Linux Infiniband Documentation

The kernel development community

Jul 14, 2020






CONTENTS







CHAPTER
ONE

INFINIBAND MIDLAYER LOCKING

This guide is an attempt to make explicit the locking assumptions made
by the InfiniBand midlayer. It describes the requirements on both low-
level drivers that sit below the midlayer and upper level protocols that
use the midlayer.

1.1 Sleeping and interrupt context

With the following exceptions, a low-level driver implementation of all
of the methods in struct ib device may sleep. The exceptions are any
methods from the list:

* create ah
* modify ah
* query ah
* destroy ah
* post send
* post recv
* poll cq
* req notify cq
which may not sleep and must be callable from any context.

The corresponding functions exported to upper level protocol con-
sumers:

* rdma create ah
* rdma modify ah
* rdma_query ah
* rdma_destroy ah
* ib post send

* ib post recv

* ib req notify cq




Linux Infiniband Documentation

are therefore safe to call from any context.
In addition, the function
» ib dispatch event

used by low-level drivers to dispatch asynchronous events through the
midlayer is also safe to call from any context.

1.1.1 Reentrancy

All of the methods in struct ib device exported by a low-level driver must
be fully reentrant. The low-level driver is required to perform all syn-
chronization necessary to maintain consistency, even if multiple function
calls using the same object are run simultaneously.

The IB midlayer does not perform any serialization of function calls.

Because low-level drivers are reentrant, upper level protocol consumers
are not required to perform any serialization. However, some serializa-
tion may be required to get sensible results. For example, a consumer
may safely call ib poll cq() on multiple CPUs simultaneously. However,
the ordering of the work completion information between different calls
of ib _poll cq() is not defined.

1.1.2 Callbacks

A low-level driver must not perform a callback directly from the same
callchain as an ib device method call. For example, it is not allowed
for a low-level driver to call a consumer s completion event handler
directly from its post send method. Instead, the low-level driver should
defer this callback by, for example, scheduling a tasklet to perform the
callback.

The low-level driver is responsible for ensuring that multiple completion
event handlers for the same CQ are not called simultaneously. The driver
must guarantee that only one CQ event handler for a given CQ is running
at a time. In other words, the following situation is not allowed:

CPU1 CPU2

low-level driver ->
consumer CQ event callback:

/¥ .0 */
ib req notify cq(cq, ...);
low-level driver ->
/* .00 X/ consumer CQ event,
—callback:

/* ... X/
return from CQ event handler

The context in which completion event and asynchronous event call-
backs run is not defined. Depending on the low-level driver, it may be
process context, softirq context, or interrupt context. Upper level pro-
tocol consumers may not sleep in a callback.

2 Chapter 1. InfiniBand Midlayer Locking



Linux Infiniband Documentation

1.1.3 Hot-plug

A low-level driver announces that a device is ready for use by consumers
when it calls ib_register device(), all initialization must be complete be-
fore this call. The device must remain usable until the driver’ s call to
ib unregister device() has returned.

A low-level driver must call ib register device() and
ib unregister device() from process context. It must not hold any
semaphores that could cause deadlock if a consumer calls back into the
driver across these calls.

An upper level protocol consumer may begin using an IB device as soon
as the add method of its struct ib_client is called for that device. A con-
sumer must finish all cleanup and free all resources relating to a device
before returning from the remove method.

A consumer is permitted to sleep in its add and remove methods.

1.1. Sleeping and interrupt context 3



Linux Infiniband Documentation

4 Chapter 1. InfiniBand Midlayer Locking



CHAPTER
TWO

IP OVER INFINIBAND

The ib _ipoib driver is an implementation of the IP over InfiniBand proto-
col as specified by RFC 4391 and 4392, issued by the IETF ipoib working
group. Itisa “native” implementation in the sense of setting the inter-
face type to ARPHRD INFINIBAND and the hardware address length to
20 (earlier proprietary implementations masqueraded to the kernel as
ethernet interfaces).

