
Linux Fb Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

THE FRAME BUFFER DEVICE API

Last revised: June 21, 2011

1.1 0. Introduction

This document describes the frame buffer API used by applications to interact with
frame buffer devices. In-kernel APIs between device drivers and the frame buffer
core are not described.

Due to a lack of documentation in the original frame buffer API, drivers behaviours
differ in subtle (and not so subtle) ways. This document describes the recom-
mended API implementation, but applications should be prepared to deal with
different behaviours.

1.2 1. Capabilities

Device and driver capabilities are reported in the fixed screen information capa-
bilities field:

struct fb_fix_screeninfo {
...
__u16 capabilities; /* see FB_CAP_* */
...

};

Application should use those capabilities to find out what features they can expect
from the device and driver.

• FB_CAP_FOURCC

The driver supports the four character code (FOURCC) based format setting API.
When supported, formats are configured using a FOURCC instead of manually
specifying color components layout.

1

Linux Fb Documentation

1.3 2. Types and visuals

Pixels are stored in memory in hardware-dependent formats. Applications need
to be aware of the pixel storage format in order to write image data to the frame
buffer memory in the format expected by the hardware.

Formats are described by frame buffer types and visuals. Some visuals re-
quire additional information, which are stored in the variable screen information
bits_per_pixel, grayscale, red, green, blue and transp fields.

Visuals describe how color information is encoded and assembled to create
macropixels. Types describe how macropixels are stored in memory. The fol-
lowing types and visuals are supported.

• FB_TYPE_PACKED_PIXELS

Macropixels are stored contiguously in a single plane. If the number of bits per
macropixel is not a multiple of 8, whether macropixels are padded to the next
multiple of 8 bits or packed together into bytes depends on the visual.

Padding at end of lines may be present and is then reported through the fixed
screen information line_length field.

• FB_TYPE_PLANES

Macropixels are split across multiple planes. The number of planes is equal to the
number of bits per macropixel, with plane i’th storing i’th bit from all macropixels.
Planes are located contiguously in memory.

• FB_TYPE_INTERLEAVED_PLANES

Macropixels are split across multiple planes. The number of planes is equal to the
number of bits per macropixel, with plane i’th storing i’th bit from all macropixels.
Planes are interleaved in memory. The interleave factor, defined as the distance
in bytes between the beginning of two consecutive interleaved blocks belonging
to different planes, is stored in the fixed screen information type_aux field.

• FB_TYPE_FOURCC

Macropixels are stored in memory as described by the format FOURCC identifier
stored in the variable screen information grayscale field.

• FB_VISUAL_MONO01

Pixels are black or white and stored on a number of bits (typically one) specified
by the variable screen information bpp field.

Black pixels are represented by all bits set to 1 and white pixels by all bits set to
0. When the number of bits per pixel is smaller than 8, several pixels are packed
together in a byte.

FB_VISUAL_MONO01 is currently used with FB_TYPE_PACKED_PIXELS only.

• FB_VISUAL_MONO10

Pixels are black or white and stored on a number of bits (typically one) specified
by the variable screen information bpp field.

2 Chapter 1. The Frame Buffer Device API

Linux Fb Documentation

Black pixels are represented by all bits set to 0 and white pixels by all bits set to
1. When the number of bits per pixel is smaller than 8, several pixels are packed
together in a byte.

FB_VISUAL_MONO01 is currently used with FB_TYPE_PACKED_PIXELS only.

• FB_VISUAL_TRUECOLOR

Pixels are broken into red, green and blue components, and each component in-
dexes a read-only lookup table for the corresponding value. Lookup tables are
device-dependent, and provide linear or non-linear ramps.

Each component is stored in a macropixel according to the variable screen infor-
mation red, green, blue and transp fields.

• FB_VISUAL_PSEUDOCOLOR and FB_VISUAL_STATIC_PSEUDOCOLOR

Pixel values are encoded as indices into a colormap that stores red, green and blue
components. The colormap is read-only for FB_VISUAL_STATIC_PSEUDOCOLOR
and read-write for FB_VISUAL_PSEUDOCOLOR.

Each pixel value is stored in the number of bits reported by the variable screen
information bits_per_pixel field.

• FB_VISUAL_DIRECTCOLOR

Pixels are broken into red, green and blue components, and each component in-
dexes a programmable lookup table for the corresponding value.

Each component is stored in a macropixel according to the variable screen infor-
mation red, green, blue and transp fields.

• FB_VISUAL_FOURCC

Pixels are encoded and interpreted as described by the format FOURCC identifier
stored in the variable screen information grayscale field.

1.4 3. Screen information

Screen information are queried by applications using the FBIO-
GET_FSCREENINFO and FBIOGET_VSCREENINFO ioctls. Those ioctls take
a pointer to a fb_fix_screeninfo and fb_var_screeninfo structure respectively.

struct fb_fix_screeninfo stores device independent unchangeable information
about the frame buffer device and the current format. Those information can’
t be directly modified by applications, but can be changed by the driver when an
application modifies the format:

struct fb_fix_screeninfo {
char id[16]; /* identification string eg "TT␣

↪→Builtin" */
unsigned long smem_start; /* Start of frame buffer mem */

/* (physical address) */
__u32 smem_len; /* Length of frame buffer mem */
__u32 type; /* see FB_TYPE_* */
__u32 type_aux; /* Interleave for interleaved Planes␣

↪→*/
(continues on next page)

1.4. 3. Screen information 3

Linux Fb Documentation

(continued from previous page)
__u32 visual; /* see FB_VISUAL_* */
__u16 xpanstep; /* zero if no hardware panning */
__u16 ypanstep; /* zero if no hardware panning */
__u16 ywrapstep; /* zero if no hardware ywrap */
__u32 line_length; /* length of a line in bytes */
unsigned long mmio_start; /* Start of Memory Mapped I/O */

/* (physical address) */
__u32 mmio_len; /* Length of Memory Mapped I/O */
__u32 accel; /* Indicate to driver which */

/* specific chip/card we have */
__u16 capabilities; /* see FB_CAP_* */
__u16 reserved[2]; /* Reserved for future compatibility␣

↪→*/
};

struct fb_var_screeninfo stores device independent changeable information about
a frame buffer device, its current format and video mode, as well as other miscel-
laneous parameters:

struct fb_var_screeninfo {
__u32 xres; /* visible resolution */
__u32 yres;
__u32 xres_virtual; /* virtual resolution */
__u32 yres_virtual;
__u32 xoffset; /* offset from virtual to visible */
__u32 yoffset; /* resolution */

__u32 bits_per_pixel; /* guess what */
__u32 grayscale; /* 0 = color, 1 = grayscale, */

/* >1 = FOURCC */
struct fb_bitfield red; /* bitfield in fb mem if true color,␣

↪→*/
struct fb_bitfield green; /* else only length is significant */
struct fb_bitfield blue;
struct fb_bitfield transp; /* transparency */

__u32 nonstd; /* != 0 Non standard pixel format */

__u32 activate; /* see FB_ACTIVATE_* */

__u32 height; /* height of picture in mm */
__u32 width; /* width of picture in mm */

__u32 accel_flags; /* (OBSOLETE) see fb_info.flags */

/* Timing: All values in pixclocks, except pixclock (of course) */
__u32 pixclock; /* pixel clock in ps (pico seconds)␣

↪→*/
__u32 left_margin; /* time from sync to picture */
__u32 right_margin; /* time from picture to sync */
__u32 upper_margin; /* time from sync to picture */
__u32 lower_margin;
__u32 hsync_len; /* length of horizontal sync */
__u32 vsync_len; /* length of vertical sync */
__u32 sync; /* see FB_SYNC_* */

(continues on next page)

4 Chapter 1. The Frame Buffer Device API

Linux Fb Documentation

(continued from previous page)
__u32 vmode; /* see FB_VMODE_* */
__u32 rotate; /* angle we rotate counter clockwise␣

↪→*/
__u32 colorspace; /* colorspace for FOURCC-based modes␣

↪→*/
__u32 reserved[4]; /* Reserved for future compatibility␣

↪→*/
};

To modify variable information, applications call the FBIOPUT_VSCREENINFO
ioctl with a pointer to a fb_var_screeninfo structure. If the call is successful, the
driver will update the fixed screen information accordingly.

Instead of filling the complete fb_var_screeninfo structure manually, applications
should call the FBIOGET_VSCREENINFO ioctl and modify only the fields they care
about.

1.5 4. Format configuration

Frame buffer devices offer two ways to configure the frame buffer format: the
legacy API and the FOURCC-based API.

The legacy API has been the only frame buffer format configuration API for a long
time and is thus widely used by application. It is the recommended API for ap-
plications when using RGB and grayscale formats, as well as legacy non-standard
formats.

To select a format, applications set the fb_var_screeninfo bits_per_pixel field to
the desired frame buffer depth. Values up to 8 will usually map to monochrome,
grayscale or pseudocolor visuals, although this is not required.

• For grayscale formats, applications set the grayscale field to one. The red,
blue, green and transp fields must be set to 0 by applications and ignored by
drivers. Drivers must fill the red, blue and green offsets to 0 and lengths to
the bits_per_pixel value.

• For pseudocolor formats, applications set the grayscale field to zero. The red,
blue, green and transp fields must be set to 0 by applications and ignored by
drivers. Drivers must fill the red, blue and green offsets to 0 and lengths to
the bits_per_pixel value.

• For truecolor and directcolor formats, applications set the grayscale field to
zero, and the red, blue, green and transp fields to describe the layout of color
components in memory:

struct fb_bitfield {
__u32 offset; /* beginning of bitfield */
__u32 length; /* length of bitfield */
__u32 msb_right; /* != 0 : Most significant bit is␣

↪→*/
/* right */

};

1.5. 4. Format configuration 5

Linux Fb Documentation

Pixel values are bits_per_pixel wide and are split in non-overlapping red,
green, blue and alpha (transparency) components. Location and size of each
component in the pixel value are described by the fb_bitfield offset and length
fields. Offset are computed from the right.

Pixels are always stored in an integer number of bytes. If the number of bits
per pixel is not a multiple of 8, pixel values are padded to the next multiple
of 8 bits.

Upon successful format configuration, drivers update the fb_fix_screeninfo type,
visual and line_length fields depending on the selected format.

The FOURCC-based API replaces format descriptions by four character codes
(FOURCC). FOURCCs are abstract identifiers that uniquely define a format with-
out explicitly describing it. This is the only API that supports YUV formats. Drivers
are also encouraged to implement the FOURCC-based API for RGB and grayscale
formats.

Drivers that support the FOURCC-based API report this capability by setting the
FB_CAP_FOURCC bit in the fb_fix_screeninfo capabilities field.

FOURCC definitions are located in the linux/videodev2.h header. However, and
despite starting with the V4L2_PIX_FMT_prefix, they are not restricted to V4L2
and don’t require usage of the V4L2 subsystem. FOURCC documentation is avail-
able in Documentation/userspace-api/media/v4l/pixfmt.rst.

