
Linux Isdn Documentation

The kernel development community

Jul 14, 2020





CONTENTS

i



ii



CHAPTER

ONE

KERNEL CAPI INTERFACE TO HARDWARE DRIVERS

1.1 1. Overview

From the CAPI 2.0 specification: COMMON-ISDN-API (CAPI) is an application
programming interface standard used to access ISDN equipment connected to
basic rate interfaces (BRI) and primary rate interfaces (PRI).

Kernel CAPI operates as a dispatching layer between CAPI applications and CAPI
hardware drivers. Hardware drivers register ISDN devices (controllers, in CAPI
lingo) with Kernel CAPI to indicate their readiness to provide their service to CAPI
applications. CAPI applications also register with Kernel CAPI, requesting associ-
ation with a CAPI device. Kernel CAPI then dispatches the application registration
to an available device, forwarding it to the corresponding hardware driver. Kernel
CAPI then forwards CAPI messages in both directions between the application and
the hardware driver.

Format and semantics of CAPI messages are specified in the CAPI 2.0 standard.
This standard is freely available from https://www.capi.org.

1.2 2. Driver and Device Registration

CAPI drivers must register each of the ISDN devices they control with Kernel CAPI
by calling the Kernel CAPI function attach_capi_ctr() with a pointer to a struct
capi_ctr before they can be used. This structure must be filled with the names
of the driver and controller, and a number of callback function pointers which
are subsequently used by Kernel CAPI for communicating with the driver. The
registration can be revoked by calling the function detach_capi_ctr() with a pointer
to the same struct capi_ctr.

Before the device can be actually used, the drivermust fill in the device information
fields‘manu’,‘version’,‘profile’and‘serial’in the capi_ctr structure of the
device, and signal its readiness by calling capi_ctr_ready(). From then on, Kernel
CAPI may call the registered callback functions for the device.

If the device becomes unusable for any reason (shutdown, disconnect ⋯), the
driver has to call capi_ctr_down(). This will prevent further calls to the callback
functions by Kernel CAPI.

1

https://www.capi.org


Linux Isdn Documentation

1.3 3. Application Registration and Communication

Kernel CAPI forwards registration requests from applications (calls to CAPI op-
eration CAPI_REGISTER) to an appropriate hardware driver by calling its regis-
ter_appl() callback function. A unique Application ID (ApplID, u16) is allocated
by Kernel CAPI and passed to register_appl() along with the parameter structure
provided by the application. This is analogous to the open() operation on regular
files or character devices.

After a successful return from register_appl(), CAPI messages from the application
may be passed to the driver for the device via calls to the send_message() callback
function. Conversely, the driver may call Kernel CAPI’s capi_ctr_handle_message()
function to pass a received CAPI message to Kernel CAPI for forwarding to an
application, specifying its ApplID.

Deregistration requests (CAPI operation CAPI_RELEASE) from applications are
forwarded as calls to the release_appl() callback function, passing the same ApplID
as with register_appl(). After return from release_appl(), no CAPI messages for
that application may be passed to or from the device anymore.

1.4 4. Data Structures

1.4.1 4.1 struct capi_driver

This structure describes a Kernel CAPI driver itself. It is used in the reg-
ister_capi_driver() and unregister_capi_driver() functions, and contains the fol-
lowing non-private fields, all to be set by the driver before calling regis-
ter_capi_driver():

char name[32] the name of the driver, as a zero-terminated ASCII string

char revision[32] the revision number of the driver, as a zero-terminated ASCII
string

1.4.2 4.2 struct capi_ctr

This structure describes an ISDN device (controller) handled by a Kernel CAPI
driver. After registration via the attach_capi_ctr() function it is passed to all con-
troller specific lower layer interface and callback functions to identify the con-
troller to operate on.

