
Linux Hid Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

CARE AND FEEDING OF YOUR HUMAN INTERFACE
DEVICES

1.1 Introduction

In addition to the normal input type HID devices, USB also uses the human in-
terface device protocols for things that are not really human interfaces, but have
similar sorts of communication needs. The two big examples for this are power
devices (especially uninterruptable power supplies) and monitor control on higher
end monitors.

To support these disparate requirements, the Linux USB system provides HID
events to two separate interfaces: * the input subsystem, which converts HID
events into normal input device interfaces (such as keyboard, mouse and joystick)
and a normalised event interface - see Documentation/input/input.rst * the hiddev
interface, which provides fairly raw HID events

The data flow for a HID event produced by a device is something like the following:

usb.c ---> hid-core.c ----> hid-input.c ----> [keyboard/mouse/joystick/
↪→event]

|
|
--> hiddev.c ----> POWER / MONITOR CONTROL

In addition, other subsystems (apart from USB) can potentially feed events into
the input subsystem, but these have no effect on the hid device interface.

1.2 Using the HID Device Interface

The hiddev interface is a char interface using the normal USBmajor, with theminor
numbers starting at 96 and finishing at 111. Therefore, you need the following
commands:

mknod /dev/usb/hiddev0 c 180 96
mknod /dev/usb/hiddev1 c 180 97
mknod /dev/usb/hiddev2 c 180 98
mknod /dev/usb/hiddev3 c 180 99
mknod /dev/usb/hiddev4 c 180 100
mknod /dev/usb/hiddev5 c 180 101
mknod /dev/usb/hiddev6 c 180 102

(continues on next page)

1

Linux Hid Documentation

(continued from previous page)
mknod /dev/usb/hiddev7 c 180 103
mknod /dev/usb/hiddev8 c 180 104
mknod /dev/usb/hiddev9 c 180 105
mknod /dev/usb/hiddev10 c 180 106
mknod /dev/usb/hiddev11 c 180 107
mknod /dev/usb/hiddev12 c 180 108
mknod /dev/usb/hiddev13 c 180 109
mknod /dev/usb/hiddev14 c 180 110
mknod /dev/usb/hiddev15 c 180 111

So you point your hiddev compliant user-space program at the correct interface
for your device, and it all just works.

Assuming that you have a hiddev compliant user-space program, of course. If you
need to write one, read on.

1.3 The HIDDEV API

This description should be read in conjunction with the HID specification,
freely available from http://www.usb.org, and conveniently linked of http://www.
linux-usb.org.

The hiddev API uses a read() interface, and a set of ioctl() calls.

HID devices exchange data with the host computer using data bundles called“re-
ports”. Each report is divided into“fields”, each of which can have one or more
“usages”. In the hid-core, each one of these usages has a single signed 32 bit
value.

1.3.1 read():

This is the event interface. When the HID device’s state changes, it performs
an interrupt transfer containing a report which contains the changed value. The
hid-core.c module parses the report, and returns to hiddev.c the individual usages
that have changed within the report. In its basic mode, the hiddev will make these
individual usage changes available to the reader using a struct hiddev_event:

struct hiddev_event {
unsigned hid;
signed int value;

};

containing the HID usage identifier for the status that changed, and the value that
it was changed to. Note that the structure is defined within <linux/hiddev.h>,
along with some other useful #defines and structures. The HID usage identifier
is a composite of the HID usage page shifted to the 16 high order bits ORed with
the usage code. The behavior of the read() function can be modified using the
HIDIOCSFLAG ioctl() described below.

2 Chapter 1. Care and feeding of your Human Interface Devices

http://www.usb.org
http://www.linux-usb.org
http://www.linux-usb.org

Linux Hid Documentation

1.3.2 ioctl():

This is the control interface. There are a number of controls:

HIDIOCGVERSION
• int (read)

Gets the version code out of the hiddev driver.

HIDIOCAPPLICATION
• (none)

This ioctl call returns the HID application usage associated with the hid device.
The third argument to ioctl() specifies which application index to get. This is useful
when the device has more than one application collection. If the index is invalid
(greater or equal to the number of application collections this device has) the ioctl
returns -1. You can find out beforehand how many application collections the de-
vice has from the num_applications field from the hiddev_devinfo structure.

HIDIOCGCOLLECTIONINFO
• struct hiddev_collection_info (read/write)

This returns a superset of the information above, providing not only application
collections, but all the collections the device has. It also returns the level the
collection lives in the hierarchy. The user passes in a hiddev_collection_info struct
with the index field set to the index that should be returned. The ioctl fills in the
other fields. If the index is larger than the last collection index, the ioctl returns
-1 and sets errno to -EINVAL.

HIDIOCGDEVINFO
• struct hiddev_devinfo (read)

Gets a hiddev_devinfo structure which describes the device.

HIDIOCGSTRING
• struct hiddev_string_descriptor (read/write)

Gets a string descriptor from the device. The caller must fill in the “index”field
to indicate which descriptor should be returned.

HIDIOCINITREPORT
• (none)

Instructs the kernel to retrieve all input and feature report values from the device.
At this point, all the usage structures will contain current values for the device, and
will maintain it as the device changes. Note that the use of this ioctl is unnecessary
in general, since later kernels automatically initialize the reports from the device
at attach time.

HIDIOCGNAME
• string (variable length)

Gets the device name

HIDIOCGREPORT

1.3. The HIDDEV API 3

Linux Hid Documentation

• struct hiddev_report_info (write)

Instructs the kernel to get a feature or input report from the device, in order to
selectively update the usage structures (in contrast to INITREPORT).

HIDIOCSREPORT
• struct hiddev_report_info (write)

Instructs the kernel to send a report to the device. This report can be filled in by
the user through HIDIOCSUSAGE calls (below) to fill in individual usage values in
the report before sending the report in full to the device.

HIDIOCGREPORTINFO
• struct hiddev_report_info (read/write)

Fills in a hiddev_report_info structure for the user. The report is looked up by
type (input, output or feature) and id, so these fields must be filled in by the user.
The ID can be absolute – the actual report id as reported by the device – or rela-
tive – HID_REPORT_ID_FIRST for the first report, and (HID_REPORT_ID_NEXT |
report_id) for the next report after report_id. Without a-priori information about
report ids, the right way to use this ioctl is to use the relative IDs above to enu-
merate the valid IDs. The ioctl returns non-zero when there is no more next ID.
The real report ID is filled into the returned hiddev_report_info structure.

HIDIOCGFIELDINFO
• struct hiddev_field_info (read/write)

Returns the field information associated with a report in a hiddev_field_info struc-
ture. The user must fill in report_id and report_type in this structure, as above.
The field_index should also be filled in, which should be a number from 0 and
maxfield-1, as returned from a previous HIDIOCGREPORTINFO call.

HIDIOCGUCODE
• struct hiddev_usage_ref (read/write)

Returns the usage_code in a hiddev_usage_ref structure, given that given its report
type, report id, field index, and index within the field have already been filled into
the structure.

HIDIOCGUSAGE
• struct hiddev_usage_ref (read/write)

Returns the value of a usage in a hiddev_usage_ref structure. The usage to be
retrieved can be specified as above, or the user can choose to fill in the report_type
field and specify the report_id as HID_REPORT_ID_UNKNOWN. In this case, the
hiddev_usage_ref will be filled in with the report and field information associated
with this usage if it is found.

HIDIOCSUSAGE
• struct hiddev_usage_ref (write)

Sets the value of a usage in an output report. The user fills in the hiddev_usage_ref
structure as above, but additionally fills in the value field.

HIDIOGCOLLECTIONINDEX

4 Chapter 1. Care and feeding of your Human Interface Devices

Linux Hid Documentation

• struct hiddev_usage_ref (write)

Returns the collection index associated with this usage. This indicates where in
the collection hierarchy this usage sits.

HIDIOCGFLAG
• int (read)

HIDIOCSFLAG
• int (write)

These operations respectively inspect and replace the mode flags that influence
the read() call above. The flags are as follows:

HIDDEV_FLAG_UREF
• read() calls will now return struct hiddev_usage_ref instead of
struct hiddev_event. This is a larger structure, but in situations
where the device has more than one usage in its reports with the
same usage code, this mode serves to resolve such ambiguity.

HIDDEV_FLAG_REPORT
• This flag can only be used in conjunction with HID-
DEV_FLAG_UREF. With this flag set, when the device sends a
report, a struct hiddev_usage_ref will be returned to read() filled
in with the report_type and report_id, but with field_index set
to FIELD_INDEX_NONE. This serves as additional notification
when the device has sent a report.

