣

↪→CPU_BIG_ENDIAN
default $(shell $(srctree)/scripts/gcc-check-flag -mlittle-endian)␣

↪→if CPU_LITTLE_ENDIAN

2.5. Caveats 19

Linux Kbuild Documentation

20 Chapter 2. Kconfig macro language

CHAPTER

THREE

KBUILD

3.1 Output files

3.1.1 modules.order

This file records the order in which modules appear in Makefiles. This is used by
modprobe to deterministically resolve aliases that match multiple modules.

3.1.2 modules.builtin

This file lists all modules that are built into the kernel. This is used by modprobe
to not fail when trying to load something builtin.

3.1.3 modules.builtin.modinfo

This file contains modinfo from all modules that are built into the kernel. Unlike
modinfo of a separate module, all fields are prefixed with module name.

3.2 Environment variables

3.2.1 KCPPFLAGS

Additional options to pass when preprocessing. The preprocessing options will be
used in all cases where kbuild does preprocessing including building C files and
assembler files.

3.2.2 KAFLAGS

Additional options to the assembler (for built-in and modules).

21

Linux Kbuild Documentation

3.2.3 AFLAGS_MODULE

Additional assembler options for modules.

3.2.4 AFLAGS_KERNEL

Additional assembler options for built-in.

3.2.5 KCFLAGS

Additional options to the C compiler (for built-in and modules).

3.2.6 CFLAGS_KERNEL

Additional options for $(CC) when used to compile code that is compiled as built-in.

3.2.7 CFLAGS_MODULE

Additional module specific options to use for $(CC).

3.2.8 LDFLAGS_MODULE

Additional options used for $(LD) when linking modules.

3.2.9 HOSTCFLAGS

Additional flags to be passed to $(HOSTCC) when building host programs.

3.2.10 HOSTCXXFLAGS

Additional flags to be passed to $(HOSTCXX) when building host programs.

3.2.11 HOSTLDFLAGS

Additional flags to be passed when linking host programs.

3.2.12 HOSTLDLIBS

Additional libraries to link against when building host programs.

22 Chapter 3. Kbuild

Linux Kbuild Documentation

3.2.13 KBUILD_KCONFIG

Set the top-level Kconfig file to the value of this environment variable. The default
name is “Kconfig”.

3.2.14 KBUILD_VERBOSE

Set the kbuild verbosity. Can be assigned same values as “V=⋯”.
See make help for the full list.

Setting “V=⋯”takes precedence over KBUILD_VERBOSE.

3.2.15 KBUILD_EXTMOD

Set the directory to look for the kernel source when building external modules.

Setting “M=⋯”takes precedence over KBUILD_EXTMOD.

3.2.16 KBUILD_OUTPUT

Specify the output directory when building the kernel.

The output directory can also be specified using “O=⋯”.
Setting “O=⋯”takes precedence over KBUILD_OUTPUT.

3.2.17 KBUILD_EXTRA_WARN

Specify the extra build checks. The same value can be assigned by passing W=⋯
from the command line.

See make help for the list of the supported values.

Setting “W=⋯”takes precedence over KBUILD_EXTRA_WARN.

3.2.18 KBUILD_DEBARCH

For the deb-pkg target, allows overriding the normal heuristics deployed by deb-
pkg. Normally deb-pkg attempts to guess the right architecture based on the
UTS_MACHINE variable, and on some architectures also the kernel config. The
value of KBUILD_DEBARCH is assumed (not checked) to be a valid Debian archi-
tecture.

3.2. Environment variables 23

Linux Kbuild Documentation

3.2.19 ARCH

Set ARCH to the architecture to be built.

In most cases the name of the architecture is the same as the directory name found
in the arch/ directory.

But some architectures such as x86 and sparc have aliases.

• x86: i386 for 32 bit, x86_64 for 64 bit

• sh: sh for 32 bit, sh64 for 64 bit

• sparc: sparc32 for 32 bit, sparc64 for 64 bit

3.2.20 CROSS_COMPILE

Specify an optional fixed part of the binutils filename. CROSS_COMPILE can be a
part of the filename or the full path.

CROSS_COMPILE is also used for ccache in some setups.

3.2.21 CF

Additional options for sparse.

CF is often used on the command-line like this:

make CF=-Wbitwise C=2

3.2.22 INSTALL_PATH

INSTALL_PATH specifies where to place the updated kernel and system map im-
ages. Default is /boot, but you can set it to other values.

3.2.23 INSTALLKERNEL

Install script called when using“make install”. The default name is“installkernel”
.

The script will be called with the following arguments:

• $1 - kernel version

• $2 - kernel image file

• $3 - kernel map file

• $4 - default install path (use root directory if blank)

The implementation of “make install”is architecture specific and it may differ
from the above.

INSTALLKERNEL is provided to enable the possibility to specify a custom installer
when cross compiling a kernel.

24 Chapter 3. Kbuild

Linux Kbuild Documentation

3.2.24 MODLIB

Specify where to install modules. The default value is:

$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)

The value can be overridden in which case the default value is ignored.

3.2.25 INSTALL_MOD_PATH

INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory reloca-
tions required by build roots. This is not defined in the makefile but the argument
can be passed to make if needed.

3.2.26 INSTALL_MOD_STRIP

INSTALL_MOD_STRIP, if defined, will cause modules to be stripped after they are
installed. If INSTALL_MOD_STRIP is ‘1’, then the default option –strip-debug
will be used. Otherwise, INSTALL_MOD_STRIP value will be used as the options
to the strip command.

3.2.27 INSTALL_HDR_PATH

INSTALL_HDR_PATH specifies where to install user space headers when executing
“make headers_*”.
The default value is:

$(objtree)/usr

$(objtree) is the directory where output files are saved. The output directory is
often set using “O=⋯”on the commandline.
The value can be overridden in which case the default value is ignored.

3.2.28 KBUILD_ABS_SRCTREE

Kbuild uses a relative path to point to the tree when possible. For instance, when
building in the source tree, the source tree path is ‘.’
Setting this flag requests Kbuild to use absolute path to the source tree. There
are some useful cases to do so, like when generating tag files with absolute path
entries etc.

3.2. Environment variables 25

Linux Kbuild Documentation

3.2.29 KBUILD_SIGN_PIN

This variable allows a passphrase or PIN to be passed to the sign-file utility when
signing kernel modules, if the private key requires such.

3.2.30 KBUILD_MODPOST_WARN

KBUILD_MODPOST_WARN can be set to avoid errors in case of undefined symbols
in the final module linking stage. It changes such errors into warnings.

3.2.31 KBUILD_MODPOST_NOFINAL

KBUILD_MODPOST_NOFINAL can be set to skip the final link of modules. This is
solely useful to speed up test compiles.

3.2.32 KBUILD_EXTRA_SYMBOLS

For modules that use symbols from other modules. See more details in mod-
ules.rst.

3.2.33 ALLSOURCE_ARCHS

For tags/TAGS/cscope targets, you can specify more than one arch to be included
in the databases, separated by blank space. E.g.:

$ make ALLSOURCE_ARCHS="x86 mips arm" tags

To get all available archs you can also specify all. E.g.:

$ make ALLSOURCE_ARCHS=all tags

3.2.34 KBUILD_BUILD_TIMESTAMP

Setting this to a date string overrides the timestamp used in the UTS_VERSION
definition (uname -v in the running kernel). The value has to be a string that can
be passed to date -d. The default value is the output of the date command at one
point during build.

3.2.35 KBUILD_BUILD_USER, KBUILD_BUILD_HOST

These two variables allow to override the user@host string displayed during boot
and in /proc/version. The default value is the output of the commands whoami and
host, respectively.

26 Chapter 3. Kbuild

mailto:user@host

Linux Kbuild Documentation

3.2.36 LLVM

If this variable is set to 1, Kbuild will use Clang and LLVM utilities instead of GCC
and GNU binutils to build the kernel.

3.2. Environment variables 27

Linux Kbuild Documentation

28 Chapter 3. Kbuild

CHAPTER

FOUR

KCONFIG MAKE CONFIG

This file contains some assistance for using make *config.

Use “make help”to list all of the possible configuration targets.
The xconfig (‘qconf’), menuconfig (‘mconf’), and nconfig (‘nconf’) programs
also have embedded help text. Be sure to check that for navigation, search, and
other general help text.

4.1 General

New kernel releases often introduce new config symbols. Often more important,
new kernel releases may rename config symbols. When this happens, using a
previously working .config file and running“make oldconfig”won’t necessarily
produce a working new kernel for you, so you may find that you need to see what
NEW kernel symbols have been introduced.

To see a list of new config symbols, use:

cp user/some/old.config .config
make listnewconfig

and the config program will list any new symbols, one per line.

Alternatively, you can use the brute force method:

make oldconfig
scripts/diffconfig .config.old .config | less

Environment variables for *config

4.2 KCONFIG_CONFIG

This environment variable can be used to specify a default kernel config file name
to override the default name of “.config”.

29

Linux Kbuild Documentation

4.3 KCONFIG_OVERWRITECONFIG

If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not
break symlinks when .config is a symlink to somewhere else.

4.4 CONFIG_

If you set CONFIG_ in the environment, Kconfig will prefix all symbols with its
value when saving the configuration, instead of using the default, CONFIG_.

Environment variables for ‘{allyes/allmod/allno/rand}config’

4.5 KCONFIG_ALLCONFIG

(partially based on lkml email from/by Rob Landley, re: miniconfig)

The allyesconfig/allmodconfig/allnoconfig/randconfig variants can also use the en-
vironment variable KCONFIG_ALLCONFIG as a flag or a filename that contains
config symbols that the user requires to be set to a specific value. If KCON-
FIG_ALLCONFIG is used without a filename where KCONFIG_ALLCONFIG ==
“”or KCONFIG_ALLCONFIG == “1”, make *config checks for a file named
“all{yes/mod/no/def/random}.config”(corresponding to the *config command that
was used) for symbol values that are to be forced. If this file is not found, it checks
for a file named “all.config”to contain forced values.
This enables you to create “miniature”config (miniconfig) or custom config files
containing just the config symbols that you are interested in. Then the kernel
config system generates the full .config file, including symbols of your miniconfig
file.

This‘KCONFIG_ALLCONFIG’file is a config file which contains (usually a subset
of all) preset config symbols. These variable settings are still subject to normal
dependency checks.

Examples:

KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig

or:

KCONFIG_ALLCONFIG=mini.config make allnoconfig

or:

make KCONFIG_ALLCONFIG=mini.config allnoconfig

30 Chapter 4. Kconfig make config

Linux Kbuild Documentation

These examples will disable most options (allnoconfig) but enable or disable the
options that are explicitly listed in the specified mini-config files.

Environment variables for ‘randconfig’

4.6 KCONFIG_SEED

You can set this to the integer value used to seed the RNG, if you want to somehow
debug the behaviour of the kconfig parser/frontends. If not set, the current time
will be used.

4.7 KCONFIG_PROBABILITY

This variable can be used to skew the probabilities. This variable can be unset or
empty, or set to three different formats:

KCONFIG_PROBABILITY y:n split y:m:n split
unset or empty 50 : 50 33 : 33 : 34
N N : 100-N N/2 : N/2 : 100-N
[1] N:M N+M : 100-(N+M) N : M : 100-(N+M)
[2] N:M:L N : 100-N M : L : 100-(M+L)

where N, M and L are integers (in base 10) in the range [0,100], and so that:

[1] N+M is in the range [0,100]

[2] M+L is in the range [0,100]

Examples:

KCONFIG_PROBABILITY=10
10% of booleans will be set to 'y', 90% to 'n'
5% of tristates will be set to 'y', 5% to 'm', 90% to 'n'

KCONFIG_PROBABILITY=15:25
40% of booleans will be set to 'y', 60% to 'n'
15% of tristates will be set to 'y', 25% to 'm', 60% to 'n'

KCONFIG_PROBABILITY=10:15:15
10% of booleans will be set to 'y', 90% to 'n'
15% of tristates will be set to 'y', 15% to 'm', 70% to 'n'

Environment variables for ‘syncconfig’

4.6. KCONFIG_SEED 31

Linux Kbuild Documentation

4.8 KCONFIG_NOSILENTUPDATE

If this variable has a non-blank value, it prevents silent kernel config updates (re-
quires explicit updates).

