Linux Fpga Documentation

The kernel development community

Jul 14, 2020

CONTENTS

CHAPTER
ONE

FPGA DEVICE FEATURE LIST (DFL) FRAMEWORK
OVERVIEW

Authors:
¢ Enno Luebbers <enno.luebbers@intel.com>
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
e Wu Hao <hao.wu@intel.com>

The Device Feature List (DFL) FPGA framework (and drivers according to this
this framework) hides the very details of low layer hardwares and provides uni-
fied interfaces to userspace. Applications could use these interfaces to configure,
enumerate, open and access FPGA accelerators on platforms which implement the
DFL in the device memory. Besides this, the DFL framework enables system level
management functions such as FPGA reconfiguration.

1.1 Device Feature List (DFL) Overview

Device Feature List (DFL) defines a linked list of feature headers within the de-
vice MMIO space to provide an extensible way of adding features. Software can
walk through these predefined data structures to enumerate FPGA features: FPGA
Interface Unit (FIU), Accelerated Function Unit (AFU) and Private Features, as il-
lustrated below:

Header Header Header Header
oo R T I D R I e S +
| Type | | | Type | | | Type | | | Type |
| FIU | | | Private | | | Private | | | Private |
LT r—_— + | Feature | | | Feature | | | Feature |
| Next DFH |--+ +---------- + | R + | Fomm e +
s + | Next DFH |--+ | Next DFH |--+ | Next DFH |--> NULL
| ID | R + R + Fom e +
oo + | ID | | ID | | ID
| Next AFU |--+ +---------- + Fommmee e + R +
R + | | Feature | | Feature | | Feature |
| Header | | | Register | | Register | | Register |
| Register | | | Set | | Set | | Set |
| Set | R + Fommm oo + o +
Fommmmme - + Header

+-->t---m oo +

(continues on next page)

mailto:enno.luebbers@intel.com
mailto:guangrong.xiao@linux.intel.com
mailto:hao.wu@intel.com

Linux Fpga Documentation

(continued from previous page)

| AFU |
Fommm - +
| Next DFH |--> NULL
oo +
| GUID |
Fommm e +
| Header |
| Register |
| Set |
oo +

FPGA Interface Unit (FIU) represents a standalone functional unit for the interface
to FPGA, e.g. the FPGA Management Engine (FME) and Port (more descriptions
on FME and Port in later sections).

Accelerated Function Unit (AFU) represents a FPGA programmable region and
always connects to a FIU (e.g. a Port) as its child as illustrated above.

Private Features represent sub features of the FIU and AFU. They could be various
function blocks with different IDs, but all private features which belong to the
same FIU or AFU, must be linked to one list via the Next Device Feature Header
(Next DFH) pointer.

Each FIU, AFU and Private Feature could implement its own functional registers.
The functional register set for FIU and AFU, is named as Header Register Set, e.g.
FME Header Register Set, and the one for Private Feature, is named as Feature
Register Set, e.g. FME Partial Reconfiguration Feature Register Set.

This Device Feature List provides a way of linking features together, it’ s conve-
nient for software to locate each feature by walking through this list, and can be
implemented in register regions of any FPGA device.

1.2 FIU - FME (FPGA Management Engine)

The FPGA Management Engine performs reconfiguration and other infrastructure
functions. Each FPGA device only has one FME.

User-space applications can acquire exclusive access to the FME using open(), and
release it using close().

The following functions are exposed through ioctls:

Get driver API version (DFL FPGA GET API VERSION)
Check for extensions (DFL. FPGA CHECK EXTENSION)
Program bitstream (DFL FPGA FME PORT PR)

* Assign port to PF (DFL FPGA FME PORT ASSIGN)

* Release port from PF (DFL FPGA FME PORT RELEASE)

More functions are exposed through sysfs (/sys/class/fpga region/regionX/dfl-
fme.n/):

2 Chapter 1. FPGA Device Feature List (DFL) Framework Overview

Linux Fpga Documentation

Read bitstream ID (bitstream_id) bitstream id indicates version of
the static FPGA region.

Read bitstream metadata (bitstream_metadata)
bitstream metadata includes detailed information of static FPGA
region, e.g. synthesis date and seed.

Read number of ports (ports_num) one FPGA device may have more
than one port, this sysfs interface indicates how many ports the
FPGA device has.

Global error reporting management (errors/) error reporting sysfs
interfaces allow user to read errors detected by the hardware, and
clear the logged errors.

Power management (dfl_ fme_power hwmon) power management
hwmon sysfs interfaces allow user to read power management
information (power consumption, thresholds, threshold status,
limits, etc.) and configure power thresholds for different throttling
levels.

