Linux lio Documentation

The kernel development community

Jul 14, 2020

CONTENTS

INDUSTRIAL IIO CONFIGFS SUPPORT

1.1 1. Overview

Configfs is a filesystem-based manager of kernel objects. IIO uses some objects that could be easily configured using configfs (e.g.: devices, triggers).

See Documentation/filesystems/configfs.rst for more information about how configfs works.

1.2 2. Usage

In order to use configfs support in IIO we need to select it at compile time via CONFIG_IIO_CONFIGFS config option.

Then, mount the configfs filesystem (usually under /config directory):

```
$ mkdir /config
$ mount -t configfs none /config
```

At this point, all default IIO groups will be created and can be accessed under /config/iio. Next chapters will describe available IIO configuration objects.

1.3 3. Software triggers

One of the IIO default configfs groups is the "triggers" group. It is automagically accessible when the configfs is mounted and can be found under /config/iio/triggers.

IIO software triggers implementation offers support for creating multiple trigger types. A new trigger type is usually implemented as a separate kernel module following the interface in include/linux/iio/sw_trigger.h:

(continues on next page)

(continued from previous page)

```
{
      /*
       * This allocates and registers an IIO trigger plus other
       * trigger type specific initialization.
       */
}
static int iio trig hrtimer remove(struct iio sw trigger *swt)
{
       * This undoes the actions in iio trig sample probe
       */
}
static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
                      = iio trig sample probe,
      .probe
      .remove
                      = iio_trig_sample_remove,
};
static struct iio_sw_trigger_type iio_trig_sample = {
      .name = "trig-sample",
      .owner = THIS MODULE,
      .ops = &iio trig sample ops,
};
```

module_iio_sw_trigger_driver(iio_trig_sample);

Each trigger type has its own directory under /config/iio/triggers. Loading iio-trig-sample module will create 'trig-sample' trigger type directory /config/iio/triggers/trig-sample.

We support the following interrupt sources (trigger types):

• hrtimer, uses high resolution timers as interrupt source

1.3.1 3.1 Hrtimer triggers creation and destruction

Loading iio-trig-hrtimer module will register hrtimer trigger types allowing users to create hrtimer triggers under /config/iio/triggers/hrtimer.

e.g:

```
$ mkdir /config/iio/triggers/hrtimer/instance1
$ rmdir /config/iio/triggers/hrtimer/instance1
```

Each trigger can have one or more attributes specific to the trigger type.

1.3.2 3.2 "hrtimer" trigger types attributes

"hrtimer" trigger type doesn' t have any configurable attribute from /config dir. It does introduce the sampling_frequency attribute to trigger directory.

CIRRUS LOGIC EP93XX ADC DRIVER

2.1 1. Overview

The driver is intended to work on both low-end (EP9301, EP9302) devices with 5-channel ADC and high-end (EP9307, EP9312, EP9315) devices with 10-channel touchscreen/ADC module.

2.2 2. Channel numbering

Numbering scheme for channels 0..4 is defined in EP9301 and EP9302 datasheets. EP9307, EP9312 and EP9312 have 3 channels more (total 8), but the numbering is not defined. So the last three are numbered randomly, let's say.

Assuming ep93xx_adc is IIO device0, you' d find the following entries under /sys/bus/iio/devices/iio:device0/:

sysfs entry	ball/pin name
in_voltage0_raw	YM
in_voltage1_raw	SXP
in_voltage2_raw	SXM
in_voltage3_raw	SYP
in_voltage4_raw	SYM
in_voltage5_raw	XP
in_voltage6_raw	XM
in_voltage7_raw	YP