
Linux Ia64 Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

LINUX KERNEL RELEASE FOR THE IA-64 PLATFORM

These are the release notes for Linux since version 2.4 for IA-64 plat-
form. This document provides information specific to IA-64 ONLY, to
get additional information about the Linux kernel also read the original
Linux README provided with the kernel.

1.1 Installing the Kernel

• IA-64 kernel installation is the same as the other platforms, see original
README for details.

1.2 Software Requirements

Compiling and running this kernel requires an IA-64 compliant GCC com-
piler. And various software packages also compiled with an IA-64 com-
pliant GCC compiler.

1.3 Configuring the Kernel

Configuration is the same, see original README for details.

Compiling the Kernel:

• Compiling this kernel doesn’t differ from other platform so read the orig-
inal README for details BUT make sure you have an IA-64 compliant GCC
compiler.

1.4 IA-64 Specifics

• General issues:

– Hardly any performance tuning has been done. Obvious targets include
the library routines (IP checksum, etc.). Less obvious targets include
making sure we don’t flush the TLB needlessly, etc.

– SMP locks cleanup/optimization

1

Linux Ia64 Documentation

– IA32 support. Currently experimental. It mostly works.

2 Chapter 1. Linux kernel release for the IA-64 Platform

CHAPTER

TWO

MEMORY ATTRIBUTE ALIASING ON IA-64

Bjorn Helgaas <bjorn.helgaas@hp.com>

May 4, 2006

2.1 Memory Attributes

Itanium supports several attributes for virtual memory references. The
attribute is part of the virtual translation, i.e., it is contained in the TLB
entry. The ones of most interest to the Linux kernel are:

WB Write-back (cacheable)
UC Uncacheable
WC Write-coalescing

Systemmemory typically uses theWB attribute. The UC attribute is used
for memory-mapped I/O devices. The WC attribute is uncacheable like
UC is, but writes may be delayed and combined to increase performance
for things like frame buffers.

The Itanium architecture requires that we avoid accessing the same
page with both a cacheable mapping and an uncacheable mapping[1].

The design of the chipset determines which attributes are supported on
which regions of the address space. For example, some chipsets support
either WB or UC access to main memory, while others support only WB
access.

2.2 Memory Map

Platform firmware describes the physical memory map and the sup-
ported attributes for each region. At boot-time, the kernel uses the EFI
GetMemoryMap() interface. ACPI can also describememory devices and
the attributes they support, but Linux/ia64 currently doesn’t use this
information.

The kernel uses the efi_memmap table returned from GetMemoryMap()
to learn the attributes supported by each region of physical address

3

mailto:bjorn.helgaas@hp.com

Linux Ia64 Documentation

space. Unfortunately, this table does not completely describe the ad-
dress space because some machines omit some or all of the MMIO re-
gions from the map.

The kernel maintains another table, kern_memmap, which describes the
memory Linux is actually using and the attribute for each region. This
contains only system memory; it does not contain MMIO space.

The kern_memmap table typically contains only a subset of the system
memory described by the efi_memmap. Linux/ia64 can’t use all memory
in the system because of constraints imposed by the identity mapping
scheme.

The efi_memmap table is preserved unmodified because the original
boot-time information is required for kexec.

2.3 Kernel Identify Mappings

Linux/ia64 identity mappings are done with large pages, currently ei-
ther 16MB or 64MB, referred to as“granules.”Cacheable mappings are
speculative[2], so the processor can read any location in the page at any
time, independent of the programmer’s intentions. This means that to
avoid attribute aliasing, Linux can create a cacheable identity mapping
only when the entire granule supports cacheable access.

Therefore, kern_memmap contains only full granule-sized regions that
can referenced safely by an identity mapping.

Uncacheable mappings are not speculative, so the processor will gener-
ate UC accesses only to locations explicitly referenced by software. This
allows UC identity mappings to cover granules that are only partially
populated, or populated with a combination of UC and WB regions.

2.4 User Mappings

User mappings are typically done with 16K or 64K pages. The smaller
page size allows more flexibility because only 16K or 64K has to be ho-
mogeneous with respect to memory attributes.

2.5 Potential Attribute Aliasing Cases

There are several ways the kernel creates new mappings:

4 Chapter 2. Memory Attribute Aliasing on IA-64

Linux Ia64 Documentation

2.5.1 mmap of /dev/mem

This uses remap_pfn_range(), which creates user mappings. These map-
pings may be either WB or UC. If the region being mapped happens to
be in kern_memmap, meaning that it may also be mapped by a kernel
identity mapping, the user mapping must use the same attribute as the
kernel mapping.

If the region is not in kern_memmap, the user mapping should use an
attribute reported as being supported in the EFI memory map.

Since the EFI memory map does not describe MMIO on some machines,
this should use an uncacheable mapping as a fallback.

2.5.2 mmap of /sys/class/pci_bus/⋯/legacy_mem

This is very similar to mmap of /dev/mem, except that legacy_mem only
allows mmap of the one megabyte “legacy MMIO”area for a specific
PCI bus. Typically this is the first megabyte of physical address space,
but it may be different on machines with several VGA devices.

“X”uses this to access VGA frame buffers. Using legacy_mem rather than
/dev/mem allows multiple instances of X to talk to different VGA cards.

The /dev/mem mmap constraints apply.

2.5.3 mmap of /proc/bus/pci/⋯/??.?

This is an MMIO mmap of PCI functions, which additionally may or may
not be requested as using the WC attribute.

If WC is requested, and the region in kern_memmap is either WC or UC,
and the EFI memory map designates the region as WC, then the WC
mapping is allowed.

Otherwise, the user mapping must use the same attribute as the kernel
mapping.

2.5.4 read/write of /dev/mem

This uses copy_from_user(), which implicitly uses a kernel identity map-
ping. This is obviously safe for things in kern_memmap.

There may be corner cases of things that are not in kern_memmap,
but could be accessed this way. For example, registers in MMIO
space are not in kern_memmap, but could be accessed with a UC map-
ping. This would not cause attribute aliasing. But registers typically
can be accessed only with four-byte or eight-byte accesses, and the
copy_from_user() path doesn’t allow any control over the access size,
so this would be dangerous.

2.5. Potential Attribute Aliasing Cases 5

Linux Ia64 Documentation

2.5.5 ioremap()

This returns a mapping for use inside the kernel.

If the region is in kern_memmap, we should use the attribute specified
there.

If the EFI memory map reports that the entire granule supports WB,
we should use that (granules that are partially reserved or occupied by
firmware do not appear in kern_memmap).

If the granule contains non-WB memory, but we can cover the
region safely with kernel page table mappings, we can use
ioremap_page_range() as most other architectures do.

Failing all of the above, we have to fall back to a UC mapping.

2.6 Past Problem Cases

2.6.1 mmap of various MMIO regions from /dev/mem by“X”on Intel
platforms

The EFI memory map may not report these MMIO regions.

These must be allowed so that X will work. This means that when the
EFI memory map is incomplete, every /dev/mem mmap must succeed. It
may create either WB or UC user mappings, depending on whether the
region is in kern_memmap or the EFI memory map.

2.6.2 mmap of 0x0-0x9FFFF /dev/mem by “hwinfo”on HP sx1000
with VGA enabled

The EFI memory map reports the following attributes:

0x00000-0x9FFFF WB only
0xA0000-0xBFFFF UC only (VGA frame buffer)
0xC0000-0xFFFFF WB only

This mmap is done with user pages, not kernel identity mappings, so it
is safe to use WB mappings.

The kernel VGA driver may ioremap the VGA frame buffer at 0xA0000,
which uses a granule-sized UC mapping. This granule will cover some
WB-only memory, but since UC is non-speculative, the processor will
never generate an uncacheable reference to the WB-only areas unless
the driver explicitly touches them.

6 Chapter 2. Memory Attribute Aliasing on IA-64

Linux Ia64 Documentation

2.6.3 mmap of 0x0-0xFFFFF legacy_mem by “X”

If the EFI memory map reports that the entire range supports the same
attributes, we can allow the mmap (and we will prefer WB if supported,
as is the case with HP sx[12]000 machines with VGA disabled).

If EFI reports the range as partly WB and partly UC (as on sx[12]000
machines with VGA enabled), we must fail the mmap because there’s
no safe attribute to use.

If EFI reports some of the range but not all (as on Intel firmware that
doesn’t report the VGA frame buffer at all), we should fail the mmap
and force the user to map just the specific region of interest.

2.6.4 mmap of 0xA0000-0xBFFFF legacy_mem by“X”on HP sx1000
with VGA disabled

The EFI memory map reports the following attributes:

0x00000-0xFFFFF WB only (no VGA MMIO hole)

This is a special case of the previous case, and the mmap should fail for
the same reason as above.

2.6.5 read of /sys/devices/⋯/rom

For VGA devices, this may cause an ioremap() of 0xC0000. This used to
be done with a UC mapping, because the VGA frame buffer at 0xA0000
prevents use of a WB granule. The UC mapping causes an MCA on HP
sx[12]000 chipsets.

We should use WB page table mappings to avoid covering the VGA frame
buffer.

2.7 Notes

[1] SDM rev 2.2, vol 2, sec 4.4.1. [2] SDM rev 2.2, vol 2, sec 4.4.6.

2.7. Notes 7

Linux Ia64 Documentation

8 Chapter 2. Memory Attribute Aliasing on IA-64

CHAPTER

THREE

EFI REAL TIME CLOCK DRIVER

S. Eranian <eranian@hpl.hp.com>

March 2000

3.1 1. Introduction

This document describes the efirtc.c driver has provided for the IA-64 platform.

The purpose of this driver is to supply an API for kernel and user applications to
get access to the Time Service offered by EFI version 0.92.

EFI provides 4 calls one can make once the OS is booted: GetTime(), SetTime(),
GetWakeupTime(), SetWakeupTime() which are all supported by this driver. We
describe those calls as well the design of the driver in the following sections.