Thermal management (dfl_ fme_thermal hwmon) thermal manage-
ment hwmon sysfs interfaces allow user to read thermal manage-
ment information (current temperature, thresholds, threshold sta-
tus, etc.).

Performance reporting performance counters are exposed through
perf PMU APIs. Standard perf tool can be used to monitor all avail-
able perf events. Please see performance counter section below for
more detailed information.

1.3 FIU - PORT

A port represents the interface between the static FPGA fabric and a partially
reconfigurable region containing an AFU. It controls the communication from SW
to the accelerator and exposes features such as reset and debug. Each FPGA
device may have more than one port, but always one AFU per port.

1.4 AFU

An AFU is attached to a port FIU and exposes a fixed length MMIO region to be
used for accelerator-specific control registers.

User-space applications can acquire exclusive access to an AFU attached to a port
by using open() on the port device node and release it using close().

The following functions are exposed through ioctls:
* Get driver API version (DFL. FPGA GET API VERSION)
* Check for extensions (DFL. FPGA CHECK EXTENSION)
* Get port info (DFL._ FPGA PORT GET INFO)

1.3. FIU - PORT 3

Linux Fpga Documentation

« Get MMIO region info (DFL_ FPGA PORT GET REGION INFO)
« Map DMA buffer (DFL. FPGA PORT DMA MAP)

« Unmap DMA buffer (DFL. FPGA PORT DMA UNMAP)

- Reset AFU (DFL FPGA PORT RESET)

DFL_FPGA_PORT_RESET: reset the FPGA Port and its AFU. Userspace can do
Port reset at any time, e.g. during DMA or Partial Reconfiguration. But it
should never cause any system level issue, only functional failure (e.g. DMA
or PR operation failure) and be recoverable from the failure.

User-space applications can also mmap() accelerator MMIO regions.

More functions are exposed through sysfs: (/sys/class/fpga region/<regionX>/<dfl-
port.m>/):

Read Accelerator GUID (afu_id) afu id indicates which PR bitstream
is programmed to this AFU.

Error reporting (errors/) error reporting sysfs interfaces allow user
to read port/afu errors detected by the hardware, and clear the
logged errors.

1.5 DFL Framework Overview

R + R + +-------- + +-------- +
| FME | | AFU | | AFU | | AFU |
| Module | | Module | | Module | | Module |
oo + Fommmm - I TR I TR +
R T +
| FPGA Container Device | Device Feature List
| (FPGA Base Region) | Framework
T +
R R +

DFL framework in kernel provides common interfaces to create container device
(FPGA base region), discover feature devices and their private features from the
given Device Feature Lists and create platform devices for feature devices (e.g.
FME, Port and AFU) with related resources under the container device. It also
abstracts operations for the private features and exposes common ops to feature
device drivers.

The FPGA DFL Device could be different hardwares, e.g. PCle device, platform
device and etc. Its driver module is always loaded first once the device is cre-
ated by the system. This driver plays an infrastructural role in the driver archi-
tecture. It locates the DFLs in the device memory, handles them and related re-

4 Chapter 1. FPGA Device Feature List (DFL) Framework Overview

Linux Fpga Documentation

sources to common interfaces from DFL framework for enumeration. (Please refer
to drivers/fpga/dfl.c for detailed enumeration APIs).

The FPGA Management Engine (FME) driver is a platform driver which is loaded
automatically after FME platform device creation from the DFL device module. It
provides the key features for FPGA management, including:

a) Expose static FPGA region information, e.g. version and metadata. Users
can read related information via sysfs interfaces exposed by FME driver.

b) Partial Reconfiguration. The FME driver creates FPGA manager, FPGA
bridges and FPGA regions during PR sub feature initialization. Once it re-
ceives a DFL FPGA FME PORT PR ioctl from user, it invokes the common
interface function from FPGA Region to complete the partial reconfiguration
of the PR bitstream to the given port.

Similar to the FME driver, the FPGA Accelerated Function Unit (AFU) driver is
probed once the AFU platform device is created. The main function of this module
is to provide an interface for userspace applications to access the individual ac-
celerators, including basic reset control on port, AFU MMIO region export, dma
buffer mapping service functions.

After feature platform devices creation, matched platform drivers will be loaded
automatically to handle different functionalities. Please refer to next sections for
detailed information on functional units which have been already implemented
under this DFL framework.

1.6 Partial Reconfiguration

As mentioned above, accelerators can be reconfigured through partial reconfig-
uration of a PR bitstream file. The PR bitstream file must have been generated
for the exact static FPGA region and targeted reconfigurable region (port) of the
FPGA, otherwise, the reconfiguration operation will fail and possibly cause sys-
tem instability. This compatibility can be checked by comparing the compatibility
ID noted in the header of PR bitstream file against the compat id exposed by the
target FPGA region. This check is usually done by userspace before calling the
reconfiguration IOCTL.