It contains the following non-private fields:

2 Chapter 1. Kernel CAPI Interface to Hardware Drivers



Linux Isdn Documentation

to be set by the driver before calling attach_capi_ctr():

struct module *owner pointer to the driver module owning the device

void *driverdata an opaque pointer to driver specific data, not touched by Ker-
nel CAPI

char name[32] the name of the controller, as a zero-terminated ASCII string

char *driver_name the name of the driver, as a zero-terminated ASCII string

int (*load_firmware)(struct capi_ctr *ctrlr, capiloaddata *ldata)
(optional) pointer to a callback function for sending firmware and configura-
tion data to the device

The function may return before the operation has completed.

Completion must be signalled by a call to capi_ctr_ready().

Return value: 0 on success, error code on error Called in process context.

void (*reset_ctr)(struct capi_ctr *ctrlr) (optional) pointer to a callback
function for stopping the device, releasing all registered applications

The function may return before the operation has completed.

Completion must be signalled by a call to capi_ctr_down().

Called in process context.

void (*register_appl)(struct capi_ctr *ctrlr, u16 applid, capi_register_params *rparam)
pointers to callback function for registration of applications with the device

Calls to these functions are serialized by Kernel CAPI so that only one call to
any of them is active at any time.

void (*release_appl)(struct capi_ctr *ctrlr, u16 applid) pointers to
callback functions deregistration of applications with the device

Calls to these functions are serialized by Kernel CAPI so that only one call to
any of them is active at any time.

u16 (*send_message)(struct capi_ctr *ctrlr, struct sk_buff *skb)
pointer to a callback function for sending a CAPI message to the device

Return value: CAPI error code

If the method returns 0 (CAPI_NOERROR) the driver has taken ownership of
the skb and the caller may no longer access it. If it returns a non-zero (error)
value then ownership of the skb returns to the caller who may reuse or free
it.

The return value should only be used to signal problems with respect to ac-
cepting or queueing themessage. Errors occurring during the actual process-
ing of the message should be signaled with an appropriate reply message.

May be called in process or interrupt context.

Calls to this function are not serialized by Kernel CAPI, ie. it must be prepared
to be re-entered.

1.4. 4. Data Structures 3



Linux Isdn Documentation

char *(*procinfo)(struct capi_ctr *ctrlr) pointer to a callback function
returning the entry for the device in the CAPI controller info table,
/proc/capi/controller

Note: Callback functions except send_message() are never called in interrupt con-
text.

to be filled in before calling capi_ctr_ready():

u8 manu[CAPI_MANUFACTURER_LEN] value to return for
CAPI_GET_MANUFACTURER

capi_version version value to return for CAPI_GET_VERSION

capi_profile profile value to return for CAPI_GET_PROFILE

u8 serial[CAPI_SERIAL_LEN] value to return for CAPI_GET_SERIAL

1.4.3 4.3 SKBs

CAPImessages are passed between Kernel CAPI and the driver via send_message()
and capi_ctr_handle_message(), stored in the data portion of a socket buffer (skb).
Each skb contains a single CAPI message coded according to the CAPI 2.0 stan-
dard.

For the data transfer messages, DATA_B3_REQ and DATA_B3_IND, the actual pay-
load data immediately follows the CAPI message itself within the same skb. The
Data and Data64 parameters are not used for processing. The Data64 parameter
may be omitted by setting the length field of the CAPI message to 22 instead of
30.

1.4.4 4.4 The _cmsg Structure

(declared in <linux/isdn/capiutil.h>)

The _cmsg structure stores the contents of a CAPI 2.0 message in an easily acces-
sible form. It contains members for all possible CAPI 2.0 parameters, including
subparameters of the Additional Info and B Protocol structured parameters, with
the following exceptions:

• second Calling party number (CONNECT_IND)

• Data64 (DATA_B3_REQ and DATA_B3_IND)

• Sending complete (subparameter of Additional Info, CONNECT_REQ and
INFO_REQ)

• Global Configuration (subparameter of B Protocol, CONNECT_REQ, CON-
NECT_RESP and SELECT_B_PROTOCOL_REQ)

Only those parameters appearing in the message type currently being processed
are actually used. Unused members should be set to zero.