3.2 2. Design Decisions

The original ideas was to provide a very simple driver to get access to, at first,
the time of day service. This is required in order to access, in a portable way,
the CMOS clock. A program like /sbin/hwclock uses such a clock to initialize the
system view of the time during boot.

Because we wanted to minimize the impact on existing user-level apps using the
CMOS clock, we decided to expose an API that was very similar to the one used
today with the legacy RTC driver (driver/char/rtc.c). However, because EFI pro-
vides a simpler services, not all ioctl() are available. Also new ioctl()s have been
introduced for things that EFI provides but not the legacy.

EFI uses a slightly different way of representing the time, noticeably the reference
date is different. Year is the using the full 4-digit format. The Epoch is January
1st 1998. For backward compatibility reasons we don’t expose this new way
of representing time. Instead we use something very similar to the struct tm,
i.e. struct rtc_time, as used by hwclock. One of the reasons for doing it this way
is to allow for EFI to still evolve without necessarily impacting any of the user
applications. The decoupling enables flexibility and permits writing wrapper code
is ncase things change.

The driver exposes two interfaces, one via the device file and a set of ioctl()s. The
other is read-only via the /proc filesystem.

9

mailto:eranian@hpl.hp.com

Linux Ia64 Documentation

As of today we don’t offer a /proc/sys interface.
To allow for a uniform interface between the legacy RTC and EFI time service,
we have created the include/linux/rtc.h header file to contain only the “pub-
lic”API of the two drivers. The specifics of the legacy RTC are still in in-
clude/linux/mc146818rtc.h.

3.3 3. Time of day service

The part of the driver gives access to the time of day service of EFI. Two ioctl()s,
compatible with the legacy RTC calls:

Read the CMOS clock:

ioctl(d, RTC_RD_TIME, &rtc);

Write the CMOS clock:

ioctl(d, RTC_SET_TIME, &rtc);

The rtc is a pointer to a data structure defined in rtc.h which is close to a struct
tm:

struct rtc_time {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

The driver takes care of converting back an forth between the EFI time and this
format.

Those two ioctl()s can be exercised with the hwclock command:

For reading:

/sbin/hwclock --show
Mon Mar 6 15:32:32 2000 -0.910248 seconds

For setting:

/sbin/hwclock --systohc

Root privileges are required to be able to set the time of day.

10 Chapter 3. EFI Real Time Clock driver

Linux Ia64 Documentation

3.4 4. Wakeup Alarm service

EFI provides an API by which one can programwhen amachine should wakeup, i.e.
reboot. This is very different from the alarm provided by the legacy RTC which is
some kind of interval timer alarm. For this reason we don’t use the same ioctl()s
to get access to the service. Instead we have introduced 2 news ioctl()s to the
interface of an RTC.

We have added 2 new ioctl()s that are specific to the EFI driver:

Read the current state of the alarm:

ioctl(d, RTC_WKLAM_RD, &wkt)

Set the alarm or change its status:

ioctl(d, RTC_WKALM_SET, &wkt)

The wkt structure encapsulates a struct rtc_time + 2 extra fields to get status
information:

struct rtc_wkalrm {

unsigned char enabled; /* =1 if alarm is enabled */
unsigned char pending; /* =1 if alarm is pending */

struct rtc_time time;
}

As of today, none of the existing user-level apps supports this feature. However
writing such a program should be hard by simply using those two ioctl().

Root privileges are required to be able to set the alarm.

3.5 5. References

Checkout the following Web site for more information on EFI:

http://developer.intel.com/technology/efi/

3.4. 4. Wakeup Alarm service 11

http://developer.intel.com/technology/efi/

Linux Ia64 Documentation

12 Chapter 3. EFI Real Time Clock driver

CHAPTER

FOUR

IPF MACHINE CHECK (MC) ERROR INJECT TOOL

IPF Machine Check (MC) error inject tool is used to inject MC errors from Linux.
The tool is a test bed for IPF MC work flow including hardware correctable error
handling, OS recoverable error handling, MC event logging, etc.

The tool includes two parts: a kernel driver and a user application sample. The
driver provides interface to PAL to inject error and query error injection capabil-
ities. The driver code is in arch/ia64/kernel/err_inject.c. The application sample
(shown below) provides a combination of various errors and calls the driver’s
interface (sysfs interface) to inject errors or query error injection capabilities.

The tool can be used to test Intel IPF machine MC handling capabilities. It’s
especially useful for people who can not access hardware MC injection tool to
inject error. It’s also very useful to integrate with other software test suits to do
stressful testing on IPF.

Below is a sample application as part of the whole tool. The sample can be used as
a working test tool. Or it can be expanded to include more features. It also can be
a integrated into a library or other user application to have more thorough test.

The sample application takes err.conf as error configuration input. GCC compiles
the code. After you install err_inject driver, you can run this sample application to
inject errors.

Errata: Itanium 2 Processors Specification Update lists some errata against the
pal_mc_error_inject PAL procedure. The following err.conf has been tested on
latest Montecito PAL.

err.conf:

#This is configuration file for err_inject_tool.
#The format of the each line is:
#cpu, loop, interval, err_type_info, err_struct_info, err_data_buffer
#where
cpu: logical cpu number the error will be inject in.
loop: times the error will be injected.
interval: In second. every so often one error is injected.
err_type_info, err_struct_info: PAL parameters.
#
#Note: All values are hex w/o or w/ 0x prefix.

#On cpu2, inject only total 0x10 errors, interval 5 seconds
#corrected, data cache, hier-2, physical addr(assigned by tool code).

(continues on next page)

13

Linux Ia64 Documentation

(continued from previous page)
#working on Montecito latest PAL.
2, 10, 5, 4101, 95

#On cpu4, inject and consume total 0x10 errors, interval 5 seconds
#corrected, data cache, hier-2, physical addr(assigned by tool code).
#working on Montecito latest PAL.
4, 10, 5, 4109, 95

#On cpu15, inject and consume total 0x10 errors, interval 5 seconds
#recoverable, DTR0, hier-2.
#working on Montecito latest PAL.
0xf, 0x10, 5, 4249, 15

The sample application source code:

err_injection_tool.c:

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Copyright (C) 2006 Intel Co
* Fenghua Yu <fenghua.yu@intel.com>
*
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <sched.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <time.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/shm.h>

#define MAX_FN_SIZE 256
#define MAX_BUF_SIZE 256

(continues on next page)

14 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
#define DATA_BUF_SIZE 256
#define NR_CPUS 512
#define MAX_TASK_NUM 2048
#define MIN_INTERVAL 5 // seconds
#define ERR_DATA_BUFFER_SIZE 3 // Three 8-byte.
#define PARA_FIELD_NUM 5
#define MASK_SIZE (NR_CPUS/64)
#define PATH_FORMAT "/sys/devices/system/cpu/cpu%d/err_inject/"

int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);

int verbose;
#define vbprintf if (verbose) printf

int log_info(int cpu, const char *fmt, ...)
{

FILE *log;
char fn[MAX_FN_SIZE];
char buf[MAX_BUF_SIZE];
va_list args;

sprintf(fn, "%d.log", cpu);
log=fopen(fn, "a+");
if (log==NULL) {

perror("Error open:");
return -1;

}

va_start(args, fmt);
vprintf(fmt, args);
memset(buf, 0, MAX_BUF_SIZE);
vsprintf(buf, fmt, args);
va_end(args);

fwrite(buf, sizeof(buf), 1, log);
fclose(log);

return 0;
}

typedef unsigned long u64;
typedef unsigned int u32;

typedef union err_type_info_u {
struct {

u64 mode : 3, /* 0-2 */
err_inj : 3, /* 3-5 */
err_sev : 2, /* 6-7 */
err_struct : 5, /* 8-12 */
struct_hier : 3, /* 13-15 */
reserved : 48; /* 16-63 */

} err_type_info_u;
u64 err_type_info;

} err_type_info_t;

typedef union err_struct_info_u {
(continues on next page)

15

Linux Ia64 Documentation

(continued from previous page)
struct {

u64 siv : 1, /* 0 */
c_t : 2, /* 1-2 */
cl_p : 3, /* 3-5 */
cl_id : 3, /* 6-8 */
cl_dp : 1, /* 9 */
reserved1 : 22, /* 10-31 */
tiv : 1, /* 32 */
trigger : 4, /* 33-36 */
trigger_pl : 3, /* 37-39 */
reserved2 : 24; /* 40-63 */

} err_struct_info_cache;
struct {

u64 siv : 1, /* 0 */
tt : 2, /* 1-2 */
tc_tr : 2, /* 3-4 */
tr_slot : 8, /* 5-12 */
reserved1 : 19, /* 13-31 */
tiv : 1, /* 32 */
trigger : 4, /* 33-36 */
trigger_pl : 3, /* 37-39 */
reserved2 : 24; /* 40-63 */

} err_struct_info_tlb;
struct {

u64 siv : 1, /* 0 */
regfile_id : 4, /* 1-4 */
reg_num : 7, /* 5-11 */
reserved1 : 20, /* 12-31 */
tiv : 1, /* 32 */
trigger : 4, /* 33-36 */
trigger_pl : 3, /* 37-39 */
reserved2 : 24; /* 40-63 */

} err_struct_info_register;
struct {

u64 reserved;
} err_struct_info_bus_processor_interconnect;
u64 err_struct_info;

} err_struct_info_t;

typedef union err_data_buffer_u {
struct {

u64 trigger_addr; /* 0-63 */
u64 inj_addr; /* 64-127 */
u64 way : 5, /* 128-132 */

index : 20, /* 133-152 */
: 39; /* 153-191 */

} err_data_buffer_cache;
struct {

u64 trigger_addr; /* 0-63 */
u64 inj_addr; /* 64-127 */
u64 way : 5, /* 128-132 */

index : 20, /* 133-152 */
reserved : 39; /* 153-191 */

} err_data_buffer_tlb;
struct {

u64 trigger_addr; /* 0-63 */
(continues on next page)