1.7 FPGA virtualization - PCle SRIOV

This section describes the virtualization support on DFL based FPGA device to
enable accessing an accelerator from applications running in a virtual machine
(VM). This section only describes the PCle based FPGA device with SRIOV support.

Features supported by the particular FPGA device are exposed through Device
Feature Lists, as illustrated below:

(continues on next page)

1.6. Partial Reconfiguration 5

Linux Fpga Documentation

(continued from previous page)

FRRREEI EEREREREREEE EEEEREEES EEREEEEEREREEE EEEEEEE +
I | | | I I
| +----- + tommem + - + tememe-- + |
| | FME | | Portd@ | | Portl | | Port2 | |
| +----- + temmmaa + t----e-- + Femmmea + |
| A A A I
| I | I I
| Femmn + +------ + Feomemen- + |
| | AFU | | AFU | | AFU |

| +ommmm - + +------ + +ommmm - - + |
| I
| I

FME is always accessed through the physical function (PF).

Ports (and related AFUs) are accessed via PF by default, but could be exposed
through virtual function (VF) devices via PCle SRIOV. Each VF only contains 1 Port
and 1 AFU for isolation. Users could assign individual VFs (accelerators) created
via PCIe SRIOV interface, to virtual machines.

The driver organization in virtualization case is illustrated below:

R ++---- - ++------ +
FME		FME		FME
FPGA		FPGA		FPGA
Manager		Bridge		Region
+------- ++------ ++------ +				
R + H-------- + e +				
FME		AFU		AFU
D + H-------- + F-o------- +
R + oo +

| FPGA Container Device |
| (FPGA Base Region) |

| FPGA Container Device |

I
I
I
I
I
|
| Module | | Module | | | Module |
I
|
| | (FPGA Base Region) |
|
I
I
I

R + R R +
R T + R T T +
| FPGA PCIE Module | Virtual | FPGA PCIE Module |
R + Host Machine +------------------ +
R R + I R +
| PCI PF Device | | | PCI VF Device |
Fomem e + | ey +

FPGA PCle device driver is always loaded first once a FPGA PCle PF or VF device
is detected. It:

* Finishes enumeration on both FPGA PCle PF and VF device using common
interfaces from DFL framework.

* Supports SRIOV.

The FME device driver plays a management role in this driver architecture, it
provides ioctls to release Port from PF and assign Port to PF. After release a port
from PF, then it’ s safe to expose this port through a VF via PCle SRIOV sysfs
interface.

6 Chapter 1. FPGA Device Feature List (DFL) Framework Overview

Linux Fpga Documentation

To enable accessing an accelerator from applications running in a VM, the respec-
tive AFU’ s port needs to be assigned to a VF using the following steps:

1. The PF owns all AFU ports by default. Any port that needs to be reassigned
to a VF must first be released through the DFL. FPGA FME PORT RELEASE
ioctl on the FME device.

2. Once N ports are released from PF, then user can use command below to
enable SRIOV and VFs. Each VF owns only one Port with AFU.

echo N > $PCI DEVICE PATH/sriov_numvfs

3. Pass through the VFs to VMs

4. The AFU under VF is accessible from applications in VM (using the same
driver inside the VF).

Note that an FME can’ t be assigned to a VF, thus PR and other management
functions are only available via the PE.

1.8 Device enumeration

This section introduces how applications enumerate the fpga device from the sysfs
hierarchy under /sys/class/fpga region.

In the example below, two DFL based FPGA devices are installed in the host. Each
fpga device has one FME and two ports (AFUs).

FPGA regions are created under /sys/class/fpga region/:

/sys/class/fpga_region/region0
/sys/class/fpga region/regionl
/sys/class/fpga region/region2

Application needs to search each regionX folder, if feature device is found, (e.g.
“dfl-port.n” or “dfl-fme.m”is found), then it’s the base fpga region which represents
the FPGA device.

Each base region has one FME and two ports (AFUs) as child devices:

/sys/class/fpga region/region0/dfl-fme.0
/sys/class/fpga region/region0/dfl-port.0
/sys/class/fpga region/region0/dfl-port.1

/sys/class/fpga region/region3/dfl-fme.1
/sys/class/fpga region/region3/dfl-port.2
/sys/class/fpga region/region3/dfl-port.3

In general, the FME/AFU sysfs interfaces are named as follows:

/sys/class/fpga region/<regionX>/<dfl-fme.n>/
/sys/class/fpga region/<regionX>/<dfl-port.m>/

1.8. Device enumeration 7

Linux Fpga Documentation

with ‘n’ consecutively numbering all FMEs and ‘m’ consecutively numbering all
ports.