1.3. The HIDDEV API 5

Linux Hid Documentation

6 Chapter 1. Care and feeding of your Human Interface Devices

CHAPTER

TWO

HIDRAW - RAW ACCESS TO USB AND BLUETOOTH
HUMAN INTERFACE DEVICES

The hidraw driver provides a raw interface to USB and Bluetooth Human Interface
Devices (HIDs). It differs from hiddev in that reports sent and received are not
parsed by the HID parser, but are sent to and received from the device unmodified.

Hidraw should be used if the userspace application knows exactly how to commu-
nicate with the hardware device, and is able to construct the HID reports manually.
This is often the case when making userspace drivers for custom HID devices.

Hidraw is also useful for communicating with non-conformant HID devices which
send and receive data in a way that is inconsistent with their report descriptors.
Because hiddev parses reports which are sent and received through it, checking
them against the device’s report descriptor, such communication with these non-
conformant devices is impossible using hiddev. Hidraw is the only alternative,
short of writing a custom kernel driver, for these non-conformant devices.

A benefit of hidraw is that its use by userspace applications is independent of
the underlying hardware type. Currently, Hidraw is implemented for USB and
Bluetooth. In the future, as new hardware bus types are developed which use the
HID specification, hidraw will be expanded to add support for these new bus types.

Hidraw uses a dynamic major number, meaning that udev should be relied on
to create hidraw device nodes. Udev will typically create the device nodes di-
rectly under /dev (eg: /dev/hidraw0). As this location is distribution- and udev
rule-dependent, applications should use libudev to locate hidraw devices attached
to the system. There is a tutorial on libudev with a working example at:

http://www.signal11.us/oss/udev/

2.1 The HIDRAW API

2.2 read()

read() will read a queued report received from the HID device. On USB devices,
the reports read using read() are the reports sent from the device on the INTER-
RUPT IN endpoint. By default, read() will block until there is a report available to
be read. read() can be made non-blocking, by passing the O_NONBLOCK flag to
open(), or by setting the O_NONBLOCK flag using fcntl().

7

http://www.signal11.us/oss/udev/

Linux Hid Documentation

On a device which uses numbered reports, the first byte of the returned data will
be the report number; the report data follows, beginning in the second byte. For
devices which do not use numbered reports, the report data will begin at the first
byte.

2.3 write()

The write() function will write a report to the device. For USB devices, if the device
has an INTERRUPT OUT endpoint, the report will be sent on that endpoint. If it
does not, the report will be sent over the control endpoint, using a SET_REPORT
transfer.

The first byte of the buffer passed to write() should be set to the report number. If
the device does not use numbered reports, the first byte should be set to 0. The
report data itself should begin at the second byte.

2.4 ioctl()

Hidraw supports the following ioctls:

HIDIOCGRDESCSIZE: Get Report Descriptor Size
This ioctl will get the size of the device’s report descriptor.
HIDIOCGRDESC: Get Report Descriptor
This ioctl returns the device’s report descriptor using a hidraw_report_descriptor
struct. Make sure to set the size field of the hidraw_report_descriptor struct to
the size returned from HIDIOCGRDESCSIZE.

HIDIOCGRAWINFO: Get Raw Info
This ioctl will return a hidraw_devinfo struct containing the bus type, the vendor
ID (VID), and product ID (PID) of the device. The bus type can be one of:

- BUS_USB
- BUS_HIL
- BUS_BLUETOOTH
- BUS_VIRTUAL

which are defined in uapi/linux/input.h.

HIDIOCGRAWNAME(len): Get Raw Name
This ioctl returns a string containing the vendor and product strings of the device.
The returned string is Unicode, UTF-8 encoded.

HIDIOCGRAWPHYS(len): Get Physical Address
This ioctl returns a string representing the physical address of the device. For USB
devices, the string contains the physical path to the device (the USB controller,
hubs, ports, etc). For Bluetooth devices, the string contains the hardware (MAC)
address of the device.

HIDIOCSFEATURE(len): Send a Feature Report

8Chapter 2. HIDRAW - Raw Access to USB and Bluetooth Human Interface
Devices

Linux Hid Documentation

This ioctl will send a feature report to the device. Per the HID specification, fea-
ture reports are always sent using the control endpoint. Set the first byte of the
supplied buffer to the report number. For devices which do not use numbered
reports, set the first byte to 0. The report data begins in the second byte. Make
sure to set len accordingly, to one more than the length of the report (to account
for the report number).

HIDIOCGFEATURE(len): Get a Feature Report
This ioctl will request a feature report from the device using the control endpoint.
The first byte of the supplied buffer should be set to the report number of the
requested report. For devices which do not use numbered reports, set the first
byte to 0. The report will be returned starting at the first byte of the buffer (ie:
the report number is not returned).

2.5 Example

In samples/, find hid-example.c, which shows examples of read(), write(), and all
the ioctls for hidraw. The code may be used by anyone for any purpose, and can
serve as a starting point for developing applications using hidraw.

Document by:

Alan Ott <alan@signal11.us>, Signal 11 Software

2.5. Example 9

mailto:alan@signal11.us

Linux Hid Documentation

10Chapter 2. HIDRAW - Raw Access to USB and Bluetooth Human Interface
Devices

CHAPTER

THREE

HID SENSORS FRAMEWORK

HID sensor framework provides necessary interfaces to implement sensor drivers,
which are connected to a sensor hub. The sensor hub is a HID device and it pro-
vides a report descriptor conforming to HID 1.12 sensor usage tables.

Description from the HID 1.12 “HID Sensor Usages”specification: “Standard-
ization of HID usages for sensors would allow (but not require) sensor hardware
vendors to provide a consistent Plug And Play interface at the USB boundary,
thereby enabling some operating systems to incorporate common device drivers
that could be reused between vendors, alleviating any need for the vendors to
provide the drivers themselves.”
This specification describes many usage IDs, which describe the type of sensor
and also the individual data fields. Each sensor can have variable number of data
fields. The length and order is specified in the report descriptor. For example a
part of report descriptor can look like:

INPUT(1)[INPUT]
..

Field(2)
Physical(0020.0073)
Usage(1)

0020.045f
Logical Minimum(-32767)
Logical Maximum(32767)
Report Size(8)
Report Count(1)
Report Offset(16)
Flags(Variable Absolute)

..

..

The report is indicating“sensor page (0x20)”contains an accelerometer-3D (0x73).
This accelerometer-3D has some fields. Here for example field 2 is motion intensity
(0x045f) with a logical minimum value of -32767 and logical maximum of 32767.
The order of fields and length of each field is important as the input event raw data
will use this format.

11

Linux Hid Documentation

3.1 Implementation

This specification definesmany different types of sensors with different sets of data
fields. It is difficult to have a common input event to user space applications, for
different sensors. For example an accelerometer can send X,Y and Z data, whereas
an ambient light sensor can send illumination data. So the implementation has two
parts:

• Core hid driver

• Individual sensor processing part (sensor drivers)

3.1.1 Core driver

The core driver registers (hid-sensor-hub) registers as a HID driver. It parses
report descriptors and identifies all the sensors present. It adds an MFD device
with name HID-SENSOR-xxxx (where xxxx is usage id from the specification).

For example:

HID-SENSOR-200073 is registered for an Accelerometer 3D driver.

So if any driver with this name is inserted, then the probe routine for that function
will be called. So an accelerometer processing driver can register with this name
and will be probed if there is an accelerometer-3D detected.

The core driver provides a set of APIs which can be used by the processing drivers
to register and get events for that usage id. Also it provides parsing functions,
which get and set each input/feature/output report.

3.1.2 Individual sensor processing part (sensor drivers)

The processing driver will use an interface provided by the core driver to parse
the report and get the indexes of the fields and also can get events. This driver
can use IIO interface to use the standard ABI defined for a type of sensor.

3.2 Core driver Interface

Callback structure:

Each processing driver can use this structure to set some callbacks.
int (*suspend)(..): Callback when HID suspend is received
int (*resume)(..): Callback when HID resume is received
int (*capture_sample)(..): Capture a sample for one of its data␣

↪→fields
int (*send_event)(..): One complete event is received which can have

multiple data fields.

Registration functions:

12 Chapter 3. HID Sensors Framework

Linux Hid Documentation

int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_hub_callbacks *usage_callback):

Registers callbacks for an usage id. The callback functions are not allowed to
sleep:

int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id):

Removes callbacks for an usage id.

Parsing function:

int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device␣
↪→*hsdev,

u8 type,
u32 usage_id, u32 attr_usage_id,
struct hid_sensor_hub_attribute_info *info);

A processing driver can look for some field of interest and check if it exists in a
report descriptor. If it exists it will store necessary information so that fields can
be set or get individually. These indexes avoid searching every time and getting
field index to get or set.