To select a format, applications set the grayscale field to the desired FOURCC. For
YUV formats, they should also select the appropriate colorspace by setting the col-
orspace field to one of the colorspaces listed in linux/videodev2.h and documented
in Documentation/userspace-api/media/v4l/colorspaces.rst.

The red, green, blue and transp fields are not used with the FOURCC-based API.
For forward compatibility reasons applications must zero those fields, and drivers
must ignore them. Values other than 0 may get a meaning in future extensions.

Upon successful format configuration, drivers update the fb_fix_screeninfo type,
visual and line_length fields depending on the selected format. The type and visual
fields are set to FB_TYPE_FOURCC and FB_VISUAL_FOURCC respectively.

6 Chapter 1. The Frame Buffer Device API

CHAPTER

TWO

ARKFB - FBDEV DRIVER FOR ARK LOGIC CHIPS

2.1 Supported Hardware

ARK 2000PV chip ICS 5342 ramdac

• only BIOS initialized VGA devices supported

• probably not working on big endian

2.2 Supported Features

• 4 bpp pseudocolor modes (with 18bit palette, two variants)

• 8 bpp pseudocolor mode (with 18bit palette)

• 16 bpp truecolor modes (RGB 555 and RGB 565)

• 24 bpp truecolor mode (RGB 888)

• 32 bpp truecolor mode (RGB 888)

• text mode (activated by bpp = 0)

• doublescan mode variant (not available in text mode)

• panning in both directions

• suspend/resume support

Text mode is supported even in higher resolutions, but there is limitation to lower
pixclocks (i got maximum about 70 MHz, it is dependent on specific hardware).
This limitation is not enforced by driver. Text mode supports 8bit wide fonts only
(hardware limitation) and 16bit tall fonts (driver limitation). Unfortunately char-
acter attributes (like color) in text mode are broken for unknown reason, so its
usefulness is limited.

There are two 4 bpp modes. First mode (selected if nonstd == 0) is mode with
packed pixels, high nibble first. Second mode (selected if nonstd == 1) is mode
with interleaved planes (1 byte interleave), MSB first. Both modes support 8bit
wide fonts only (driver limitation).

Suspend/resume works on systems that initialize video card during resume and if
device is active (for example used by fbcon).

7

Linux Fb Documentation

2.3 Missing Features

(alias TODO list)

• secondary (not initialized by BIOS) device support

• big endian support

• DPMS support

• MMIO support

• interlaced mode variant

• support for fontwidths != 8 in 4 bpp modes

• support for fontheight != 16 in text mode

• hardware cursor

• vsync synchronization

• feature connector support

• acceleration support (8514-like 2D)

2.4 Known bugs

• character attributes (and cursor) in text mode are broken

– Ondrej Zajicek <santiago@crfreenet.org>

8 Chapter 2. arkfb - fbdev driver for ARK Logic chips

mailto:santiago@crfreenet.org

CHAPTER

THREE

WHAT IS ATY128FB?

This is a driver for a graphic framebuffer for ATI Rage128 based devices on Intel
and PPC boxes.

Advantages:

• It provides a nice large console (128 cols + 48 lines with 1024x768) without
using tiny, unreadable fonts.

• You can run XF68_FBDev on top of /dev/fb0

• Most important: boot logo :-)

Disadvantages:

• graphic mode is slower than text mode⋯but you should not notice if you use
same resolution as you used in textmode.

• still experimental.

3.1 How to use it?

Switching modes is done using the video=aty128fb:<resolution>⋯modedb boot
parameter or using fbset program.

See Documentation/fb/modedb.rst for more information on modedb resolutions.

You should compile in both vgacon (to boot if you remove your Rage128 from
box) and aty128fb (for graphics mode). You should not compile-in vesafb un-
less you have primary display on non-Rage128 VBE2.0 device (see Documenta-
tion/fb/vesafb.rst for details).

3.2 X11

XF68_FBDev should generally work fine, but it is non-accelerated. As of this doc-
ument, 8 and 32bpp works fine. There have been palette issues when switching
from X to console and back to X. You will have to restart X to fix this.

9

Linux Fb Documentation

3.3 Configuration

You can pass kernel command line options to vesafb with
video=aty128fb:option1,option2:value2,option3 (multiple options should be
separated by comma, values are separated from options by :). Accepted options:

noaccel do not use acceleration engine. It is default.
accel use acceleration engine. Not finished.
vmode:x chooses PowerMacintosh video mode <x>. Deprecated.
cmode:x chooses PowerMacintosh colour mode <x>. Deprecated.
<XxX@X>selects startup videomode. See modedb.txt for detailed explanation.

Default is 640x480x8bpp.

3.4 Limitations

There are known and unknown bugs, features and misfeatures. Currently there
are following known bugs:

• This driver is still experimental and is not finished. Too many bugs/errata to
list here.

Brad Douglas <brad@neruo.com>

10 Chapter 3. What is aty128fb?

mailto:brad@neruo.com

CHAPTER

FOUR

FRAMEBUFFER DRIVER FOR CIRRUS LOGIC CHIPSETS

Copyright 1999 Jeff Garzik <jgarzik@pobox.com>

Chip families supported:
• SD64

• Piccolo

• Picasso

• Spectrum

• Alpine (GD-543x/4x)

• Picasso4 (GD-5446)

• GD-5480

• Laguna (GD-546x)

Bus’s supported:
• PCI

• Zorro

Architectures supported:
• i386

• Alpha

• PPC (Motorola Powerstack)

• m68k (Amiga)

4.1 Default video modes

At the moment, there are two kernel command line arguments supported:

• mode:640x480

• mode:800x600

• mode:1024x768

Full support for startup video modes (modedb) will be integrated soon.

11

mailto:jgarzik@pobox.com

Linux Fb Documentation

4.2 Version 1.9.9.1

• Fix memory detection for 512kB case

• 800x600 mode

• Fixed timings

• Hint for AXP: Use -accel false -vyres -1 when changing resolution

4.3 Version 1.9.4.4

• Preliminary Laguna support

• Overhaul color register routines.

• Associated with the above, console colors are now obtained from a LUT called
‘palette’instead of from the VGA registers. This code was modelled after that
in atyfb and matroxfb.

• Code cleanup, add comments.

• Overhaul SR07 handling.

• Bug fixes.

4.4 Version 1.9.4.3

• Correctly set default startup video mode.

• Do not override ram size setting. Define
CLGEN_USE_HARDCODED_RAM_SETTINGS if you _do_ want to override
the RAM setting.

• Compile fixes related to new 2.3.x IORESOURCE_IO[PORT] symbol changes.

• Use new 2.3.x resource allocation.

• Some code cleanup.

4.5 Version 1.9.4.2

• Casting fixes.

• Assertions no longer cause an oops on purpose.

• Bug fixes.

12 Chapter 4. Framebuffer driver for Cirrus Logic chipsets

Linux Fb Documentation

4.6 Version 1.9.4.1

• Add compatibility support. Now requires a 2.1.x, 2.2.x or 2.3.x kernel.

4.7 Version 1.9.4

• Several enhancements, smaller memory footprint, a few bugfixes.

• Requires kernel 2.3.14-pre1 or later.

4.8 Version 1.9.3

• Bundled with kernel 2.3.14-pre1 or later.

4.6. Version 1.9.4.1 13

Linux Fb Documentation

14 Chapter 4. Framebuffer driver for Cirrus Logic chipsets

CHAPTER

FIVE

UNDERSTANDING FBDEV’S CMAP

These notes explain how X’s dix layer uses fbdev’s cmap structures.
• example of relevant structures in fbdev as used for a 3-bit grayscale cmap:

struct fb_var_screeninfo {
.bits_per_pixel = 8,
.grayscale = 1,
.red = { 4, 3, 0 },
.green = { 0, 0, 0 },
.blue = { 0, 0, 0 },

}
struct fb_fix_screeninfo {

.visual = FB_VISUAL_STATIC_PSEUDOCOLOR,
}
for (i = 0; i < 8; i++)

info->cmap.red[i] = (((2*i)+1)*(0xFFFF))/16;
memcpy(info->cmap.green, info->cmap.red, sizeof(u16)*8);
memcpy(info->cmap.blue, info->cmap.red, sizeof(u16)*8);

• X11 apps do something like the following when trying to use grayscale:

for (i=0; i < 8; i++) {
char colorspec[64];
memset(colorspec,0,64);
sprintf(colorspec, "rgb:%x/%x/%x", i*36,i*36,i*36);
if (!XParseColor(outputDisplay, testColormap, colorspec, &

↪→wantedColor))
printf("Can't get color %s\n",colorspec);

XAllocColor(outputDisplay, testColormap, &wantedColor);
grays[i] = wantedColor;

}

There’s also named equivalents like gray1..x provided you have an rgb.txt.
Somewhere in X’s callchain, this results in a call to X code that handles the col-
ormap. For example, Xfbdev hits the following:

xc-011010/programs/Xserver/dix/colormap.c:

FindBestPixel(pentFirst, size, prgb, channel)

dr = (long) pent->co.local.red - prgb->red;
dg = (long) pent->co.local.green - prgb->green;
db = (long) pent->co.local.blue - prgb->blue;

(continues on next page)

15

Linux Fb Documentation

(continued from previous page)
sq = dr * dr;
UnsignedToBigNum (sq, &sum);
BigNumAdd (&sum, &temp, &sum);

co.local.red are entries that were brought in through FBIOGETCMAP which come
directly from the info->cmap.red that was listed above. The prgb is the rgb that
the app wants to match to. The above code is doing what looks like a least squares
matching function. That’s why the cmap entries can’t be set to the left hand side
boundaries of a color range.

16 Chapter 5. Understanding fbdev’s cmap

CHAPTER

SIX

DEFERRED IO

Deferred IO is a way to delay and repurpose IO. It uses host memory as a buffer
and the MMU pagefault as a pretrigger for when to perform the device IO. The
following example may be a useful explanation of how one such setup works:

• userspace app like Xfbdev mmaps framebuffer

• deferred IO and driver sets up fault and page_mkwrite handlers

• userspace app tries to write to mmaped vaddress

• we get pagefault and reach fault handler

• fault handler finds and returns physical page

• we get page_mkwrite where we add this page to a list

• schedule a workqueue task to be run after a delay

• app continues writing to that page with no additional cost. this is the key
benefit.

• the workqueue task comes in and mkcleans the pages on the list, then com-
pletes the work associated with updating the framebuffer. this is the real
work talking to the device.

• app tries to write to the address (that has now been mkcleaned)

• get pagefault and the above sequence occurs again

As can be seen from above, one benefit is roughly to allow bursty framebuffer
writes to occur at minimum cost. Then after some time when hopefully things have
gone quiet, we go and really update the framebuffer which would be a relatively
more expensive operation.

For some types of nonvolatile high latency displays, the desired image is the final
image rather than the intermediate stages which is why it’s okay to not update
for each write that is occurring.

It may be the case that this is useful in other scenarios as well. Paul Mundt has
mentioned a case where it is beneficial to use the page count to decide whether to
coalesce and issue SG DMA or to do memory bursts.