16 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
} err_data_buffer_register;
struct {

u64 reserved; /* 0-63 */
} err_data_buffer_bus_processor_interconnect;
u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];

} err_data_buffer_t;

typedef union capabilities_u {
struct {

u64 i : 1,
d : 1,
rv : 1,
tag : 1,
data : 1,
mesi : 1,
dp : 1,
reserved1 : 3,
pa : 1,
va : 1,
wi : 1,
reserved2 : 20,
trigger : 1,
trigger_pl : 1,
reserved3 : 30;

} capabilities_cache;
struct {

u64 d : 1,
i : 1,
rv : 1,
tc : 1,
tr : 1,
reserved1 : 27,
trigger : 1,
trigger_pl : 1,
reserved2 : 30;

} capabilities_tlb;
struct {

u64 gr_b0 : 1,
gr_b1 : 1,
fr : 1,
br : 1,
pr : 1,
ar : 1,
cr : 1,
rr : 1,
pkr : 1,
dbr : 1,
ibr : 1,
pmc : 1,
pmd : 1,
reserved1 : 3,
regnum : 1,
reserved2 : 15,
trigger : 1,
trigger_pl : 1,
reserved3 : 30;

(continues on next page)

17

Linux Ia64 Documentation

(continued from previous page)
} capabilities_register;
struct {

u64 reserved;
} capabilities_bus_processor_interconnect;

} capabilities_t;

typedef struct resources_s {
u64 ibr0 : 1,

ibr2 : 1,
ibr4 : 1,
ibr6 : 1,
dbr0 : 1,
dbr2 : 1,
dbr4 : 1,
dbr6 : 1,
reserved : 48;

} resources_t;

long get_page_size(void)
{

long page_size=sysconf(_SC_PAGESIZE);
return page_size;

}

#define PAGE_SIZE (get_page_size()==-1?0x4000:get_page_size())
#define SHM_SIZE (2*PAGE_SIZE*NR_CPUS)
#define SHM_VA 0x2000000100000000

int shmid;
void *shmaddr;

int create_shm(void)
{

key_t key;
char fn[MAX_FN_SIZE];

/* cpu0 is always existing */
sprintf(fn, PATH_FORMAT, 0);
if ((key = ftok(fn, 's')) == -1) {

perror("ftok");
return -1;

}

shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT);
if (shmid == -1) {

if (errno==EEXIST) {
shmid = shmget(key, SHM_SIZE, 0);
if (shmid == -1) {

perror("shmget");
return -1;

}
}
else {

perror("shmget");
return -1;

(continues on next page)

18 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
}

}
vbprintf("shmid=%d", shmid);

/* connect to the segment: */
shmaddr = shmat(shmid, (void *)SHM_VA, 0);
if (shmaddr == (void*)-1) {

perror("shmat");
return -1;

}

memset(shmaddr, 0, SHM_SIZE);
mlock(shmaddr, SHM_SIZE);

return 0;
}

int free_shm()
{

munlock(shmaddr, SHM_SIZE);
shmdt(shmaddr);

semctl(shmid, 0, IPC_RMID);

return 0;
}

#ifdef _SEM_SEMUN_UNDEFINED
union semun
{

int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

};
#endif

u32 mode=1; /* 1: physical mode; 2: virtual mode. */
int one_lock=1;
key_t key[NR_CPUS];
int semid[NR_CPUS];

int create_sem(int cpu)
{

union semun arg;
char fn[MAX_FN_SIZE];
int sid;

sprintf(fn, PATH_FORMAT, cpu);
sprintf(fn, "%s/%s", fn, "err_type_info");
if ((key[cpu] = ftok(fn, 'e')) == -1) {

perror("ftok");
return -1;

}

if (semid[cpu]!=0)
return 0;

(continues on next page)

19

Linux Ia64 Documentation

(continued from previous page)

/* clear old semaphore */
if ((sid = semget(key[cpu], 1, 0)) != -1)

semctl(sid, 0, IPC_RMID);

/* get one semaphore */
if ((semid[cpu] = semget(key[cpu], 1, IPC_CREAT | IPC_EXCL)) == -1) {

perror("semget");
printf("Please remove semaphore with key=0x%lx, then run the␣

↪→tool.\n",
(u64)key[cpu]);

return -1;
}

vbprintf("semid[%d]=0x%lx, key[%d]=%lx\n",cpu,(u64)semid[cpu],cpu,
(u64)key[cpu]);

/* initialize the semaphore to 1: */
arg.val = 1;
if (semctl(semid[cpu], 0, SETVAL, arg) == -1) {

perror("semctl");
return -1;

}

return 0;
}

static int lock(int cpu)
{

struct sembuf lock;

lock.sem_num = cpu;
lock.sem_op = 1;
semop(semid[cpu], &lock, 1);

return 0;
}

static int unlock(int cpu)
{

struct sembuf unlock;

unlock.sem_num = cpu;
unlock.sem_op = -1;
semop(semid[cpu], &unlock, 1);

return 0;
}

void free_sem(int cpu)
{

semctl(semid[cpu], 0, IPC_RMID);
}

int wr_multi(char *fn, unsigned long *data, int size)
{

int fd;
(continues on next page)

20 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
char buf[MAX_BUF_SIZE];
int ret;

if (size==1)
sprintf(buf, "%lx", *data);

else if (size==3)
sprintf(buf, "%lx,%lx,%lx", data[0], data[1], data[2]);

else {
fprintf(stderr,"write to file with wrong size!\n");
return -1;

}

fd=open(fn, O_RDWR);
if (!fd) {

perror("Error:");
return -1;

}
ret=write(fd, buf, sizeof(buf));
close(fd);
return ret;

}

int wr(char *fn, unsigned long data)
{

return wr_multi(fn, &data, 1);
}

int rd(char *fn, unsigned long *data)
{

int fd;
char buf[MAX_BUF_SIZE];

fd=open(fn, O_RDONLY);
if (fd<0) {

perror("Error:");
return -1;

}
read(fd, buf, MAX_BUF_SIZE);
*data=strtoul(buf, NULL, 16);
close(fd);
return 0;

}

int rd_status(char *path, int *status)
{

char fn[MAX_FN_SIZE];
sprintf(fn, "%s/status", path);
if (rd(fn, (u64*)status)<0) {

perror("status reading error.\n");
return -1;

}

return 0;
}

int rd_capabilities(char *path, u64 *capabilities)
(continues on next page)

21

Linux Ia64 Documentation

(continued from previous page)
{

char fn[MAX_FN_SIZE];
sprintf(fn, "%s/capabilities", path);
if (rd(fn, capabilities)<0) {

perror("capabilities reading error.\n");
return -1;

}

return 0;
}

int rd_all(char *path)
{

unsigned long err_type_info, err_struct_info, err_data_buffer;
int status;
unsigned long capabilities, resources;
char fn[MAX_FN_SIZE];

sprintf(fn, "%s/err_type_info", path);
if (rd(fn, &err_type_info)<0) {

perror("err_type_info reading error.\n");
return -1;

}
printf("err_type_info=%lx\n", err_type_info);

sprintf(fn, "%s/err_struct_info", path);
if (rd(fn, &err_struct_info)<0) {

perror("err_struct_info reading error.\n");
return -1;

}
printf("err_struct_info=%lx\n", err_struct_info);

sprintf(fn, "%s/err_data_buffer", path);
if (rd(fn, &err_data_buffer)<0) {

perror("err_data_buffer reading error.\n");
return -1;

}
printf("err_data_buffer=%lx\n", err_data_buffer);

sprintf(fn, "%s/status", path);
if (rd("status", (u64*)&status)<0) {

perror("status reading error.\n");
return -1;

}
printf("status=%d\n", status);

sprintf(fn, "%s/capabilities", path);
if (rd(fn,&capabilities)<0) {

perror("capabilities reading error.\n");
return -1;

}
printf("capabilities=%lx\n", capabilities);

sprintf(fn, "%s/resources", path);
if (rd(fn, &resources)<0) {

perror("resources reading error.\n");
(continues on next page)

22 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
return -1;

}
printf("resources=%lx\n", resources);

return 0;
}

int query_capabilities(char *path, err_type_info_t err_type_info,
u64 *capabilities)

{
char fn[MAX_FN_SIZE];
err_struct_info_t err_struct_info;
err_data_buffer_t err_data_buffer;

err_struct_info.err_struct_info=0;
memset(err_data_buffer.err_data_buffer, -1, ERR_DATA_BUFFER_SIZE*8);

sprintf(fn, "%s/err_type_info", path);
wr(fn, err_type_info.err_type_info);
sprintf(fn, "%s/err_struct_info", path);
wr(fn, 0x0);
sprintf(fn, "%s/err_data_buffer", path);
wr_multi(fn, err_data_buffer.err_data_buffer, ERR_DATA_BUFFER_SIZE);

// Fire pal_mc_error_inject procedure.
sprintf(fn, "%s/call_start", path);
wr(fn, mode);

if (rd_capabilities(path, capabilities)<0)
return -1;

return 0;
}

int query_all_capabilities()
{

int status;
err_type_info_t err_type_info;
int err_sev, err_struct, struct_hier;
int cap=0;
u64 capabilities;
char path[MAX_FN_SIZE];

err_type_info.err_type_info=0; // Initial
err_type_info.err_type_info_u.mode=0; // Query mode;
err_type_info.err_type_info_u.err_inj=0;

printf("All capabilities implemented in pal_mc_error_inject:\n");
sprintf(path, PATH_FORMAT ,0);
for (err_sev=0;err_sev<3;err_sev++)

for (err_struct=0;err_struct<5;err_struct++)
for (struct_hier=0;struct_hier<5;struct_hier++)

{
status=-1;
capabilities=0;
err_type_info.err_type_info_u.err_sev=err_sev;

(continues on next page)