Set Feature report:

int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_
↪→id,

u32 field_index, s32 value);

This interface is used to set a value for a field in feature report. For ex-
ample if there is a field report_interval, which is parsed by a call to sen-
sor_hub_input_get_attribute_info before, then it can directly set that individual
field:

int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_
↪→id,

u32 field_index, s32 *value);

This interface is used to get a value for a field in input report. For ex-
ample if there is a field report_interval, which is parsed by a call to sen-
sor_hub_input_get_attribute_info before, then it can directly get that individual
field value:

int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device␣
↪→*hsdev,

u32 usage_id,
u32 attr_usage_id, u32 report_id);

This is used to get a particular field value through input reports. For example
accelerometer wants to poll X axis value, then it can call this function with the
usage id of X axis. HID sensors can provide events, so this is not necessary to
poll for any field. If there is some new sample, the core driver will call registered
callback function to process the sample.

3.2. Core driver Interface 13

Linux Hid Documentation

3.2.1 HID Custom and generic Sensors

HID Sensor specification defines two special sensor usage types. Since they don’
t represent a standard sensor, it is not possible to define using Linux IIO type in-
terfaces. The purpose of these sensors is to extend the functionality or provide
a way to obfuscate the data being communicated by a sensor. Without know-
ing the mapping between the data and its encapsulated form, it is difficult for an
application/driver to determine what data is being communicated by the sensor.
This allows some differentiating use cases, where vendor can provide applications.
Some common use cases are debug other sensors or to provide some events like
keyboard attached/detached or lid open/close.

To allow application to utilize these sensors, here they are exported uses sysfs
attribute groups, attributes and misc device interface.

An example of this representation on sysfs:

/sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.
↪→0001/HID-SENSOR-2000e1.6.auto$ tree -R
.
│ ├── enable_sensor
│ │ ├── feature-0-200316
│ │ │ ├── feature-0-200316-maximum
│ │ │ ├── feature-0-200316-minimum
│ │ │ ├── feature-0-200316-name
│ │ │ ├── feature-0-200316-size
│ │ │ ├── feature-0-200316-unit-expo
│ │ │ ├── feature-0-200316-units
│ │ │ ├── feature-0-200316-value
│ │ ├── feature-1-200201
│ │ │ ├── feature-1-200201-maximum
│ │ │ ├── feature-1-200201-minimum
│ │ │ ├── feature-1-200201-name
│ │ │ ├── feature-1-200201-size
│ │ │ ├── feature-1-200201-unit-expo
│ │ │ ├── feature-1-200201-units
│ │ │ ├── feature-1-200201-value
│ │ ├── input-0-200201
│ │ │ ├── input-0-200201-maximum
│ │ │ ├── input-0-200201-minimum
│ │ │ ├── input-0-200201-name
│ │ │ ├── input-0-200201-size
│ │ │ ├── input-0-200201-unit-expo
│ │ │ ├── input-0-200201-units
│ │ │ ├── input-0-200201-value
│ │ ├── input-1-200202
│ │ │ ├── input-1-200202-maximum
│ │ │ ├── input-1-200202-minimum
│ │ │ ├── input-1-200202-name
│ │ │ ├── input-1-200202-size

(continues on next page)

14 Chapter 3. HID Sensors Framework

Linux Hid Documentation

(continued from previous page)
│ │ │ ├── input-1-200202-unit-expo
│ │ │ ├── input-1-200202-units
│ │ │ ├── input-1-200202-value

Here there is a custom sensors with four fields, two feature and two inputs. Each
field is represented by a set of attributes. All fields except the “value”are read
only. The value field is a RW field.

Example:

/sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -
↪→r . *
feature-0-200316-maximum:6
feature-0-200316-minimum:0
feature-0-200316-name:property-reporting-state
feature-0-200316-size:1
feature-0-200316-unit-expo:0
feature-0-200316-units:25
feature-0-200316-value:1

How to enable such sensor?

By default sensor can be power gated. To enable sysfs attribute“enable”can be
used:

$ echo 1 > enable_sensor

Once enabled and powered on, sensor can report value using HID reports. These
reports are pushed using misc device interface in a FIFO order:

/dev$ tree | grep HID-SENSOR-2000e1.6.auto
│ │ │ ├── 10:53 -> ../HID-SENSOR-2000e1.6.auto
│ ├── HID-SENSOR-2000e1.6.auto

Each reports can be of variable length preceded by a header. This header consist
of a 32 bit usage id, 64 bit time stamp and 32 bit length field of raw data.

3.2. Core driver Interface 15

Linux Hid Documentation

16 Chapter 3. HID Sensors Framework

CHAPTER

FOUR

HID I/O TRANSPORT DRIVERS

TheHID subsystem is independent of the underlying transport driver. Initially, only
USB was supported, but other specifications adopted the HID design and provided
new transport drivers. The kernel includes at least support for USB, Bluetooth,
I2C and user-space I/O drivers.

4.1 1) HID Bus

The HID subsystem is designed as a bus. Any I/O subsystem may provide HID
devices and register them with the HID bus. HID core then loads generic device
drivers on top of it. The transport drivers are responsible of raw data transport
and device setup/management. HID core is responsible of report-parsing, report
interpretation and the user-space API. Device specifics and quirks are handled by
all layers depending on the quirk.

+-----------+ +-----------+ +-----------+ +-----------+
| Device #1 | | Device #i | | Device #j | | Device #k |
+-----------+ +-----------+ +-----------+ +-----------+

\\ // \\ //
+------------+ +------------+
| I/O Driver | | I/O Driver |
+------------+ +------------+

|| ||
+------------------+ +------------------+
| Transport Driver | | Transport Driver |
+------------------+ +------------------+

___ ___/
\ /
+----------------+
| HID Core |
+----------------+
/ | | \

/ | | \
____________/ | | _________________

/ | | \
/ | | \

+----------------+ +-----------+ +------------------+ +-----------------
↪→-+
| Generic Driver | | MT Driver | | Custom Driver #1 | | Custom Driver
↪→#2 |
+----------------+ +-----------+ +------------------+ +-----------------
↪→-+

17

Linux Hid Documentation

Example Drivers:

• I/O: USB, I2C, Bluetooth-l2cap

• Transport: USB-HID, I2C-HID, BT-HIDP

Everything below“HID Core”is simplified in this graph as it is only of interest to
HID device drivers. Transport drivers do not need to know the specifics.

4.1.1 1.1) Device Setup

I/O drivers normally provide hotplug detection or device enumeration APIs to the
transport drivers. Transport drivers use this to find any suitable HID device. They
allocate HID device objects and register them with HID core. Transport drivers
are not required to register themselves with HID core. HID core is never aware of
which transport drivers are available and is not interested in it. It is only interested
in devices.

Transport drivers attach a constant“struct hid_ll_driver”object with each device.
Once a device is registered with HID core, the callbacks provided via this struct
are used by HID core to communicate with the device.

Transport drivers are responsible of detecting device failures and unplugging. HID
core will operate a device as long as it is registered regardless of any device fail-
ures. Once transport drivers detect unplug or failure events, they must unregister
the device from HID core and HID core will stop using the provided callbacks.

4.1.2 1.2) Transport Driver Requirements

The terms“asynchronous”and“synchronous”in this document describe the trans-
mission behavior regarding acknowledgements. An asynchronous channel must
not perform any synchronous operations like waiting for acknowledgements or
verifications. Generally, HID calls operating on asynchronous channels must be
running in atomic-context just fine. On the other hand, synchronous channels can
be implemented by the transport driver in whatever way they like. They might just
be the same as asynchronous channels, but they can also provide acknowledge-
ment reports, automatic retransmission on failure, etc. in a blocking manner. If
such functionality is required on asynchronous channels, a transport-driver must
implement that via its own worker threads.

HID core requires transport drivers to follow a given design. A Transport driver
must provide two bi-directional I/O channels to each HID device. These channels
must not necessarily be bi-directional in the hardware itself. A transport driver
might just provide 4 uni-directional channels. Or it might multiplex all four on a
single physical channel. However, in this document we will describe them as two
bi-directional channels as they have several properties in common.

• Interrupt Channel (intr): The intr channel is used for asynchronous data re-
ports. Nomanagement commands or data acknowledgements are sent on this
channel. Any unrequested incoming or outgoing data report must be sent on
this channel and is never acknowledged by the remote side. Devices usually
send their input events on this channel. Outgoing events are normally not
send via intr, except if high throughput is required.