2.1 Partitions and P_Keys

When the IPoIB driver is loaded, it creates one interface for each port
using the P_Key at index 0. To create an interface with a different P_Key,
write the desired P Key into the main interface’ s /sys/class/net/<intf
name>/create child file. For example:

echo 0x8001 > /sys/class/net/ib0/create child

This will create an interface named ib0.8001 with P Key 0x8001. To
remove a subinterface, use the “delete child” file:

echo 0x8001 > /sys/class/net/ib0/delete child

The P Key for any interface is given by the “pkey” file, and the main
interface for a subinterface is in “parent.”

Child interface create/delete can also be done using IPoIB’ s
rtnl link ops, where children created using either way behave the same.

2.2 Datagram vs Connected modes

The IPoIB driver supports two modes of operation: datagram and
connected. The mode is set and read through an interface’ s
/sys/class/net/<intf name>/mode file.

In datagram mode, the IB UD (Unreliable Datagram) transport is used
and so the interface MTU has is equal to the IB L2 MTU minus the IPoIB
encapsulation header (4 bytes). For example, in a typical IB fabric with
a 2K MTU, the IPoIB MTU will be 2048 - 4 = 2044 bytes.




Linux Infiniband Documentation

In connected mode, the IB RC (Reliable Connected) transport is used.
Connected mode takes advantage of the connected nature of the IB
transport and allows an MTU up to the maximal IP packet size of 64K,
which reduces the number of IP packets needed for handling large UDP
datagrams, TCP segments, etc and increases the performance for large
messages.

In connected mode, the interface’ s UD QP is still used for multicast
and communication with peers that don’ t support connected mode. In
this case, RX emulation of ICMP PMTU packets is used to cause the
networking stack to use the smaller UD MTU for these neighbours.

2.3 Stateless offloads

If the IB HW supports IPoIB stateless offloads, IPoIB advertises TCP/IP
checksum and/or Large Send (LSO) offloading capability to the network
stack.

Large Receive (LRO) offloading is also implemented and may be turned
on/off using ethtool calls. Currently LRO is supported only for checksum
offload capable devices.

Stateless offloads are supported only in datagram mode.

2.4 Interrupt moderation

If the underlying IB device supports CQ event moderation, one can use
ethtool to set interrupt mitigation parameters and thus reduce the over-
head incurred by handling interrupts. The main code path of IPoIB
doesn’ t use events for TX completion signaling so only RX moderation
is supported.

2.5 Debugging Information

By compiling the IPoIB driver with CON-
FIG INFINIBAND IPOIB DEBUG set to ‘y , tracing messages are
compiled into the driver. They are turned on by setting the module
parameters debug level and mcast debug level to 1. These parameters
can be controlled at runtime through files in /sys/module/ib _ipoib/.

CONFIG INFINIBAND IPOIB DEBUG also enables files in the debugfs
virtual filesystem. By mounting this filesystem, for example with:

mount -t debugfs none /sys/kernel/debug

it is possible to get statistics about multicast groups from the files
/sys/kernel/debug/ipoib/ib0_mcg and so on.

The performance impact of this option is negligible, so it is safe to enable
this option with debug level set to 0 for normal operation.

6 Chapter 2. IP over InfiniBand



Linux Infiniband Documentation

CONFIG_INFINIBAND IPOIB DEBUG DATA enables even more debug
output in the data path when data debug level is set to 1. However,
even with the output disabled, enabling this configuration option will
affect performance, because it adds tests to the fast path.

2.6 References

Transmission of IP over InfiniBand (IPoIB) (RFC 4391) htip:
/lietf.org/rfc/rfc4391.txt

IP over InfiniBand (IPoIB) Architecture (RFC 4392) htip:
/lietf.org/rfc/rfc4392.txt

IP over InfiniBand: Connected Mode (RFC 4755) http://ietf.org/
rfc/rfc4755.txt

2.6. References 7


http://ietf.org/rfc/rfc4391.txt
http://ietf.org/rfc/rfc4391.txt
http://ietf.org/rfc/rfc4392.txt
http://ietf.org/rfc/rfc4392.txt
http://ietf.org/rfc/rfc4755.txt
http://ietf.org/rfc/rfc4755.txt

Linux Infiniband Documentation

8 Chapter 2. IP over InfiniBand



CHAPTER
THREE

INTEL OMNI-PATH (OPA) VIRTUAL NETWORK INTERFACE
CONTROLLER (VNIC)

Intel Omni-Path (OPA) Virtual Network Interface Controller (VNIC) feature sup-
ports Ethernet functionality over Omni-Path fabric by encapsulating the Ethernet
packets between HFI nodes.