23

Linux Ia64 Documentation

(continued from previous page)
err_type_info.err_type_info_u.err_struct=err_struct;
err_type_info.err_type_info_u.struct_hier=struct_hier;

if (query_capabilities(path, err_type_info, &capabilities)<0)
continue;

if (rd_status(path, &status)<0)
continue;

if (status==0) {
cap=1;
printf("For err_sev=%d, err_struct=%d, struct_hier=

↪→%d: ",
err_sev, err_struct, struct_hier);

printf("capabilities 0x%lx\n", capabilities);
}

}
if (!cap) {

printf("No capabilities supported.\n");
return 0;

}

return 0;
}

int err_inject(int cpu, char *path, err_type_info_t err_type_info,
err_struct_info_t err_struct_info,
err_data_buffer_t err_data_buffer)

{
int status;
char fn[MAX_FN_SIZE];

log_info(cpu, "err_type_info=%lx, err_struct_info=%lx, ",
err_type_info.err_type_info,
err_struct_info.err_struct_info);

log_info(cpu,"err_data_buffer=[%lx,%lx,%lx]\n",
err_data_buffer.err_data_buffer[0],
err_data_buffer.err_data_buffer[1],
err_data_buffer.err_data_buffer[2]);

sprintf(fn, "%s/err_type_info", path);
wr(fn, err_type_info.err_type_info);
sprintf(fn, "%s/err_struct_info", path);
wr(fn, err_struct_info.err_struct_info);
sprintf(fn, "%s/err_data_buffer", path);
wr_multi(fn, err_data_buffer.err_data_buffer, ERR_DATA_BUFFER_SIZE);

// Fire pal_mc_error_inject procedure.
sprintf(fn, "%s/call_start", path);
wr(fn,mode);

if (rd_status(path, &status)<0) {
vbprintf("fail: read status\n");
return -100;

}

if (status!=0) {
(continues on next page)

24 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
log_info(cpu, "fail: status=%d\n", status);
return status;

}

return status;
}

static int construct_data_buf(char *path, err_type_info_t err_type_info,
err_struct_info_t err_struct_info,
err_data_buffer_t *err_data_buffer,
void *va1)

{
char fn[MAX_FN_SIZE];
u64 virt_addr=0, phys_addr=0;

vbprintf("va1=%lx\n", (u64)va1);
memset(&err_data_buffer->err_data_buffer_cache, 0, ERR_DATA_BUFFER_

↪→SIZE*8);

switch (err_type_info.err_type_info_u.err_struct) {
case 1: // Cache

switch (err_struct_info.err_struct_info_cache.cl_id)
↪→{

case 1: //Virtual addr
err_data_buffer->err_data_buffer_

↪→cache.inj_addr=(u64)va1;
break;

case 2: //Phys addr
sprintf(fn, "%s/virtual_to_phys",␣

↪→path);
virt_addr=(u64)va1;
if (wr(fn,virt_addr)<0)

return -1;
rd(fn, &phys_addr);
err_data_buffer->err_data_buffer_

↪→cache.inj_addr=phys_addr;
break;

default:
printf("Not supported cl_id\n");
break;

}
break;

case 2: // TLB
break;

case 3: // Register file
break;

case 4: // Bus/system interconnect
default:

printf("Not supported err_struct\n");
break;

}

return 0;
}

typedef struct {
(continues on next page)

25

Linux Ia64 Documentation

(continued from previous page)
u64 cpu;
u64 loop;
u64 interval;
u64 err_type_info;
u64 err_struct_info;
u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];

} parameters_t;

parameters_t line_para;
int para;

static int empty_data_buffer(u64 *err_data_buffer)
{

int empty=1;
int i;

for (i=0;i<ERR_DATA_BUFFER_SIZE; i++)
if (err_data_buffer[i]!=-1)

empty=0;

return empty;
}

int err_inj()
{

err_type_info_t err_type_info;
err_struct_info_t err_struct_info;
err_data_buffer_t err_data_buffer;
int count;
FILE *fp;
unsigned long cpu, loop, interval, err_type_info_conf, err_struct_

↪→info_conf;
u64 err_data_buffer_conf[ERR_DATA_BUFFER_SIZE];
int num;
int i;
char path[MAX_FN_SIZE];
parameters_t parameters[MAX_TASK_NUM]={};
pid_t child_pid[MAX_TASK_NUM];
time_t current_time;
int status;

if (!para) {
fp=fopen("err.conf", "r");
if (fp==NULL) {

perror("Error open err.conf");
return -1;

}

num=0;
while (!feof(fp)) {

char buf[256];
memset(buf,0,256);
fgets(buf, 256, fp);
count=sscanf(buf, "%lx, %lx, %lx, %lx, %lx, %lx, %lx, %lx\n",

&cpu, &loop, &interval,&err_type_info_conf,
&err_struct_info_conf,

(continues on next page)

26 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
&err_data_buffer_conf[0],
&err_data_buffer_conf[1],
&err_data_buffer_conf[2]);

if (count!=PARA_FIELD_NUM+3) {
err_data_buffer_conf[0]=-1;
err_data_buffer_conf[1]=-1;
err_data_buffer_conf[2]=-1;
count=sscanf(buf, "%lx, %lx, %lx, %lx, %lx\n",

&cpu, &loop, &interval,&err_type_info_conf,
&err_struct_info_conf);

if (count!=PARA_FIELD_NUM)
continue;

}

parameters[num].cpu=cpu;
parameters[num].loop=loop;
parameters[num].interval= interval>MIN_INTERVAL

?interval:MIN_INTERVAL;
parameters[num].err_type_info=err_type_info_conf;
parameters[num].err_struct_info=err_struct_info_conf;
memcpy(parameters[num++].err_data_buffer,

err_data_buffer_conf,ERR_DATA_BUFFER_SIZE*8) ;

if (num>=MAX_TASK_NUM)
break;

}
}
else {

parameters[0].cpu=line_para.cpu;
parameters[0].loop=line_para.loop;
parameters[0].interval= line_para.interval>MIN_INTERVAL

?line_para.interval:MIN_INTERVAL;
parameters[0].err_type_info=line_para.err_type_info;
parameters[0].err_struct_info=line_para.err_struct_info;
memcpy(parameters[0].err_data_buffer,

line_para.err_data_buffer,ERR_DATA_BUFFER_SIZE*8) ;

num=1;
}

/* Create semaphore: If one_lock, one semaphore for all processors.
Otherwise, one semaphore for each processor. */

if (one_lock) {
if (create_sem(0)) {

printf("Can not create semaphore...exit\n");
free_sem(0);
return -1;

}
}
else {

for (i=0;i<num;i++) {
if (create_sem(parameters[i].cpu)) {

printf("Can not create semaphore for cpu%d...exit\n",
↪→i);

free_sem(parameters[num].cpu);
return -1;

(continues on next page)

27

Linux Ia64 Documentation

(continued from previous page)
}

}
}

/* Create a shm segment which will be used to inject/consume errors␣
↪→on.*/

if (create_shm()==-1) {
printf("Error to create shm...exit\n");
return -1;

}

for (i=0;i<num;i++) {
pid_t pid;

current_time=time(NULL);
log_info(parameters[i].cpu, "\nBegine at %s", ctime(¤t_

↪→time));
log_info(parameters[i].cpu, "Configurations:\n");
log_info(parameters[i].cpu,"On cpu%ld: loop=%lx, interval=

↪→%lx(s)",
parameters[i].cpu,
parameters[i].loop,
parameters[i].interval);

log_info(parameters[i].cpu," err_type_info=%lx,err_struct_
↪→info=%lx\n",

parameters[i].err_type_info,
parameters[i].err_struct_info);

sprintf(path, PATH_FORMAT, (int)parameters[i].cpu);
err_type_info.err_type_info=parameters[i].err_type_info;
err_struct_info.err_struct_info=parameters[i].err_struct_

↪→info;
memcpy(err_data_buffer.err_data_buffer,

parameters[i].err_data_buffer,
ERR_DATA_BUFFER_SIZE*8);

pid=fork();
if (pid==0) {

unsigned long mask[MASK_SIZE];
int j, k;

void *va1, *va2;

/* Allocate two memory areas va1 and va2 in shm */
va1=shmaddr+parameters[i].cpu*PAGE_SIZE;
va2=shmaddr+parameters[i].cpu*PAGE_SIZE+PAGE_SIZE;

vbprintf("va1=%lx, va2=%lx\n", (u64)va1, (u64)va2);
memset(va1, 0x1, PAGE_SIZE);
memset(va2, 0x2, PAGE_SIZE);

if (empty_data_buffer(err_data_buffer.err_data_
↪→buffer))

/* If not specified yet, construct data␣
↪→buffer

* with va1
(continues on next page)

28 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
*/
construct_data_buf(path, err_type_info,

err_struct_info, &err_data_buffer,
↪→va1);

for (j=0;j<MASK_SIZE;j++)
mask[j]=0;

cpu=parameters[i].cpu;
k = cpu%64;
j = cpu/64;
mask[j] = 1UL << k;

if (sched_setaffinity(0, MASK_SIZE*8, mask)==-1) {
perror("Error sched_setaffinity:");
return -1;

}

for (j=0; j<parameters[i].loop; j++) {
log_info(parameters[i].cpu,"Injection ");
log_info(parameters[i].cpu,"on cpu%ld: #%d/

↪→%ld ",

parameters[i].cpu,j+1, parameters[i].
↪→loop);

/* Hold the lock */
if (one_lock)

lock(0);
else
/* Hold lock on this cpu */

lock(parameters[i].cpu);

if ((status=err_inject(parameters[i].cpu,
path, err_type_info,
err_struct_info, err_data_buffer))
==0) {

/* consume the error for "inject only
↪→"*/

memcpy(va2, va1, PAGE_SIZE);
memcpy(va1, va2, PAGE_SIZE);
log_info(parameters[i].cpu,

"successful\n");
}
else {

log_info(parameters[i].cpu,"fail:");
log_info(parameters[i].cpu,

"status=%d\n", status);
unlock(parameters[i].cpu);
break;