18 Chapter 4. HID I/O Transport Drivers

Linux Hid Documentation

• Control Channel (ctrl): The ctrl channel is used for synchronous requests and
device management. Unrequested data input events must not be sent on this
channel and are normally ignored. Instead, devices only send management
events or answers to host requests on this channel. The control-channel is
used for direct blocking queries to the device independent of any events on
the intr-channel. Outgoing reports are usually sent on the ctrl channel via
synchronous SET_REPORT requests.

Communication between devices and HID core is mostly done via HID reports. A
report can be of one of three types:

• INPUT Report: Input reports provide data from device to host. This data
may include button events, axis events, battery status or more. This data is
generated by the device and sent to the host with or without requiring explicit
requests. Devices can choose to send data continuously or only on change.

• OUTPUT Report: Output reports change device states. They are sent from
host to device and may include LED requests, rumble requests or more. Out-
put reports are never sent from device to host, but a host can retrieve their
current state. Hosts may choose to send output reports either continuously
or only on change.

• FEATURE Report: Feature reports are used for specific static device features
and never reported spontaneously. A host can read and/or write them to ac-
cess data like battery-state or device-settings. Feature reports are never sent
without requests. A host must explicitly set or retrieve a feature report. This
also means, feature reports are never sent on the intr channel as this channel
is asynchronous.

INPUT and OUTPUT reports can be sent as pure data reports on the intr channel.
For INPUT reports this is the usual operational mode. But for OUTPUT reports,
this is rarely done as OUTPUT reports are normally quite scarce. But devices are
free to make excessive use of asynchronous OUTPUT reports (for instance, custom
HID audio speakers make great use of it).

Plain reportsmust not be sent on the ctrl channel, though. Instead, the ctrl channel
provides synchronous GET/SET_REPORT requests. Plain reports are only allowed
on the intr channel and are the only means of data there.

• GET_REPORT: A GET_REPORT request has a report ID as payload and is sent
from host to device. The device must answer with a data report for the re-
quested report ID on the ctrl channel as a synchronous acknowledgement.
Only one GET_REPORT request can be pending for each device. This re-
striction is enforced by HID core as several transport drivers don’t allow
multiple simultaneous GET_REPORT requests. Note that data reports which
are sent as answer to a GET_REPORT request are not handled as generic de-
vice events. That is, if a device does not operate in continuous data reporting
mode, an answer to GET_REPORT does not replace the raw data report on
the intr channel on state change. GET_REPORT is only used by custom HID
device drivers to query device state. Normally, HID core caches any device
state so this request is not necessary on devices that follow the HID specs ex-
cept during device initialization to retrieve the current state. GET_REPORT
requests can be sent for any of the 3 report types and shall return the cur-
rent report state of the device. However, OUTPUT reports as payload may be
blocked by the underlying transport driver if the specification does not allow

4.1. 1) HID Bus 19

Linux Hid Documentation

them.

• SET_REPORT: A SET_REPORT request has a report ID plus data as payload. It
is sent from host to device and a device must update it’s current report state
according to the given data. Any of the 3 report types can be used. How-
ever, INPUT reports as payload might be blocked by the underlying trans-
port driver if the specification does not allow them. A device must answer
with a synchronous acknowledgement. However, HID core does not require
transport drivers to forward this acknowledgement to HID core. Same as for
GET_REPORT, only one SET_REPORT can be pending at a time. This restric-
tion is enforced by HID core as some transport drivers do not support multiple
synchronous SET_REPORT requests.

Other ctrl-channel requests are supported by USB-HID but are not available (or
deprecated) in most other transport level specifications:

• GET/SET_IDLE: Only used by USB-HID and I2C-HID.

• GET/SET_PROTOCOL: Not used by HID core.

• RESET: Used by I2C-HID, not hooked up in HID core.

• SET_POWER: Used by I2C-HID, not hooked up in HID core.

4.2 2) HID API

4.2.1 2.1) Initialization

Transport drivers normally use the following procedure to register a new device
with HID core:

struct hid_device *hid;
int ret;

hid = hid_allocate_device();
if (IS_ERR(hid)) {

ret = PTR_ERR(hid);
goto err_<...>;

}

strscpy(hid->name, <device-name-src>, sizeof(hid->name));
strscpy(hid->phys, <device-phys-src>, sizeof(hid->phys));
strscpy(hid->uniq, <device-uniq-src>, sizeof(hid->uniq));

hid->ll_driver = &custom_ll_driver;
hid->bus = <device-bus>;
hid->vendor = <device-vendor>;
hid->product = <device-product>;
hid->version = <device-version>;
hid->country = <device-country>;
hid->dev.parent = <pointer-to-parent-device>;
hid->driver_data = <transport-driver-data-field>;

ret = hid_add_device(hid);
(continues on next page)

20 Chapter 4. HID I/O Transport Drivers

Linux Hid Documentation

(continued from previous page)
if (ret)

goto err_<...>;

Once hid_add_device() is entered, HID core might use the callbacks provided in
“custom_ll_driver”. Note that fields like“country”can be ignored by underlying
transport-drivers if not supported.

To unregister a device, use:

hid_destroy_device(hid);

Once hid_destroy_device() returns, HID core will no longer make use of any driver
callbacks.

4.2.2 2.2) hid_ll_driver operations

The available HID callbacks are:

int (*start) (struct hid_device *hdev)

Called from HID device drivers once they want to use the device. Trans-
port drivers can choose to setup their device in this callback. However,
normally devices are already set up before transport drivers register
them to HID core so this is mostly only used by USB-HID.

void (*stop) (struct hid_device *hdev)

Called from HID device drivers once they are done with a device. Trans-
port drivers can free any buffers and deinitialize the device. But note
that ->start() might be called again if another HID device driver is loaded
on the device.

Transport drivers are free to ignore it and deinitialize devices after they
destroyed them via hid_destroy_device().

int (*open) (struct hid_device *hdev)

Called from HID device drivers once they are interested in data reports.
Usually, while user-space didn’t open any input API/etc., device drivers
are not interested in device data and transport drivers can put devices
asleep. However, once ->open() is called, transport drivers must be
ready for I/O. ->open() calls are nested for each client that opens the
HID device.

void (*close) (struct hid_device *hdev)

Called from HID device drivers after ->open() was called but they are
no longer interested in device reports. (Usually if user-space closed any
input devices of the driver).

Transport drivers can put devices asleep and terminate any I/O of all -
>open() calls have been followed by a ->close() call. However, ->start()

4.2. 2) HID API 21

Linux Hid Documentation

may be called again if the device driver is interested in input reports
again.

int (*parse) (struct hid_device *hdev)

Called once during device setup after ->start() has been called. Trans-
port drivers must read the HID report-descriptor from the device and
tell HID core about it via hid_parse_report().

int (*power) (struct hid_device *hdev, int level)

Called by HID core to give PM hints to transport drivers. Usually this is
analogical to the ->open() and ->close() hints and redundant.

void (*request) (struct hid_device *hdev, struct hid_report␣
↪→*report,

int reqtype)

Send an HID request on the ctrl channel. “report”contains the report
that should be sent and “reqtype”the request type. Request-type can
be HID_REQ_SET_REPORT or HID_REQ_GET_REPORT.

This callback is optional. If not provided, HID core will assemble a raw
report following the HID specs and send it via the ->raw_request() call-
back. The transport driver is free to implement this asynchronously.

int (*wait) (struct hid_device *hdev)

Used by HID core before calling ->request() again. A transport driver
can use it to wait for any pending requests to complete if only one request
is allowed at a time.

int (*raw_request) (struct hid_device *hdev, unsigned char␣
↪→reportnum,

__u8 *buf, size_t count, unsigned char rtype,
int reqtype)

Same as ->request() but provides the report as raw buffer. This request
shall be synchronous. A transport driver must not use ->wait() to com-
plete such requests. This request is mandatory and hid core will reject
the device if it is missing.

int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t␣
↪→len)

Send raw output report via intr channel. Used by some HID device
drivers which require high throughput for outgoing requests on the intr
channel. This must not cause SET_REPORT calls! This must be imple-
mented as asynchronous output report on the intr channel!

int (*idle) (struct hid_device *hdev, int report, int idle, int␣
↪→reqtype)

Perform SET/GET_IDLE request. Only used by USB-HID, do not imple-
ment!

22 Chapter 4. HID I/O Transport Drivers

Linux Hid Documentation

4.2.3 2.3) Data Path

Transport drivers are responsible of reading data from I/O devices. They must
handle any I/O-related state-tracking themselves. HID core does not implement
protocol handshakes or other management commands which can be required by
the given HID transport specification.