The device nodes used for ioctl() or mmap() can be referenced through:

/sys/class/fpga region/<regionX>/<dfl-fme.n>/dev
/sys/class/fpga region/<regionX>/<dfl-port.n>/dev

1.9 Performance Counters

Performance reporting is one private feature implemented in FME. It could sup-
ports several independent, system-wide, device counter sets in hardware to mon-
itor and count for performance events, including “basic” , “cache” , “fabric” ,
“vtd” and “vtd_sip” counters. Users could use standard perf tool to monitor FPGA
cache hit/miss rate, transaction number, interface clock counter of AFU and other
FPGA performance events.

Different FPGA devices may have different counter sets, depending on hardware
implementation. E.g., some discrete FPGA cards don’t have any cache. User could
use “perflist” to check which perf events are supported by target hardware.

In order to allow user to use standard perf API to access these perfor-
mance counters, driver creates a perf PMU, and related sysfs interfaces in
/sys/bus/event source/devices/dfl fme* to describe available perf events and con-
figuration options.

The “format” directory describes the format of the config field of struct
perf event attr. There are 3 bitfields for config: “evtype” defines which type
the perf event belongs to; “event” is the identity of the event within its category;
“portid” is introduced to decide counters set to monitor on FPGA overall data or a
specific port.

The “events” directory describes the configuration templates for all available
events which can be used with perf tool directly. For example, fab mmio read
has the configuration “event=0x06,evtype=0x02,portid=0xff" , which shows this
event belongs to fabric type (0x02), the local event id is 0x06 and it is for overall
monitoring (portid=0xff).

Example usage of perf:

$# perf list |grep dfl fme

dfl fme0®/fab mmio read/ [Kernel PMU event]
<...>
dfl fmeO/fab port mmio read,portid=?/ [Kernel PMU event]
<...>

$# perf stat -a -e dfl fmeO/fab mmio read/ <command>

or

$# perf stat -a -e dfl fme0®/event=0x06,evtype=0x02,portid=0xff/ <command>
or

$# perf stat -a -e dfl fme0/config=0xff2006/ <command>

Another example, fab port mmio read monitors mmio read of a specific port. So

8 Chapter 1. FPGA Device Feature List (DFL) Framework Overview

Linux Fpga Documentation

its configuration template is “event=0x06,evtype=0x01,portid=?" . The portid
should be explicitly set.

Its usage of pert:

$# perf stat -a -e dfl fme0/fab port mmio read,portid=0x0/ <command>

or

$# perf stat -a -e dfl fme@/event=0x06,evtype=0x02,portid=0x0/ <command>
or

$# perf stat -a -e dfl _fme@®/config=0x2006/ <command>

Please note for fabric counters, overall perf events (fab *) and port perf events
(fab_port *) actually share one set of counters in hardware, so it can’ t monitor
both at the same time. If this set of counters is configured to monitor overall data,
then per port perf data is not supported. See below example:

$# perf stat -e dfl fme0®/fab mmio read/,dfl fme®/fab port mmio write,\
portid=0/ sleep 1

Performance counter stats for 'system wide':

3 dfl fmeO/fab mmio read/
<not supported> dfl fme0O/fab port mmio write,portid=0x0/

1.001750904 seconds time elapsed

The driver also provides a “cpumask” sysfs attribute, which contains only one CPU
id used to access these perf events. Counting on multiple CPU is not allowed since
they are system-wide counters on FPGA device.

The current driver does not support sampling. So “perf record” is unsupported.

1.10 Add new FlUs support

It’ s possible that developers made some new function blocks (FIUs) under this
DFL framework, then new platform device driver needs to be developed for the
new feature dev (FIU) following the same way as existing feature dev drivers (e.g.
FME and Port/AFU platform device driver). Besides that, it requires modification
on DFL framework enumeration code too, for new FIU type detection and related
platform devices creation.

1.11 Add new private features support

In some cases, we may need to add some new private features to existing FIUs
(e.g. FME or Port). Developers don’ t need to touch enumeration code in DFL
framework, as each private feature will be parsed automatically and related mmio
resources can be found under FIU platform device created by DFL framework.
Developer only needs to provide a sub feature driver with matched feature id. FME
Partial Reconfiguration Sub Feature driver (see drivers/fpga/dfl-fme-pr.c) could be
a reference.

1.10. Add new FlUs support 9

Linux Fpga Documentation

1.12 Open discussion

FME driver exports one ioctl (DFL FPGA FME PORT PR) for partial reconfigura-
tion to user now. In the future, if unified user interfaces for reconfiguration are
added, FME driver should switch to them from ioctl interface.

10 Chapter 1. FPGA Device Feature List (DFL) Framework Overview