4.9 KCONFIG_AUTOCONFIG

This environment variable can be set to specify the path & name of the“auto.conf”
file. Its default value is “include/config/auto.conf”.

4.10 KCONFIG_AUTOHEADER

This environment variable can be set to specify the path & name of the“autoconf.h”
(header) file. Its default value is “include/generated/autoconf.h”.

4.11 menuconfig

SEARCHING for CONFIG symbols

Searching in menuconfig:

The Search function searches for kernel configuration symbol names, so
you have to know something close to what you are looking for.

Example:

/hotplug
This lists all config symbols that contain "hotplug",
e.g., HOTPLUG_CPU, MEMORY_HOTPLUG.

For search help, enter / followed by TAB-TAB (to highlight <Help>)
and Enter. This will tell you that you can also use regular expressions
(regexes) in the search string, so if you are not interested in MEM-
ORY_HOTPLUG, you could try:

/^hotplug

When searching, symbols are sorted thus:

• first, exact matches, sorted alphabetically (an exact match is when
the search matches the complete symbol name);

• then, other matches, sorted alphabetically.

For example: ^ATH.K matches:

ATH5K ATH9K ATH5K_AHB ATH5K_DEBUG [⋯] ATH6KL
ATH6KL_DEBUG [⋯] ATH9K_AHB ATH9K_BTCOEX_SUPPORT
ATH9K_COMMON [⋯]

32 Chapter 4. Kconfig make config

Linux Kbuild Documentation

of which only ATH5K and ATH9K match exactly and so are sorted first
(and in alphabetical order), then come all other symbols, sorted in al-
phabetical order.

User interface options for ‘menuconfig’

4.12 MENUCONFIG_COLOR

It is possible to select different color themes using the variable MENUCON-
FIG_COLOR. To select a theme use:

make MENUCONFIG_COLOR=<theme> menuconfig

Available themes are:

- mono => selects colors suitable for monochrome displays
- blackbg => selects a color scheme with black background
- classic => theme with blue background. The classic look
- bluetitle => a LCD friendly version of classic. (default)

4.13 MENUCONFIG_MODE

This mode shows all sub-menus in one large tree.

Example:

make MENUCONFIG_MODE=single_menu menuconfig

4.14 nconfig

nconfig is an alternate text-based configurator. It lists function keys across the
bottom of the terminal (window) that execute commands. You can also just use
the corresponding numeric key to execute the commands unless you are in a data
entry window. E.g., instead of F6 for Save, you can just press 6.

Use F1 for Global help or F3 for the Short help menu.

Searching in nconfig:

You can search either in the menu entry“prompt”strings or in the con-
figuration symbols.

Use / to begin a search through the menu entries. This does not support
regular expressions. Use <Down> or <Up> for Next hit and Previous
hit, respectively. Use <Esc> to terminate the search mode.

F8 (SymSearch) searches the configuration symbols for the given string
or regular expression (regex).

4.12. MENUCONFIG_COLOR 33

Linux Kbuild Documentation

4.15 NCONFIG_MODE

This mode shows all sub-menus in one large tree.

Example:

make NCONFIG_MODE=single_menu nconfig

4.16 xconfig

Searching in xconfig:

The Search function searches for kernel configuration symbol names, so
you have to know something close to what you are looking for.

Example:

Ctrl-F hotplug

or:

Menu: File, Search, hotplug

lists all config symbol entries that contain“hotplug”in the symbol name.
In this Search dialog, you may change the config setting for any of the
entries that are not grayed out. You can also enter a different search
string without having to return to the main menu.

4.17 gconfig

Searching in gconfig:

There is no search command in gconfig. However, gconfig does have
several different viewing choices, modes, and options.

34 Chapter 4. Kconfig make config

CHAPTER

FIVE

LINUX KERNEL MAKEFILES

This document describes the Linux kernel Makefiles.

5.1 1 Overview

The Makefiles have five parts:

Makefile the top Makefile.
.config the kernel configuration file.
arch/$(ARCH)/Makefile the arch Makefile.
scripts/Makefile.* common rules etc. for all kbuild Makefiles.
kbuild Makefiles there are about 500 of these.

The top Makefile reads the .config file, which comes from the kernel configuration
process.

The top Makefile is responsible for building two major products: vmlinux (the
resident kernel image) and modules (any module files). It builds these goals
by recursively descending into the subdirectories of the kernel source tree.
The list of subdirectories which are visited depends upon the kernel configu-
ration. The top Makefile textually includes an arch Makefile with the name
arch/$(ARCH)/Makefile. The arch Makefile supplies architecture-specific infor-
mation to the top Makefile.

Each subdirectory has a kbuild Makefile which carries out the commands passed
down from above. The kbuild Makefile uses information from the .config file to
construct various file lists used by kbuild to build any built-in or modular targets.

scripts/Makefile.* contains all the definitions/rules etc. that are used to build the
kernel based on the kbuild makefiles.

5.2 2 Who does what

People have four different relationships with the kernel Makefiles.

Users are people who build kernels. These people type commands such as“make
menuconfig”or “make”. They usually do not read or edit any kernel Makefiles
(or any other source files).

35

Linux Kbuild Documentation

Normal developers are people who work on features such as device drivers, file
systems, and network protocols. These people need to maintain the kbuild Make-
files for the subsystem they are working on. In order to do this effectively, they
need some overall knowledge about the kernel Makefiles, plus detailed knowledge
about the public interface for kbuild.

Arch developers are people who work on an entire architecture, such as sparc or
ia64. Arch developers need to know about the arch Makefile as well as kbuild
Makefiles.

Kbuild developers are people who work on the kernel build system itself. These
people need to know about all aspects of the kernel Makefiles.

This document is aimed towards normal developers and arch developers.

5.3 3 The kbuild files

Most Makefiles within the kernel are kbuild Makefiles that use the kbuild infras-
tructure. This chapter introduces the syntax used in the kbuild makefiles. The
preferred name for the kbuild files are‘Makefile’but‘Kbuild’can be used and
if both a‘Makefile’and a‘Kbuild’file exists, then the‘Kbuild’file will be used.
Section 3.1“Goal definitions”is a quick intro, further chapters provide more de-
tails, with real examples.

5.3.1 3.1 Goal definitions

Goal definitions are the main part (heart) of the kbuild Makefile. These
lines define the files to be built, any special compilation options, and any
subdirectories to be entered recursively.

The most simple kbuild makefile contains one line:

Example:

obj-y += foo.o

This tells kbuild that there is one object in that directory, named foo.o.
foo.o will be built from foo.c or foo.S.

If foo.o shall be built as a module, the variable obj-m is used. Therefore
the following pattern is often used:

Example:

obj-$(CONFIG_FOO) += foo.o

$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module). If
CONFIG_FOO is neither y nor m, then the file will not be compiled nor
linked.

36 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

5.3.2 3.2 Built-in object goals - obj-y

The kbuild Makefile specifies object files for vmlinux in the $(obj-y) lists.
These lists depend on the kernel configuration.

Kbuild compiles all the $(obj-y) files. It then calls“$(AR) rcSTP”to merge
these files into one built-in.a file. This is a thin archive without a symbol
table. It will be later linked into vmlinux by scripts/link-vmlinux.sh

The order of files in $(obj-y) is significant. Duplicates in the lists are
allowed: the first instance will be linked into built-in.a and succeeding
instances will be ignored.

Link order is significant, because certain functions (module_init() /
__initcall) will be called during boot in the order they appear. So keep
in mind that changing the link order may e.g. change the order in which
your SCSI controllers are detected, and thus your disks are renumbered.

Example:

#drivers/isdn/i4l/Makefile
Makefile for the kernel ISDN subsystem and device drivers.
Each configuration option enables a list of files.
obj-$(CONFIG_ISDN_I4L) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

5.3.3 3.3 Loadable module goals - obj-m

$(obj-m) specifies object files which are built as loadable kernel modules.

A module may be built from one source file or several source files. In
the case of one source file, the kbuild makefile simply adds the file to
$(obj-m).

Example:

#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o

Note: In this example $(CONFIG_ISDN_PPP_BSDCOMP) evaluates to
‘m’
If a kernel module is built from several source files, you specify that you
want to build a module in the same way as above; however, kbuild needs
to know which object files you want to build your module from, so you
have to tell it by setting a $(<module_name>-y) variable.

Example:

#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_I4L) += isdn.o
isdn-y := isdn_net_lib.o isdn_v110.o isdn_common.o

In this example, the module name will be isdn.o. Kbuild will compile the
objects listed in $(isdn-y) and then run “$(LD) -r”on the list of these
files to generate isdn.o.

5.3. 3 The kbuild files 37

Linux Kbuild Documentation

Due to kbuild recognizing $(<module_name>-y) for composite objects,
you can use the value of a CONFIG_ symbol to optionally include an
object file as part of a composite object.

Example:

#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o dir.o file.o ialloc.o inode.o ioctl.o \

namei.o super.o symlink.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o xattr_user.o \

xattr_trusted.o

In this example, xattr.o, xattr_user.o and xattr_trusted.o are only part of
the composite object ext2.o if $(CONFIG_EXT2_FS_XATTR) evaluates to
‘y’.
Note: Of course, when you are building objects into the kernel, the syn-
tax above will also work. So, if you have CONFIG_EXT2_FS=y, kbuild
will build an ext2.o file for you out of the individual parts and then link
this into built-in.a, as you would expect.

5.3.4 3.4 Objects which export symbols

No special notation is required in the makefiles for modules exporting
symbols.

5.3.5 3.5 Library file goals - lib-y

Objects listed with obj-* are used for modules, or combined in a built-
in.a for that specific directory. There is also the possibility to list objects
that will be included in a library, lib.a. All objects listed with lib-y are
combined in a single library for that directory. Objects that are listed in
obj-y and additionally listed in lib-y will not be included in the library,
since they will be accessible anyway. For consistency, objects listed in
lib-m will be included in lib.a.

Note that the same kbuild makefile may list files to be built-in and to
be part of a library. Therefore the same directory may contain both a
built-in.a and a lib.a file.

Example:

#arch/x86/lib/Makefile
lib-y := delay.o

This will create a library lib.a based on delay.o. For kbuild to actually
recognize that there is a lib.a being built, the directory shall be listed in
libs-y.

See also “6.4 List directories to visit when descending”.
Use of lib-y is normally restricted to lib/ and arch/*/lib.

38 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

5.3.6 3.6 Descending down in directories

A Makefile is only responsible for building objects in its own directory.
Files in subdirectories should be taken care of by Makefiles in these
subdirs. The build system will automatically invoke make recursively in
subdirectories, provided you let it know of them.

To do so, obj-y and obj-m are used. ext2 lives in a separate directory,
and the Makefile present in fs/ tells kbuild to descend down using the
following assignment.

Example:

#fs/Makefile
obj-$(CONFIG_EXT2_FS) += ext2/

If CONFIG_EXT2_FS is set to either‘y’(built-in) or‘m’(modular) the
corresponding obj- variable will be set, and kbuild will descend down in
the ext2 directory.