Every raw data packet read from a device must be fed into HID core via
hid_input_report(). You must specify the channel-type (intr or ctrl) and report type
(input/output/feature). Under normal conditions, only input reports are provided
via this API.

Responses to GET_REPORT requests via ->request() must also be provided via this
API. Responses to ->raw_request() are synchronous and must be intercepted by
the transport driver and not passed to hid_input_report(). Acknowledgements to
SET_REPORT requests are not of interest to HID core.

Written 2013, David Herrmann <dh.herrmann@gmail.com>

4.2. 2) HID API 23

mailto:dh.herrmann@gmail.com

Linux Hid Documentation

24 Chapter 4. HID I/O Transport Drivers

CHAPTER

FIVE

UHID - USER-SPACE I/O DRIVER SUPPORT FOR HID
SUBSYSTEM

UHID allows user-space to implement HID transport drivers. Please see hid-
transport.txt for an introduction into HID transport drivers. This document relies
heavily on the definitions declared there.

With UHID, a user-space transport driver can create kernel hid-devices for each
device connected to the user-space controlled bus. The UHID API defines the I/O
events provided from the kernel to user-space and vice versa.

There is an example user-space application in ./samples/uhid/uhid-example.c

5.1 The UHID API

UHID is accessed through a character misc-device. The minor-number is allocated
dynamically so you need to rely on udev (or similar) to create the device node. This
is /dev/uhid by default.

If a new device is detected by your HID I/O Driver and you want to register this
device with the HID subsystem, then you need to open /dev/uhid once for each
device you want to register. All further communication is done by read()’ing or
write()’ing“struct uhid_event”objects. Non-blocking operations are supported
by setting O_NONBLOCK:

struct uhid_event {
__u32 type;
union {

struct uhid_create2_req create2;
struct uhid_output_req output;
struct uhid_input2_req input2;
...

} u;
};

The“type”field contains the ID of the event. Depending on the ID different pay-
loads are sent. You must not split a single event across multiple read()’s or mul-
tiple write()’s. A single event must always be sent as a whole. Furthermore,
only a single event can be sent per read() or write(). Pending data is ignored. If
you want to handle multiple events in a single syscall, then use vectored I/O with
readv()/writev(). The “type”field defines the payload. For each type, there is a

25

Linux Hid Documentation

payload-structure available in the union “u”(except for empty payloads). This
payload contains management and/or device data.

The first thing you should do is sending an UHID_CREATE2 event. This will
register the device. UHID will respond with an UHID_START event. You can
now start sending data to and reading data from UHID. However, unless UHID
sends the UHID_OPEN event, the internally attached HID Device Driver has no
user attached. That is, you might put your device asleep unless you receive the
UHID_OPEN event. If you receive the UHID_OPEN event, you should start I/O. If
the last user closes the HID device, you will receive an UHID_CLOSE event. This
may be followed by an UHID_OPEN event again and so on. There is no need to
perform reference-counting in user-space. That is, you will never receive multi-
ple UHID_OPEN events without an UHID_CLOSE event. The HID subsystem per-
forms ref-counting for you. You may decide to ignore UHID_OPEN/UHID_CLOSE,
though. I/O is allowed even though the device may have no users.

If you want to send data on the interrupt channel to the HID subsystem,
you send an HID_INPUT2 event with your raw data payload. If the kernel
wants to send data on the interrupt channel to the device, you will read an
UHID_OUTPUT event. Data requests on the control channel are currently limited
to GET_REPORT and SET_REPORT (no other data reports on the control chan-
nel are defined so far). Those requests are always synchronous. That means,
the kernel sends UHID_GET_REPORT and UHID_SET_REPORT events and re-
quires you to forward them to the device on the control channel. Once the de-
vice responds, you must forward the response via UHID_GET_REPORT_REPLY
and UHID_SET_REPORT_REPLY to the kernel. The kernel blocks internal driver-
execution during such round-trips (times out after a hard-coded period).

If your device disconnects, you should send an UHID_DESTROY event. This will
unregister the device. You can now send UHID_CREATE2 again to register a new
device. If you close() the fd, the device is automatically unregistered and destroyed
internally.

5.2 write()

write() allows you to modify the state of the device and feed input data into the
kernel. The kernel will parse the event immediately and if the event ID is not
supported, it will return -EOPNOTSUPP. If the payload is invalid, then -EINVAL is
returned, otherwise, the amount of data that was read is returned and the request
was handled successfully. O_NONBLOCK does not affect write() as writes are
always handled immediately in a non-blocking fashion. Future requests might
make use of O_NONBLOCK, though.

UHID_CREATE2: This creates the internal HID device. No I/O is possible
until you send this event to the kernel. The payload is of type struct
uhid_create2_req and contains information about your device. You can start
I/O now.

UHID_DESTROY: This destroys the internal HID device. No further I/O will be
accepted. There may still be pending messages that you can receive with
read() but no further UHID_INPUT events can be sent to the kernel. You can
create a new device by sending UHID_CREATE2 again. There is no need to

26 Chapter 5. UHID - User-space I/O driver support for HID subsystem

Linux Hid Documentation

reopen the character device.

UHID_INPUT2: You must send UHID_CREATE2 before sending input to the ker-
nel! This event contains a data-payload. This is the raw data that you read
from your device on the interrupt channel. The kernel will parse the HID
reports.

UHID_GET_REPORT_REPLY: If you receive a UHID_GET_REPORT request you
must answer with this request. You must copy the“id”field from the request
into the answer. Set the “err”field to 0 if no error occurred or to EIO if an
I/O error occurred. If“err”is 0 then you should fill the buffer of the answer
with the results of the GET_REPORT request and set“size”correspondingly.

UHID_SET_REPORT_REPLY: This is the SET_REPORT equivalent of
UHID_GET_REPORT_REPLY. Unlike GET_REPORT, SET_REPORT never
returns a data buffer, therefore, it’s sufficient to set the “id”and “err”
fields correctly.

5.3 read()

read() will return a queued output report. No reaction is required to any of them
but you should handle them according to your needs.

UHID_START: This is sent when the HID device is started. Consider this as an an-
swer to UHID_CREATE2. This is always the first event that is sent. Note that
this event might not be available immediately after write(UHID_CREATE2)
returns. Device drivers might required delayed setups. This event contains
a payload of type uhid_start_req. The“dev_flags”field describes special be-
haviors of a device. The following flags are defined:

• UHID_DEV_NUMBERED_FEATURE_REPORTS

• UHID_DEV_NUMBERED_OUTPUT_REPORTS

• UHID_DEV_NUMBERED_INPUT_REPORTS

Each of these flags defines whether a given report-type uses num-
bered reports. If numbered reports are used for a type, all mes-
sages from the kernel already have the report-number as prefix.
Otherwise, no prefix is added by the kernel. For messages sent by
user-space to the kernel, you must adjust the prefixes according
to these flags.

UHID_STOP: This is sent when the HID device is stopped. Consider this as an
answer to UHID_DESTROY.

If you didn’t destroy your device via UHID_DESTROY, but the kernel sends an
UHID_STOP event, this should usually be ignored. It means that the kernel
reloaded/changed the device driver loaded on your HID device (or some other
maintenance actions happened).

You can usually ignored any UHID_STOP events safely.

UHID_OPEN: This is sent when the HID device is opened. That is, the data that
the HID device provides is read by some other process. You may ignore this
event but it is useful for power-management. As long as you haven’t received

5.3. read() 27

Linux Hid Documentation

this event there is actually no other process that reads your data so there is
no need to send UHID_INPUT2 events to the kernel.

UHID_CLOSE: This is sent when there are no more processes which read the HID
data. It is the counterpart of UHID_OPEN and you may as well ignore this
event.

UHID_OUTPUT: This is sent if the HID device driver wants to send raw data to
the I/O device on the interrupt channel. You should read the payload and
forward it to the device. The payload is of type “struct uhid_output_req”.
This may be received even though you haven’t received UHID_OPEN, yet.

UHID_GET_REPORT: This event is sent if the kernel driver wants to perform a
GET_REPORT request on the control channeld as described in the HID specs.
The report-type and report-number are available in the payload. The kernel
serializes GET_REPORT requests so there will never be two in parallel. How-
ever, if you fail to respond with a UHID_GET_REPORT_REPLY, the request
might silently time out. Once you read a GET_REPORT request, you shall for-
ward it to the hid device and remember the “id”field in the payload. Once
your hid device responds to the GET_REPORT (or if it fails), you must send a
UHID_GET_REPORT_REPLY to the kernel with the exact same“id”as in the
request. If the request already timed out, the kernel will ignore the response
silently. The “id”field is never re-used, so conflicts cannot happen.