4 Chapter 1. Kernel CAPI Interface to Hardware Drivers



Linux Isdn Documentation

Members are named after the CAPI 2.0 standard names of the parameters they
represent. See <linux/isdn/capiutil.h> for the exact spelling. Member data types
are:

u8 for CAPI parameters of type ‘byte’
u16 for CAPI parameters of type ‘word’
u32 for CAPI parameters of type ‘dword’
_cstructfor CAPI parameters of type‘struct’The member is a pointer to a buffer

containing the parameter in CAPI encoding (length + content). It may
also be NULL, which will be taken to represent an empty (zero length)
parameter. Subparameters are stored in encoded form within the content
part.

_cm-
struct

alternative representation for CAPI parameters of type‘struct’(used only
for the‘Additional Info’and‘B Protocol’parameters) The representation is
a single byte containing one of the values: CAPI_DEFAULT: The parameter
is empty/absent. CAPI_COMPOSE: The parameter is present. Subparam-
eter values are stored individually in the corresponding _cmsg structure
members.

1.5 5. Lower Layer Interface Functions

int attach_capi_ctr(struct capi_ctr *ctrlr)
int detach_capi_ctr(struct capi_ctr *ctrlr)

register/unregister a device (controller) with Kernel CAPI

void capi_ctr_ready(struct capi_ctr *ctrlr)
void capi_ctr_down(struct capi_ctr *ctrlr)

signal controller ready/not ready

void capi_ctr_handle_message(struct capi_ctr * ctrlr, u16 applid,
struct sk_buff *skb)

pass a received CAPI message to Kernel CAPI for forwarding to the specified ap-
plication

1.6 6. Helper Functions and Macros

Macros to extract/set element values from/in a CAPI message header (from
<linux/isdn/capiutil.h>):

1.5. 5. Lower Layer Interface Functions 5



Linux Isdn Documentation

Get Macro Set Macro Element (Type)
CAPIMSG_LEN(m) CAPIMSG_SETLEN(m,

len)
Total Length (u16)

CAPIMSG_APPID(m) CAPIMSG_SETAPPID(m,
applid)

ApplID (u16)

CAPIMSG_COMMAND(m) CAPIMSG_SETCOMMAND(m,cmd)Command (u8)
CAPIMSG_SUBCOMMAND(m)CAPIMSG_SETSUBCOMMAND(m,

cmd)
Subcommand (u8)

CAPIMSG_CMD(m) • Command*256 + Sub-
command (u16)

CAPIMSG_MSGID(m) CAPIMSG_SETMSGID(m,
msgid)

Message Number (u16)

CAPIMSG_CONTROL(m) CAPIMSG_SETCONTROL(m,
contr)

Controller/PLCI/NCCI
(u32)

CAPIMSG_DATALEN(m) CAPIMSG_SETDATALEN(m,
len)

Data Length (u16)

Library functions for working with _cmsg structures (from
<linux/isdn/capiutil.h>):

char *capi_cmd2str(u8 Command, u8 Subcommand) Returns the CAPI 2.0 mes-
sage name corresponding to the given command and subcommand val-
ues, as a static ASCII string. The return value may be NULL if the com-
mand/subcommand is not one of those defined in the CAPI 2.0 standard.

1.7 7. Debugging

The module kernelcapi has a module parameter showcapimsgs controlling some
debugging output produced by the module. It can only be set when the module is
loaded, via a parameter“showcapimsgs=<n>”to the modprobe command, either
on the command line or in the configuration file.

If the lowest bit of showcapimsgs is set, kernelcapi logs controller and application
up and down events.

In addition, every registered CAPI controller has an associated traceflag parame-
ter controlling how CAPI messages sent from and to tha controller are logged. The
traceflag parameter is initialized with the value of the showcapimsgs parameter
when the controller is registered, but can later be changed via the MANUFAC-
TURER_REQ command KCAPI_CMD_TRACE.

If the value of traceflag is non-zero, CAPI messages are logged. DATA_B3 mes-
sages are only logged if the value of traceflag is > 2.