Another one may be if one has a device framebuffer that is in an usual format, say
diagonally shifting RGB, this may then be a mechanism for you to allow apps to
pretend to have a normal framebuffer but reswizzle for the device framebuffer at
vsync time based on the touched pagelist.

17

Linux Fb Documentation

6.1 How to use it: (for applications)

No changes needed. mmap the framebuffer like normal and just use it.

6.2 How to use it: (for fbdev drivers)

The following example may be helpful.

1. Setup your structure. Eg:

static struct fb_deferred_io hecubafb_defio = {
.delay = HZ,
.deferred_io = hecubafb_dpy_deferred_io,

};

The delay is the minimum delay between when the page_mkwrite trigger occurs
and when the deferred_io callback is called. The deferred_io callback is explained
below.

2. Setup your deferred IO callback. Eg:

static void hecubafb_dpy_deferred_io(struct fb_info *info,
struct list_head *pagelist)

The deferred_io callback is where you would perform all your IO to the display
device. You receive the pagelist which is the list of pages that were written to
during the delay. You must not modify this list. This callback is called from a
workqueue.

3. Call init:

info->fbdefio = &hecubafb_defio;
fb_deferred_io_init(info);

4. Call cleanup:

fb_deferred_io_cleanup(info);

18 Chapter 6. Deferred IO

CHAPTER

SEVEN

WHAT IS EFIFB?

This is a generic EFI platform driver for systems with UEFI firmware. The system
must be booted via the EFI stub for this to be usable. efifb supports both firmware
with Graphics Output Protocol (GOP) displays as well as older systems with only
Universal Graphics Adapter (UGA) displays.

7.1 Supported Hardware

• iMac 17”/20”
• Macbook

• Macbook Pro 15”/17”
• MacMini

• ARM/ARM64/X86 systems with UEFI firmware

7.2 How to use it?

For UGA displays, efifb does not have any kind of autodetection of your machine.

You have to add the following kernel parameters in your elilo.conf:

Macbook :
video=efifb:macbook

MacMini :
video=efifb:mini

Macbook Pro 15", iMac 17" :
video=efifb:i17

Macbook Pro 17", iMac 20" :
video=efifb:i20

For GOP displays, efifb can autodetect the display’s resolution and framebuffer
address, so these should work out of the box without any special parameters.

Accepted options:

nowcDon’t map the framebuffer write combined. This can be used to
workaround side-effects and slowdowns on other CPU cores when large
amounts of console data are written.

19

Linux Fb Documentation

Options for GOP displays:

mode=n The EFI stub will set the mode of the display to mode number n if possi-
ble.

<xres>x<yres>[-(rgb|bgr|<bpp>)] The EFI stub will search for a display mode
that matches the specified horizontal and vertical resolution, and optionally
bit depth, and set the mode of the display to it if one is found. The bit depth
can either“rgb”or“bgr”to match specifically those pixel formats, or a number
for a mode with matching bits per pixel.

auto The EFI stub will choose the mode with the highest resolution (product of
horizontal and vertical resolution). If there are multiple modes with the high-
est resolution, it will choose one with the highest color depth.

list The EFI stub will list out all the display modes that are available. A specific
mode can then be chosen using one of the above options for the next boot.

Edgar Hucek <gimli@dark-green.com>

20 Chapter 7. What is efifb?

mailto:gimli@dark-green.com

CHAPTER

EIGHT

DRIVER FOR EP93XX LCD CONTROLLER

The EP93xx LCD controller can drive both standard desktop monitors and embed-
ded LCD displays. If you have a standard desktop monitor then you can use the
standard Linux video mode database. In your board file:

static struct ep93xxfb_mach_info some_board_fb_info = {
.num_modes = EP93XXFB_USE_MODEDB,
.bpp = 16,

};

If you have an embedded LCD display then you need to define a video mode for it
as follows:

static struct fb_videomode some_board_video_modes[] = {
{

.name = "some_lcd_name",
/* Pixel clock, porches, etc */

},
};

Note that the pixel clock value is in pico-seconds. You can use the KHZ2PICOS
macro to convert the pixel clock value. Most other values are in pixel clocks. See
Documentation/fb/framebuffer.rst for further details.

The ep93xxfb_mach_info structure for your board should look like the following:

static struct ep93xxfb_mach_info some_board_fb_info = {
.num_modes = ARRAY_SIZE(some_board_video_modes),
.modes = some_board_video_modes,
.default_mode = &some_board_video_modes[0],
.bpp = 16,

};

The framebuffer device can be registered by adding the following to your board
initialisation function:

ep93xx_register_fb(&some_board_fb_info);

21

Linux Fb Documentation

22 Chapter 8. Driver for EP93xx LCD controller

CHAPTER

NINE

VIDEO ATTRIBUTE FLAGS

The ep93xxfb_mach_info structure has a flags field which can be used to configure
the controller. The video attributes flags are fully documented in section 7 of the
EP93xx users’guide. The following flags are available:

EP93XXFB_PCLK_FALLINGClock data on the falling edge of the pixel clock. The de-
fault is to clock data on the rising edge.

EP93XXFB_SYNC_BLANK_HIGHBlank signal is active high. By default the blank signal is
active low.

EP93XXFB_SYNC_HORIZ_HIGHHorizontal sync is active high. By default the horizontal
sync is active low.

EP93XXFB_SYNC_VERT_HIGHVertical sync is active high. By default the vertical sync is
active high.

The physical address of the framebuffer can be controlled using the following flags:

EP93XXFB_USE_SDCSN0Use SDCSn[0] for the framebuffer. This is the default
setting.

EP93XXFB_USE_SDCSN1Use SDCSn[1] for the framebuffer.
EP93XXFB_USE_SDCSN2Use SDCSn[2] for the framebuffer.
EP93XXFB_USE_SDCSN3Use SDCSn[3] for the framebuffer.

23

Linux Fb Documentation

24 Chapter 9. Video Attribute Flags

CHAPTER

TEN

PLATFORM CALLBACKS

The EP93xx framebuffer driver supports three optional platform callbacks: setup,
teardown and blank. The setup and teardown functions are called when the frame-
buffer driver is installed and removed respectively. The blank function is called
whenever the display is blanked or unblanked.

The setup and teardown devices pass the platform_device structure as an argu-
ment. The fb_info and ep93xxfb_mach_info structures can be obtained as follows:

static int some_board_fb_setup(struct platform_device *pdev)
{

struct ep93xxfb_mach_info *mach_info = pdev->dev.platform_data;
struct fb_info *fb_info = platform_get_drvdata(pdev);

/* Board specific framebuffer setup */
}

25

Linux Fb Documentation

26 Chapter 10. Platform callbacks

CHAPTER

ELEVEN

SETTING THE VIDEO MODE

The video mode is set using the following syntax:

video=XRESxYRES[-BPP][@REFRESH]

If the EP93xx video driver is built-in then the video mode is set on the Linux kernel
command line, for example:

video=ep93xx-fb:800x600-16@60

If the EP93xx video driver is built as a module then the video mode is set when the
module is installed:

modprobe ep93xx-fb video=320x240

27

Linux Fb Documentation

28 Chapter 11. Setting the video mode

CHAPTER

TWELVE

SCREENPAGE BUG

At least on the EP9315 there is a silicon bug which causes bit 27 of the VIDSCRN-
PAGE (framebuffer physical offset) to be tied low. There is an unofficial errata for
this bug at:

http://marc.info/?l=linux-arm-kernel&m=110061245502000&w=2

By default the EP93xx framebuffer driver checks if the allocated physical address
has bit 27 set. If it does, then the memory is freed and an error is returned. The
check can be disabled by adding the following option when loading the driver:

ep93xx-fb.check_screenpage_bug=0

In some cases it may be possible to reconfigure your SDRAM layout to avoid this
bug. See section 13 of the EP93xx users’guide for details.

29

Linux Fb Documentation

30 Chapter 12. Screenpage bug

CHAPTER

THIRTEEN

THE FRAMEBUFFER CONSOLE

The framebuffer console (fbcon), as its name implies, is a text console running on
top of the framebuffer device. It has the functionality of any standard text console
driver, such as the VGA console, with the added features that can be attributed to
the graphical nature of the framebuffer.

In the x86 architecture, the framebuffer console is optional, and some even treat
it as a toy. For other architectures, it is the only available display device, text or
graphical.

What are the features of fbcon? The framebuffer console supports high resolu-
tions, varying font types, display rotation, primitive multihead, etc. Theoretically,
multi-colored fonts, blending, aliasing, and any feature made available by the un-
derlying graphics card are also possible.

13.1 A. Configuration

The framebuffer console can be enabled by using your favorite kernel configura-
tion tool. It is under Device Drivers->Graphics Support->Frame buffer Devices-
>Console display driver support->Framebuffer Console Support. Select ‘y’to
compile support statically or ‘m’for module support. The module will be fbcon.
In order for fbcon to activate, at least one framebuffer driver is required, so choose
from any of the numerous drivers available. For x86 systems, they almost univer-
sally have VGA cards, so vga16fb and vesafb will always be available. However,
using a chipset-specific driver will give you more speed and features, such as the
ability to change the video mode dynamically.

To display the penguin logo, choose any logo available in Graphics support-
>Bootup logo.

Also, you will need to select at least one compiled-in font, but if you don’t do
anything, the kernel configuration tool will select one for you, usually an 8x16
font.

GOTCHA: A common bug report is enabling the framebuffer without enabling the
framebuffer console. Depending on the driver, you may get a blanked or garbled
display, but the system still boots to completion. If you are fortunate to have a
driver that does not alter the graphics chip, then you will still get a VGA console.

31

Linux Fb Documentation

13.2 B. Loading

Possible scenarios:

1. Driver and fbcon are compiled statically

Usually, fbcon will automatically take over your console. The notable
exception is vesafb. It needs to be explicitly activated with the vga=
boot option parameter.

2. Driver is compiled statically, fbcon is compiled as a module

Depending on the driver, you either get a standard console, or a gar-
bled display, as mentioned above. To get a framebuffer console, do
a ‘modprobe fbcon’.

3. Driver is compiled as a module, fbcon is compiled statically

You get your standard console. Once the driver is loaded with‘mod-
probe xxxfb’, fbcon automatically takes over the console with the
possible exception of using the fbcon=map:n option. See below.

4. Driver and fbcon are compiled as a module.

You can load them in any order. Once both are loaded, fbcon will
take over the console.

C. Boot options

The framebuffer console has several, largely unknown, boot options
that can change its behavior.

1. fbcon=font:<name>

Select the initial font to use. The value ‘name’can be any of
the compiled-in fonts: 10x18, 6x10, 7x14, Acorn8x8, MINI4x6,
PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, TER16x32,
VGA8x16, VGA8x8.

Note, not all drivers can handle font with widths not divisible by 8,
such as vga16fb.

2. fbcon=scrollback:<value>[k]

The scrollback buffer is memory that is used to preserve display con-
tents that has already scrolled past your view. This is accessed by
using the Shift-PageUp key combination. The value‘value’is any in-
teger. It defaults to 32KB. The‘k’suffix is optional, and will multiply
the ‘value’by 1024.