}
if (one_lock)
/* Release the lock */

unlock(0);
/* Release lock on this cpu */
else

(continues on next page)

29

Linux Ia64 Documentation

(continued from previous page)
unlock(parameters[i].cpu);

if (j < parameters[i].loop-1)
sleep(parameters[i].interval);

}
current_time=time(NULL);
log_info(parameters[i].cpu, "Done at %s", ctime(&

↪→current_time));
return 0;

}
else if (pid<0) {

perror("Error fork:");
continue;

}
child_pid[i]=pid;

}
for (i=0;i<num;i++)

waitpid(child_pid[i], NULL, 0);

if (one_lock)
free_sem(0);

else
for (i=0;i<num;i++)

free_sem(parameters[i].cpu);

printf("All done.\n");

return 0;
}

void help()
{

printf("err_inject_tool:\n");
printf("\t-q: query all capabilities. default: off\n");
printf("\t-m: procedure mode. 1: physical 2: virtual. default: 1\n");
printf("\t-i: inject errors. default: off\n");
printf("\t-l: one lock per cpu. default: one lock for all\n");
printf("\t-e: error parameters:\n");
printf("\t\tcpu,loop,interval,err_type_info,err_struct_info[,err_

↪→data_buffer[0],err_data_buffer[1],err_data_buffer[2]]\n");
printf("\t\t cpu: logical cpu number the error will be inject in.\n

↪→");
printf("\t\t loop: times the error will be injected.\n");
printf("\t\t interval: In second. every so often one error is␣

↪→injected.\n");
printf("\t\t err_type_info, err_struct_info: PAL parameters.\n");
printf("\t\t err_data_buffer: PAL parameter. Optional. If not␣

↪→present,\n");
printf("\t\t it's constructed by tool␣

↪→automatically. Be\n");
printf("\t\t careful to provide err_data_buffer␣

↪→and make\n");
printf("\t\t sure it's working with the␣

↪→environment.\n");
printf("\t Note:no space between error parameters.\n");
printf("\t default: Take error parameters from err.conf instead␣

↪→of command line.\n"); (continues on next page)

30 Chapter 4. IPF Machine Check (MC) error inject tool

Linux Ia64 Documentation

(continued from previous page)
printf("\t-v: verbose. default: off\n");
printf("\t-h: help\n\n");
printf("The tool will take err.conf file as ");
printf("input to inject single or multiple errors ");
printf("on one or multiple cpus in parallel.\n");

}

int main(int argc, char **argv)
{

char c;
int do_err_inj=0;
int do_query_all=0;
int count;
u32 m;

/* Default one lock for all cpu's */
one_lock=1;
while ((c = getopt(argc, argv, "m:iqvhle:")) != EOF)

switch (c) {
case 'm': /* Procedure mode. 1: phys 2: virt */

count=sscanf(optarg, "%x", &m);
if (count!=1 || (m!=1 && m!=2)) {

printf("Wrong mode number.\n");
help();
return -1;

}
mode=m;
break;

case 'i': /* Inject errors */
do_err_inj=1;
break;

case 'q': /* Query */
do_query_all=1;
break;

case 'v': /* Verbose */
verbose=1;
break;

case 'l': /* One lock per cpu */
one_lock=0;
break;

case 'e': /* error arguments */
/* Take parameters:
* #cpu, loop, interval, err_type_info, err_

↪→struct_info[, err_data_buffer]
* err_data_buffer is optional. Recommend␣

↪→not to specify
* err_data_buffer. Better to use tool to␣

↪→generate it.
*/
count=sscanf(optarg,

"%lx, %lx, %lx, %lx, %lx, %lx, %lx,
↪→%lx\n",

&line_para.cpu,
&line_para.loop,
&line_para.interval,
&line_para.err_type_info,

(continues on next page)

31

Linux Ia64 Documentation

(continued from previous page)
&line_para.err_struct_info,
&line_para.err_data_buffer[0],
&line_para.err_data_buffer[1],
&line_para.err_data_buffer[2]);

if (count!=PARA_FIELD_NUM+3) {
line_para.err_data_buffer[0]=-1,
line_para.err_data_buffer[1]=-1,
line_para.err_data_buffer[2]=-1;
count=sscanf(optarg, "%lx, %lx, %lx, %lx,

↪→ %lx\n",
&line_para.cpu,
&line_para.loop,
&line_para.interval,
&line_para.err_type_info,
&line_para.err_struct_info);

if (count!=PARA_FIELD_NUM) {
printf("Wrong error arguments.\n");
help();
return -1;

}
}
para=1;
break;

continue;
break;

case 'h':
help();
return 0;

default:
break;

}

if (do_query_all)
query_all_capabilities();

if (do_err_inj)
err_inj();

if (!do_query_all && !do_err_inj)
help();

return 0;
}

32 Chapter 4. IPF Machine Check (MC) error inject tool

CHAPTER

FIVE

LIGHT-WEIGHT SYSTEM CALLS FOR IA-64

Started: 13-Jan-2003

Last update: 27-Sep-2003

David Mosberger-Tang <davidm@hpl.hp.com>

Using the“epc”instruction effectively introduces a new mode of execution to the
ia64 linux kernel. We call this mode the“fsys-mode”. To recap, the normal states
of execution are:

• kernel mode: Both the register stack and the memory stack have been
switched over to kernel memory. The user-level state is saved in a pt-
regs structure at the top of the kernel memory stack.

• user mode: Both the register stack and the kernel stack are in user memory.
The user-level state is contained in the CPU registers.

• bank 0 interruption-handling mode: This is the non-interruptible state
which all interruption-handlers start execution in. The user-level state
remains in the CPU registers and some kernel state may be stored in
bank 0 of registers r16-r31.

In contrast, fsys-mode has the following special properties:

• execution is at privilege level 0 (most-privileged)

• CPU registers may contain a mixture of user-level and kernel-level state (it
is the responsibility of the kernel to ensure that no security-sensitive kernel-
level state is leaked back to user-level)

• execution is interruptible and preemptible (an fsys-mode handler can disable
interrupts and avoid all other interruption-sources to avoid preemption)

• neither the memory-stack nor the register-stack can be trusted while in fsys-
mode (they point to the user-level stacks, which may be invalid, or completely
bogus addresses)

In summary, fsys-mode is much more similar to running in user-mode than it is to
running in kernel-mode. Of course, given that the privilege level is at level 0, this
means that fsys-mode requires some care (see below).

33

mailto:davidm@hpl.hp.com

Linux Ia64 Documentation

5.1 How to tell fsys-mode

Linux operates in fsys-mode when (a) the privilege level is 0 (most privileged) and
(b) the stacks have NOT been switched to kernel memory yet. For convenience,
the header file <asm-ia64/ptrace.h> provides three macros:

user_mode(regs)
user_stack(task,regs)
fsys_mode(task,regs)

The“regs”argument is a pointer to a pt_regs structure. The“task”argument is a
pointer to the task structure to which the“regs”pointer belongs to. user_mode()
returns TRUE if the CPU state pointed to by “regs”was executing in user mode
(privilege level 3). user_stack() returns TRUE if the state pointed to by“regs”was
executing on the user-level stack(s). Finally, fsys_mode() returns TRUE if the CPU
state pointed to by“regs”was executing in fsys-mode. The fsys_mode() macro is
equivalent to the expression:

!user_mode(regs) && user_stack(task,regs)

5.2 How to write an fsyscall handler

The file arch/ia64/kernel/fsys.S contains a table of fsyscall-handlers
(fsyscall_table). This table contains one entry for each system call. By de-
fault, a system call is handled by fsys_fallback_syscall(). This routine takes
care of entering (full) kernel mode and calling the normal Linux system call
handler. For performance-critical system calls, it is possible to write a hand-tuned
fsyscall_handler. For example, fsys.S contains fsys_getpid(), which is a hand-tuned
version of the getpid() system call.

The entry and exit-state of an fsyscall handler is as follows:

5.2.1 Machine state on entry to fsyscall handler

r10 0
r11 saved ar.pfs (a user-level value)
r15 system call number
r16 “current”task pointer (in normal

kernel-mode, this is in r13)
r32-r39 system call arguments
b6 return address (a user-level

value)
ar.pfs previous frame-state (a user-level

value)
PSR.be cleared to zero (i.e., little-endian

byte order is in effect)
• all other registers may contain

values passed in from user-mode

34 Chapter 5. Light-weight System Calls for IA-64

Linux Ia64 Documentation

5.2.2 Required machine state on exit to fsyscall handler

r11 saved ar.pfs (as passed into the fsyscall handler)
r15 system call number (as passed into the fsyscall handler)
r32-r39 system call arguments (as passed into the fsyscall handler)
b6 return address (as passed into the fsyscall handler)
ar.pfs previous frame-state (as passed into the fsyscall handler)

Fsyscall handlers can execute with very little overhead, but with that speed comes
a set of restrictions:

• Fsyscall-handlers MUST check for any pending work in the flags member of
the thread-info structure and if any of the TIF_ALLWORK_MASK flags are
set, the handler needs to fall back on doing a full system call (by calling
fsys_fallback_syscall).

• Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11, r15, b6,
and ar.pfs) because they will be needed in case of a system call restart. Of
course, all “preserved”registers also must be preserved, in accordance to
the normal calling conventions.

• Fsyscall-handlers MUST check argument registers for containing a NaT value
before using them in any way that could trigger a NaT-consumption fault. If
a system call argument is found to contain a NaT value, an fsyscall-handler
may return immediately with r8=EINVAL, r10=-1.

• Fsyscall-handlers MUST NOT use the“alloc”instruction or perform any other
operation that would trigger mandatory RSE (register-stack engine) traffic.

• Fsyscall-handlers MUST NOT write to any stacked registers because it is not
safe to assume that user-level called a handler with the proper number of
arguments.

• Fsyscall-handlers need to be careful when accessing per-CPU variables: un-
less proper safe-guards are taken (e.g., interruptions are avoided), execution
may be pre-empted and resumed on another CPU at any given time.