3.1 Architecture

The patterns of exchanges of Omni-Path encapsulated Ethernet packets involves
one or more virtual Ethernet switches overlaid on the Omni-Path fabric topology.
A subset of HFI nodes on the Omni-Path fabric are permitted to exchange encap-
sulated Ethernet packets across a particular virtual Ethernet switch. The virtual
Ethernet switches are logical abstractions achieved by configuring the HFI nodes
on the fabric for header generation and processing. In the simplest configuration
all HFI nodes across the fabric exchange encapsulated Ethernet packets over a
single virtual Ethernet switch. A virtual Ethernet switch, is effectively an indepen-
dent Ethernet network. The configuration is performed by an Ethernet Manager
(EM) which is part of the trusted Fabric Manager (FM) application. HFI nodes
can have multiple VNICs each connected to a different virtual Ethernet switch.
The below diagram presents a case of two virtual Ethernet switches with two HFI
nodes:

R I +
| Subnet/ |
| Ethernet |
| Manager |
L +

/ /
/ /
/ /

/ /
e e +
| Virtual Ethernet Switch | | Virtual Ethernet Switch

Fommmm - + Fommm e + | | 4 + Fommmm e +
| | VPORT | | VPORT | | | | VPORT | | VPORT |
. s e SR I Rk R R +-- -+
I \ / I
I N I
| \/ I
I /N I

(continues on next page)

9




Linux Infiniband Documentation

(continued from previous page)

| / \ I
S R —_ R R — oo +
| VNIC | VNIC | UNIC | VNIC |
SRR oo P oo +
| HFI | ] HFI |
oo oo +

The Omni-Path encapsulated Ethernet packet format is as described below.

Bits Field

Quad Word 0:

0-19 SLID (lower 20 bits)

20-30 Length (in Quad Words)

31 BECN bit

32-51 DLID (lower 20 bits)

52-56 SC (Service Class)

57-59 RC (Routing Control)

60 FECN bit

61-62 L2 (=10, 16B format)

63 LT (=1, Link Transfer Head Flit)
Quad Word 1:

0-7 L4 type (=0x78 ETHERNET)
8-11 SLID[23:20]

12-15 DLID[23:20]

16-31 PKEY

32-47 Entropy

48-63 Reserved

Quad Word 2:

0-15 Reserved

16-31 L4 header

32-63 Ethernet Packet

Quad Words 3 to N-1:

0-63 Ethernet packet (pad extended)
Quad Word N (last):

0-23 Ethernet packet (pad extended)
24-55 ICRC

56-61 Tail

62-63 LT (=01, Link Transfer Tail Flit)

Ethernet packet is padded on the transmit side to ensure that the VNIC OPA packet
is quad word aligned. The ‘Tail’ field contains the number of bytes padded. On
the receive side the ‘Tail’ field is read and the padding is removed (along with
ICRC, Tail and OPA header) before passing packet up the network stack.

The L4 header field contains the virtual Ethernet switch id the VNIC port belongs
to. On the receive side, this field is used to de-multiplex the received VNIC packets
to different VNIC ports.

10Chapter 3. Intel Omni-Path (OPA) Virtual Network Interface Controller
(VNIC)




Linux Infiniband Documentation

3.2 Driver Design

Intel OPA VNIC software design is presented in the below diagram. OPA VNIC
functionality has a HW dependent component and a HW independent component.

The support has been added for IB device to allocate and free the RDMA netdev
devices. The RDMA netdev supports interfacing with the network stack thus cre-
ating standard network interfaces. OPA VNIC is an RDMA netdev device type.

The HW dependent VNIC functionality is part of the HFI1 driver. It implements the
verbs to allocate and free the OPA VNIC RDMA netdev. It involves HW resource al-
location/management for VNIC functionality. It interfaces with the network stack
and implements the required net device ops functions. It expects Omni-Path en-
capsulated Ethernet packets in the transmit path and provides HW access to them.
It strips the Omni-Path header from the received packets before passing them up
the network stack. It also implements the RDMA netdev control operations.