3. fbcon=map:<0123>

This is an interesting option. It tells which driver gets mapped to
which console. The value ‘0123’is a sequence that gets repeated
until the total length is 64 which is the number of consoles avail-
able. In the above example, it is expanded to 012301230123⋯and
the mapping will be:

32 Chapter 13. The Framebuffer Console

Linux Fb Documentation

tty | 1 2 3 4 5 6 7 8 9 ...
fb | 0 1 2 3 0 1 2 3 0 ...

('cat /proc/fb' should tell you what the fb numbers are)

One side effect that may be useful is using a map value that exceeds
the number of loaded fb drivers. For example, if only one driver is
available, fb0, adding fbcon=map:1 tells fbcon not to take over the
console.

Later on, when you want to map the console the to the framebuffer
device, you can use the con2fbmap utility.

4. fbcon=vc:<n1>-<n2>

This option tells fbcon to take over only a range of consoles as speci-
fied by the values‘n1’and‘n2’. The rest of the consoles outside the
given range will still be controlled by the standard console driver.

NOTE: For x86 machines, the standard console is the VGA console
which is typically located on the same video card. Thus, the consoles
that are controlled by the VGA console will be garbled.

5. fbcon=rotate:<n>

This option changes the orientation angle of the console display. The
value ‘n’accepts the following:
• 0 - normal orientation (0 degree)

• 1 - clockwise orientation (90 degrees)

• 2 - upside down orientation (180 degrees)

• 3 - counterclockwise orientation (270 degrees)

The angle can be changed anytime afterwards by ‘echoing’
the same numbers to any one of the 2 attributes found in
/sys/class/graphics/fbcon:

• rotate - rotate the display of the active console

• rotate_all - rotate the display of all consoles

Console rotation will only become available if Framebuffer Console
Rotation support is compiled in your kernel.

NOTE: This is purely console rotation. Any other applications that
use the framebuffer will remain at their‘normal’orientation. Actually,
the underlying fb driver is totally ignorant of console rotation.

6. fbcon=margin:<color>

This option specifies the color of the margins. The margins are the
leftover area at the right and the bottom of the screen that are not
used by text. By default, this area will be black. The ‘color’value
is an integer number that depends on the framebuffer driver being
used.

7. fbcon=nodefer

13.2. B. Loading 33

Linux Fb Documentation

If the kernel is compiled with deferred fbcon takeover sup-
port, normally the framebuffer contents, left in place by the
firmware/bootloader, will be preserved until there actually is some
text is output to the console. This option causes fbcon to bind imme-
diately to the fbdev device.

8. fbcon=logo-pos:<location>

The only possible‘location’is‘center’(without quotes), and when
given, the bootup logo is moved from the default top-left corner lo-
cation to the center of the framebuffer. If more than one logo is
displayed due to multiple CPUs, the collected line of logos is moved
as a whole.

9. fbcon=logo-count:<n>

The value‘n’overrides the number of bootup logos. 0 disables the
logo, and -1 gives the default which is the number of online CPUs.

C. Attaching, Detaching and Unloading

Before going on to how to attach, detach and unload the framebuffer console, an
illustration of the dependencies may help.

The console layer, as with most subsystems, needs a driver that interfaces with
the hardware. Thus, in a VGA console:

console ---> VGA driver ---> hardware.

Assuming the VGA driver can be unloaded, one must first unbind the VGA driver
from the console layer before unloading the driver. The VGA driver cannot be
unloaded if it is still bound to the console layer. (See Documentation/driver-
api/console.rst for more information).

This is more complicated in the case of the framebuffer console (fbcon), because
fbcon is an intermediate layer between the console and the drivers:

console ---> fbcon ---> fbdev drivers ---> hardware

The fbdev drivers cannot be unloaded if bound to fbcon, and fbcon cannot be un-
loaded if it’s bound to the console layer.
So to unload the fbdev drivers, one must first unbind fbcon from the console, then
unbind the fbdev drivers from fbcon. Fortunately, unbinding fbcon from the con-
sole layer will automatically unbind framebuffer drivers from fbcon. Thus, there
is no need to explicitly unbind the fbdev drivers from fbcon.

So, how do we unbind fbcon from the console? Part of the answer is in
Documentation/driver-api/console.rst. To summarize:

Echo a value to the bind file that represents the framebuffer console driver. So
assuming vtcon1 represents fbcon, then:

echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to
console layer

echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from
console layer

34 Chapter 13. The Framebuffer Console

Linux Fb Documentation

If fbcon is detached from the console layer, your boot console driver (which is
usually VGA text mode) will take over. A few drivers (rivafb and i810fb) will restore
VGA text mode for you. With the rest, before detaching fbcon, you must take a few
additional steps to make sure that your VGA text mode is restored properly. The
following is one of the several methods that you can do:

1. Download or install vbetool. This utility is included with most distributions
nowadays, and is usually part of the suspend/resume tool.

2. In your kernel configuration, ensure that CON-
FIG_FRAMEBUFFER_CONSOLE is set to ‘y’or ‘m’. Enable one or
more of your favorite framebuffer drivers.

3. Boot into text mode and as root run:

vbetool vbestate save > <vga state file>

The above command saves the register contents of your graphics hardware
to <vga state file>. You need to do this step only once as the state file can be
reused.

4. If fbcon is compiled as a module, load fbcon by doing:

modprobe fbcon

5. Now to detach fbcon:

vbetool vbestate restore < <vga state file> && \
echo 0 > /sys/class/vtconsole/vtcon1/bind

6. That’s it, you’re back to VGA mode. And if you compiled fbcon as a module,
you can unload it by ‘rmmod fbcon’.

7. To reattach fbcon:

echo 1 > /sys/class/vtconsole/vtcon1/bind

8. Once fbcon is unbound, all drivers registered to the system will also become un-
bound. This means that fbcon and individual framebuffer drivers can be unloaded
or reloaded at will. Reloading the drivers or fbcon will automatically bind the con-
sole, fbcon and the drivers together. Unloading all the drivers without unloading
fbcon will make it impossible for the console to bind fbcon.

13.3 Notes for vesafb users:

Unfortunately, if your bootline includes a vga=xxx parameter that sets the hard-
ware in graphics mode, such as when loading vesafb, vgacon will not load. Instead,
vgacon will replace the default boot console with dummycon, and you won’t get
any display after detaching fbcon. Your machine is still alive, so you can reattach
vesafb. However, to reattach vesafb, you need to do one of the following:

Variation 1:

a. Before detaching fbcon, do:

13.3. Notes for vesafb users: 35

Linux Fb Documentation

vbetool vbemode save > <vesa state file> # do once for each vesafb␣
↪→mode,

the file can be reused

b. Detach fbcon as in step 5.

c. Attach fbcon:

vbetool vbestate restore < <vesa state file> && \
echo 1 > /sys/class/vtconsole/vtcon1/bind

Variation 2:

a. Before detaching fbcon, do:

echo <ID> > /sys/class/tty/console/bind

vbetool vbemode get

b. Take note of the mode number

b. Detach fbcon as in step 5.

c. Attach fbcon:

vbetool vbemode set <mode number> && \
echo 1 > /sys/class/vtconsole/vtcon1/bind

13.4 Samples:

Here are 2 sample bash scripts that you can use to bind or unbind the framebuffer
console driver if you are on an X86 box:

#!/bin/bash
Unbind fbcon

Change this to where your actual vgastate file is located
Or Use VGASTATE=$1 to indicate the state file at runtime
VGASTATE=/tmp/vgastate

path to vbetool
VBETOOL=/usr/local/bin

for ((i = 0; i < 16; i++))
do

if test -x /sys/class/vtconsole/vtcon$i; then
if [`cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer

↪→"` \
= 1]; then

if test -x $VBETOOL/vbetool; then
echo Unbinding vtcon$i
$VBETOOL/vbetool vbestate restore < $VGASTATE
echo 0 > /sys/class/vtconsole/vtcon$i/bind

fi
(continues on next page)

36 Chapter 13. The Framebuffer Console

Linux Fb Documentation

(continued from previous page)
fi

fi
done

#!/bin/bash
Bind fbcon

for ((i = 0; i < 16; i++))
do

if test -x /sys/class/vtconsole/vtcon$i; then
if [`cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer

↪→"` \
= 1]; then

echo Unbinding vtcon$i
echo 1 > /sys/class/vtconsole/vtcon$i/bind

fi
fi

done

Antonino Daplas <adaplas@pol.net>

13.4. Samples: 37

mailto:adaplas@pol.net

Linux Fb Documentation

38 Chapter 13. The Framebuffer Console

CHAPTER

FOURTEEN

THE FRAME BUFFER DEVICE

Last revised: May 10, 2001

14.1 0. Introduction

The frame buffer device provides an abstraction for the graphics hardware. It rep-
resents the frame buffer of some video hardware and allows application software
to access the graphics hardware through a well-defined interface, so the software
doesn’t need to know anything about the low-level (hardware register) stuff.
The device is accessed through special device nodes, usually located in the /dev
directory, i.e. /dev/fb*.

14.2 1. User’s View of /dev/fb*

From the user’s point of view, the frame buffer device looks just like any other
device in /dev. It’s a character device using major 29; the minor specifies the
frame buffer number.

By convention, the following device nodes are used (numbers indicate the device
minor numbers):

0 = /dev/fb0 First frame buffer
1 = /dev/fb1 Second frame buffer

...
31 = /dev/fb31 32nd frame buffer

For backwards compatibility, you may want to create the following symbolic links:

/dev/fb0current -> fb0
/dev/fb1current -> fb1

and so on⋯
The frame buffer devices are also normal memory devices, this means, you can
read and write their contents. You can, for example, make a screen snapshot by:

cp /dev/fb0 myfile

39

Linux Fb Documentation

There also can be more than one frame buffer at a time, e.g. if you have a graphics
card in addition to the built-in hardware. The corresponding frame buffer devices
(/dev/fb0 and /dev/fb1 etc.) work independently.

Application software that uses the frame buffer device (e.g. the X server) will use
/dev/fb0 by default (older software uses /dev/fb0current). You can specify an alter-
native frame buffer device by setting the environment variable $FRAMEBUFFER
to the path name of a frame buffer device, e.g. (for sh/bash users):

export FRAMEBUFFER=/dev/fb1

or (for csh users):

setenv FRAMEBUFFER /dev/fb1

After this the X server will use the second frame buffer.

14.3 2. Programmer’s View of /dev/fb*

As you already know, a frame buffer device is a memory device like /dev/mem and
it has the same features. You can read it, write it, seek to some location in it and
mmap() it (the main usage). The difference is just that the memory that appears
in the special file is not the whole memory, but the frame buffer of some video
hardware.

/dev/fb* also allows several ioctls on it, by which lots of information about the
hardware can be queried and set. The color map handling works via ioctls, too.
Look into <linux/fb.h> for more information on what ioctls exist and on which data
structures they work. Here’s just a brief overview:
• You can request unchangeable information about the hardware, like name,
organization of the screen memory (planes, packed pixels, ⋯) and address
and length of the screen memory.