Kbuild uses this information not only to decide that it needs to visit the
directory, but also to decide whether or not to link objects from the di-
rectory into vmlinux.

When Kbuild descends into the directory with‘y’, all built-in objects from
that directory are combined into the built-in.a, which will be eventually
linked into vmlinux.

When Kbuild descends into the directory with‘m’, in contrast, nothing
from that directory will be linked into vmlinux. If the Makefile in that
directory specifies obj-y, those objects will be left orphan. It is very likely
a bug of the Makefile or of dependencies in Kconfig.

It is good practice to use a CONFIG_ variable when assigning directory
names. This allows kbuild to totally skip the directory if the correspond-
ing CONFIG_ option is neither ‘y’nor ‘m’.

5.3.7 3.7 Compilation flags

ccflags-y, asflags-y and ldflags-y These three flags apply only to the
kbuild makefile in which they are assigned. They are used for all
the normal cc, as and ld invocations happening during a recursive
build. Note: Flags with the same behaviour were previously named:
EXTRA_CFLAGS, EXTRA_AFLAGS and EXTRA_LDFLAGS. They are
still supported but their usage is deprecated.

ccflags-y specifies options for compiling with $(CC).

Example:

drivers/acpi/acpica/Makefile
ccflags-y := -Os -D_LINUX -DBUILDING_
↪→ACPICA
ccflags-$(CONFIG_ACPI_DEBUG) += -DACPI_DEBUG_OUTPUT

5.3. 3 The kbuild files 39

Linux Kbuild Documentation

This variable is necessary because the top Makefile owns the vari-
able $(KBUILD_CFLAGS) and uses it for compilation flags for the
entire tree.

asflags-y specifies assembler options.

Example:

#arch/sparc/kernel/Makefile
asflags-y := -ansi

ldflags-y specifies options for linking with $(LD).

Example:

#arch/cris/boot/compressed/Makefile
ldflags-y += -T $(srctree)/$(src)/decompress_$(arch-y).lds

subdir-ccflags-y, subdir-asflags-y The two flags listed above are sim-
ilar to ccflags-y and asflags-y. The difference is that the subdir- vari-
ants have effect for the kbuild file where they are present and all
subdirectories. Options specified using subdir-* are added to the
commandline before the options specified using the non-subdir vari-
ants.

Example:

subdir-ccflags-y := -Werror

CFLAGS_$@, AFLAGS_$@ CFLAGS_$@ and AFLAGS_$@ only apply
to commands in current kbuild makefile.

$(CFLAGS_$@) specifies per-file options for $(CC). The $@ part has
a literal value which specifies the file that it is for.

Example:

drivers/scsi/Makefile
CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \

-DGDTH_STATISTICS

These two lines specify compilation flags for aha152x.o and gdth.o.

$(AFLAGS_$@) is a similar feature for source files in assembly lan-
guages.

Example:

arch/arm/kernel/Makefile
AFLAGS_head.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
AFLAGS_crunch-bits.o := -Wa,-mcpu=ep9312
AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt

40 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

5.3.8 3.9 Dependency tracking

Kbuild tracks dependencies on the following:

1) All prerequisite files (both *.c and *.h)

2) CONFIG_ options used in all prerequisite files

3) Command-line used to compile target

Thus, if you change an option to $(CC) all affected files will be re-
compiled.

5.3.9 3.10 Special Rules

Special rules are used when the kbuild infrastructure does not provide
the required support. A typical example is header files generated during
the build process. Another example are the architecture-specific Make-
files which need special rules to prepare boot images etc.

Special rules are written as normal Make rules. Kbuild is not executing
in the directory where the Makefile is located, so all special rules shall
provide a relative path to prerequisite files and target files.

Two variables are used when defining special rules:

$(src) $(src) is a relative path which points to the directory where the
Makefile is located. Always use $(src) when referring to files located
in the src tree.

$(obj) $(obj) is a relative path which points to the directory where the
target is saved. Always use $(obj) when referring to generated files.

Example:

#drivers/scsi/Makefile
$(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl

$(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl

This is a special rule, following the normal syntax required by make.

The target file depends on two prerequisite files. References to the
target file are prefixed with $(obj), references to prerequisites are
referenced with $(src) (because they are not generated files).

$(kecho) echoing information to user in a rule is often a good practice
but when execution“make -s”one does not expect to see any output
except for warnings/errors. To support this kbuild defines $(kecho)
which will echo out the text following $(kecho) to stdout except if
“make -s”is used.

Example:

#arch/blackfin/boot/Makefile
$(obj)/vmImage: $(obj)/vmlinux.gz

$(call if_changed,uimage)
@$(kecho) 'Kernel: $@ is ready'

5.3. 3 The kbuild files 41

Linux Kbuild Documentation

5.3.10 3.11 $(CC) support functions

The kernel may be built with several different versions
of $(CC), each supporting a unique set of features and
options. kbuild provides basic support to check for valid
options for $(CC). $(CC) is usually the gcc compiler, but
other alternatives are available.

as-option as-option is used to check if $(CC) – when used to
compile assembler (*.S) files – supports the given option. An
optional second option may be specified if the first option is
not supported.

Example:

#arch/sh/Makefile
cflags-y += $(call as-option,-Wa$(comma)-isa=$(isa-y),
↪→)

In the above example, cflags-y will be assigned the option
-Wa$(comma)-isa=$(isa-y) if it is supported by $(CC). The
second argument is optional, and if supplied will be used if
first argument is not supported.

as-instr as-instr checks if the assembler reports a specific in-
struction and then outputs either option1 or option2 C es-
capes are supported in the test instruction Note: as-instr-
option uses KBUILD_AFLAGS for assembler options

cc-option cc-option is used to check if $(CC) supports a given
option, and if not supported to use an optional second op-
tion.

Example:

#arch/x86/Makefile
cflags-y += $(call cc-option,-march=pentium-mmx,-
↪→march=i586)

In the above example, cflags-y will be assigned the op-
tion -march=pentium-mmx if supported by $(CC), other-
wise -march=i586. The second argument to cc-option is
optional, and if omitted, cflags-y will be assigned no value
if first option is not supported. Note: cc-option uses
KBUILD_CFLAGS for $(CC) options

cc-option-yn
cc-option-yn is used to check if gcc supports a given option
and return ‘y’if supported, otherwise ‘n’.
Example:

#arch/ppc/Makefile
biarch := $(call cc-option-yn, -m32)
aflags-$(biarch) += -a32
cflags-$(biarch) += -m32

42 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

In the above example, $(biarch) is set to y if $(CC) supports
the -m32 option. When $(biarch) equals‘y’, the expanded
variables $(aflags-y) and $(cflags-y) will be assigned the val-
ues -a32 and -m32, respectively. Note: cc-option-yn uses
KBUILD_CFLAGS for $(CC) options

cc-disable-warning cc-disable-warning checks if gcc supports a
given warning and returns the commandline switch to disable
it. This special function is needed, because gcc 4.4 and later ac-
cept any unknown -Wno-* option and only warn about it if there
is another warning in the source file.

Example:

KBUILD_CFLAGS += $(call cc-disable-warning, unused-but-
↪→set-variable)

In the above example, -Wno-unused-but-set-variable will be
added to KBUILD_CFLAGS only if gcc really accepts it.

cc-ifversion cc-ifversion tests the version of $(CC) and equals the
fourth parameter if version expression is true, or the fifth (if
given) if the version expression is false.

Example:

#fs/reiserfs/Makefile
ccflags-y := $(call cc-ifversion, -lt, 0402, -O1)

In this example, ccflags-y will be assigned the value -O1 if the
$(CC) version is less than 4.2. cc-ifversion takes all the shell
operators: -eq, -ne, -lt, -le, -gt, and -ge The third parameter may
be a text as in this example, but it may also be an expanded
variable or a macro.

cc-cross-prefix cc-cross-prefix is used to check if there exists a
$(CC) in path with one of the listed prefixes. The first prefix
where there exist a prefix$(CC) in the PATH is returned - and if
no prefix$(CC) is found then nothing is returned. Additional pre-
fixes are separated by a single space in the call of cc-cross-prefix.
This functionality is useful for architecture Makefiles that try to
set CROSS_COMPILE to well-known values but may have sev-
eral values to select between. It is recommended only to try to
set CROSS_COMPILE if it is a cross build (host arch is different
from target arch). And if CROSS_COMPILE is already set then
leave it with the old value.

Example:

#arch/m68k/Makefile
ifneq ($(SUBARCH),$(ARCH))

ifeq ($(CROSS_COMPILE),)
CROSS_COMPILE := $(call cc-cross-prefix,␣

↪→m68k-linux-gnu-)
endif

endif

5.3. 3 The kbuild files 43

Linux Kbuild Documentation

5.3.11 3.12 $(LD) support functions

ld-option ld-option is used to check if $(LD) supports the supplied op-
tion. ld-option takes two options as arguments. The second argu-
ment is an optional option that can be used if the first option is not
supported by $(LD).

Example:

#Makefile
LDFLAGS_vmlinux += $(call ld-option, -X)

5.4 4 Host Program support

Kbuild supports building executables on the host for use during the compilation
stage. Two steps are required in order to use a host executable.

The first step is to tell kbuild that a host program exists. This is done utilising the
variable “hostprogs”.
The second step is to add an explicit dependency to the executable. This can be
done in two ways. Either add the dependency in a rule, or utilise the variable
“always-y”. Both possibilities are described in the following.

5.4.1 4.1 Simple Host Program

In some cases there is a need to compile and run a program on the com-
puter where the build is running. The following line tells kbuild that the
program bin2hex shall be built on the build host.

Example:

hostprogs := bin2hex

Kbuild assumes in the above example that bin2hex is made from a sin-
gle c-source file named bin2hex.c located in the same directory as the
Makefile.

5.4.2 4.2 Composite Host Programs

Host programs can be made up based on composite objects. The syntax
used to define composite objects for host programs is similar to the syn-
tax used for kernel objects. $(<executable>-objs) lists all objects used
to link the final executable.

Example:

#scripts/lxdialog/Makefile
hostprogs := lxdialog
lxdialog-objs := checklist.o lxdialog.o

44 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

Objects with extension .o are compiled from the corresponding .c files. In
the above example, checklist.c is compiled to checklist.o and lxdialog.c
is compiled to lxdialog.o.

Finally, the two .o files are linked to the executable, lxdialog. Note: The
syntax <executable>-y is not permitted for host-programs.

5.4.3 4.3 Using C++ for host programs

kbuild offers support for host programs written in C++. This was in-
troduced solely to support kconfig, and is not recommended for general
use.

Example:

#scripts/kconfig/Makefile
hostprogs := qconf
qconf-cxxobjs := qconf.o

In the example above the executable is composed of the C++ file
qconf.cc - identified by $(qconf-cxxobjs).

If qconf is composed of a mixture of .c and .cc files, then an additional
line can be used to identify this.

Example:

#scripts/kconfig/Makefile
hostprogs := qconf
qconf-cxxobjs := qconf.o
qconf-objs := check.o

5.4.4 4.4 Controlling compiler options for host programs

When compiling host programs, it is possible to set specific flags. The
programs will always be compiled utilising $(HOSTCC) passed the op-
tions specified in $(KBUILD_HOSTCFLAGS). To set flags that will take
effect for all host programs created in that Makefile, use the variable
HOST_EXTRACFLAGS.

Example:

#scripts/lxdialog/Makefile
HOST_EXTRACFLAGS += -I/usr/include/ncurses

To set specific flags for a single file the following construction is used:

Example:

#arch/ppc64/boot/Makefile
HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE)

It is also possible to specify additional options to the linker.