The OPA VNIC module implements the HW independent VNIC functionality. It
consists of two parts. The VNIC Ethernet Management Agent (VEMA) registers
itself with IB core as an IB client and interfaces with the IB MAD stack. It ex-
changes the management information with the Ethernet Manager (EM) and the
VNIC netdev. The VNIC netdev part allocates and frees the OPA VNIC RDMA net-
dev devices. It overrides the net device ops functions set by HW dependent VNIC
driver where required to accommodate any control operation. It also handles the
encapsulation of Ethernet packets with an Omni-Path header in the transmit path.
For each VNIC interface, the information required for encapsulation is configured
by the EM via VEMA MAD interface. It also passes any control information to the
HW dependent driver by invoking the RDMA netdev control operations:

oo i LR +
| | | Linux |
| IB MAD | | Network |
| | | Stack |
oo R T +

| |

| |
R R +

| I
| OPA VNIC Module |
| (OPA VNIC RDMA Netdev |
| & EMA functions) |
| |

3.2. Driver Design 11




Linux Infiniband Documentation

12 Chapter 3. Intel Omni-Path (OPA) Virtual Network Interface Controller
(VNIC)



CHAPTER
FOUR

SYSFS FILES

The sysfs interface has moved to Documentation/ABI/stable/sysfs-class-infiniband.

13



Linux Infiniband Documentation

14 Chapter 4. Sysfs files



CHAPTER
FIVE

TAG MATCHING LOGIC

The MPI standard defines a set of rules, known as tag-matching, for matching
source send operations to destination receives. The following parameters must
match the following source and destination parameters:

* Communicator

* User tag - wild card may be specified by the receiver

* Source rank - wild car may be specified by the receiver
* Destination rank - wild

The ordering rules require that when more than one pair of send and receive mes-
sage envelopes may match, the pair that includes the earliest posted-send and the
earliest posted-receive is the pair that must be used to satisfy the matching oper-
ation. However, this doesn’ t imply that tags are consumed in the order they are
created, e.g., a later generated tag may be consumed, if earlier tags can’ t be used
to satisfy the matching rules.

When a message is sent from the sender to the receiver, the communication li-
brary may attempt to process the operation either after or before the correspond-
ing matching receive is posted. If a matching receive is posted, this is an ex-
pected message, otherwise it is called an unexpected message. Implementations
frequently use different matching schemes for these two different matching in-
stances.

To keep MPI library memory footprint down, MPI implementations typically use
two different protocols for this purpose:

1. The Eager protocol- the complete message is sent when the send is processed
by the sender. A completion send is received in the send cq notifying that the
buffer can be reused.

2. The Rendezvous Protocol - the sender sends the tag-matching header, and per-
haps a portion of data when first notifying the receiver. When the corresponding
buffer is posted, the responder will use the information from the header to initiate
an RDMA READ operation directly to the matching buffer. A fin message needs to
be received in order for the buffer to be reused.

15



Linux Infiniband Documentation

5.1 Tag matching implementation

There are two types of matching objects used, the posted receive list and the un-
expected message list. The application posts receive buffers through calls to the
MPI receive routines in the posted receive list and posts send messages using the
MPI send routines. The head of the posted receive list may be maintained by the
hardware, with the software expected to shadow this list.

When send is initiated and arrives at the receive side, if there is no pre-posted
receive for this arriving message, it is passed to the software and placed in the
unexpected message list. Otherwise the match is processed, including rendezvous
processing, if appropriate, delivering the data to the specified receive buffer. This
allows overlapping receive-side MPI tag matching with computation.

When a receive-message is posted, the communication library will first check the
software unexpected message list for a matching receive. If a match is found,
data is delivered to the user buffer, using a software controlled protocol. The
UCX implementation uses either an eager or rendezvous protocol, depending on
data size. If no match is found, the entire pre-posted receive list is maintained
by the hardware, and there is space to add one more pre-posted receive to this
list, this receive is passed to the hardware. Software is expected to shadow this
list, to help with processing MPI cancel operations. In addition, because hardware
and software are not expected to be tightly synchronized with respect to the tag-
matching operation, this shadow list is used to detect the case that a pre-posted
receive is passed to the hardware, as the matching unexpected message is being
passed from the hardware to the software.