• You can request and change variable information about the hardware, like vis-
ible and virtual geometry, depth, color map format, timing, and so on. If you
try to change that information, the driver maybe will round up some values
to meet the hardware’s capabilities (or return EINVAL if that isn’t possible).

• You can get and set parts of the color map. Communication is done with 16
bits per color part (red, green, blue, transparency) to support all existing
hardware. The driver does all the computations needed to apply it to the
hardware (round it down to less bits, maybe throw away transparency).

All this hardware abstraction makes the implementation of application programs
easier and more portable. E.g. the X server works completely on /dev/fb* and
thus doesn’t need to know, for example, how the color registers of the concrete
hardware are organized. XF68_FBDev is a general X server for bitmapped, un-
accelerated video hardware. The only thing that has to be built into application
programs is the screen organization (bitplanes or chunky pixels etc.), because it
works on the frame buffer image data directly.

For the future it is planned that frame buffer drivers for graphics cards and the
like can be implemented as kernel modules that are loaded at runtime. Such a

40 Chapter 14. The Frame Buffer Device

Linux Fb Documentation

driver just has to call register_framebuffer() and supply some functions. Writing
and distributing such drivers independently from the kernel will save much trouble
⋯

14.4 3. Frame Buffer Resolution Maintenance

Frame buffer resolutions are maintained using the utility fbset. It can change the
video mode properties of a frame buffer device. Its main usage is to change the
current video mode, e.g. during boot up in one of your /etc/rc.* or /etc/init.d/* files.

Fbset uses a video mode database stored in a configuration file, so you can easily
add your own modes and refer to them with a simple identifier.

14.5 4. The X Server

The X server (XF68_FBDev) is the most notable application program for the frame
buffer device. Starting with XFree86 release 3.2, the X server is part of XFree86
and has 2 modes:

• If the Display subsection for the fbdev driver in the /etc/XF86Config file con-
tains a:

Modes "default"

line, the X server will use the scheme discussed above, i.e. it will start up
in the resolution determined by /dev/fb0 (or $FRAMEBUFFER, if set). You
still have to specify the color depth (using the Depth keyword) and virtual
resolution (using the Virtual keyword) though. This is the default for the
configuration file supplied with XFree86. It’s the most simple configuration,
but it has some limitations.

• Therefore it’s also possible to specify resolutions in the /etc/XF86Config
file. This allows for on-the-fly resolution switching while retaining the
same virtual desktop size. The frame buffer device that’s used is still
/dev/fb0current (or $FRAMEBUFFER), but the available resolutions are de-
fined by /etc/XF86Config now. The disadvantage is that you have to specify
the timings in a different format (but fbset -x may help).

To tune a video mode, you can use fbset or xvidtune. Note that xvidtune doesn’t
work 100% with XF68_FBDev: the reported clock values are always incorrect.

14.4. 3. Frame Buffer Resolution Maintenance 41

Linux Fb Documentation

14.6 5. Video Mode Timings

A monitor draws an image on the screen by using an electron beam (3 electron
beams for color models, 1 electron beam for monochrome monitors). The front of
the screen is covered by a pattern of colored phosphors (pixels). If a phosphor is
hit by an electron, it emits a photon and thus becomes visible.

The electron beam draws horizontal lines (scanlines) from left to right, and from
the top to the bottom of the screen. By modifying the intensity of the electron
beam, pixels with various colors and intensities can be shown.

After each scanline the electron beam has to move back to the left side of the
screen and to the next line: this is called the horizontal retrace. After the whole
screen (frame) was painted, the beam moves back to the upper left corner: this
is called the vertical retrace. During both the horizontal and vertical retrace, the
electron beam is turned off (blanked).

The speed at which the electron beam paints the pixels is determined by the dot-
clock in the graphics board. For a dotclock of e.g. 28.37516 MHz (millions of
cycles per second), each pixel is 35242 ps (picoseconds) long:

1/(28.37516E6 Hz) = 35.242E-9 s

If the screen resolution is 640x480, it will take:

640*35.242E-9 s = 22.555E-6 s

to paint the 640 (xres) pixels on one scanline. But the horizontal retrace also takes
time (e.g. 272 pixels), so a full scanline takes:

(640+272)*35.242E-9 s = 32.141E-6 s

We’ll say that the horizontal scanrate is about 31 kHz:
1/(32.141E-6 s) = 31.113E3 Hz

A full screen counts 480 (yres) lines, but we have to consider the vertical retrace
too (e.g. 49 lines). So a full screen will take:

(480+49)*32.141E-6 s = 17.002E-3 s

The vertical scanrate is about 59 Hz:

1/(17.002E-3 s) = 58.815 Hz

This means the screen data is refreshed about 59 times per second. To have a
stable picture without visible flicker, VESA recommends a vertical scanrate of at
least 72 Hz. But the perceived flicker is very human dependent: some people can
use 50 Hz without any trouble, while I’ll notice if it’s less than 80 Hz.
Since the monitor doesn’t know when a new scanline starts, the graphics board
will supply a synchronization pulse (horizontal sync or hsync) for each scanline.
Similarly it supplies a synchronization pulse (vertical sync or vsync) for each new
frame. The position of the image on the screen is influenced by the moments at
which the synchronization pulses occur.

42 Chapter 14. The Frame Buffer Device

Linux Fb Documentation

The following picture summarizes all timings. The horizontal retrace time is the
sum of the left margin, the right margin and the hsync length, while the vertical
retrace time is the sum of the uppermargin, the lowermargin and the vsync length:

+----------+---+----------+------
↪→-+
| | ↑ | | ␣
↪→ |
| | |upper_margin | | ␣
↪→ |
| | ↓ | | ␣
↪→ |
+----------###----------+------
↪→-+
| # ↑ # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| left # | # right |␣
↪→hsync |
| margin # | xres # margin | len␣
↪→ |
|<-------->#<---------------+--------------------------->#<-------->|<-----
↪→>|
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # |yres # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # | # | ␣
↪→ |
| # ↓ # | ␣
↪→ |
+----------###----------+------
↪→-+
| | ↑ | | ␣
↪→ | (continues on next page)

14.6. 5. Video Mode Timings 43

Linux Fb Documentation

(continued from previous page)
| | |lower_margin | | ␣
↪→ |
| | ↓ | | ␣
↪→ |
+----------+---+----------+------
↪→-+
| | ↑ | | ␣
↪→ |
| | |vsync_len | | ␣
↪→ |
| | ↓ | | ␣
↪→ |
+----------+---+----------+------
↪→-+

The frame buffer device expects all horizontal timings in number of dotclocks (in
picoseconds, 1E-12 s), and vertical timings in number of scanlines.

14.7 6. Converting XFree86 timing values info frame
buffer device timings

An XFree86 mode line consists of the following fields:

"800x600" 50 800 856 976 1040 600 637 643 666
< name > DCF HR SH1 SH2 HFL VR SV1 SV2 VFL

The frame buffer device uses the following fields:

• pixclock: pixel clock in ps (pico seconds)

• left_margin: time from sync to picture

• right_margin: time from picture to sync

• upper_margin: time from sync to picture

• lower_margin: time from picture to sync

• hsync_len: length of horizontal sync

• vsync_len: length of vertical sync

1) Pixelclock:

xfree: in MHz

fb: in picoseconds (ps)

pixclock = 1000000 / DCF

2) horizontal timings:

left_margin = HFL - SH2

right_margin = SH1 - HR

hsync_len = SH2 - SH1

44 Chapter 14. The Frame Buffer Device

Linux Fb Documentation

3) vertical timings:

upper_margin = VFL - SV2

lower_margin = SV1 - VR

vsync_len = SV2 - SV1

Good examples for VESA timings can be found in the XFree86 source tree, under
“xc/programs/Xserver/hw/xfree86/doc/modeDB.txt”.

14.8 7. References

For more specific information about the frame buffer device and its applications,
please refer to the Linux-fbdev website:

http://linux-fbdev.sourceforge.net/

and to the following documentation:

• The manual pages for fbset: fbset(8), fb.modes(5)

• The manual pages for XFree86: XF68_FBDev(1), XF86Config(4/5)

• The mighty kernel sources:

– linux/drivers/video/
– linux/include/linux/fb.h
– linux/include/video/

14.9 8. Mailing list

There is a frame buffer device related mailing list at kernel.org: linux-
fbdev@vger.kernel.org.

Point your web browser to http://sourceforge.net/projects/linux-fbdev/ for sub-
scription information and archive browsing.

14.10 9. Downloading

All necessary files can be found at

ftp://ftp.uni-erlangen.de/pub/Linux/LOCAL/680x0/

and on its mirrors.

The latest version of fbset can be found at

http://www.linux-fbdev.org/

14.8. 7. References 45

http://linux-fbdev.sourceforge.net/
mailto:linux-fbdev@vger.kernel.org
mailto:linux-fbdev@vger.kernel.org
http://sourceforge.net/projects/linux-fbdev/
ftp://ftp.uni-erlangen.de/pub/Linux/LOCAL/680x0/
http://www.linux-fbdev.org/

Linux Fb Documentation

14.11 10. Credits

This readme was written by Geert Uytterhoeven, partly based on the original X-
framebuffer.README by Roman Hodek and Martin Schaller. Section 6 was pro-
vided by Frank Neumann.

The frame buffer device abstraction was designed by Martin Schaller.

46 Chapter 14. The Frame Buffer Device

CHAPTER

FIFTEEN

WHAT IS GXFB?

This is a graphics framebuffer driver for AMD Geode GX2 based processors.

Advantages:

• No need to use AMD’s VSA code (or other VESA emulation layer) in the BIOS.
• It provides a nice large console (128 cols + 48 lines with 1024x768) without
using tiny, unreadable fonts.

• You can run XF68_FBDev on top of /dev/fb0

• Most important: boot logo :-)

Disadvantages:

• graphic mode is slower than text mode⋯

15.1 How to use it?

Switching modes is done using gxfb.mode_option=<resolution>⋯boot parameter
or using fbset program.

See Documentation/fb/modedb.rst for more information on modedb resolutions.

15.2 X11

XF68_FBDev should generally work fine, but it is non-accelerated.

15.3 Configuration

You can pass kernel command line options to gxfb with gxfb.<option>. For exam-
ple, gxfb.mode_option=800x600@75. Accepted options:

mode_optionspecify the video mode. Of the form <x>x<y>[-
<bpp>][@<refresh>]

vram size of video ram (normally auto-detected)
vt_switch enable vt switching during suspend/resume. The vt switch is slow,

but harmless.

47

mailto:gxfb.mode_option=800x600@75

Linux Fb Documentation

Andres Salomon <dilinger@debian.org>

48 Chapter 15. What is gxfb?

mailto:dilinger@debian.org

CHAPTER

SIXTEEN

INTEL 810/815 FRAMEBUFFER DRIVER

Tony Daplas <adaplas@pol.net>

http://i810fb.sourceforge.net

March 17, 2002

First Released: July 2001 Last Update: September 12, 2005

16.1 A. Introduction

This is a framebuffer driver for various Intel 810/815 compatible graph-
ics devices. These include:

• Intel 810

• Intel 810E

• Intel 810-DC100

• Intel 815 Internal graphics only, 100Mhz FSB

• Intel 815 Internal graphics only

• Intel 815 Internal graphics and AGP

16.2 B. Features

• Choice of using Discrete Video Timings, VESA Generalized Timing Formula,
or a framebuffer specific database to set the video mode

• Supports a variable range of horizontal and vertical resolution and vertical
refresh rates if the VESA Generalized Timing Formula is enabled.