Example:

5.4. 4 Host Program support 45

Linux Kbuild Documentation

#scripts/kconfig/Makefile
HOSTLDLIBS_qconf := -L$(QTDIR)/lib

When linking qconf, it will be passed the extra option “-L$(QTDIR)/lib”
.

5.4.5 4.5 When host programs are actually built

Kbuild will only build host-programs when they are referenced as a pre-
requisite. This is possible in two ways:

(1) List the prerequisite explicitly in a special rule.

Example:

#drivers/pci/Makefile
hostprogs := gen-devlist
$(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist

(cd $(obj); ./gen-devlist) < $<

The target $(obj)/devlist.h will not be built before $(obj)/gen-devlist is
updated. Note that references to the host programs in special rules must
be prefixed with $(obj).

(2) Use always-y

When there is no suitable special rule, and the host program shall be
built when a makefile is entered, the always-y variable shall be used.

Example:

#scripts/lxdialog/Makefile
hostprogs := lxdialog
always-y := $(hostprogs)

This will tell kbuild to build lxdialog even if not referenced in any rule.

5.5 5 Userspace Program support

Just like host programs, Kbuild also supports building userspace executables for
the target architecture (i.e. the same architecture as you are building the kernel
for).

The syntax is quite similar. The difference is to use“userprogs”instead of“host-
progs”.

46 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

5.5.1 5.1 Simple Userspace Program

The following line tells kbuild that the program bpf-direct shall be built
for the target architecture.

Example:

userprogs := bpf-direct

Kbuild assumes in the above example that bpf-direct is made from a sin-
gle C source file named bpf-direct.c located in the same directory as the
Makefile.

5.5.2 5.2 Composite Userspace Programs

Userspace programs can be made up based on composite objects. The
syntax used to define composite objects for userspace programs is sim-
ilar to the syntax used for kernel objects. $(<executable>-objs) lists all
objects used to link the final executable.

Example:

#samples/seccomp/Makefile
userprogs := bpf-fancy
bpf-fancy-objs := bpf-fancy.o bpf-helper.o

Objects with extension .o are compiled from the corresponding .c files. In
the above example, bpf-fancy.c is compiled to bpf-fancy.o and bpf-helper.c
is compiled to bpf-helper.o.

Finally, the two .o files are linked to the executable, bpf-fancy. Note: The
syntax <executable>-y is not permitted for userspace programs.

5.5.3 5.3 Controlling compiler options for userspace programs

When compiling userspace programs, it is possible to set specific flags.
The programs will always be compiled utilising $(CC) passed the options
specified in $(KBUILD_USERCFLAGS). To set flags that will take effect
for all userspace programs created in that Makefile, use the variable
userccflags.

Example:

samples/seccomp/Makefile
userccflags += -I usr/include

To set specific flags for a single file the following construction is used:

Example:

bpf-helper-userccflags += -I user/include

It is also possible to specify additional options to the linker.

Example:

5.5. 5 Userspace Program support 47

Linux Kbuild Documentation

net/bpfilter/Makefile
bpfilter_umh-userldflags += -static

When linking bpfilter_umh, it will be passed the extra option -static.

5.5.4 5.4 When userspace programs are actually built

Same as “When host programs are actually built”.

5.6 6 Kbuild clean infrastructure

“make clean”deletes most generated files in the obj tree where the kernel is com-
piled. This includes generated files such as host programs. Kbuild knows targets
listed in $(hostprogs), $(always-y), $(always-m), $(always-), $(extra-y), $(extra-)
and $(targets). They are all deleted during“make clean”. Files matching the pat-
terns“.[oas]”,“.ko”, plus some additional files generated by kbuild are deleted
all over the kernel source tree when “make clean”is executed.
Additional files or directories can be specified in kbuild makefiles by use of $(clean-
files).

Example:

#lib/Makefile
clean-files := crc32table.h

When executing“make clean”, the file“crc32table.h”will be deleted. Kbuild will
assume files to be in the same relative directory as the Makefile, except if prefixed
with $(objtree).

To exclude certain files or directories from make clean, use the $(no-clean-files)
variable.

Usually kbuild descends down in subdirectories due to “obj-* := dir/”, but in
the architecture makefiles where the kbuild infrastructure is not sufficient this
sometimes needs to be explicit.

Example:

#arch/x86/boot/Makefile
subdir- := compressed

The above assignment instructs kbuild to descend down in the directory com-
pressed/ when “make clean”is executed.
To support the clean infrastructure in the Makefiles that build the final bootimage
there is an optional target named archclean:

Example:

#arch/x86/Makefile
archclean:

(Q)(MAKE) $(clean)=arch/x86/boot

48 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

When “make clean”is executed, make will descend down in arch/x86/boot, and
clean as usual. The Makefile located in arch/x86/boot/ may use the subdir- trick
to descend further down.

Note 1: arch/$(ARCH)/Makefile cannot use“subdir-“, because that file is included
in the top level makefile, and the kbuild infrastructure is not operational at that
point.

Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will be visited
during “make clean”.

5.7 7 Architecture Makefiles

The top level Makefile sets up the environment and does the preparation, before
starting to descend down in the individual directories. The top level makefile con-
tains the generic part, whereas arch/$(ARCH)/Makefile contains what is required
to set up kbuild for said architecture. To do so, arch/$(ARCH)/Makefile sets up a
number of variables and defines a few targets.

When kbuild executes, the following steps are followed (roughly):

1) Configuration of the kernel => produce .config

2) Store kernel version in include/linux/version.h

3) Updating all other prerequisites to the target prepare: - Additional prerequi-
sites are specified in arch/$(ARCH)/Makefile

4) Recursively descend down in all directories listed in init-* core* drivers-* net-
* libs-* and build all targets. - The values of the above variables are expanded
in arch/$(ARCH)/Makefile.

5) All object files are then linked and the resulting file vmlinux is located at the
root of the obj tree. The very first objects linked are listed in head-y, assigned
by arch/$(ARCH)/Makefile.

6) Finally, the architecture-specific part does any required post processing and
builds the final bootimage. - This includes building boot records - Preparing
initrd images and the like

5.7.1 7.1 Set variables to tweak the build to the architecture

KBUILD_LDFLAGS Generic $(LD) options
Flags used for all invocations of the linker. Often specifying the
emulation is sufficient.

Example:

#arch/s390/Makefile
KBUILD_LDFLAGS := -m elf_s390

Note: ldflags-y can be used to further customise the flags used. See
chapter 3.7.

5.7. 7 Architecture Makefiles 49

Linux Kbuild Documentation

LDFLAGS_vmlinux Options for $(LD) when linking vmlinux
LDFLAGS_vmlinux is used to specify additional flags to pass to the
linker when linking the final vmlinux image. LDFLAGS_vmlinux uses
the LDFLAGS_$@ support.

Example:

#arch/x86/Makefile
LDFLAGS_vmlinux := -e stext

OBJCOPYFLAGS objcopy flags
When $(call if_changed,objcopy) is used to translate a .o file,
the flags specified in OBJCOPYFLAGS will be used. $(call
if_changed,objcopy) is often used to generate raw binaries on vm-
linux.

Example:

#arch/s390/Makefile
OBJCOPYFLAGS := -O binary

#arch/s390/boot/Makefile
$(obj)/image: vmlinux FORCE

$(call if_changed,objcopy)

In this example, the binary $(obj)/image is a binary version of vm-
linux. The usage of $(call if_changed,xxx) will be described later.

KBUILD_AFLAGS Assembler flags
Default value - see top level Makefile Append or modify as required
per architecture.

Example:

#arch/sparc64/Makefile
KBUILD_AFLAGS += -m64 -mcpu=ultrasparc

KBUILD_CFLAGS $(CC) compiler flags
Default value - see top level Makefile Append or modify as required
per architecture.

Often, the KBUILD_CFLAGS variable depends on the configuration.

Example:

#arch/x86/boot/compressed/Makefile
cflags-$(CONFIG_X86_32) := -march=i386
cflags-$(CONFIG_X86_64) := -mcmodel=small
KBUILD_CFLAGS += $(cflags-y)

Many archMakefiles dynamically run the target C compiler to probe
supported options:

50 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

#arch/x86/Makefile

...
cflags-$(CONFIG_MPENTIUMII) += $(call cc-option,\

-march=pentium2,-march=i686)
...
Disable unit-at-a-time mode ...
KBUILD_CFLAGS += $(call cc-option,-fno-unit-at-a-time)
...

The first example utilises the trick that a config option expands to
‘y’when selected.

KBUILD_AFLAGS_KERNEL Assembler options specific for built-in
$(KBUILD_AFLAGS_KERNEL) contains extra C compiler flags used
to compile resident kernel code.

KBUILD_AFLAGS_MODULE Assembler options specific for modules

$(KBUILD_AFLAGS_MODULE) is used to add arch-specific options
that are used for assembler.

From commandline AFLAGS_MODULE shall be used (see
kbuild.rst).

KBUILD_CFLAGS_KERNEL $(CC) options specific for built-in
$(KBUILD_CFLAGS_KERNEL) contains extra C compiler flags used
to compile resident kernel code.

KBUILD_CFLAGS_MODULE Options for $(CC) when building mod-
ules

$(KBUILD_CFLAGS_MODULE) is used to add arch-specific options
that are used for $(CC). From commandline CFLAGS_MODULE shall
be used (see kbuild.rst).

KBUILD_LDFLAGS_MODULE Options for $(LD) when linking mod-
ules

$(KBUILD_LDFLAGS_MODULE) is used to add arch-specific options
used when linking modules. This is often a linker script.

From commandline LDFLAGS_MODULE shall be used (see
kbuild.rst).

KBUILD_LDS

The linker script with full path. Assigned by the top-level Make-
file.

KBUILD_LDS_MODULE

The module linker script with full path. Assigned by the top-
level Makefile and additionally by the arch Makefile.

KBUILD_VMLINUX_OBJS

All object files for vmlinux. They are linked to vmlinux in the
same order as listed in KBUILD_VMLINUX_OBJS.

5.7. 7 Architecture Makefiles 51

Linux Kbuild Documentation

KBUILD_VMLINUX_LIBS

All .a “lib”files for vmlinux. KBUILD_VMLINUX_OBJS and
KBUILD_VMLINUX_LIBS together specify all the object files
used to link vmlinux.

5.7.2 7.2 Add prerequisites to archheaders

The archheaders: rule is used to generate header files that may be in-
stalled into user space by “make header_install”.
It is run before“make archprepare”when run on the architecture itself.

5.7.3 7.3 Add prerequisites to archprepare

The archprepare: rule is used to list prerequisites that need to be built
before starting to descend down in the subdirectories. This is usually
used for header files containing assembler constants.

Example:

#arch/arm/Makefile
archprepare: maketools

In this example, the file target maketools will be processed before de-
scending down in the subdirectories. See also chapter XXX-TODO that
describe how kbuild supports generating offset header files.

5.7.4 7.4 List directories to visit when descending

An arch Makefile cooperates with the top Makefile to define variables
which specify how to build the vmlinux file. Note that there is no cor-
responding arch-specific section for modules; the module-building ma-
chinery is all architecture-independent.

head-y, init-y, core-y, libs-y, drivers-y, net-y $(head-y) lists objects
to be linked first in vmlinux.

$(libs-y) lists directories where a lib.a archive can be located.

The rest list directories where a built-in.a object file can be located.

$(init-y) objects will be located after $(head-y).

Then the rest follows in this order:

$(core-y), $(libs-y), $(drivers-y) and $(net-y).

The top level Makefile defines values for all generic directories, and
arch/$(ARCH)/Makefile only adds architecture-specific directories.