16 Chapter 5. Tag matching logic



CHAPTER
SIX

USERSPACE MAD ACCESS

6.1 Device files

Each port of each InfiniBand device has a “umad” device and an “issm”
device attached. For example, a two-port HCA will have two umad de-
vices and two issm devices, while a switch will have one device of each
type (for switch port 0).

6.2 Creating MAD agents

A MAD agent can be created by filling in a struct ib user mad reg req
and then calling the IB USER MAD REGISTER AGENT ioctl on a file
descriptor for the appropriate device file. If the registration request
succeeds, a 32-bit id will be returned in the structure. For example:

struct ib user mad reg req req = { /* ... */ };
ret = ioctl(fd, IB USER MAD REGISTER AGENT, (char *) &req);
if (!ret)

my agent = req.1id;
else

perror("agent register");

Agents can be unregistered with the IB USER MAD UNREGISTER AGENT
ioctl. Also, all agents registered through a file descriptor will be unreg-
istered when the descriptor is closed.

2014 a new registration ioctl is now provided which allows additional
fields to be provided during registration. Users of this registration
call are implicitly setting the use of pkey index (see below).

17



Linux Infiniband Documentation

6.3 Receiving MADs

MADs are received using read(). The receive side now supports RMPP.
The buffer passed to read() must be at least one struct ib user mad +

256 bytes. For example:

If the buffer passed is not large enough to hold the received MAD
(RMPP), the errno is set to ENOSPC and the length of the buffer needed

is set in mad.length.

Example for normal MAD (non RMPP) reads:

struct ib user mad *mad;
mad = malloc(sizeof *mad + 256);

if (ret != sizeof mad + 256) {
perror("read");
free(mad);

}

ret = read(fd, mad, sizeof *mad + 256);

Example for RMPP reads:

struct ib user _mad *mad;
mad = malloc(sizeof *mad + 256);

if (ret == -ENOSPC)) {
length = mad.length;
free(mad);
mad
ret

}

if (ret < 0) {
perror("read");
free(mad);

}

ret = read(fd, mad, sizeof *mad + 256);

malloc(sizeof *mad + length);
read(fd, mad, sizeof *mad + length);

In addition to the actual MAD contents, the other struct ib user mad
fields will be filled in with information on the received MAD. For example,

the remote LID will be in mad.lid.

If a send times out, a receive will be generated with mad.status set to
ETIMEDOUT. Otherwise when a MAD has been successfully received,

mad.status will be 0.

poll()/select() may be used to wait until a MAD can be read.

18

Chapter 6. Userspace MAD access



Linux Infiniband Documentation

6.4 Sending MADs

MADs are sent using write(). The agent ID for sending should be filled
into the id field of the MAD, the destination LID should be filled into the
lid field, and so on. The send side does support RMPP so arbitrary length
MAD can be sent. For example:

struct ib user mad *mad;
mad = malloc(sizeof *mad + mad length);

/* fill in mad->data */

mad->hdr.id = my agent; /* req.id from agent registration,
X/

mad->hdr.lid = my dest; /* in network byte order... */

/* etc. */

ret = write(fd, &mad, sizeof *mad + mad length);
if (ret != sizeof *mad + mad length)
perror("write");

6.5 Transaction IDs

Users of the umad devices can use the lower 32 bits of the transaction ID
field (that is, the least significant half of the field in network byte order)
in MADs being sent to match request/response pairs. The upper 32 bits
are reserved for use by the kernel and will be overwritten before a MAD
is sent.

6.6 P_Key Index Handling

The old ib umad interface did not allow setting the P Key index
for MADs that are sent and did not provide a way for obtain-
ing the P Key index of received MADs. A new layout for struct
ib user mad hdr with a pkey index member has been defined; how-
ever, to preserve binary compatibility with older applications, this new
layout will not be used unless one of IB USER MAD ENABLE PKEY or
IB USER MAD REGISTER AGENT?2 ioctl’ s are called before a file de-
scriptor is used for anything else.