• Supports color depths of 8, 16, 24 and 32 bits per pixel

• Supports pseudocolor, directcolor, or truecolor visuals

• Full and optimized hardware acceleration at 8, 16 and 24 bpp

• Robust video state save and restore

• MTRR support

• Utilizes user-entered monitor specifications to automatically calculate re-
quired video mode parameters.

49

mailto:adaplas@pol.net
http://i810fb.sourceforge.net

Linux Fb Documentation

• Can concurrently run with xfree86 running with native i810 drivers

• Hardware Cursor Support

• Supports EDID probing either by DDC/I2C or through the BIOS

16.3 C. List of available options

a. “video=i810fb” enables the i810 driver

Recommendation: required

b. “xres:<value>” select horizontal resolution in pixels. (This parameter will
be ignored if ‘mode_option’is specified. See ‘o’below).
Recommendation: user preference (default = 640)

c. “yres:<value>” select vertical resolution in scanlines. If Discrete Video
Timings is enabled, this will be ignored and computed as 3*xres/4. (This
parameter will be ignored if‘mode_option’is specified. See‘o’below)
Recommendation: user preference (default = 480)

d. “vyres:<value>” select virtual vertical resolution in scanlines. If (0) or
none is specified, this will be computed against maximum available mem-
ory.

Recommendation: do not set (default = 480)

e. “vram:<value>” select amount of system RAM in MB to allocate for the
video memory

Recommendation: 1 - 4 MB. (default = 4)

f. “bpp:<value>” select desired pixel depth

Recommendation: 8 (default = 8)

g. “hsync1/hsync2:<value>” select the minimum and maximum Horizontal
Sync Frequency of the monitor in kHz. If using a fixed frequency monitor,
hsync1 must be equal to hsync2. If EDID probing is successful, these will
be ignored and values will be taken from the EDID block.

Recommendation: check monitor manual for correct values (default =
29/30)

h. “vsync1/vsync2:<value>” select the minimum and maximum Vertical
Sync Frequency of the monitor in Hz. You can also use this option to
lock your monitor’s refresh rate. If EDID probing is successful, these
will be ignored and values will be taken from the EDID block.

Recommendation: check monitor manual for correct values (default =
60/60)

IMPORTANT: If you need to clamp your timings, try to give some lee-
way for computational errors (over/underflows). Example: if using
vsync1/vsync2 = 60/60, make sure hsync1/hsync2 has at least a 1 unit
difference, and vice versa.

50 Chapter 16. Intel 810/815 Framebuffer driver

Linux Fb Documentation

i. “voffset:<value>” select at what offset in MB of the logical memory to al-
locate the framebuffer memory. The intent is to avoid the memory blocks
used by standard graphics applications (XFree86). The default offset (16
MB for a 64 MB aperture, 8 MB for a 32 MB aperture) will avoid XFree86’
s usage and allows up to 7 MB/15 MB of framebuffer memory. Depend-
ing on your usage, adjust the value up or down (0 for maximum usage,
31/63 MB for the least amount). Note, an arbitrary setting may conflict
with XFree86.

Recommendation: do not set (default = 8 or 16 MB)

j. “accel” enable text acceleration. This can be enabled/reenabled anytime
by using ‘fbset -accel true/false’.
Recommendation: enable (default = not set)

k. “mtrr” enable MTRR. This allows data transfers to the framebuffer mem-
ory to occur in bursts which can significantly increase performance. Not
very helpful with the i810/i815 because of ‘shared memory’.
Recommendation: do not set (default = not set)

l. “extvga” if specified, secondary/external VGA output will always be en-
abled. Useful if the BIOS turns off the VGA port when no monitor is
attached. The external VGA monitor can then be attached without re-
booting.

Recommendation: do not set (default = not set)

m. “sync” Forces the hardware engine to do a“sync”or wait for the hardware
to finish before starting another instruction. This will produce a more
stable setup, but will be slower.

Recommendation: do not set (default = not set)

n. “dcolor” Use directcolor visual instead of truecolor for pixel depths
greater than 8 bpp. Useful for color tuning, such as gamma control.

Recommendation: do not set (default = not set)

o. <xres>x<yres>[-<bpp>][@<refresh>] The driver will now accept speci-
fication of boot mode option. If this is specified, the options ‘xres’and
‘yres’will be ignored. See Documentation/fb/modedb.rst for usage.

16.4 D. Kernel booting

Separate each option/option-pair by commas (,) and the option from its value with
a colon (:) as in the following:

video=i810fb:option1,option2:value2

16.4. D. Kernel booting 51

Linux Fb Documentation

16.4.1 Sample Usage

In /etc/lilo.conf, add the line:

append="video=i810fb:vram:2,xres:1024,yres:768,bpp:8,hsync1:30,hsync2:55, \
vsync1:50,vsync2:85,accel,mtrr"

This will initialize the framebuffer to 1024x768 at 8bpp. The framebuffer will use
2 MB of System RAM. MTRR support will be enabled. The refresh rate will be
computed based on the hsync1/hsync2 and vsync1/vsync2 values.

IMPORTANT: You must include hsync1, hsync2, vsync1 and vsync2 to enable
video modes better than 640x480 at 60Hz. HOWEVER, if your chipset/display
combination supports I2C and has an EDID block, you can safely exclude
hsync1, hsync2, vsync1 and vsync2 parameters. These parameters will be
taken from the EDID block.

16.5 E. Module options

The module parameters are essentially similar to the kernel parameters. The main
difference is that you need to include a Boolean value (1 for TRUE, and 0 for FALSE)
for those options which don’t need a value.
Example, to enable MTRR, include “mtrr=1”.

16.5.1 Sample Usage

Using the same setup as described above, load the module like this:

modprobe i810fb vram=2 xres=1024 bpp=8 hsync1=30 hsync2=55 vsync1=50 \
vsync2=85 accel=1 mtrr=1

Or just add the following to a configuration file in /etc/modprobe.d/:

options i810fb vram=2 xres=1024 bpp=16 hsync1=30 hsync2=55 vsync1=50 \
vsync2=85 accel=1 mtrr=1

and just do a:

modprobe i810fb

16.6 F. Setup

a. Do your usual method of configuring the kernel

make menuconfig/xconfig/config

b. Under“Code maturity level options”enable“Prompt for development and/or
incomplete code/drivers”.

c. Enable agpgart support for the Intel 810/815 on-board graphics. This is re-
quired. The option is under “Character Devices”.

52 Chapter 16. Intel 810/815 Framebuffer driver

Linux Fb Documentation

d. Under “Graphics Support”, select “Intel 810/815”either statically or as
a module. Choose “use VESA Generalized Timing Formula”if you need to
maximize the capability of your display. To be on the safe side, you can leave
this unselected.

e. If you want support for DDC/I2C probing (Plug and Play Displays), set‘Enable
DDC Support’to‘y’. To make this option appear, set‘use VESA Generalized
Timing Formula’to ‘y’.

f. If you want a framebuffer console, enable it under “Console Drivers”.
g. Compile your kernel.

h. Load the driver as described in sections D and E.

i. Try the DirectFB (http://www.directfb.org) + the i810 gfxdriver patch to see
the chipset in action (or inaction :-).

16.7 G. Acknowledgment:

1. Geert Uytterhoeven - his excellent howto and the virtual framebuffer driver
code made this possible.

2. Jeff Hartmann for his agpgart code.

3. The X developers. Insights were provided just by reading the XFree86 source
code.

4. Intel(c). For this value-oriented chipset driver and for providing documenta-
tion.

5. Matt Sottek. His inputs and ideas helped in making some optimizations pos-
sible.

16.8 H. Home Page:

A more complete, and probably updated information is provided at http:
//i810fb.sourceforge.net.

Tony

16.7. G. Acknowledgment: 53

http://www.directfb.org
http://i810fb.sourceforge.net
http://i810fb.sourceforge.net

Linux Fb Documentation

54 Chapter 16. Intel 810/815 Framebuffer driver

CHAPTER

SEVENTEEN

INTEL 830M/845G/852GM/855GM/865G/915G/945G
FRAMEBUFFER DRIVER

17.1 A. Introduction

This is a framebuffer driver for various Intel 8xx/9xx compatible graphics devices.
These would include:

• Intel 830M

• Intel 845G

• Intel 852GM

• Intel 855GM

• Intel 865G

• Intel 915G

• Intel 915GM

• Intel 945G

• Intel 945GM

• Intel 945GME

• Intel 965G

• Intel 965GM

17.2 B. List of available options

a. “video=intelfb” enables the intelfb driver

Recommendation: required

b. “mode=<xres>x<yres>[-<bpp>][@<refresh>]” select mode

Recommendation: user preference (default = 1024x768-32@70)

c. “vram=<value>” select amount of system RAM inMB to allocate
for the video memory if not enough RAM was already allocated
by the BIOS.

Recommendation: 1 - 4 MB. (default = 4 MB)

55

mailto:1024x768-32@70

Linux Fb Documentation

d. “voffset=<value>” select at what offset in MB of the logical
memory to allocate the framebuffer memory. The intent is to
avoid the memory blocks used by standard graphics applications
(XFree86). Depending on your usage, adjust the value up or
down, (0 for maximum usage, 63/127 MB for the least amount).
Note, an arbitrary setting may conflict with XFree86.

Recommendation: do not set (default = 48 MB)

e. “accel” enable text acceleration. This can be enabled/reenabled
anytime by using ‘fbset -accel true/false’.
Recommendation: enable (default = set)

f. “hwcursor” enable cursor acceleration.

Recommendation: enable (default = set)

g. “mtrr” enable MTRR. This allows data transfers to the frame-
buffer memory to occur in bursts which can significantly in-
crease performance. Not very helpful with the intel chips be-
cause of ‘shared memory’.
Recommendation: set (default = set)

h. “fixed” disable mode switching.

Recommendation: do not set (default = not set)

The binary parameters can be unset with a“no”prefix, example“noaccel”
. The default parameter (not named) is the mode.

17.3 C. Kernel booting

Separate each option/option-pair by commas (,) and the option from its value with
an equals sign (=) as in the following:

video=intelfb:option1,option2=value2

17.3.1 Sample Usage

In /etc/lilo.conf, add the line:

append="video=intelfb:mode=800x600-32@75,accel,hwcursor,vram=8"

This will initialize the framebuffer to 800x600 at 32bpp and 75Hz. The framebuffer
will use 8 MB of System RAM. hw acceleration of text and cursor will be enabled.

56 Chapter 17. Intel 830M/845G/852GM/855GM/865G/915G/945G
Framebuffer driver

Linux Fb Documentation

17.3.2 Remarks

If setting this parameter doesn’t work (you stay in a 80x25 text-mode), you might
need to set the “vga=<mode>”parameter too - see vesafb.txt in this directory.