Example:

52 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

#arch/sparc64/Makefile
core-y += arch/sparc64/kernel/
libs-y += arch/sparc64/prom/ arch/sparc64/lib/
drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/

5.7.5 7.5 Architecture-specific boot images

An arch Makefile specifies goals that take the vmlinux file, compress it,
wrap it in bootstrapping code, and copy the resulting files somewhere.
This includes various kinds of installation commands. The actual goals
are not standardized across architectures.

It is common to locate any additional processing in a boot/ directory
below arch/$(ARCH)/.

Kbuild does not provide any smart way to support building a target speci-
fied in boot/. Therefore arch/$(ARCH)/Makefile shall call make manually
to build a target in boot/.

The recommended approach is to include shortcuts in
arch/$(ARCH)/Makefile, and use the full path when calling down
into the arch/$(ARCH)/boot/Makefile.

Example:

#arch/x86/Makefile
boot := arch/x86/boot
bzImage: vmlinux

(Q)(MAKE) $(build)=$(boot) $(boot)/$@

“(Q)(MAKE) $(build)=<dir>”is the recommended way to invoke make
in a subdirectory.

There are no rules for naming architecture-specific targets, but execut-
ing“make help”will list all relevant targets. To support this, $(archhelp)
must be defined.

Example:

#arch/x86/Makefile
define archhelp
echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'

endif

When make is executed without arguments, the first goal encountered
will be built. In the top level Makefile the first goal present is all:. An
architecture shall always, per default, build a bootable image. In“make
help”, the default goal is highlighted with a‘*’. Add a new prerequisite
to all: to select a default goal different from vmlinux.

Example:

#arch/x86/Makefile
all: bzImage

5.7. 7 Architecture Makefiles 53

Linux Kbuild Documentation

When “make”is executed without arguments, bzImage will be built.

5.7.6 7.6 Building non-kbuild targets

extra-y extra-y specifies additional targets created in the current direc-
tory, in addition to any targets specified by obj-*.

Listing all targets in extra-y is required for two purposes:

1) Enable kbuild to check changes in command lines

• When $(call if_changed,xxx) is used

2) kbuild knows what files to delete during “make clean”
Example:

#arch/x86/kernel/Makefile
extra-y := head.o init_task.o

In this example, extra-y is used to list object files that shall be built,
but shall not be linked as part of built-in.a.

5.7.7 7.7 Commands useful for building a boot image

Kbuild provides a fewmacros that are useful when building a boot image.

if_changed if_changed is the infrastructure used for the following com-
mands.

Usage:

target: source(s) FORCE
$(call if_changed,ld/objcopy/gzip/...)

When the rule is evaluated, it is checked to see if any files need an
update, or the command line has changed since the last invocation.
The latter will force a rebuild if any options to the executable have
changed. Any target that utilises if_changed must be listed in $(tar-
gets), otherwise the command line check will fail, and the target will
always be built. Assignments to $(targets) are without $(obj)/ pre-
fix. if_changed may be used in conjunction with custom commands
as defined in 6.8 “Custom kbuild commands”.
Note: It is a typical mistake to forget the FORCE prerequisite. An-
other common pitfall is that whitespace is sometimes significant; for
instance, the below will fail (note the extra space after the comma):

target: source(s) FORCE

WRONG! $(call if_changed, ld/objcopy/gzip/⋯)
Note: if_changed should not be used more than once per target. It

stores the executed command in a corresponding .cmd

54 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

file and multiple calls would result in overwrites and unwanted re-
sults when the target is up to date and only the tests on changed
commands trigger execution of commands.

ld Link target. Often, LDFLAGS_$@ is used to set specific options to ld.

Example:

#arch/x86/boot/Makefile
LDFLAGS_bootsect := -Ttext 0x0 -s --oformat binary
LDFLAGS_setup := -Ttext 0x0 -s --oformat binary -e begtext

targets += setup setup.o bootsect bootsect.o
$(obj)/setup $(obj)/bootsect: %: %.o FORCE

$(call if_changed,ld)

In this example, there are two possible targets, requiring different
options to the linker. The linker options are specified using the LD-
FLAGS_$@ syntax - one for each potential target. $(targets) are
assigned all potential targets, by which kbuild knows the targets
and will:

1) check for commandline changes

2) delete target during make clean

The“: %: %.o”part of the prerequisite is a shorthand that frees us
from listing the setup.o and bootsect.o files.

Note: It is a common mistake to forget the“targets :=”assignment,
resulting in the target file being recompiled for no obvious rea-
son.

objcopy Copy binary. Uses OBJCOPYFLAGS usually specified in
arch/$(ARCH)/Makefile. OBJCOPYFLAGS_$@ may be used to set
additional options.

gzip Compress target. Use maximum compression to compress target.

Example:

#arch/x86/boot/compressed/Makefile
$(obj)/vmlinux.bin.gz: $(vmlinux.bin.all-y) FORCE

$(call if_changed,gzip)

dtc Create flattened device tree blob object suitable for linking into vm-
linux. Device tree blobs linked into vmlinux are placed in an init
section in the image. Platform code must copy the blob to non-init
memory prior to calling unflatten_device_tree().

To use this command, simply add *.dtb into obj-y or targets, or make
some other target depend on %.dtb

A central rule exists to create $(obj)/%.dtb from $(src)/%.dts; archi-
tecture Makefiles do no need to explicitly write out that rule.

Example:

5.7. 7 Architecture Makefiles 55

Linux Kbuild Documentation

targets += $(dtb-y)
DTC_FLAGS ?= -p 1024

5.7.8 7.8 Custom kbuild commands

When kbuild is executing with KBUILD_VERBOSE=0, then only a short-
hand of a command is normally displayed. To enable this behaviour for
custom commands kbuild requires two variables to be set:

quiet_cmd_<command> - what shall be echoed
cmd_<command> - the command to execute

Example:

#
quiet_cmd_image = BUILD $@

cmd_image = $(obj)/tools/build $(BUILDFLAGS) \
$(obj)/vmlinux.bin > $@

targets += bzImage
$(obj)/bzImage: $(obj)/vmlinux.bin $(obj)/tools/build FORCE

$(call if_changed,image)
@echo 'Kernel: $@ is ready'

When updating the $(obj)/bzImage target, the line:

BUILD arch/x86/boot/bzImage

will be displayed with “make KBUILD_VERBOSE=0”.

5.7.9 7.9 Preprocessing linker scripts

When the vmlinux image is built, the linker script
arch/$(ARCH)/kernel/vmlinux.lds is used. The script is a prepro-
cessed variant of the file vmlinux.lds.S located in the same directory.
kbuild knows .lds files and includes a rule *lds.S -> *lds.

Example:

#arch/x86/kernel/Makefile
extra-y := vmlinux.lds

#Makefile
export CPPFLAGS_vmlinux.lds += -P -C -U$(ARCH)

The assignment to extra-y is used to tell kbuild to build the target vm-
linux.lds. The assignment to $(CPPFLAGS_vmlinux.lds) tells kbuild to
use the specified options when building the target vmlinux.lds.

When building the *.lds target, kbuild uses the variables:

KBUILD_CPPFLAGS : Set in top-level Makefile
cppflags-y : May be set in the kbuild makefile

(continues on next page)

56 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

(continued from previous page)
CPPFLAGS_$(@F) : Target-specific flags.

Note that the full filename is used in this
assignment.

The kbuild infrastructure for *lds files is used in several architecture-
specific files.

5.7.10 7.10 Generic header files

The directory include/asm-generic contains the header files that may be
shared between individual architectures. The recommended approach
how to use a generic header file is to list the file in the Kbuild file. See
“7.2 generic-y”for further info on syntax etc.

5.7.11 7.11 Post-link pass

If the file arch/xxx/Makefile.postlink exists, this makefile will be invoked
for post-link objects (vmlinux and modules.ko) for architectures to run
post-link passes on. Must also handle the clean target.

This pass runs after kallsyms generation. If the architecture needs to
modify symbol locations, rather than manipulate the kallsyms, it may be
easier to add another postlink target for .tmp_vmlinux? targets to be
called from link-vmlinux.sh.

For example, powerpc uses this to check relocation sanity of the linked
vmlinux file.

5.7.12 8 Kbuild syntax for exported headers

The kernel includes a set of headers that is exported to userspace. Many headers
can be exported as-is but other headers require a minimal pre-processing before
they are ready for user-space. The pre-processing does:

• drop kernel-specific annotations

• drop include of compiler.h

• drop all sections that are kernel internal (guarded by ifdef __KERNEL__)

All headers under include/uapi/, include/generated/uapi/,
arch/<arch>/include/uapi/ and arch/<arch>/include/generated/uapi/ are ex-
ported.

A Kbuild file may be defined under arch/<arch>/include/uapi/asm/ and
arch/<arch>/include/asm/ to list asm files coming from asm-generic. See sub-
sequent chapter for the syntax of the Kbuild file.

5.7. 7 Architecture Makefiles 57

Linux Kbuild Documentation

5.7.13 8.1 no-export-headers

no-export-headers is essentially used by include/uapi/linux/Kbuild to
avoid exporting specific headers (e.g. kvm.h) on architectures that do
not support it. It should be avoided as much as possible.

5.7.14 8.2 generic-y

If an architecture uses a verbatim copy of a header from include/asm-
generic then this is listed in the file arch/$(ARCH)/include/asm/Kbuild
like this:

Example:

#arch/x86/include/asm/Kbuild
generic-y += termios.h
generic-y += rtc.h

During the prepare phase of the build a wrapper include file is generated
in the directory:

arch/$(ARCH)/include/generated/asm

When a header is exported where the architecture uses the generic
header a similar wrapper is generated as part of the set of exported
headers in the directory:

usr/include/asm

The generated wrapper will in both cases look like the following:

Example: termios.h:

#include <asm-generic/termios.h>

5.7.15 8.3 generated-y

If an architecture generates other header files alongside generic-y wrap-
pers, generated-y specifies them.

This prevents them being treated as stale asm-generic wrappers and
removed.

Example:

#arch/x86/include/asm/Kbuild
generated-y += syscalls_32.h

58 Chapter 5. Linux Kernel Makefiles

Linux Kbuild Documentation

5.7.16 8.4 mandatory-y

mandatory-y is essentially used by include/(uapi/)asm-generic/Kbuild to
define the minimum set of ASM headers that all architectures must have.

This works like optional generic-y. If a mandatory header is missing in
arch/$(ARCH)/include/(uapi/)/asm, Kbuild will automatically generate a
wrapper of the asm-generic one.

5.8 9 Kbuild Variables

The top Makefile exports the following variables:

VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION These vari-
ables define the current kernel version. A few arch Makefiles actu-
ally use these values directly; they should use $(KERNELRELEASE)
instead.

$(VERSION), $(PATCHLEVEL), and $(SUBLEVEL) define the basic
three-part version number, such as“2”,“4”, and“0”. These three
values are always numeric.

$(EXTRAVERSION) defines an even tinier sublevel for pre-patches
or additional patches. It is usually some non-numeric string such as
“-pre4”, and is often blank.

KERNELRELEASE $(KERNELRELEASE) is a single string such as
“2.4.0-pre4”, suitable for constructing installation directory names
or showing in version strings. Some arch Makefiles use it for this
purpose.

ARCH This variable defines the target architecture, such as “i386”,
“arm”, or“sparc”. Some kbuildMakefiles test $(ARCH) to determine
which files to compile.

By default, the top Makefile sets $(ARCH) to be the same as the
host system architecture. For a cross build, a user may override the
value of $(ARCH) on the command line:

make ARCH=m68k ...

INSTALL_PATH This variable defines a place for the arch Makefiles to
install the resident kernel image and System.map file. Use this for
architecture-specific install targets.