• Fsyscall-handlers must be careful not to leak sensitive kernel’information
back to user-level. In particular, before returning to user-level, care needs
to be taken to clear any scratch registers that could contain sensitive infor-
mation (note that the current task pointer is not considered sensitive: it’s
already exposed through ar.k6).

• Fsyscall-handlers MUST NOT access user-memory without first validat-
ing access-permission (this can be done typically via probe.r.fault and/or
probe.w.fault) and without guarding against memory access exceptions (this
can be done with the EX() macros defined by asmmacro.h).

The above restrictions may seem draconian, but remember that it’s possible to
trade off some of the restrictions by paying a slightly higher overhead. For exam-
ple, if an fsyscall-handler could benefit from the shadow register bank, it could
temporarily disable PSR.i and PSR.ic, switch to bank 0 (bsw.0) and then use the
shadow registers as needed. In other words, following the above rules yields ex-
tremely fast system call execution (while fully preserving system call semantics),
but there is also a lot of flexibility in handling more complicated cases.

5.2. How to write an fsyscall handler 35

Linux Ia64 Documentation

5.3 Signal handling

The delivery of (asynchronous) signals must be delayed until fsys-mode is
exited. This is accomplished with the help of the lower-privilege transfer
trap: arch/ia64/kernel/process.c:do_notify_resume_user() checks whether the in-
terrupted task was in fsys-mode and, if so, sets PSR.lp and returns immediately.
When fsys-mode is exited via the“br.ret”instruction that lowers the privilege level,
a trap will occur. The trap handler clears PSR.lp again and returns immediately.
The kernel exit path then checks for and delivers any pending signals.

5.4 PSR Handling

The“epc”instruction doesn’t change the contents of PSR at all. This is in contrast
to a regular interruption, which clears almost all bits. Because of that, some care
needs to be taken to ensure things work as expected. The following discussion
describes how each PSR bit is handled.

PSR.be Cleared when entering fsys-mode. A srlz.d instruction is used to ensure the CPU is in little-endian mode before the first load/store instruction is executed. PSR.be is normally NOT restored upon return from an fsys-mode handler. In other words, user-level code must not rely on PSR.be being preserved across a system call.
PSR.up Unchanged.
PSR.ac Unchanged.
PSR.mfl Unchanged. Note: fsys-mode handlers must not write-registers!
PSR.mfh Unchanged. Note: fsys-mode handlers must not write-registers!
PSR.ic Unchanged. Note: fsys-mode handlers can clear the bit, if needed.
PSR.i Unchanged. Note: fsys-mode handlers can clear the bit, if needed.
PSR.pk Unchanged.
PSR.dt Unchanged.
PSR.dfl Unchanged. Note: fsys-mode handlers must not write-registers!
PSR.dfh Unchanged. Note: fsys-mode handlers must not write-registers!
PSR.sp Unchanged.
PSR.pp Unchanged.
PSR.di Unchanged.
PSR.si Unchanged.
PSR.db Unchanged. The kernel prevents user-level from setting a hardware breakpoint that triggers at any privilege level other than 3 (user-mode).
PSR.lp Unchanged.
PSR.tb Lazy redirect. If a taken-branch trap occurs while in fsys-mode, the trap-handler modifies the saved machine state such that execution resumes in the gate page at syscall_via_break(), with privilege level 3. Note: the taken branch would occur on the branch invoking the fsyscall-handler, at which point, by definition, a syscall restart is still safe. If the system call number is invalid, the fsys-mode handler will return directly to user-level. This return will trigger a taken-branch trap, but since the trap is taken _after_ restoring the privilege level, the CPU has already left fsys-mode, so no special treatment is needed.
PSR.rt Unchanged.
PSR.cpl Cleared to 0.
PSR.is Unchanged (guaranteed to be 0 on entry to the gate page).
PSR.mc Unchanged.
PSR.it Unchanged (guaranteed to be 1).
PSR.id Unchanged. Note: the ia64 linux kernel never sets this bit.
PSR.da Unchanged. Note: the ia64 linux kernel never sets this bit.
PSR.dd Unchanged. Note: the ia64 linux kernel never sets this bit.
PSR.ss Lazy redirect. If set, “epc”will cause a Single Step Trap to be taken. The trap handler then modifies the saved machine state such that execution resumes in the gate page at syscall_via_break(), with privilege level 3.
PSR.ri Unchanged.
PSR.ed Unchanged. Note: This bit could only have an effect if an fsys-mode handler performed a speculative load that gets NaTted. If so, this would be the normal & expected behavior, so no special treatment is needed.
PSR.bn Unchanged. Note: fsys-mode handlers may clear the bit, if needed. Doing so requires clearing PSR.i and PSR.ic as well.

Continued on next page

36 Chapter 5. Light-weight System Calls for IA-64

Linux Ia64 Documentation

Table 1 – continued from previous page
PSR.ia Unchanged. Note: the ia64 linux kernel never sets this bit.

5.5 Using fast system calls

To use fast system calls, userspace applications need simply call
__kernel_syscall_via_epc(). For example

– example fgettimeofday() call –

– fgettimeofday.S –

#include <asm/asmmacro.h>

GLOBAL_ENTRY(fgettimeofday)
.prologue
.save ar.pfs, r11
mov r11 = ar.pfs
.body

mov r2 = 0xa000000000020660;; // gate address
// found by inspection of System.map for the
// __kernel_syscall_via_epc() function. See
// below for how to do this for real.

mov b7 = r2
mov r15 = 1087 // gettimeofday syscall
;;
br.call.sptk.many b6 = b7
;;

.restore sp

mov ar.pfs = r11
br.ret.sptk.many rp;; // return to caller
END(fgettimeofday)

– end fgettimeofday.S –

In reality, getting the gate address is accomplished by two extra values passed via
the ELF auxiliary vector (include/asm-ia64/elf.h)

• AT_SYSINFO : is the address of __kernel_syscall_via_epc()

• AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO

The ELF DSO is a pre-linked library that is mapped in by the kernel at the gate
page. It is a proper ELF shared object so, with a dynamic loader that recognises
the library, you should be able to make calls to the exported functions within it
as with any other shared library. AT_SYSINFO points into the kernel DSO at the
__kernel_syscall_via_epc() function for historical reasons (it was used before the
kernel DSO) and as a convenience.

5.5. Using fast system calls 37

Linux Ia64 Documentation

38 Chapter 5. Light-weight System Calls for IA-64

CHAPTER

SIX

IRQ AFFINITY ON IA64 PLATFORMS

07.01.2002, Erich Focht <efocht@ess.nec.de>

By writing to /proc/irq/IRQ#/smp_affinity the interrupt routing can be controlled.
The behavior on IA64 platforms is slightly different from that described in
Documentation/core-api/irq/irq-affinity.rst for i386 systems.

Because of the usage of SAPIC mode and physical destination mode the IRQ target
is one particular CPU and cannot be a mask of several CPUs. Only the first non-
zero bit is taken into account.

6.1 Usage examples

The target CPU has to be specified as a hexadecimal CPU mask. The first non-zero
bit is the selected CPU. This format has been kept for compatibility reasons with
i386.

Set the delivery mode of interrupt 41 to fixed and route the interrupts to CPU #3
(logical CPU number) (2^3=0x08):

echo "8" >/proc/irq/41/smp_affinity

Set the default route for IRQ number 41 to CPU 6 in lowest priority delivery mode
(redirectable):

echo "r 40" >/proc/irq/41/smp_affinity

The output of the command:

cat /proc/irq/IRQ#/smp_affinity

gives the target CPU mask for the specified interrupt vector. If the CPU mask is
preceded by the character “r”, the interrupt is redirectable (i.e. lowest priority
mode routing is used), otherwise its route is fixed.

39

mailto:efocht@ess.nec.de

Linux Ia64 Documentation

6.2 Initialization and default behavior

If the platform features IRQ redirection (info provided by SAL) all IO-SAPIC in-
terrupts are initialized with CPU#0 as their default target and the routing is the
so called “lowest priority mode”(actually fixed SAPIC mode with hint). The XTP
chipset registers are used as hints for the IRQ routing. Currently in Linux XTP
registers can have three values:

• minimal for an idle task,

• normal if any other task runs,

• maximal if the CPU is going to be switched off.

The IRQ is routed to the CPU with lowest XTP register value, the search begins at
the default CPU. Therefore most of the interrupts will be handled by CPU #0.

If the platform doesn’t feature interrupt redirection IOSAPIC fixed routing is used.
The target CPUs are distributed in a round robin manner. IRQs will be routed only
to the selected target CPUs. Check with:

cat /proc/interrupts

6.3 Comments

On large (multi-node) systems it is recommended to route the IRQs to the node
to which the corresponding device is connected. For systems like the NEC AzusA
we get IRQ node-affinity for free. This is because usually the chipsets on each
node redirect the interrupts only to their own CPUs (as they cannot see the XTP
registers on the other nodes).

40 Chapter 6. IRQ affinity on IA64 platforms

CHAPTER

SEVEN

AN AD-HOC COLLECTION OF NOTES ON IA64 MCA AND
INIT PROCESSING

Feel free to update it with notes about any area that is not clear.

—
MCA/INIT are completely asynchronous. They can occur at any time, when the
OS is in any state. Including when one of the cpus is already holding a spinlock.
Trying to get any lock from MCA/INIT state is asking for deadlock. Also the state
of structures that are protected by locks is indeterminate, including linked lists.

—
The complicated ia64 MCA process. All of this is mandated by Intel’s specification
for ia64 SAL, error recovery and unwind, it is not as if we have a choice here.

• MCA occurs on one cpu, usually due to a double bit memory error. This is the
monarch cpu.

• SAL sends an MCA rendezvous interrupt (which is a normal interrupt) to all
the other cpus, the slaves.