17.4 D. Module options

The module parameters are essentially similar to the kernel parameters. The main
difference is that you need to include a Boolean value (1 for TRUE, and 0 for FALSE)
for those options which don’t need a value.
Example, to enable MTRR, include “mtrr=1”.

17.4.1 Sample Usage

Using the same setup as described above, load the module like this:

modprobe intelfb mode=800x600-32@75 vram=8 accel=1 hwcursor=1

Or just add the following to a configuration file in /etc/modprobe.d/:

options intelfb mode=800x600-32@75 vram=8 accel=1 hwcursor=1

and just do a:

modprobe intelfb

17.5 E. Acknowledgment:

1. Geert Uytterhoeven - his excellent howto and the virtual framebuffer driver
code made this possible.

2. Jeff Hartmann for his agpgart code.

3. David Dawes for his original kernel 2.4 code.

4. The X developers. Insights were provided just by reading the XFree86 source
code.

5. Antonino A. Daplas for his inspiring i810fb driver.

6. Andrew Morton for his kernel patches maintenance.

Sylvain

17.4. D. Module options 57

Linux Fb Documentation

58 Chapter 17. Intel 830M/845G/852GM/855GM/865G/915G/945G
Framebuffer driver

CHAPTER

EIGHTEEN

FRAME BUFFER DEVICE INTERNALS

This is a first start for some documentation about frame buffer device internals.

Authors:

• Geert Uytterhoeven <geert@linux-m68k.org>, 21 July 1998

• James Simmons <jsimmons@user.sf.net>, Nov 26 2002

18.1 Structures used by the frame buffer device API

The following structures play a role in the game of frame buffer devices. They are
defined in <linux/fb.h>.

1. Outside the kernel (user space)

• struct fb_fix_screeninfo

Device independent unchangeable information about a frame buffer de-
vice and a specific video mode. This can be obtained using the FBIO-
GET_FSCREENINFO ioctl.

• struct fb_var_screeninfo

Device independent changeable information about a frame buffer de-
vice and a specific video mode. This can be obtained using the FBIO-
GET_VSCREENINFO ioctl, and updated with the FBIOPUT_VSCREENINFO
ioctl. If you want to pan the screen only, you can use the FBIOPAN_DISPLAY
ioctl.

• struct fb_cmap

Device independent colormap information. You can get and set the colormap
using the FBIOGETCMAP and FBIOPUTCMAP ioctls.

2. Inside the kernel

• struct fb_info

Generic information, API and low level information about a specific frame
buffer device instance (slot number, board address, ⋯).

59

mailto:geert@linux-m68k.org
mailto:jsimmons@user.sf.net

Linux Fb Documentation

• struct par

Device dependent information that uniquely defines the video mode for this
particular piece of hardware.

18.2 Visuals used by the frame buffer device API

18.2.1 Monochrome (FB_VISUAL_MONO01 and
FB_VISUAL_MONO10)

Each pixel is either black or white.

18.2.2 Pseudo color (FB_VISUAL_PSEUDOCOLOR and
FB_VISUAL_STATIC_PSEUDOCOLOR)

The whole pixel value is fed through a programmable lookup table that has one
color (including red, green, and blue intensities) for each possible pixel value, and
that color is displayed.

18.2.3 True color (FB_VISUAL_TRUECOLOR)

The pixel value is broken up into red, green, and blue fields.

18.2.4 Direct color (FB_VISUAL_DIRECTCOLOR)

The pixel value is broken up into red, green, and blue fields, each of which are
looked up in separate red, green, and blue lookup tables.

18.2.5 Grayscale displays

Grayscale and static grayscale are special variants of pseudo color and static
pseudo color, where the red, green and blue components are always equal to each
other.

60 Chapter 18. Frame Buffer device internals

CHAPTER

NINETEEN

WHAT IS LXFB?

This is a graphics framebuffer driver for AMD Geode LX based processors.

Advantages:

• No need to use AMD’s VSA code (or other VESA emulation layer) in the BIOS.
• It provides a nice large console (128 cols + 48 lines with 1024x768) without
using tiny, unreadable fonts.

• You can run XF68_FBDev on top of /dev/fb0

• Most important: boot logo :-)

Disadvantages:

• graphic mode is slower than text mode⋯

19.1 How to use it?

Switching modes is done using lxfb.mode_option=<resolution>⋯boot parameter
or using fbset program.

See Documentation/fb/modedb.rst for more information on modedb resolutions.

19.2 X11

XF68_FBDev should generally work fine, but it is non-accelerated.

19.3 Configuration

You can pass kernel command line options to lxfb with lxfb.<option>. For example,
lxfb.mode_option=800x600@75. Accepted options:

mode_optionspecify the video mode. Of the form <x>x<y>[-
<bpp>][@<refresh>]

vram size of video ram (normally auto-detected)
vt_switch enable vt switching during suspend/resume. The vt switch is slow,

but harmless.

61

mailto:lxfb.mode_option=800x600@75

Linux Fb Documentation

Andres Salomon <dilinger@debian.org>

62 Chapter 19. What is lxfb?

mailto:dilinger@debian.org

CHAPTER

TWENTY

WHAT IS MATROXFB?

This is a driver for a graphic framebuffer for Matrox devices on Alpha, Intel and
PPC boxes.

Advantages:

• It provides a nice large console (128 cols + 48 lines with 1024x768) without
using tiny, unreadable fonts.

• You can run XF{68,86}_FBDev or XFree86 fbdev driver on top of /dev/fb0

• Most important: boot logo :-)

Disadvantages:

• graphic mode is slower than text mode⋯but you should not notice if you use
same resolution as you used in textmode.

20.1 How to use it?

Switching modes is done using the video=matroxfb:vesa:⋯boot parameter or us-
ing fbset program.

If you want, for example, enable a resolution of 1280x1024x24bpp you should pass
to the kernel this command line: “video=matroxfb:vesa:0x1BB”.
You should compile in both vgacon (to boot if you remove youMatrox from box) and
matroxfb (for graphics mode). You should not compile-in vesafb unless you have
primary display on non-Matrox VBE2.0 device (see Documentation/fb/vesafb.rst
for details).

Currently supported video modes are (through vesa:⋯interface, PowerMac has [as
addon] compatibility code):

63

Linux Fb Documentation

20.1.1 Graphic modes

bpp 640x400 640x480 768x576 800x600 960x720
4 0x12 0x102
8 0x100 0x101 0x180 0x103 0x188
15 0x110 0x181 0x113 0x189
16 0x111 0x182 0x114 0x18A
24 0x1B2 0x184 0x1B5 0x18C
32 0x112 0x183 0x115 0x18B

20.1.2 Graphic modes (continued)

bpp 1024x768 1152x864 1280x1024 1408x1056 1600x1200
4 0x104 0x106
8 0x105 0x190 0x107 0x198 0x11C
15 0x116 0x191 0x119 0x199 0x11D
16 0x117 0x192 0x11A 0x19A 0x11E
24 0x1B8 0x194 0x1BB 0x19C 0x1BF
32 0x118 0x193 0x11B 0x19B

20.1.3 Text modes

text 640x400 640x480 1056x344 1056x400 1056x480
8x8 0x1C0 0x108 0x10A 0x10B 0x10C
8x16 2, 3, 7 0x109

You can enter these number either hexadecimal (leading 0x) or decimal (0x100 =
256). You can also use value + 512 to achieve compatibility with your old number
passed to vesafb.

Non-listed number can be achieved by more complicated command-line, for exam-
ple 1600x1200x32bpp can be specified by video=matroxfb:vesa:0x11C,depth:32.

20.2 X11

XF{68,86}_FBDev should work just fine, but it is non-accelerated. On non-intel
architectures there are some glitches for 24bpp videomodes. 8, 16 and 32bpp
works fine.

Running another (accelerated) X-Server like XF86_SVGA works too. But (at least)
XFree servers have big troubles in multihead configurations (even on first head,
not even talking about second). Running XFree86 4.x accelerated mga driver is
possible, but you must not enable DRI - if you do, resolution and color depth of
your X desktop must match resolution and color depths of your virtual consoles,
otherwise X will corrupt accelerator settings.

64 Chapter 20. What is matroxfb?

Linux Fb Documentation

20.3 SVGALib

Driver contains SVGALib compatibility code. It is turned on by choosing textual
mode for console. You can do it at boot time by using videomode 2,3,7,0x108-
0x10C or 0x1C0. At runtime, fbset -depth 0 does this work. Unfortunately, after
SVGALib application exits, screen contents is corrupted. Switching to another
console and back fixes it. I hope that it is SVGALib’s problem and not mine, but
I’m not sure.

20.4 Configuration

You can pass kernel command line options to matroxfb with
video=matroxfb:option1,option2:value2,option3 (multiple options should be
separated by comma, values are separated from options by :). Accepted options:

mem:X size of memory (X can be inmegabytes,
kilobytes or bytes) You can only de-
crease value determined by driver be-
cause of it always probe for memory.
Default is to use whole detected mem-
ory usable for on-screen display (i.e.
max. 8 MB).

disabled do not load driver; you can use also off,
but disabled is here too.

enabled load driver, if you have
video=matroxfb:disabled in LILO
configuration, you can override it by
this (you cannot override off). It is
default.

noaccel do not use acceleration engine. It does
not work on Alphas.

accel use acceleration engine. It is default.
nopan create initial consoles with vyres =

yres, thus disabling virtual scrolling.
pan create initial consoles as tall as possi-

ble (vyres = memory/vxres). It is de-
fault.

nopciretry disable PCI retries. It is needed for
some broken chipsets, it is autode-
tected for intel’s 82437. In this case
device does not comply to PCI 2.1
specs (it will not guarantee that every
transaction terminate with success or
retry in 32 PCLK).

pciretry enable PCI retries. It is default, except
for intel’s 82437.

Continued on next page

20.3. SVGALib 65

Linux Fb Documentation

Table 1 – continued from previous page
novga disables VGA I/O ports. It is default if

BIOS did not enable device. You should
not use this option, some boards then
do not restart without power off.

vga preserve state of VGA I/O ports. It is
default. Driver does not enable VGA
I/O if BIOS did not it (it is not safe to
enable it in most cases).

nobios disables BIOS ROM. It is default if
BIOS did not enable BIOS itself. You
should not use this option, some
boards then do not restart without
power off.

bios preserve state of BIOS ROM. It is de-
fault. Driver does not enable BIOS if
BIOS was not enabled before.

noinit tells driver, that devices were already
initialized. You should use it if you
have G100 and/or if driver cannot de-
tect memory, you see strange pattern
on screen and so on. Devices not en-
abled by BIOS are still initialized. It is
default.

init driver initializes every device it knows
about.

Continued on next page

66 Chapter 20. What is matroxfb?

Linux Fb Documentation

Table 1 – continued from previous page
memtype specifies memory type, implies‘init’.