INSTALL_MOD_PATH, MODLIB $(INSTALL_MOD_PATH) specifies a
prefix to $(MODLIB) for module installation. This variable is not
defined in the Makefile but may be passed in by the user if desired.

$(MODLIB) specifies the directory for module instal-
lation. The top Makefile defines $(MODLIB) to $(IN-
STALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user
may override this value on the command line if desired.

5.8. 9 Kbuild Variables 59

Linux Kbuild Documentation

INSTALL_MOD_STRIP If this variable is specified, it will cause mod-
ules to be stripped after they are installed. If INSTALL_MOD_STRIP
is‘1’, then the default option –strip-debug will be used. Otherwise,
the INSTALL_MOD_STRIP value will be used as the option(s) to the
strip command.

5.9 10 Makefile language

The kernel Makefiles are designed to be run with GNU Make. The Makefiles use
only the documented features of GNU Make, but they do use many GNU exten-
sions.

GNU Make supports elementary list-processing functions. The kernel Makefiles
use a novel style of list building and manipulation with few “if”statements.
GNUMake has two assignment operators,“:=”and“=”.“:=”performs immediate
evaluation of the right-hand side and stores an actual string into the left-hand side.
“=”is like a formula definition; it stores the right-hand side in an unevaluated form
and then evaluates this form each time the left-hand side is used.

There are some cases where“=”is appropriate. Usually, though,“:=”is the right
choice.

5.10 11 Credits

• Original version made by Michael Elizabeth Chastain, <mailto:mec@shout.
net>

• Updates by Kai Germaschewski <kai@tp1.ruhr-uni-bochum.de>

• Updates by Sam Ravnborg <sam@ravnborg.org>

• Language QA by Jan Engelhardt <jengelh@gmx.de>

5.11 12 TODO

• Describe how kbuild supports shipped files with _shipped.

• Generating offset header files.

• Add more variables to section 7?

60 Chapter 5. Linux Kernel Makefiles

mailto:mec@shout.net
mailto:mec@shout.net
mailto:kai@tp1.ruhr-uni-bochum.de
mailto:sam@ravnborg.org
mailto:jengelh@gmx.de

CHAPTER

SIX

BUILDING EXTERNAL MODULES

This document describes how to build an out-of-tree kernel module.

6.1 1. Introduction

“kbuild”is the build system used by the Linux kernel. Modules must use kbuild to
stay compatible with changes in the build infrastructure and to pick up the right
flags to “gcc.”Functionality for building modules both in-tree and out-of-tree is
provided. The method for building either is similar, and all modules are initially
developed and built out-of-tree.

Covered in this document is information aimed at developers interested in building
out-of-tree (or “external”) modules. The author of an external module should
supply a makefile that hides most of the complexity, so one only has to type“make”
to build the module. This is easily accomplished, and a complete example will be
presented in section 3.

6.2 2. How to Build External Modules

To build external modules, you must have a prebuilt kernel available that contains
the configuration and header files used in the build. Also, the kernel must have
been built with modules enabled. If you are using a distribution kernel, there will
be a package for the kernel you are running provided by your distribution.

An alternative is to use the“make”target“modules_prepare.”This will make sure
the kernel contains the information required. The target exists solely as a simple
way to prepare a kernel source tree for building external modules.

NOTE: “modules_prepare”will not build Module.symvers even if CON-
FIG_MODVERSIONS is set; therefore, a full kernel build needs to be executed
to make module versioning work.

61

Linux Kbuild Documentation

6.3 2.1 Command Syntax

The command to build an external module is:

$ make -C <path_to_kernel_src> M=$PWD

The kbuild system knows that an external module is being built due to
the “M=<dir>”option given in the command.
To build against the running kernel use:

$ make -C /lib/modules/`uname -r`/build M=$PWD

Then to install the module(s) just built, add the target“modules_install”
to the command:

$ make -C /lib/modules/`uname -r`/build M=$PWD modules_install

6.4 2.2 Options

($KDIR refers to the path of the kernel source directory.)

make -C $KDIR M=$PWD

-C $KDIR The directory where the kernel source is located. “make”
will actually change to the specified directory when executing and
will change back when finished.

M=$PWD Informs kbuild that an external module is being built. The
value given to “M”is the absolute path of the directory where the
external module (kbuild file) is located.

6.5 2.3 Targets

When building an external module, only a subset of the“make”targets
are available.

make -C $KDIR M=$PWD [target]

The default will build the module(s) located in the current directory, so
a target does not need to be specified. All output files will also be gener-
ated in this directory. No attempts are made to update the kernel source,
and it is a precondition that a successful“make”has been executed for
the kernel.

modules The default target for external modules. It has the same func-
tionality as if no target was specified. See description above.

modules_install Install the external module(s). The default location
is /lib/modules/<kernel_release>/extra/, but a prefix may be added
with INSTALL_MOD_PATH (discussed in section 5).

clean Remove all generated files in the module directory only.

62 Chapter 6. Building External Modules

Linux Kbuild Documentation

help List the available targets for external modules.

6.6 2.4 Building Separate Files

It is possible to build single files that are part of a module. This works
equally well for the kernel, a module, and even for external modules.

Example (The module foo.ko, consist of bar.o and baz.o):

make -C $KDIR M=$PWD bar.lst
make -C $KDIR M=$PWD baz.o
make -C $KDIR M=$PWD foo.ko
make -C $KDIR M=$PWD ./

6.7 3. Creating a Kbuild File for an External Module

In the last section we saw the command to build a module for the running kernel.
The module is not actually built, however, because a build file is required. Con-
tained in this file will be the name of the module(s) being built, along with the list
of requisite source files. The file may be as simple as a single line:

obj-m := <module_name>.o

The kbuild system will build <module_name>.o from <module_name>.c, and, af-
ter linking, will result in the kernel module <module_name>.ko. The above line
can be put in either a“Kbuild”file or a“Makefile.”When the module is built from
multiple sources, an additional line is needed listing the files:

<module_name>-y := <src1>.o <src2>.o ...

NOTE: Further documentation describing the syntax used by kbuild is located in
Documentation/kbuild/makefiles.rst.

The examples below demonstrate how to create a build file for the module 8123.ko,
which is built from the following files:

8123_if.c
8123_if.h
8123_pci.c
8123_bin.o_shipped <= Binary blob

6.6. 2.4 Building Separate Files 63

Linux Kbuild Documentation

6.7.1 3.1 Shared Makefile

An external module always includes a wrapper makefile that supports
building the module using“make”with no arguments. This target is not
used by kbuild; it is only for convenience. Additional functionality, such
as test targets, can be included but should be filtered out from kbuild
due to possible name clashes.

Example 1:

--> filename: Makefile
ifneq ($(KERNELRELEASE),)
kbuild part of makefile
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o

else
normal makefile
KDIR ?= /lib/modules/`uname -r`/build

default:
$(MAKE) -C $(KDIR) M=$$PWD

Module specific targets
genbin:

echo "X" > 8123_bin.o_shipped

endif

The check for KERNELRELEASE is used to separate the two parts of
the makefile. In the example, kbuild will only see the two assignments,
whereas“make”will see everything except these two assignments. This
is due to two passes made on the file: the first pass is by the“make”in-
stance run on the command line; the second pass is by the kbuild system,
which is initiated by the parameterized “make”in the default target.

6.7.2 3.2 Separate Kbuild File and Makefile

In newer versions of the kernel, kbuild will first look for a file named
“Kbuild,”and only if that is not found, will it then look for a makefile.
Utilizing a“Kbuild”file allows us to split up the makefile from example
1 into two files:

Example 2:

--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o

--> filename: Makefile
KDIR ?= /lib/modules/`uname -r`/build

default:
$(MAKE) -C $(KDIR) M=$$PWD

(continues on next page)

64 Chapter 6. Building External Modules

Linux Kbuild Documentation

(continued from previous page)

Module specific targets
genbin:

echo "X" > 8123_bin.o_shipped

The split in example 2 is questionable due to the simplicity of each file;
however, some external modules use makefiles consisting of several hun-
dred lines, and here it really pays off to separate the kbuild part from
the rest.

The next example shows a backward compatible version.

Example 3:

--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o

--> filename: Makefile
ifneq ($(KERNELRELEASE),)
kbuild part of makefile
include Kbuild

else
normal makefile
KDIR ?= /lib/modules/`uname -r`/build

default:
$(MAKE) -C $(KDIR) M=$$PWD

Module specific targets
genbin:

echo "X" > 8123_bin.o_shipped

endif

Here the“Kbuild”file is included from the makefile. This allows an older
version of kbuild, which only knows of makefiles, to be used when the
“make”and kbuild parts are split into separate files.

6.7.3 3.3 Binary Blobs

Some external modules need to include an object file as a blob.
kbuild has support for this, but requires the blob file to be named
<filename>_shipped. When the kbuild rules kick in, a copy of
<filename>_shipped is created with _shipped stripped off, giving us
<filename>. This shortened filename can be used in the assignment
to the module.

Throughout this section, 8123_bin.o_shipped has been used to build the
kernel module 8123.ko; it has been included as 8123_bin.o:

8123-y := 8123_if.o 8123_pci.o 8123_bin.o

6.7. 3. Creating a Kbuild File for an External Module 65

Linux Kbuild Documentation

Although there is no distinction between the ordinary source files and
the binary file, kbuild will pick up different rules when creating the ob-
ject file for the module.

6.8 3.4 Building Multiple Modules

kbuild supports buildingmultiple modules with a single build file. For ex-
ample, if you wanted to build two modules, foo.ko and bar.ko, the kbuild
lines would be:

obj-m := foo.o bar.o
foo-y := <foo_srcs>
bar-y := <bar_srcs>

It is that simple!

6.9 4. Include Files

Within the kernel, header files are kept in standard locations according to the
following rule:

• If the header file only describes the internal interface of a module, then the
file is placed in the same directory as the source files.

• If the header file describes an interface used by other parts of the kernel that
are located in different directories, then the file is placed in include/linux/.

NOTE: There are two notable exceptions to this rule: larger subsystems have
their own directory under include/, such as include/scsi; and architecture
specific headers are located under arch/$(ARCH)/include/.

6.9.1 4.1 Kernel Includes

To include a header file located under include/linux/, simply use:

#include <linux/module.h>

kbuild will add options to“gcc”so the relevant directories are searched.

6.9.2 4.2 Single Subdirectory

External modules tend to place header files in a separate include/ di-
rectory where their source is located, although this is not the usual
kernel style. To inform kbuild of the directory, use either ccflags-y or
CFLAGS_<filename>.o.

Using the example from section 3, if we moved 8123_if.h to a subdirec-
tory named include, the resulting kbuild file would look like:

66 Chapter 6. Building External Modules

Linux Kbuild Documentation

--> filename: Kbuild
obj-m := 8123.o

ccflags-y := -Iinclude
8123-y := 8123_if.o 8123_pci.o 8123_bin.o

Note that in the assignment there is no space between -I and the path.
This is a limitation of kbuild: there must be no space present.

6.9.3 4.3 Several Subdirectories

kbuild can handle files that are spread over several directories. Consider
the following example:

.
|__ src
| |__ complex_main.c
| |__ hal
| |__ hardwareif.c
| |__ include
| |__ hardwareif.h
|__ include
|__ complex.h

To build the module complex.ko, we then need the following kbuild file:

--> filename: Kbuild
obj-m := complex.o
complex-y := src/complex_main.o
complex-y += src/hal/hardwareif.o

ccflags-y := -I$(src)/include
ccflags-y += -I$(src)/src/hal/include

As you can see, kbuild knows how to handle object files located in other
directories. The trick is to specify the directory relative to the kbuild file’
s location. That being said, this is NOT recommended practice.