UHID_SET_REPORT: This is the SET_REPORT equivalent of
UHID_GET_REPORT. On receipt, you shall send a SET_REPORT re-
quest to your hid device. Once it replies, you must tell the kernel
about it via UHID_SET_REPORT_REPLY. The same restrictions as for
UHID_GET_REPORT apply.

Written 2012, David Herrmann <dh.herrmann@gmail.com>

28 Chapter 5. UHID - User-space I/O driver support for HID subsystem

mailto:dh.herrmann@gmail.com

CHAPTER

SIX

ALPS HID TOUCHPAD PROTOCOL

6.1 Introduction

Currently ALPS HID driver supports U1 Touchpad device.

U1 device basic information.

Vender ID 0x044E
Product ID 0x120B
Version ID 0x0121

6.2 HID Descriptor

Byte Field Value Notes
0 wHIDDescLength 001E Length of HID Descriptor : 30 bytes
2 bcdVersion 0100 Compliant with Version 1.00
4 wReportDescLength 00B2 Report Descriptor is 178 Bytes (0x00B2)
6 wReportDescRegister 0002 Identifier to read Report Descriptor
8 wInputRegister 0003 Identifier to read Input Report
10 wMaxInputLength 0053 Input Report is 80 Bytes + 2
12 wOutputRegister 0000 Identifier to read Output Report
14 wMaxOutputLength 0000 No Output Reports
16 wCommandRegister 0005 Identifier for Command Register
18 wDataRegister 0006 Identifier for Data Register
20 wVendorID 044E Vendor ID 0x044E
22 wProductID 120B Product ID 0x120B
24 wVersionID 0121 Version 01.21
26 RESERVED 0000 RESERVED

29

Linux Hid Documentation

6.3 Report ID

ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
ReportID-5 (Feature Reports) Feature Reports
ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
ReportID-7 (Feature Reports) Flash update (Bootloader)

6.4 Data pattern

Case1 ReportID_1 TP/SP Relative/Relative
Case2 ReportID_3 ReportID_6 TP SP Absolute Absolute

6.5 Command Read/Write

To read/write to RAM, need to send a commands to the device.

The command format is as below.

DataByte(SET_REPORT)

Byte1 Command Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum

Command Byte is read=0xD1/write=0xD2 .

Address is read/write RAM address.

Value Byte is writing data when you send the write commands.

When you read RAM, there is no meaning.

DataByte(GET_REPORT)

Byte1 Response Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum

30 Chapter 6. ALPS HID Touchpad Protocol

Linux Hid Documentation

Read value is stored in Value Byte.

Packet Format Touchpad data byte ——————

• b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 SW6 SW5 SW4 SW3 SW2 SW1
2 0 0 0 Fcv Fn3 Fn2 Fn1 Fn0
3 Xa0_7 Xa0_6 Xa0_5 Xa0_4 Xa0_3 Xa0_2 Xa0_1 Xa0_0
4 Xa0_15 Xa0_14 Xa0_13 Xa0_12 Xa0_11 Xa0_10 Xa0_9 Xa0_8
5 Ya0_7 Ya0_6 Ya0_5 Ya0_4 Ya0_3 Ya0_2 Ya0_1 Ya0_0
6 Ya0_15 Ya0_14 Ya0_13 Ya0_12 Ya0_11 Ya0_10 Ya0_9 Ya0_8
7 LFB0 Zs0_6 Zs0_5 Zs0_4 Zs0_3 Zs0_2 Zs0_1 Zs0_0
8 Xa1_7 Xa1_6 Xa1_5 Xa1_4 Xa1_3 Xa1_2 Xa1_1 Xa1_0
9 Xa1_15 Xa1_14 Xa1_13 Xa1_12 Xa1_11 Xa1_10 Xa1_9 Xa1_8
10 Ya1_7 Ya1_6 Ya1_5 Ya1_4 Ya1_3 Ya1_2 Ya1_1 Ya1_0
11 Ya1_15 Ya1_14 Ya1_13 Ya1_12 Ya1_11 Ya1_10 Ya1_9 Ya1_8
12 LFB1 Zs1_6 Zs1_5 Zs1_4 Zs1_3 Zs1_2 Zs1_1 Zs1_0
13 Xa2_7 Xa2_6 Xa2_5 Xa2_4 Xa2_3 Xa2_2 Xa2_1 Xa2_0
14 Xa2_15 Xa2_14 Xa2_13 Xa2_12 Xa2_11 Xa2_10 Xa2_9 Xa2_8
15 Ya2_7 Ya2_6 Ya2_5 Ya2_4 Ya2_3 Ya2_2 Ya2_1 Ya2_0
16 Ya2_15 Ya2_14 Ya2_13 Ya2_12 Ya2_11 Ya2_10 Ya2_9 Ya2_8
17 LFB2 Zs2_6 Zs2_5 Zs2_4 Zs2_3 Zs2_2 Zs2_1 Zs2_0
18 Xa3_7 Xa3_6 Xa3_5 Xa3_4 Xa3_3 Xa3_2 Xa3_1 Xa3_0
19 Xa3_15 Xa3_14 Xa3_13 Xa3_12 Xa3_11 Xa3_10 Xa3_9 Xa3_8
20 Ya3_7 Ya3_6 Ya3_5 Ya3_4 Ya3_3 Ya3_2 Ya3_1 Ya3_0
21 Ya3_15 Ya3_14 Ya3_13 Ya3_12 Ya3_11 Ya3_10 Ya3_9 Ya3_8
22 LFB3 Zs3_6 Zs3_5 Zs3_4 Zs3_3 Zs3_2 Zs3_1 Zs3_0
23 Xa4_7 Xa4_6 Xa4_5 Xa4_4 Xa4_3 Xa4_2 Xa4_1 Xa4_0
24 Xa4_15 Xa4_14 Xa4_13 Xa4_12 Xa4_11 Xa4_10 Xa4_9 Xa4_8
25 Ya4_7 Ya4_6 Ya4_5 Ya4_4 Ya4_3 Ya4_2 Ya4_1 Ya4_0
26 Ya4_15 Ya4_14 Ya4_13 Ya4_12 Ya4_11 Ya4_10 Ya4_9 Ya4_8
27 LFB4 Zs4_6 Zs4_5 Zs4_4 Zs4_3 Zs4_2 Zs4_1 Zs4_0

SW1-SW6: SW ON/OFF status

Xan_15-0(16bit): X Absolute data of the “n”th finger
Yan_15-0(16bit): Y Absolute data of the “n”th finger
Zsn_6-0(7bit): Operation area of the “n”th finger

6.5. Command Read/Write 31

Linux Hid Documentation

6.6 StickPointer data byte

• b7 b6 b5 b4 b3 b2 b1 b0

Byte1 1 1 1 0 1 SW3 SW2 SW1
Byte2 X7 X6 X5 X4 X3 X2 X1 X0
Byte3 X15 X14 X13 X12 X11 X10 X9 X8
Byte4 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
Byte5 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
Byte6 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0
Byte7 T&P Z14 Z13 Z12 Z11 Z10 Z9 Z8

SW1-SW3: SW ON/OFF status

Xn_15-0(16bit): X Absolute data
Yn_15-0(16bit): Y Absolute data
Zn_14-0(15bit): Z

32 Chapter 6. ALPS HID Touchpad Protocol

CHAPTER

SEVEN

INTEL INTEGRATED SENSOR HUB (ISH)

A sensor hub enables the ability to offload sensor polling and algorithm processing
to a dedicated low power co-processor. This allows the core processor to go into
low power modes more often, resulting in the increased battery life.

There are many vendors providing external sensor hubs confirming to HID Sensor
usage tables, and used in several tablets, 2 in 1 convertible laptops and embedded
products. Linux had this support since Linux 3.9.

Intel® introduced integrated sensor hubs as a part of the SoC starting from Cherry
Trail and now supported on multiple generations of CPU packages. There are
many commercial devices already shipped with Integrated Sensor Hubs (ISH).
These ISH also comply to HID sensor specification, but the difference is the trans-
port protocol used for communication. The current external sensor hubs mainly
use HID over i2C or USB. But ISH doesn’t use either i2c or USB.

7.1 1. Overview

Using a analogy with a usbhid implementation, the ISH follows a similar model for
a very high speed communication:

----------------- ----------------------
| USB HID | --> | ISH HID |
----------------- ----------------------
----------------- ----------------------
| USB protocol | --> | ISH Transport |
----------------- ----------------------
----------------- ----------------------
| EHCI/XHCI | --> | ISH IPC |
----------------- ----------------------

PCI PCI
----------------- ----------------------
|Host controller| --> | ISH processor |
----------------- ----------------------

USB Link
----------------- ----------------------
| USB End points| --> | ISH Clients |
----------------- ----------------------

Like USB protocol provides a method for device enumeration, link management
and user data encapsulation, the ISH also provides similar services. But it is very

33

Linux Hid Documentation

light weight tailored to manage and communicate with ISH client applications
implemented in the firmware.