• Slave cpus that receive the MCA interrupt call down into SAL, they end up
spinning disabled while the MCA is being serviced.

• If any slave cpu was already spinning disabled when the MCA occurred then
it cannot service the MCA interrupt. SAL waits ~20 seconds then sends an
unmaskable INIT event to the slave cpus that have not already rendezvoused.

• Because MCA/INIT can be delivered at any time, including when the cpu is
down in PAL in physical mode, the registers at the time of the event are _com-
pletely_ undefined. In particular the MCA/INIT handlers cannot rely on the
thread pointer, PAL physical mode can (and does) modify TP. It is allowed to
do that as long as it resets TP on return. However MCA/INIT events expose
us to these PAL internal TP changes. Hence curr_task().

• If an MCA/INIT event occurs while the kernel was running (not user space)
and the kernel has called PAL then the MCA/INIT handler cannot assume that
the kernel stack is in a fit state to be used. Mainly because PAL may or may
not maintain the stack pointer internally. Because the MCA/INIT handlers
cannot trust the kernel stack, they have to use their own, per-cpu stacks.
The MCA/INIT stacks are preformatted with just enough task state to let the
relevant handlers do their job.

41

Linux Ia64 Documentation

• Unlike most other architectures, the ia64 struct task is embedded in the ker-
nel stack[1]. So switching to a new kernel stack means that we switch to
a new task as well. Because various bits of the kernel assume that current
points into the struct task, switching to a new stack also means a new value
for current.

• Once all slaves have rendezvoused and are spinning disabled, the monarch is
entered. The monarch now tries to diagnose the problem and decide if it can
recover or not.

• Part of the monarch’s job is to look at the state of all the other tasks. The
only way to do that on ia64 is to call the unwinder, as mandated by Intel.

• The starting point for the unwind depends on whether a task is running or not.
That is, whether it is on a cpu or is blocked. The monarch has to determine
whether or not a task is on a cpu before it knows how to start unwinding
it. The tasks that received an MCA or INIT event are no longer running,
they have been converted to blocked tasks. But (and its a big but), the cpus
that received the MCA rendezvous interrupt are still running on their normal
kernel stacks!

• To distinguish between these two cases, the monarch must know which tasks
are on a cpu and which are not. Hence each slave cpu that switches to an
MCA/INIT stack, registers its new stack using set_curr_task(), so themonarch
can tell that the _original_ task is no longer running on that cpu. That gives
us a decent chance of getting a valid backtrace of the _original_ task.

• MCA/INIT can be nested, to a depth of 2 on any cpu. In the case of a nested
error, we want diagnostics on the MCA/INIT handler that failed, not on the
task that was originally running. Again this requires set_curr_task() so the
MCA/INIT handlers can register their own stack as running on that cpu. Then
a recursive error gets a trace of the failing handler’s “task”.

[1] My (Keith Owens) original design called for ia64 to separate its struct task and
the kernel stacks. Then the MCA/INIT data would be chained stacks like i386
interrupt stacks. But that required radical surgery on the rest of ia64, plus
extra hard wired TLB entries with its associated performance degradation.
David Mosberger vetoed that approach. Which meant that separate kernel
stacks meant separate “tasks”for the MCA/INIT handlers.

—
INIT is less complicated thanMCA. Pressing the nmi button or using the equivalent
command on the management console sends INIT to all cpus. SAL picks one of the
cpus as the monarch and the rest are slaves. All the OS INIT handlers are entered
at approximately the same time. The OS monarch prints the state of all tasks and
returns, after which the slaves return and the system resumes.

At least that is what is supposed to happen. Alas there are broken versions of SAL
out there. Some drive all the cpus as monarchs. Some drive them all as slaves.
Some drive one cpu as monarch, wait for that cpu to return from the OS then drive
the rest as slaves. Some versions of SAL cannot even cope with returning from
the OS, they spin inside SAL on resume. The OS INIT code has workarounds for
some of these broken SAL symptoms, but some simply cannot be fixed from the
OS side.

42 Chapter 7. An ad-hoc collection of notes on IA64 MCA and INIT
processing

Linux Ia64 Documentation

—
The scheduler hooks used by ia64 (curr_task, set_curr_task) are layer violations.
Unfortunately MCA/INIT start off as massive layer violations (can occur at _any_
time) and they build from there.

At least ia64 makes an attempt at recovering from hardware errors, but it is a
difficult problem because of the asynchronous nature of these errors. When pro-
cessing an unmaskable interrupt we sometimes need special code to cope with our
inability to take any locks.

—
How is ia64 MCA/INIT different from x86 NMI?

• x86 NMI typically gets delivered to one cpu. MCA/INIT gets sent to all cpus.

• x86 NMI cannot be nested. MCA/INIT can be nested, to a depth of 2 per cpu.

• x86 has a separate struct task which points to one of multiple kernel stacks.
ia64 has the struct task embedded in the single kernel stack, so switching
stack means switching task.

• x86 does not call the BIOS so the NMI handler does not have to worry about
any registers having changed. MCA/INIT can occur while the cpu is in PAL
in physical mode, with undefined registers and an undefined kernel stack.

• i386 backtrace is not very sensitive to whether a process is running or not.
ia64 unwind is very, very sensitive to whether a process is running or not.

—
What happens whenMCA/INIT is delivered what a cpu is running user space code?

The user mode registers are stored in the RSE area of the MCA/INIT on entry to
the OS and are restored from there on return to SAL, so user mode registers are
preserved across a recoverable MCA/INIT. Since the OS has no idea what unwind
data is available for the user space stack, MCA/INIT never tries to backtrace user
space. Which means that the OS does not bother making the user space process
look like a blocked task, i.e. the OS does not copy pt_regs and switch_stack to the
user space stack. Also the OS has no idea how big the user space RSE and memory
stacks are, which makes it too risky to copy the saved state to a user mode stack.

—
How do we get a backtrace on the tasks that were running when MCA/INIT was
delivered?

mca.c:::ia64_mca_modify_original_stack(). That identifies and verifies the original
kernel stack, copies the dirty registers from the MCA/INIT stack’s RSE to the
original stack’s RSE, copies the skeleton struct pt_regs and switch_stack to the
original stack, fills in the skeleton structures from the PAL minstate area and up-
dates the original stack’s thread.ksp. That makes the original stack look exactly
like any other blocked task, i.e. it now appears to be sleeping. To get a backtrace,
just start with thread.ksp for the original task and unwind like any other sleeping
task.

—
How do we identify the tasks that were running when MCA/INIT was delivered?

43

Linux Ia64 Documentation

If the previous task has been verified and converted to a blocked state, then sos-
>prev_task on theMCA/INIT stack is updated to point to the previous task. You can
look at that field in dumps or debuggers. To help distinguish between the handler
and the original tasks, handlers have _TIF_MCA_INIT set in thread_info.flags.

The sos data is always in theMCA/INIT handler stack, at offsetMCA_SOS_OFFSET.
You can get that value from mca_asm.h or calculate it as KERNEL_STACK_SIZE -
sizeof(struct pt_regs) - sizeof(struct ia64_sal_os_state), with 16 byte alignment for
all structures.

Also the comm field of the MCA/INIT task is modified to include the pid of the
original task, for humans to use. For example, a comm field of ‘MCA 12159’
means that pid 12159 was running when the MCA was delivered.

44 Chapter 7. An ad-hoc collection of notes on IA64 MCA and INIT
processing

CHAPTER

EIGHT

SERIAL DEVICES

8.1 Serial Device Naming

As of 2.6.10, serial devices on ia64 are named based on the order of
ACPI and PCI enumeration. The first device in the ACPI namespace (if
any) becomes /dev/ttyS0, the second becomes /dev/ttyS1, etc., and PCI
devices are named sequentially starting after the ACPI devices.

Prior to 2.6.10, there were confusing exceptions to this:

• Firmware on some machines (mostly from HP) provides an HCDP
table[1] that tells the kernel about devices that can be used as a
serial console. If the user specified “console=ttyS0”or the EFI
ConOut path contained only UART devices, the kernel registered
the device described by the HCDP as /dev/ttyS0.

• If there was no HCDP, we assumed there were UARTs at the legacy
COM port addresses (I/O ports 0x3f8 and 0x2f8), so the kernel reg-
istered those as /dev/ttyS0 and /dev/ttyS1.

Any additional ACPI or PCI devices were registered sequentially after
/dev/ttyS0 as they were discovered.

With an HCDP, device names changed depending on EFI configuration
and “console=”arguments. Without an HCDP, device names didn’t
change, but we registered devices that might not really exist.

For example, an HP rx1600 with a single built-in serial port (described
in the ACPI namespace) plus an MP[2] (a PCI device) has these ports:

Type MMIO
ad-
dress

pre-2.6.10
(EFI console on
builtin)

pre-2.6.10
(EFI console on
MP port)

2.6.10+

builtin 0xff5e0000ttyS0 ttyS1 ttyS0
MP
UPS

0xf8031000ttyS1 ttyS2 ttyS1

MP
Con-
sole

0xf8030000ttyS2 ttyS0 ttyS2

MP 2 0xf8030010ttyS3 ttyS3 ttyS3
MP 3 0xf8030038ttyS4 ttyS4 ttyS4

45

Linux Ia64 Documentation

8.2 Console Selection

EFI knows what your console devices are, but it doesn’t tell the kernel
quite enough to actually locate them. The DIG64 HCDP table[1] does
tell the kernel where potential serial console devices are, but not all
firmware supplies it. Also, EFI supports multiple simultaneous consoles
and doesn’t tell the kernel which should be the “primary”one.
So how do you tell Linux which console device to use?

• If your firmware supplies the HCDP, it is simplest to configure EFI
with a single device (either a UART or a VGA card) as the console.
Then you don’t need to tell Linux anything; the kernel will automat-
ically use the EFI console.

(This works only in 2.6.6 or later; prior to that you had to specify
“console=ttyS0”to get a serial console.)
• Without an HCDP, Linux defaults to a VGA console unless you specify
a “console=”argument.