If the lowest bit of traceflag is set, only the command/subcommand and message
length are logged. Otherwise, kernelcapi logs a readable representation of the
entire message.

6 Chapter 1. Kernel CAPI Interface to Hardware Drivers



CHAPTER

TWO

MISDN DRIVER

mISDN is a new modular ISDN driver, in the long term it should replace the old
I4L driver architecture for passiv ISDN cards. It was designed to allow a broad
range of applications and interfaces but only have the basic function in kernel, the
interface to the user space is based on sockets with a own address family AF_ISDN.

7



Linux Isdn Documentation

8 Chapter 2. mISDN Driver



CHAPTER

THREE

CREDITS

I want to thank all who contributed to this project and especially to: (in alphabet-
ical order)

Thomas Bogendörfer (tsbogend@bigbug.franken.de) Tester, lots of bugfixes
and hints.

Alan Cox (alan@lxorguk.ukuu.org.uk) For help getting into standard-kernel.
Henner Eisen (eis@baty.hanse.de) For X.25 implementation.
Volker Götz (volker@oops.franken.de) For contribution of man-pages, the

imontty-tool and a perfect maintaining of the mailing-list at hub-wue.

Matthias Hessler (hessler@isdn4linux.de) For creating and maintaining the
FAQ.

Bernhard Hailer (Bernhard.Hailer@lrz.uni-muenchen.de) For creating the
FAQ, and the leafsite HOWTO.

Michael ‘Ghandi’Herold (michael@abadonna.franken.de) For contribu-
tion of the vbox answering machine.

Michael Hipp (Michael.Hipp@student.uni-tuebingen.de) For his Sync-PPP-
code.

Karsten Keil (keil@isdn4linux.de) For adding 1TR6-support to the Teles-
driver. For the HiSax-driver.

Michael Knigge (knick@cove.han.de) For contributing the imon-tool
Andreas Kool (akool@Kool.f.EUnet.de) For contribution of the

isdnlog/isdnrep-tool

Pedro Roque Marques (roque@di.fc.ul.pt) For lot of new ideas and the pcbit
driver.

Eberhard Mönkeberg (emoenke@gwdg.de) For testing and help to get into
kernel.

Thomas Neumann (tn@ruhr.de) For help with Cisco-SLARP and keepalive
Jan den Ouden (denouden@groovin.xs4all.nl) For contribution of the original

teles-driver

Carsten Paeth (calle@calle.in-berlin.de) For the AVM-B1-CAPI2.0 driver
Thomas Pfeiffer (pfeiffer@pds.de) For V.110, extended T.70 and Hylafax ex-

tensions in isdn_tty.c

9

mailto:tsbogend@bigbug.franken.de
mailto:alan@lxorguk.ukuu.org.uk
mailto:eis@baty.hanse.de
mailto:volker@oops.franken.de
mailto:hessler@isdn4linux.de
mailto:Bernhard.Hailer@lrz.uni-muenchen.de
mailto:michael@abadonna.franken.de
mailto:Michael.Hipp@student.uni-tuebingen.de
mailto:keil@isdn4linux.de
mailto:knick@cove.han.de
mailto:akool@Kool.f.EUnet.de
mailto:roque@di.fc.ul.pt
mailto:emoenke@gwdg.de
mailto:tn@ruhr.de
mailto:denouden@groovin.xs4all.nl
mailto:calle@calle.in-berlin.de
mailto:pfeiffer@pds.de


Linux Isdn Documentation

Max Riegel (riegel@max.franken.de) For making the ICN hardware-
documentation and test-equipment available.

Armin Schindler (mac@melware.de) For the eicon active card driver.
Gerhard ‘Fido’Schneider (fido@wuff.mayn.de) For heavy-duty-beta-testing

with his BBS ;)

Thomas Uhl (uhl@think.de) For distributing the cards. For pushing me to work
;-)

10 Chapter 3. Credits

mailto:riegel@max.franken.de
mailto:mac@melware.de
mailto:fido@wuff.mayn.de
mailto:uhl@think.de