For the header files, kbuild must be explicitly told where to look. When
kbuild executes, the current directory is always the root of the kernel
tree (the argument to “-C”) and therefore an absolute path is needed.
$(src) provides the absolute path by pointing to the directory where the
currently executing kbuild file is located.

6.9. 4. Include Files 67

Linux Kbuild Documentation

6.10 5. Module Installation

Modules which are included in the kernel are installed in the directory:

/lib/modules/$(KERNELRELEASE)/kernel/

And external modules are installed in:

/lib/modules/$(KERNELRELEASE)/extra/

6.10.1 5.1 INSTALL_MOD_PATH

Above are the default directories but as always some level of customiza-
tion is possible. A prefix can be added to the installation path using the
variable INSTALL_MOD_PATH:

$ make INSTALL_MOD_PATH=/frodo modules_install
=> Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel/

INSTALL_MOD_PATH may be set as an ordinary shell variable or, as
shown above, can be specified on the command line when calling“make.”
This has effect when installing both in-tree and out-of-tree modules.

6.10.2 5.2 INSTALL_MOD_DIR

External modules are by default installed to a directory under
/lib/modules/$(KERNELRELEASE)/extra/, but you may wish to locate
modules for a specific functionality in a separate directory. For this pur-
pose, use INSTALL_MOD_DIR to specify an alternative name to“extra.”
:

$ make INSTALL_MOD_DIR=gandalf -C $KDIR \
M=$PWD modules_install

=> Install dir: /lib/modules/$(KERNELRELEASE)/gandalf/

6.11 6. Module Versioning

Module versioning is enabled by the CONFIG_MODVERSIONS tag, and is used as
a simple ABI consistency check. A CRC value of the full prototype for an exported
symbol is created. When a module is loaded/used, the CRC values contained in
the kernel are compared with similar values in the module; if they are not equal,
the kernel refuses to load the module.

Module.symvers contains a list of all exported symbols from a kernel build.

68 Chapter 6. Building External Modules

Linux Kbuild Documentation

6.11.1 6.1 Symbols From the Kernel (vmlinux + modules)

During a kernel build, a file named Module.symvers will be generated.
Module.symvers contains all exported symbols from the kernel and com-
piled modules. For each symbol, the corresponding CRC value is also
stored.

The syntax of the Module.symvers file is:

<CRC> <Symbol> <Module>
↪→<Export Type> <Namespace>

0xe1cc2a05 usb_stor_suspend drivers/usb/storage/usb-storage ␣
↪→EXPORT_SYMBOL_GPL USB_STORAGE

The fields are separated by tabs and values may be empty (e.g. if no
namespace is defined for an exported symbol).

For a kernel build without CONFIG_MODVERSIONS enabled, the CRC
would read 0x00000000.

Module.symvers serves two purposes:

1) It lists all exported symbols from vmlinux and all modules.

2) It lists the CRC if CONFIG_MODVERSIONS is enabled.

6.11.2 6.2 Symbols and External Modules

When building an external module, the build system needs access to the
symbols from the kernel to check if all external symbols are defined. This
is done in the MODPOST step. modpost obtains the symbols by read-
ing Module.symvers from the kernel source tree. During the MODPOST
step, a new Module.symvers file will be written containing all exported
symbols from that external module.

6.11.3 6.3 Symbols From Another External Module

Sometimes, an external module uses exported symbols from another ex-
ternal module. Kbuild needs to have full knowledge of all symbols to
avoid spitting out warnings about undefined symbols. Two solutions ex-
ist for this situation.

NOTE: The method with a top-level kbuild file is recommended but may
be impractical in certain situations.

Use a top-level kbuild file If you have two modules, foo.ko and bar.ko,
where foo.ko needs symbols from bar.ko, you can use a common top-
level kbuild file so both modules are compiled in the same build.
Consider the following directory layout:

./foo/ <= contains foo.ko

./bar/ <= contains bar.ko

The top-level kbuild file would then look like:

6.11. 6. Module Versioning 69

Linux Kbuild Documentation

#./Kbuild (or ./Makefile):
obj-m := foo/ bar/

And executing:

$ make -C $KDIR M=$PWD

will then do the expected and compile both modules with full knowl-
edge of symbols from either module.

Use “make”variable KBUILD_EXTRA_SYMBOLS If it is impracti-
cal to add a top-level kbuild file, you can assign a space separated
list of files to KBUILD_EXTRA_SYMBOLS in your build file. These
files will be loaded by modpost during the initialization of its symbol
tables.

6.12 7. Tips & Tricks

6.12.1 7.1 Testing for CONFIG_FOO_BAR

Modules often need to check for certain CONFIG_ options to decide if
a specific feature is included in the module. In kbuild this is done by
referencing the CONFIG_ variable directly:

#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o

ext2-y := balloc.o bitmap.o dir.o
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o

External modules have traditionally used “grep”to check for specific
CONFIG_ settings directly in .config. This usage is broken. As intro-
duced before, external modules should use kbuild for building and can
therefore use the same methods as in-tree modules when testing for
CONFIG_ definitions.

70 Chapter 6. Building External Modules

CHAPTER

SEVEN

EXPORTING KERNEL HEADERS FOR USE BY USERSPACE

The“make headers_install”command exports the kernel’s header files in a form
suitable for use by userspace programs.

The linux kernel’s exported header files describe the API for user space programs
attempting to use kernel services. These kernel header files are used by the sys-
tem’s C library (such as glibc or uClibc) to define available system calls, as well
as constants and structures to be used with these system calls. The C library’s
header files include the kernel header files from the “linux”subdirectory. The
system’s libc headers are usually installed at the default location /usr/include and
the kernel headers in subdirectories under that (most notably /usr/include/linux
and /usr/include/asm).

Kernel headers are backwards compatible, but not forwards compatible. This
means that a program built against a C library using older kernel headers should
run on a newer kernel (although it may not have access to new features), but a
program built against newer kernel headers may not work on an older kernel.

The“make headers_install”command can be run in the top level directory of the
kernel source code (or using a standard out-of-tree build). It takes two optional
arguments:

make headers_install ARCH=i386 INSTALL_HDR_PATH=/usr

ARCH indicates which architecture to produce headers for, and defaults to the
current architecture. The linux/asm directory of the exported kernel headers is
platform-specific, to see a complete list of supported architectures use the com-
mand:

ls -d include/asm-* | sed 's/.*-//'

INSTALL_HDR_PATH indicates where to install the headers. It defaults to“./usr”
.

An ‘include’directory is automatically created inside INSTALL_HDR_PATH and
headers are installed in ‘INSTALL_HDR_PATH/include’.
The kernel header export infrastructure is maintained by David Woodhouse
<dwmw2@infradead.org>.

71

mailto:dwmw2@infradead.org

Linux Kbuild Documentation

72 Chapter 7. Exporting kernel headers for use by userspace

CHAPTER

EIGHT

RECURSION ISSUES

8.1 issue #1

Simple Kconfig recursive issue
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
Test with:
#
make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01␣
↪→allnoconfig
#
This Kconfig file has a simple recursive dependency issue. In order to
understand why this recursive dependency issue occurs lets consider what
Kconfig needs to address. We iterate over what Kconfig needs to address
by stepping through the questions it needs to address sequentially.
#
* What values are possible for CORE?
#
CORE_BELL_A_ADVANCED selects CORE, which means that it influences the␣
↪→values
that are possible for CORE. So for example if CORE_BELL_A_ADVANCED is 'y
↪→',
CORE must be 'y' too.
#
* What influences CORE_BELL_A_ADVANCED ?
#
As the name implies CORE_BELL_A_ADVANCED is an advanced feature of
CORE_BELL_A so naturally it depends on CORE_BELL_A. So if CORE_BELL_A is
↪→'y'
we know CORE_BELL_A_ADVANCED can be 'y' too.
#
* What influences CORE_BELL_A ?
#
CORE_BELL_A depends on CORE, so CORE influences CORE_BELL_A.
#
But that is a problem, because this means that in order to determine
what values are possible for CORE we ended up needing to address␣
↪→questions
regarding possible values of CORE itself again. Answering the original
question of what are the possible values of CORE would make the kconfig
tools run in a loop. When this happens Kconfig exits and complains about
the "recursive dependency detected" error.
#

(continues on next page)

73

Linux Kbuild Documentation

(continued from previous page)
Reading the Documentation/kbuild/Kconfig.recursion-issue-01 file it may␣
↪→be
obvious that an easy to solution to this problem should just be the␣
↪→removal
of the "select CORE" from CORE_BELL_A_ADVANCED as that is implicit␣
↪→already
since CORE_BELL_A depends on CORE. Recursive dependency issues are not␣
↪→always
so trivial to resolve, we provide another example below of practical
implications of this recursive issue where the solution is perhaps not so
easy to understand. Note that matching semantics on the dependency on
CORE also consist of a solution to this recursive problem.

mainmenu "Simple example to demo kconfig recursive dependency issue"

config CORE
tristate

config CORE_BELL_A
tristate
depends on CORE

config CORE_BELL_A_ADVANCED
tristate
depends on CORE_BELL_A
select CORE

8.2 issue #2

Cumulative Kconfig recursive issue
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
Test with:
#
make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02␣
↪→allnoconfig
#
The recursive limitations with Kconfig has some non intuitive␣
↪→implications on
kconfig sematics which are documented here. One known practical␣
↪→implication
of the recursive limitation is that drivers cannot negate features from␣
↪→other
drivers if they share a common core requirement and use disjoint␣
↪→semantics to
annotate those requirements, ie, some drivers use "depends on" while␣
↪→others
use "select". For instance it means if a driver A and driver B share the␣
↪→same
core requirement, and one uses "select" while the other uses "depends on
↪→" to
annotate this, all features that driver A selects cannot now be negated␣
↪→by

(continues on next page)

74 Chapter 8. Recursion issues

Linux Kbuild Documentation

(continued from previous page)
driver B.
#
A perhaps not so obvious implication of this is that, if semantics on␣
↪→these
core requirements are not carefully synced, as drivers evolve features
they select or depend on end up becoming shared requirements which␣
↪→cannot be
negated by other drivers.
#
The example provided in Documentation/kbuild/Kconfig.recursion-issue-02
describes a simple driver core layout of example features a kernel might
have. Let's assume we have some CORE functionality, then the kernel has a
series of bells and whistles it desires to implement, its not so␣
↪→advanced so
it only supports bells at this time: CORE_BELL_A and CORE_BELL_B. If
CORE_BELL_A has some advanced feature CORE_BELL_A_ADVANCED which selects
CORE_BELL_A then CORE_BELL_A ends up becoming a common BELL feature which
other bells in the system cannot negate. The reason for this issue is
due to the disjoint use of semantics on expressing each bell's␣
↪→relationship
with CORE, one uses "depends on" while the other uses "select". Another
more important reason is that kconfig does not check for dependencies␣
↪→listed
under 'select' for a symbol, when such symbols are selected kconfig them
as mandatory required symbols. For more details on the heavy handed␣
↪→nature
of select refer to Documentation/kbuild/Kconfig.select-break
#
To fix this the "depends on CORE" must be changed to "select CORE", or␣
↪→the
"select CORE" must be changed to "depends on CORE".
#
For an example real world scenario issue refer to the attempt to remove
"select FW_LOADER" [0], in the end the simple alternative solution to␣
↪→this
problem consisted on matching semantics with newly introduced features.
#
[0] http://lkml.kernel.org/r/1432241149-8762-1-git-send-email-mcgrof@do-
↪→not-panic.com

mainmenu "Simple example to demo cumulative kconfig recursive dependency␣
↪→implication"

config CORE
tristate

config CORE_BELL_A
tristate
depends on CORE

config CORE_BELL_A_ADVANCED
tristate
select CORE_BELL_A

config CORE_BELL_B
tristate

(continues on next page)

8.2. issue #2 75

Linux Kbuild Documentation

(continued from previous page)
depends on !CORE_BELL_A
select CORE

76 Chapter 8. Recursion issues

CHAPTER

NINE

REPRODUCIBLE BUILDS

It is generally desirable that building the same source code with the same set of
tools is reproducible, i.e. the output is always exactly the same. This makes it pos-
sible to verify that the build infrastructure for a binary distribution or embedded
system has not been subverted. This can also make it easier to verify that a source
or tool change does not make any difference to the resulting binaries.