NOTE: Don’t assume that a serial console device will be /dev/ttyS0. It
might be ttyS1, ttyS2, etc. Make sure you have the appropriate entries
in /etc/inittab (for getty) and /etc/securetty (to allow root login).

8.3 Early Serial Console

The kernel can’t start using a serial console until it knows where the
device lives. Normally this happens when the driver enumerates all the
serial devices, which can happen aminute or more after the kernel starts
booting.

2.6.10 and later kernels have an “early uart”driver that works very
early in the boot process. The kernel will automatically use this if the
user supplies an argument like “console=uart,io,0x3f8”, or if the EFI
console path contains only a UART device and the firmware supplies an
HCDP.

8.4 Troubleshooting Serial Console Problems

No kernel output after elilo prints “Uncompressing Linux⋯done”:
• You specified“console=ttyS0”but Linux changed the device to which
ttyS0 refers. Configure exactly one EFI console device[3] and re-
move the “console=”option.

• The EFI console path contains both a VGA device and a UART. EFI
and elilo use both, but Linux defaults to VGA. Remove the VGA de-
vice from the EFI console path[3].

46 Chapter 8. Serial Devices

Linux Ia64 Documentation

• Multiple UARTs selected as EFI console devices. EFI and elilo use
all selected devices, but Linux uses only one. Make sure only one
UART is selected in the EFI console path[3].

• You’re connected to an HP MP port[2] but have a non-MP UART
selected as EFI console device. EFI uses the MP as a console device
even when it isn’t explicitly selected. Either move the console cable
to the non-MP UART, or change the EFI console path[3] to the MP
UART.

Long pause (60+ seconds) between“Uncompressing Linux⋯done”and
start of kernel output:

• No early console because you used “console=ttyS<n>”. Remove
the “console=”option if your firmware supplies an HCDP.

• If you don’t have an HCDP, the kernel doesn’t know where your
console lives until the driver discovers serial devices. Use “con-
sole=uart,io,0x3f8”(or appropriate address for your machine).

Kernel and init script output works fine, but no “login:”prompt:
• Add getty entry to /etc/inittab for console tty. Look for the“Adding
console on ttyS<n>”message that tells you which device is the con-
sole.

“login:”prompt, but can’t login as root:
• Add entry to /etc/securetty for console tty.

No ACPI serial devices found in 2.6.17 or later:

• Turn on CONFIG_PNP and CONFIG_PNPACPI. Prior to 2.6.17,
ACPI serial devices were discovered by 8250_acpi. In 2.6.17,
8250_acpi was replaced by the combination of 8250_pnp and CON-
FIG_PNPACPI.

[1] http://www.dig64.org/specifications/agreement The table was originally de-
fined as the“HCDP”for“Headless Console/Debug Port.”The current version
is the “PCDP”for “Primary Console and Debug Port Devices.”

[2] The HP MP (management processor) is a PCI device that provides several
UARTs. One of the UARTs is often used as a console; the EFI Boot Manager
identifies it as“Acpi(HWP0002,700)/Pci(⋯)/Uart”. The external connection
is usually a 25-pin connector, and a special dongle converts that to three 9-pin
connectors, one of which is labelled “Console.”

[3] EFI console devices are configured using the EFI Boot Manager“Boot option
maintenance”menu. You may have to interrupt the boot sequence to use this
menu, and you will have to reset the box after changing console configuration.

8.4. Troubleshooting Serial Console Problems 47

http://www.dig64.org/specifications/agreement

Linux Ia64 Documentation

48 Chapter 8. Serial Devices

CHAPTER

NINE

RECIPE FOR GETTING/BUILDING/RUNNING XEN/IA64
WITH PV_OPS

This recipe describes how to get xen-ia64 source and build it, and run domU with
pv_ops.

9.1 Requirements

• python

• mercurial it (aka“hg”) is an open-source source code management software.
See the below. http://www.selenic.com/mercurial/wiki/

• git

• bridge-utils

9.2 Getting and Building Xen and Dom0

My environment is:

• Machine : Tiger4

• Domain0 OS : RHEL5

• DomainU OS : RHEL5

1. Download source:

hg clone http://xenbits.xensource.com/ext/ia64/xen-unstable.
↪→hg
cd xen-unstable.hg
hg clone http://xenbits.xensource.com/ext/ia64/linux-2.6.18-
↪→xen.hg

2. # make world

3. # make install-tools

4. copy kernels and xen:

cp xen/xen.gz /boot/efi/efi/redhat/
cp build-linux-2.6.18-xen_ia64/vmlinux.gz \
/boot/efi/efi/redhat/vmlinuz-2.6.18.8-xen

49

http://www.selenic.com/mercurial/wiki/

Linux Ia64 Documentation

5. make initrd for Dom0/DomU:

make -C linux-2.6.18-xen.hg ARCH=ia64 modules_install \
O=$(pwd)/build-linux-2.6.18-xen_ia64

mkinitrd -f /boot/efi/efi/redhat/initrd-2.6.18.8-xen.img \
2.6.18.8-xen --builtin mptspi --builtin mptbase \
--builtin mptscsih --builtin uhci-hcd --builtin ohci-hcd \
--builtin ehci-hcd

9.3 Making a disk image for guest OS

1. make file:

dd if=/dev/zero of=/root/rhel5.img bs=1M seek=4096 count=0
mke2fs -F -j /root/rhel5.img
mount -o loop /root/rhel5.img /mnt
cp -ax /{dev,var,etc,usr,bin,sbin,lib} /mnt
mkdir /mnt/{root,proc,sys,home,tmp}

Note: You may miss some device files. If so, please create them
with mknod. Or you can use tar instead of cp.

2. modify DomU’s fstab:
vi /mnt/etc/fstab

/dev/xvda1 / ext3 defaults 1 1
none /dev/pts devpts gid=5,mode=620 0 0
none /dev/shm tmpfs defaults 0 0
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0

3. modify inittab

set runlevel to 3 to avoid X trying to start:

vi /mnt/etc/inittab
id:3:initdefault:

Start a getty on the hvc0 console:

X0:2345:respawn:/sbin/mingetty hvc0

tty1-6 mingetty can be commented out

4. add hvc0 into /etc/securetty:

vi /mnt/etc/securetty (add hvc0)

5. umount:

umount /mnt

FYI, virt-manager can also make a disk image for guest OS. It’s GUI tools and
easy to make it.

50 Chapter 9. Recipe for getting/building/running Xen/ia64 with pv_ops

Linux Ia64 Documentation

9.4 Boot Xen & Domain0

1. replace elilo elilo of RHEL5 can boot Xen and Dom0. If you use old elilo (e.g
RHEL4), please download from the below http://elilo.sourceforge.net/cgi-bin/
blosxom and copy into /boot/efi/efi/redhat/:

cp elilo-3.6-ia64.efi /boot/efi/efi/redhat/elilo.efi

2. modify elilo.conf (like the below):

vi /boot/efi/efi/redhat/elilo.conf
prompt
timeout=20
default=xen
relocatable

image=vmlinuz-2.6.18.8-xen
label=xen
vmm=xen.gz
initrd=initrd-2.6.18.8-xen.img
read-only
append=" -- rhgb root=/dev/sda2"

The append options before “–”are for xen hypervisor, the options after “–”are
for dom0.

FYI, your machine may need console options like “com1=19200,8n1 con-
sole=vga,com1”. For example, append=”com1=19200,8n1 console=vga,com1
– rhgb console=tty0 console=ttyS0 root=/dev/sda2”

9.5 Getting and Building domU with pv_ops

1. get pv_ops tree:

git clone http://people.valinux.co.jp/~yamahata/xen-ia64/
↪→linux-2.6-xen-ia64.git/

2. git branch (if necessary):

cd linux-2.6-xen-ia64/
git checkout -b your_branch origin/xen-ia64-domu-minimal-
↪→2008may19

Note: The current branch is xen-ia64-domu-minimal-
2008may19. But you would find the new branch. You
can see with “git branch -r”to get the branch lists.

http://people.valinux.co.jp/~yamahata/xen-ia64/for_
eagl/linux-2.6-ia64-pv-ops.git/

is also available.

The tree is based on

9.4. Boot Xen & Domain0 51

http://elilo.sourceforge.net/cgi-bin/blosxom
http://elilo.sourceforge.net/cgi-bin/blosxom
http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/
http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/

Linux Ia64 Documentation

git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-
2.6 test)

3. copy .config for pv_ops of domU:

cp arch/ia64/configs/xen_domu_wip_defconfig .config

4. make kernel with pv_ops:

make oldconfig
make

5. install the kernel and initrd:

cp vmlinux.gz /boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU
make modules_install
mkinitrd -f /boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img␣
↪→\
2.6.26-rc3xen-ia64-08941-g1b12161 --builtin mptspi \
--builtin mptbase --builtin mptscsih --builtin uhci-hcd \
--builtin ohci-hcd --builtin ehci-hcd

9.6 Boot DomainU with pv_ops

1. make config of DomU:

vi /etc/xen/rhel5
kernel = "/boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU"
ramdisk = "/boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img"
vcpus = 1
memory = 512
name = "rhel5"
disk = ['file:/root/rhel5.img,xvda1,w']
root = "/dev/xvda1 ro"
extra= "rhgb console=hvc0"

2. After boot xen and dom0, start xend:

/etc/init.d/xend start

(In the debugging case, # XEND_DEBUG=1 xend trace_start)

3. start domU:

52 Chapter 9. Recipe for getting/building/running Xen/ia64 with pv_ops

Linux Ia64 Documentation

xm create -c rhel5

9.7 Reference

• Wiki of Xen/IA64 upstream merge http://wiki.xensource.com/xenwiki/
XenIA64/UpstreamMerge

Written by Akio Takebe <takebe_akio@jp.fujitsu.com> on 28 May 2008

9.7. Reference 53

http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
mailto:takebe_akio@jp.fujitsu.com