The ISH allows multiple sensor management applications executing in the
firmware. Like USB endpoints the messaging can be to/from a client. As part
of enumeration process, these clients are identified. These clients can be simple
HID sensor applications, sensor calibration application or senor firmware update
application.

The implementation model is similar, like USB bus, ISH transport is also imple-
mented as a bus. Each client application executing in the ISH processor is regis-
tered as a device on this bus. The driver, which binds each device (ISH HID driver)
identifies the device type and registers with the hid core.

7.2 2. ISH Implementation: Block Diagram

User Space Applications

----------------IIO ABI----------------

IIO Sensor Drivers

IIO core

HID Sensor Hub MFD

HID Core

HID over ISH Client

ISH Transport (ISHTP)

IPC Drivers

OS
---------------- PCI -----------------
Hardware + Firmware

ISH Hardware/Firmware(FW)

34 Chapter 7. Intel Integrated Sensor Hub (ISH)

Linux Hid Documentation

7.3 3. High level processing in above blocks

7.3.1 3.1 Hardware Interface

The ISH is exposed as “Non-VGA unclassified PCI device”to the host. The PCI
product and vendor IDs are changed from different generations of processors.
So the source code which enumerate drivers needs to update from generation to
generation.

7.3.2 3.2 Inter Processor Communication (IPC) driver

Location: drivers/hid/intel-ish-hid/ipc

The IPC message used memory mapped I/O. The registers are defined in hw-ish-
regs.h.

3.2.1 IPC/FW message types

There are two types of messages, one for management of link and other messages
are to and from transport layers.

TX and RX of Transport messages

A set of memory mapped register offers support of multi byte messages TX and RX
(E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer main-
tains internal queues to sequence messages and send them in order to the FW. Op-
tionally the caller can register handler to get notification of completion. A door bell
mechanism is used in messaging to trigger processing in host and client firmware
side. When ISH interrupt handler is called, the ISH2HOST doorbell register is
used by host drivers to determine that the interrupt is for ISH.

Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell register
has the following format: Bits 0..6: fragment length (7 bits are used) Bits 10..13:
encapsulated protocol Bits 16..19: management command (for IPC management
protocol) Bit 31: doorbell trigger (signal H/W interrupt to the other side) Other
bits are reserved, should be 0.

3.2.2 Transport layer interface

To abstract HW level IPC communication, a set of callbacks are registered.
The transport layer uses them to send and receive messages. Refer to struct
ishtp_hw_ops for callbacks.

7.3. 3. High level processing in above blocks 35

Linux Hid Documentation

7.3.3 3.3 ISH Transport layer

Location: drivers/hid/intel-ish-hid/ishtp/

3.3.1 A Generic Transport Layer

The transport layer is a bi-directional protocol, which defines: - Set of commands
to start, stop, connect, disconnect and flow control (ishtp/hbm.h) for details - A
flow control mechanism to avoid buffer overflows

This protocol resembles bus messages described in the following docu-
ment: http://www.intel.com/content/dam/www/public/us/en/documents/technical-
specifications/dcmi-hi-1-0-spec.pdf “Chapter 7: Bus Message Layer”

3.3.2 Connection and Flow Control Mechanism

Each FW client and a protocol is identified by an UUID. In order to communicate to
a FW client, a connection must be established using connect request and response
bus messages. If successful, a pair (host_client_id and fw_client_id) will identify
the connection.

Once connection is established, peers send each other flow control bus messages
independently. Every peer may send a message only if it has received a flow-
control credit before. Once it sent a message, it may not send another one before
receiving the next flow control credit. Either side can send disconnect request bus
message to end communication. Also the link will be dropped if major FW reset
occurs.

3.3.3 Peer to Peer data transfer

Peer to Peer data transfer can happen with or without using DMA. Depending on
the sensor bandwidth requirement DMA can be enabled by using module param-
eter ishtp_use_dma under intel_ishtp.

Each side (host and FW) manages its DMA transfer memory independently. When
an ISHTP client from either host or FW side wants to send something, it decides
whether to send over IPC or over DMA; for each transfer the decision is indepen-
dent. The sending side sends DMA_XFER message when the message is in the
respective host buffer (TX when host client sends, RX when FW client sends). The
recipient of DMA message responds with DMA_XFER_ACK, indicating the sender
that the memory region for that message may be reused.

DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus mes-
sage (that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
Additionally to DMA address communication, this sequence checks capabilities:
if thw host doesn’t support DMA, then it won’t send DMA allocation, so FW
can’t send DMA; if FW doesn’t support DMA then it won’t respond with
DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers. Here
ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER, it’
s request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means

36 Chapter 7. Intel Integrated Sensor Hub (ISH)

http://www.intel.com/content/dam/www/public/us/en/documents/technical

Linux Hid Documentation

that it already did DMA and the message resides at host. Thus, DMA_XFER and
DMA_XFER_ACK act as ownership indicators.

At initial state all outgoing memory belongs to the sender (TX to host, RX to FW),
DMA_XFER transfers ownership on the region that contains ISHTP message to the
receiving side, DMA_XFER_ACK returns ownership to the sender. A sender needs
not wait for previous DMA_XFER to be ack’ed, and may send another message
as long as remaining continuous memory in its ownership is enough. In princi-
ple, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once (up
to IPC MTU), thus allowing for interrupt throttling. Currently, ISH FW decides
to send over DMA if ISHTP message is more than 3 IPC fragments and via IPC
otherwise.

3.3.4 Ring Buffers

When a client initiate a connection, a ring or RX and TX buffers are allocated. The
size of ring can be specified by the client. HID client set 16 and 32 for TX and RX
buffers respectively. On send request from client, the data to be sent is copied to
one of the send ring buffer and scheduled to be sent using bus message protocol.
These buffers are required because the FW may have not have processed the last
message and may not have enough flow control credits to send. Same thing holds
true on receive side and flow control is required.

3.3.5 Host Enumeration

The host enumeration bus command allow discovery of clients present in the FW.
There can be multiple sensor clients and clients for calibration function.

To ease in implantation and allow independent driver handle each client this trans-
port layer takes advantage of Linux Bus driver model. Each client is registered as
device on the the transport bus (ishtp bus).

Enumeration sequence of messages:

• Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.

• FW responds with HOST_START_RES_CMD

• Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)

• FW responds with HOST_ENUM_RES_CMD that includes bitmap of available
FW client IDs

• For each FW ID found in that bitmap host sends
HOST_CLIENT_PROPERTIES_REQ_CMD

• FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties in-
clude UUID, max ISHTP message size, etc.

• Once host received properties for that last discovered client, it considers
ISHTP device fully functional (and allocates DMA buffers)

7.3. 3. High level processing in above blocks 37

Linux Hid Documentation

7.3.4 3.4 HID over ISH Client

Location: drivers/hid/intel-ish-hid

The ISHTP client driver is responsible for:

• enumerate HID devices under FW ISH client

• Get Report descriptor

• Register with HID core as a LL driver

• Process Get/Set feature request

• Get input reports

7.3.5 3.5 HID Sensor Hub MFD and IIO sensor drivers

The functionality in these drivers is the same as an external sen-
sor hub. Refer to Documentation/hid/hid-sensor.rst for HID sensor
Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space

7.3.6 3.6 End to End HID transport Sequence Diagram

HID-ISH-CLN ISHTP IPC ␣
↪→ HW

| | | ␣
↪→ |

| | |-----WAKE UP-----
↪→------------->|

| | | ␣
↪→ |

| | |-----HOST READY--
↪→------------->|

| | | ␣
↪→ |

| | |<----MNG_RESET_
↪→NOTIFY_ACK----- |

| | | ␣
↪→ |

| |<----ISHTP_START------ | ␣
↪→ |

| | | ␣
↪→ |

| |<-----------------HOST_START_RES_CMD-----
↪→--------------|

| | | ␣
↪→ |

| |------------------QUERY_SUBSCRIBER-------
↪→------------->|

| | | ␣
↪→ |

| |------------------HOST_ENUM_REQ_CMD------
↪→------------->|

| | | ␣
↪→ |

(continues on next page)