The Reproducible Builds project has more information about this general topic.
This document covers the various reasons why building the kernel may be unre-
producible, and how to avoid them.

9.1 Timestamps

The kernel embeds timestamps in three places:

• The version string exposed by uname() and included in /proc/version

• File timestamps in the embedded initramfs

• If enabled via CONFIG_IKHEADERS, file timestamps of kernel headers embed-
ded in the kernel or respective module, exposed via /sys/kernel/kheaders.
tar.xz

By default the timestamp is the current time and in the case of kheaders
the various files’modification times. This must be overridden using the
KBUILD_BUILD_TIMESTAMP variable. If you are building from a git commit, you
could use its commit date.

The kernel does not use the __DATE__ and __TIME__macros, and enables warnings
if they are used. If you incorporate external code that does use these, you must
override the timestamp they correspond to by setting the SOURCE_DATE_EPOCH
environment variable.

77

https://reproducible-builds.org/
kbuild.html#kbuild-build-timestamp
https://reproducible-builds.org/docs/source-date-epoch/

Linux Kbuild Documentation

9.2 User, host

The kernel embeds the building user and host names in /proc/version. These
must be overridden using the KBUILD_BUILD_USER and KBUILD_BUILD_HOST
variables. If you are building from a git commit, you could use its committer ad-
dress.

9.3 Absolute filenames

When the kernel is built out-of-tree, debug information may include absolute
filenames for the source files. This must be overridden by including the
-fdebug-prefix-map option in the KCFLAGS variable.

Depending on the compiler used, the __FILE__ macro may also expand to
an absolute filename in an out-of-tree build. Kbuild automatically uses the
-fmacro-prefix-map option to prevent this, if it is supported.

The Reproducible Builds web site has more information about these prefix-map
options.

9.4 Generated files in source packages

The build processes for some programs under the tools/ subdirectory do not com-
pletely support out-of-tree builds. This may cause a later source package build
using e.g. make rpm-pkg to include generated files. You should ensure the source
tree is pristine by running make mrproper or git clean -d -f -x before building
a source package.

9.5 Module signing

If you enable CONFIG_MODULE_SIG_ALL, the default behaviour is to generate a
different temporary key for each build, resulting in the modules being unrepro-
ducible. However, including a signing key with your source would presumably
defeat the purpose of signing modules.

One approach to this is to divide up the build process so that the unreproducible
parts can be treated as sources:

1. Generate a persistent signing key. Add the certificate for the key to the kernel
source.

2. Set the CONFIG_SYSTEM_TRUSTED_KEYS symbol to include the signing key’
s certificate, set CONFIG_MODULE_SIG_KEY to an empty string, and disable
CONFIG_MODULE_SIG_ALL. Build the kernel and modules.

3. Create detached signatures for the modules, and publish them as sources.

4. Perform a second build that attaches the module signatures. It can either
rebuild the modules or use the output of step 2.

78 Chapter 9. Reproducible builds

kbuild.html#kbuild-build-user-kbuild-build-host
kbuild.html#kcflags
https://reproducible-builds.org/docs/build-path/
https://reproducible-builds.org/docs/build-path/

Linux Kbuild Documentation

9.6 Structure randomisation

If you enable CONFIG_GCC_PLUGIN_RANDSTRUCT, you will need to pre-generate the
random seed in scripts/gcc-plugins/randomize_layout_seed.h so the same
value is used in rebuilds.

9.7 Debug info conflicts

This is not a problem of unreproducibility, but of generated files being too repro-
ducible.

Once you set all the necessary variables for a reproducible build, a vDSO’s debug
information may be identical even for different kernel versions. This can result in
file conflicts between debug information packages for the different kernel versions.

To avoid this, you can make the vDSO different for different kernel versions by
including an arbitrary string of“salt”in it. This is specified by the Kconfig symbol
CONFIG_BUILD_SALT.

9.6. Structure randomisation 79

Linux Kbuild Documentation

80 Chapter 9. Reproducible builds

CHAPTER

TEN

GCC PLUGIN INFRASTRUCTURE

10.1 Introduction

GCC plugins are loadable modules that provide extra features to the compiler1.
They are useful for runtime instrumentation and static analysis. We can analyse,
change and add further code during compilation via callbacks2, GIMPLE3, IPA4
and RTL passes5.

The GCC plugin infrastructure of the kernel supports all gcc versions from 4.5
to 6.0, building out-of-tree modules, cross-compilation and building in a separate
directory. Plugin source files have to be compilable by both a C and a C++ compiler
as well because gcc versions 4.5 and 4.6 are compiled by a C compiler, gcc-4.7 can
be compiled by a C or a C++ compiler, and versions 4.8+ can only be compiled by
a C++ compiler.

Currently the GCC plugin infrastructure supports only the x86, arm, arm64 and
powerpc architectures.

This infrastructure was ported from grsecurity6 and PaX7.

–

10.2 Files

$(src)/scripts/gcc-plugins
This is the directory of the GCC plugins.

$(src)/scripts/gcc-plugins/gcc-common.h
This is a compatibility header for GCC plugins. It should be always in-
cluded instead of individual gcc headers.

$(src)/scripts/gcc-plugin.sh
1 https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
2 https://gcc.gnu.org/onlinedocs/gccint/Plugin-API.html#Plugin-API
3 https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
4 https://gcc.gnu.org/onlinedocs/gccint/IPA.html
5 https://gcc.gnu.org/onlinedocs/gccint/RTL.html
6 https://grsecurity.net/
7 https://pax.grsecurity.net/

81

https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
https://gcc.gnu.org/onlinedocs/gccint/Plugin-API.html#Plugin-API
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/IPA.html
https://gcc.gnu.org/onlinedocs/gccint/RTL.html
https://grsecurity.net/
https://pax.grsecurity.net/

Linux Kbuild Documentation

This script checks the availability of the included headers in gcc-
common.h and chooses the proper host compiler to build the plugins
(gcc-4.7 can be built by either gcc or g++).

$(src)/scripts/gcc-plugins/gcc-generate-gimple-pass.h, $(src)/scripts/gcc-
plugins/gcc-generate-ipa-pass.h, $(src)/scripts/gcc-plugins/gcc-generate-
simple_ipa-pass.h, $(src)/scripts/gcc-plugins/gcc-generate-rtl-pass.h

These headers automatically generate the registration structures for
GIMPLE, SIMPLE_IPA, IPA and RTL passes. They support all gcc ver-
sions from 4.5 to 6.0. They should be preferred to creating the structures
by hand.

10.3 Usage

You must install the gcc plugin headers for your gcc version, e.g., on Ubuntu for
gcc-4.9:

apt-get install gcc-4.9-plugin-dev

Or on Fedora:

dnf install gcc-plugin-devel

Enable a GCC plugin based feature in the kernel config:

CONFIG_GCC_PLUGIN_CYC_COMPLEXITY = y

To compile only the plugin(s):

make gcc-plugins

or just run the kernel make and compile the whole kernel with the cyclomatic
complexity GCC plugin.

10.4 4. How to add a new GCC plugin

The GCC plugins are in $(src)/scripts/gcc-plugins/. You can use a file or
a directory here. It must be added to $(src)/scripts/gcc-plugins/Makefile,
$(src)/scripts/Makefile.gcc-plugins and $(src)/arch/Kconfig. See the
cyc_complexity_plugin.c (CONFIG_GCC_PLUGIN_CYC_COMPLEXITY) GCC
plugin.

82 Chapter 10. GCC plugin infrastructure

CHAPTER

ELEVEN

BUILDING LINUX WITH CLANG/LLVM

This document covers how to build the Linux kernel with Clang and LLVM utilities.

11.1 About

The Linux kernel has always traditionally been compiled with GNU toolchains such
as GCC and binutils. Ongoing work has allowed for Clang and LLVM utilities to be
used as viable substitutes. Distributions such as Android, ChromeOS, and Open-
Mandriva use Clang built kernels. LLVM is a collection of toolchain components
implemented in terms of C++ objects. Clang is a front-end to LLVM that supports
C and the GNU C extensions required by the kernel, and is pronounced “klang,”
not “see-lang.”

11.2 Clang

The compiler used can be swapped out via CC= command line argument to make.
CC= should be set when selecting a config and during a build.

make CC=clang defconfig

make CC=clang

11.3 Cross Compiling

A single Clang compiler binary will typically contain all supported backends, which
can help simplify cross compiling.

ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make CC=clang

CROSS_COMPILE is not used to prefix the Clang compiler binary, instead
CROSS_COMPILE is used to set a command line flag: –target <triple>. For exam-
ple:

clang –target aarch64-linux-gnu foo.c

83

https://clang.llvm.org/
https://llvm.org/
https://www.android.com/
https://www.chromium.org/chromium-os
https://www.openmandriva.org/
https://www.openmandriva.org/
https://www.aosabook.org/en/llvm.html
https://www.aosabook.org/en/llvm.html

Linux Kbuild Documentation

11.4 LLVM Utilities

LLVMhas substitutes for GNU binutils utilities. Kbuild supports LLVM=1 to enable
them.

make LLVM=1

They can be enabled individually. The full list of the parameters:

make CC=clang LD=ld.lld AR=llvm-ar NM=llvm-nm STRIP=llvm-strip \
OBJCOPY=llvm-objcopy OBJDUMP=llvm-objdump OBJSIZE=llvm-
size \ READELF=llvm-readelf HOSTCC=clang HOSTCXX=clang++
HOSTAR=llvm-ar \ HOSTLD=ld.lld

Currently, the integrated assembler is disabled by default. You can pass
LLVM_IAS=1 to enable it.

11.5 Getting Help

• Website

• Mailing List: <clang-built-linux@googlegroups.com>

• Issue Tracker

• IRC: #clangbuiltlinux on chat.freenode.net

• Telegram: @ClangBuiltLinux

• Wiki

• Beginner Bugs

11.6 Getting LLVM

• http://releases.llvm.org/download.html

• https://github.com/llvm/llvm-project

• https://llvm.org/docs/GettingStarted.html

• https://llvm.org/docs/CMake.html

• https://apt.llvm.org/

• https://www.archlinux.org/packages/extra/x86_64/llvm/

• https://github.com/ClangBuiltLinux/tc-build

• https://github.com/ClangBuiltLinux/linux/wiki/Building-Clang-from-source

• https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/

84 Chapter 11. Building Linux with Clang/LLVM

https://clangbuiltlinux.github.io/
https://groups.google.com/forum/#!forum/clang-built-linux
mailto:clang-built-linux@googlegroups.com
https://github.com/ClangBuiltLinux/linux/issues
https://t.me/ClangBuiltLinux
https://github.com/ClangBuiltLinux/linux/wiki
https://github.com/ClangBuiltLinux/linux/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
http://releases.llvm.org/download.html
https://github.com/llvm/llvm-project
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/CMake.html
https://apt.llvm.org/
https://www.archlinux.org/packages/extra/x86_64/llvm/
https://github.com/ClangBuiltLinux/tc-build
https://github.com/ClangBuiltLinux/linux/wiki/Building-Clang-from-source
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/