In September 2008, the IB USER MAD ABI VERSION will be incre-
mented to 6, the new layout of struct ib user mad hdr will be used by
default, and the IB USER MAD ENABLE PKEY ioctl will be removed.

6.4. Sending MADs 19



Linux Infiniband Documentation

6.7 Setting IsSM Capability Bit

To set the IsSM capability bit for a port, simply open the corresponding
issm device file. If the IsSM bit is already set, then the open call will
block until the bit is cleared (or return immediately with errno set to
EAGAIN if the O NONBLOCK flag is passed to open()). The IsSM bit
will be cleared when the issm file is closed. No read, write or other
operations can be performed on the issm file.

6.8 /dev files

To create the appropriate character device files automatically with udev,
a rule like:

KERNEL=="umad*", NAME="infiniband/%k"
KERNEL=="1issm*", NAME="infiniband/%k"

can be used. This will create device nodes named:

/dev/infiniband/umad0
/dev/infiniband/issm0O

for the first port, and so on. The InfiniBand device and port associated
with these devices can be determined from the files:

/sys/class/infiniband mad/umad@/ibdev
/sys/class/infiniband _mad/umad@/port

and:

/sys/class/infiniband mad/issm0/ibdev
/sys/class/infiniband mad/issm@/port

20

Chapter 6. Userspace MAD access




CHAPTER
SEVEN

USERSPACE VERBS ACCESS

The ib uverbs module, built by enabling CON-
FIG INFINIBAND USER VERBS, enables direct userspace access
to IB hardware via “verbs,” as described in chapter 11 of the InfiniBand
Architecture Specification.

To use the verbs, the libibverbs library, available from https://github.
com/linux-rdma/rdma-core, is required. libibverbs contains a device-
independent API for using the ib uverbs interface. libibverbs also re-
quires appropriate device-dependent kernel and userspace driver for
your InfiniBand hardware. For example, to use a Mellanox HCA, you
will need the ib mthca kernel module and the libmthca userspace driver
be installed.

7.1 User-kernel communication

Userspace communicates with the kernel for slow path, resource man-
agement operations via the /dev/infiniband/uverbsN character devices.
Fast path operations are typically performed by writing directly to hard-
ware registers mmap()ed into userspace, with no system call or context
switch into the kernel.

Commands are sent to the kernel via write()s on these device files. The
ABI is defined in drivers/infiniband/include/ib_user verbs.h. The structs
for commands that require a response from the kernel contain a 64-bit
field used to pass a pointer to an output buffer. Status is returned to
userspace as the return value of the write() system call.

7.2 Resource management

Since creation and destruction of all IB resources is done by commands
passed through a file descriptor, the kernel can keep track of which re-
sources are attached to a given userspace context. The ib uverbs mod-
ule maintains idr tables that are used to translate between kernel point-
ers and opaque userspace handles, so that kernel pointers are never ex-
posed to userspace and userspace cannot trick the kernel into following
a bogus pointer.

21


https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core

Linux Infiniband Documentation

This also allows the kernel to clean up when a process exits and prevent
one process from touching another process’ s resources.

7.3 Memory pinning

Direct userspace I/O requires that memory regions that are poten-
tial I/O targets be kept resident at the same physical address. The
ib uverbs module manages pinning and unpinning memory regions via
get user pages() and put page() calls. It also accounts for the amount
of memory pinned in the process’ s pinned vm, and checks that unpriv-
ileged processes do not exceed their RLIMIT MEMLOCK limit.

Pages that are pinned multiple times are counted each time they are
pinned, so the value of pinned vm may be an overestimate of the number
of pages pinned by a process.

7.4 /dev files

To create the appropriate character device files automatically with udev,
a rule like:

KERNEL=="uverbs*", NAME="infiniband/%k"

can be used. This will create device nodes named:

/dev/infiniband/uverbs0

and so on. Since the InfiniBand userspace verbs should be safe for use by
non-privileged processes, it may be useful to add an appropriate MODE
or GROUP to the udev rule.

22 Chapter 7. Userspace verbs access