38 Chapter 7. Intel Integrated Sensor Hub (ISH)

Linux Hid Documentation

(continued from previous page)
| |<-----------------HOST_ENUM_RES_CMD------

↪→--------------|
| | | ␣

↪→ |
| |------------------HOST_CLIENT_PROPERTIES_

↪→REQ_CMD------>|
| | | ␣

↪→ |
| |<-----------------HOST_CLIENT_PROPERTIES_

↪→RES_CMD-------|
| Create new device on in ishtp bus | ␣

↪→ |
| | | ␣

↪→ |
| |------------------HOST_CLIENT_PROPERTIES_

↪→REQ_CMD------>|
| | | ␣

↪→ |
| |<-----------------HOST_CLIENT_PROPERTIES_

↪→RES_CMD-------|
| Create new device on in ishtp bus | ␣

↪→ |
| | | ␣

↪→ |
| |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-

↪→till last one--|
| | | ␣

↪→ |
probed()

|----ishtp_cl_connect--->|----------------- CLIENT_CONNECT_REQ_CMD-
↪→------------->|

| | | ␣
↪→ |

| |<----------------CLIENT_CONNECT_RES_CMD--
↪→--------------|

| | | ␣
↪→ |

|register event callback | | ␣
↪→ |

| | | ␣
↪→ |

|ishtp_cl_send(
HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct␣

↪→write to HW----- >|
| | | ␣

↪→ |
| | |<-----IRQ(IPC_

↪→PROTOCOL_ISHTP---|
| | | ␣

↪→ |
|<--ENUM_DEVICE RSP------| | ␣

↪→ |
| | | ␣

↪→ |
for each enumerated device

|ishtp_cl_send(
(continues on next page)

7.3. 3. High level processing in above blocks 39

Linux Hid Documentation

(continued from previous page)
HOSTIF_GET_HID_DESCRIPTOR|----------fill ishtp_msg_hdr struct␣

↪→write to HW----- >|
| | | ␣

↪→ |
...Response
| | | ␣

↪→ |
for each enumerated device

|ishtp_cl_send(
HOSTIF_GET_REPORT_DESCRIPTOR|--------------fill ishtp_msg_hdr struct␣

↪→write to HW-- >|
| | | ␣

↪→ |
| | | ␣

↪→ |
hid_allocate_device

| | | ␣
↪→ |
hid_add_device | | ␣
↪→ |

| | | ␣
↪→ |

7.3.7 3.7 ISH Debugging

To debug ISH, event tracing mechanism is used. To enable de-
bug logs echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable cat
sys/kernel/debug/tracing/trace

7.3.8 3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260

root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
/sys/bus/iio/devices/
├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.
↪→9.auto/iio:device0
│ ├── buffer
│ │ ├── enable
│ │ ├── length
│ │ └── watermark
...
│ ├── in_accel_hysteresis
│ ├── in_accel_offset
│ ├── in_accel_sampling_frequency
│ ├── in_accel_scale
│ ├── in_accel_x_raw
│ ├── in_accel_y_raw
│ ├── in_accel_z_raw
│ ├── name
│ ├── scan_elements
│ │ ├── in_accel_x_en
│ │ ├── in_accel_x_index

(continues on next page)

40 Chapter 7. Intel Integrated Sensor Hub (ISH)

Linux Hid Documentation

(continued from previous page)
│ │ ├── in_accel_x_type
│ │ ├── in_accel_y_en
│ │ ├── in_accel_y_index
│ │ ├── in_accel_y_type
│ │ ├── in_accel_z_en
│ │ ├── in_accel_z_index
│ │ └── in_accel_z_type
...
│ │ ├── devices
│ │ │ │ ├── buffer
│ │ │ │ │ ├── enable
│ │ │ │ │ ├── length
│ │ │ │ │ └── watermark
│ │ │ │ ├── dev
│ │ │ │ ├── in_intensity_both_raw
│ │ │ │ ├── in_intensity_hysteresis
│ │ │ │ ├── in_intensity_offset
│ │ │ │ ├── in_intensity_sampling_frequency
│ │ │ │ ├── in_intensity_scale
│ │ │ │ ├── name
│ │ │ │ ├── scan_elements
│ │ │ │ │ ├── in_intensity_both_en
│ │ │ │ │ ├── in_intensity_both_index
│ │ │ │ │ └── in_intensity_both_type
│ │ │ │ ├── trigger
│ │ │ │ │ └── current_trigger
...
│ │ │ │ ├── buffer
│ │ │ │ │ ├── enable
│ │ │ │ │ ├── length
│ │ │ │ │ └── watermark
│ │ │ │ ├── dev
│ │ │ │ ├── in_magn_hysteresis
│ │ │ │ ├── in_magn_offset
│ │ │ │ ├── in_magn_sampling_frequency
│ │ │ │ ├── in_magn_scale
│ │ │ │ ├── in_magn_x_raw
│ │ │ │ ├── in_magn_y_raw
│ │ │ │ ├── in_magn_z_raw
│ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_raw
│ │ │ │ ├── in_rot_hysteresis
│ │ │ │ ├── in_rot_offset
│ │ │ │ ├── in_rot_sampling_frequency
│ │ │ │ ├── in_rot_scale
│ │ │ │ ├── name
...
│ │ │ │ ├── scan_elements
│ │ │ │ │ ├── in_magn_x_en
│ │ │ │ │ ├── in_magn_x_index
│ │ │ │ │ ├── in_magn_x_type
│ │ │ │ │ ├── in_magn_y_en
│ │ │ │ │ ├── in_magn_y_index

(continues on next page)

7.3. 3. High level processing in above blocks 41

Linux Hid Documentation

(continued from previous page)
│ │ │ │ │ ├── in_magn_y_type
│ │ │ │ │ ├── in_magn_z_en
│ │ │ │ │ ├── in_magn_z_index
│ │ │ │ │ ├── in_magn_z_type
│ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_en
│ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_index
│ │ │ │ │ └── in_rot_from_north_magnetic_tilt_comp_type
│ │ │ │ ├── trigger
│ │ │ │ │ └── current_trigger
...
│ │ │ │ ├── buffer
│ │ │ │ │ ├── enable
│ │ │ │ │ ├── length
│ │ │ │ │ └── watermark
│ │ │ │ ├── dev
│ │ │ │ ├── in_anglvel_hysteresis
│ │ │ │ ├── in_anglvel_offset
│ │ │ │ ├── in_anglvel_sampling_frequency
│ │ │ │ ├── in_anglvel_scale
│ │ │ │ ├── in_anglvel_x_raw
│ │ │ │ ├── in_anglvel_y_raw
│ │ │ │ ├── in_anglvel_z_raw
│ │ │ │ ├── name
│ │ │ │ ├── scan_elements
│ │ │ │ │ ├── in_anglvel_x_en
│ │ │ │ │ ├── in_anglvel_x_index
│ │ │ │ │ ├── in_anglvel_x_type
│ │ │ │ │ ├── in_anglvel_y_en
│ │ │ │ │ ├── in_anglvel_y_index
│ │ │ │ │ ├── in_anglvel_y_type
│ │ │ │ │ ├── in_anglvel_z_en
│ │ │ │ │ ├── in_anglvel_z_index
│ │ │ │ │ └── in_anglvel_z_type
│ │ │ │ ├── trigger
│ │ │ │ │ └── current_trigger
...
│ │ │ │ ├── buffer
│ │ │ │ │ ├── enable
│ │ │ │ │ ├── length
│ │ │ │ │ └── watermark
│ │ │ │ ├── dev
│ │ │ │ ├── in_anglvel_hysteresis
│ │ │ │ ├── in_anglvel_offset
│ │ │ │ ├── in_anglvel_sampling_frequency
│ │ │ │ ├── in_anglvel_scale
│ │ │ │ ├── in_anglvel_x_raw
│ │ │ │ ├── in_anglvel_y_raw
│ │ │ │ ├── in_anglvel_z_raw
│ │ │ │ ├── name
│ │ │ │ ├── scan_elements
│ │ │ │ │ ├── in_anglvel_x_en
│ │ │ │ │ ├── in_anglvel_x_index

(continues on next page)

42 Chapter 7. Intel Integrated Sensor Hub (ISH)

Linux Hid Documentation

(continued from previous page)
│ │ │ │ │ ├── in_anglvel_x_type
│ │ │ │ │ ├── in_anglvel_y_en
│ │ │ │ │ ├── in_anglvel_y_index
│ │ │ │ │ ├── in_anglvel_y_type
│ │ │ │ │ ├── in_anglvel_z_en
│ │ │ │ │ ├── in_anglvel_z_index
│ │ │ │ │ └── in_anglvel_z_type
│ │ │ │ ├── trigger
│ │ │ │ │ └── current_trigger
...

7.3. 3. High level processing in above blocks 43