This is valid only for G200 and G400
and has following meaning:

G200:
• 0 -> 2x128Kx32
chips, 2MB onboard,
probably sgram

• 1 -> 2x128Kx32
chips, 4MB onboard,
probably sgram

• 2 -> 2x256Kx32
chips, 4MB onboard,
probably sgram

• 3 -> 2x256Kx32
chips, 8MB onboard,
probably sgram

• 4 -> 2x512Kx16
chips, 8/16MB on-
board, probably
sdram only

• 5 -> same as above
• 6 -> 4x128Kx32
chips, 4MB onboard,
probably sgram

• 7 -> 4x128Kx32
chips, 8MB onboard,
probably sgram

G400:
• 0 -> 2x512Kx16
SDRAM, 16/32MB

• 2x512Kx32 SGRAM,
16/32MB

• 1 -> 2x256Kx32
SGRAM, 8/16MB

• 2 -> 4x128Kx32
SGRAM, 8/16MB

• 3 -> 4x512Kx32
SDRAM, 32MB

• 4 -> 4x256Kx32
SGRAM, 16/32MB

• 5 -> 2x1Mx32
SDRAM, 32MB

• 6 -> reserved
• 7 -> reserved

You should use sdram or sgram param-
eter in addition to memtype parame-
ter.

Continued on next page

20.4. Configuration 67

Linux Fb Documentation

Table 1 – continued from previous page
nomtrr disables write combining on frame

buffer. This slows down driver but
there is reported minor incompatibil-
ity between GUS DMA and XFree un-
der high loads if write combining is en-
abled (sound dropouts).

mtrr enables write combining on frame
buffer. It speeds up video accesses
much. It is default. You must have
MTRR support enabled in kernel and
your CPU must have MTRR (f.e. Pen-
tium II have them).

sgram tells to driver that you have Gxx0 with
SGRAM memory. It has no effect with-
out init.

sdram tells to driver that you have Gxx0 with
SDRAM memory. It is a default.

inv24 change timings parameters for 24bpp
modes on Millennium and Millennium
II. Specify this if you see strange color
shadows around characters.

noinv24 use standard timings. It is the default.
inverse invert colors on screen (for LCD dis-

plays)
noinverse show true colors on screen. It is de-

fault.
dev:X bind driver to device X. Driver num-

bers device from 0 up to N, where de-
vice 0 is first known device found, 1
second and so on. lspci lists devices
in this order. Default is every known
device.

nohwcursor disables hardware cursor (use soft-
ware cursor instead).

hwcursor enables hardware cursor. It is default.
If you are using non-accelerated mode
(noaccel or fbset -accel false), software
cursor is used (except for text mode).

noblink disables cursor blinking. Cursor in text
mode always blinks (hw limitation).

blink enables cursor blinking. It is default.
nofastfont disables fastfont feature. It is default.
fastfont:X enables fastfont feature. X spec-

ifies size of memory reserved
for font data, it must be >=
(fontwidth*fontheight*chars_in_font)/8.
It is faster on Gx00 series, but slower
on older cards.

Continued on next page

68 Chapter 20. What is matroxfb?

Linux Fb Documentation

Table 1 – continued from previous page
grayscale enable grayscale summing. It works

in PSEUDOCOLOR modes (text, 4bpp,
8bpp). In DIRECTCOLOR modes
it is limited to characters displayed
through putc/putcs. Direct accesses to
framebuffer can paint colors.

nograyscale disable grayscale summing. It is de-
fault.

cross4MB enables that pixel line can cross 4MB
boundary. It is default for non-
Millennium.

nocross4MB pixel line must not cross 4MB bound-
ary. It is default for Millennium I or
II, because of these devices have hard-
ware limitations which do not allow
this. But this option is incompatible
with some (if not all yet released) ver-
sions of XF86_FBDev.

dfp enables digital flat panel interface.
This option is incompatible with sec-
ondary (TV) output - if DFP is active, TV
output must be inactive and vice versa.
DFP always uses same timing as pri-
mary (monitor) output.

dfp:X use settings X for digital flat panel in-
terface. X is number from 0 to 0xFF,
and meaning of each individual bit is
described in G400 manual, in descrip-
tion of DAC register 0x1F. For nor-
mal operation you should set all bits to
zero, except lowest bit. This lowest bit
selects who is source of display clocks,
whether G400, or panel. Default value
is now read back from hardware - so
you should specify this value only if you
are also using init parameter.

outputs:XYZ set mapping between CRTC and out-
puts. Each letter can have value
of 0 (for no CRTC), 1 (CRTC1) or 2
(CRTC2), and first letter corresponds
to primary analog output, second let-
ter to the secondary analog output and
third letter to the DVI output. Default
setting is 100 for cards below G400 or
G400 without DFP, 101 for G400 with
DFP, and 111 for G450 and G550. You
can set mapping only on first card, use
matroxset for setting up other devices.

Continued on next page

20.4. Configuration 69

Linux Fb Documentation

Table 1 – continued from previous page
vesa:X selects startup videomode. X is num-

ber from 0 to 0x1FF, see table above
for detailed explanation. Default is
640x480x8bpp if driver has 8bpp
support. Otherwise first available
of 640x350x4bpp, 640x480x15bpp,
640x480x24bpp, 640x480x32bpp
or 80x25 text (80x25 text is always
available).

If you are not satisfied with videomode selected by vesa option, you can modify it
with these options:

xres:Xhorizontal resolution, in pixels. Default is derived from vesa option.
yres:Xvertical resolution, in pixel lines. Default is derived from vesa option.
up-
per:X

top boundary: lines between end of VSYNC pulse and start of first pixel
line of picture. Default is derived from vesa option.

lower:Xbottom boundary: lines between end of picture and start of VSYNC pulse.
Default is derived from vesa option.

vslen:Xlength of VSYNC pulse, in lines. Default is derived from vesa option.
left:Xleft boundary: pixels between end of HSYNC pulse and first pixel. Default

is derived from vesa option.
right:Xright boundary: pixels between end of picture and start of HSYNC pulse.

Default is derived from vesa option.
hslen:Xlength of HSYNC pulse, in pixels. Default is derived from vesa option.
pix-
clock:X

dotclocks, in ps (picoseconds). Default is derived from vesa option and
from fh and fv options.

sync:Xsync. pulse - bit 0 inverts HSYNC polarity, bit 1 VSYNC polarity. If bit
3 (value 0x08) is set, composite sync instead of HSYNC is generated. If
bit 5 (value 0x20) is set, sync on green is turned on. Do not forget that if
you want sync on green, you also probably want composite sync. Default
depends on vesa.

depth:XBits per pixel: 0=text, 4,8,15,16,24 or 32. Default depends on vesa.

If you know capabilities of your monitor, you can specify some (or all) of maxclk,
fh and fv. In this case, pixclock is computed so that pixclock <= maxclk, real_fh
<= fh and real_fv <= fv.

max-
clk:X

maximum dotclock. X can be specified in MHz, kHz or Hz. Default is
don`t care.

fh:X maximum horizontal synchronization frequency. X can be specified in
kHz or Hz. Default is don’t care.

fv:X maximum vertical frequency. X must be specified in Hz. Default is 70 for
modes derived from vesa with yres <= 400, 60Hz for yres > 400.

70 Chapter 20. What is matroxfb?

Linux Fb Documentation

20.5 Limitations

There are known and unknown bugs, features and misfeatures. Currently there
are following known bugs:

• SVGALib does not restore screen on exit

• generic fbcon-cfbX procedures do not work on Alphas. Due to this, noaccel
(and cfb4 accel) driver does not work on Alpha. So everyone with access to
/dev/fb* on Alpha can hang machine (you should restrict access to /dev/fb* -
everyone with access to this device can destroy your monitor, believe me⋯).

• 24bpp does not support correctly XF-FBDev on big-endian architectures.

• interlaced text mode is not supported; it looks like hardware limitation, but I’
m not sure.

• Gxx0 SGRAM/SDRAM is not autodetected.

• If you are using more than one framebuffer device, you must boot kernel with
‘video=scrollback:0’.
• maybe more⋯

And following misfeatures:

• SVGALib does not restore screen on exit.

• pixclock for text modes is limited by hardware to

– 83 MHz on G200
– 66 MHz on Millennium I

– 60 MHz on Millennium II

Because I have no access to other devices, I do not know specific frequencies
for them. So driver does not check this and allows you to set frequency higher
that this. It causes sparks, black holes and other pretty effects on screen.
Device was not destroyed during tests. :-)

• myMillennium G200 oscillator has frequency range from 35MHz to 380MHz
(and it works with 8bpp on about 320 MHz dotclocks (and changed mclk)).
But Matrox says on product sheet that VCO limit is 50-250 MHz, so I believe
them (maybe that chip overheats, but it has a very big cooler (G100 has none),
so it should work).

• special mixed video/graphics videomodes of Mystique and Gx00 - 2G8V16 and
G16V16 are not supported

• color keying is not supported

• feature connector of Mystique and Gx00 is set to VGA mode (it is disabled by
BIOS)

• DDC (monitor detection) is supported through dualhead driver

• some check for input values are not so strict how it should be (you can specify
vslen=4000 and so on).

• maybe more⋯

20.5. Limitations 71

Linux Fb Documentation

And following features:

• 4bpp is available only on Millennium I and Millennium II. It is hardware lim-
itation.

• selection between 1:5:5:5 and 5:6:5 16bpp videomode is done by -rgba option
of fbset: “fbset -depth 16 -rgba 5,5,5”selects 1:5:5:5, anything else selects
5:6:5 mode.

• text mode uses 6 bit VGA palette instead of 8 bit (one of 262144 colors instead
of one of 16M colors). It is due to hardware limitation of Millennium I/II and
SVGALib compatibility.

20.6 Benchmarks

It is time to redraw whole screen 1000 times in 1024x768, 60Hz. It is time for
draw 6144000 characters on screen through /dev/vcsa (for 32bpp it is about 3GB
of data (exactly 3000 MB); for 8x16 font in 16 seconds, i.e. 187 MBps). Times
were obtained from one older version of driver, now they are about 3% faster, it is
kernel-space only time on P-II/350 MHz, Millennium I in 33 MHz PCI slot, G200 in
AGP 2x slot. I did not test vgacon:

NOACCEL
8x16 12x22
Millennium I G200 Millennium I G200

8bpp 16.42 9.54 12.33 9.13
16bpp 21.00 15.70 19.11 15.02
24bpp 36.66 36.66 35.00 35.00
32bpp 35.00 30.00 33.85 28.66

ACCEL, nofastfont
8x16 12x22 6x11
Millennium I G200 Millennium I G200 Millennium I G200

8bpp 7.79 7.24 13.55 7.78 30.00 21.01
16bpp 9.13 7.78 16.16 7.78 30.00 21.01
24bpp 14.17 10.72 18.69 10.24 34.99 21.01
32bpp 16.15 16.16 18.73 13.09 34.99 21.01

ACCEL, fastfont
8x16 12x22 6x11
Millennium I G200 Millennium I G200 Millennium I G200

8bpp 8.41 6.01 6.54 4.37 16.00 10.51
16bpp 9.54 9.12 8.76 6.17 17.52 14.01
24bpp 15.00 12.36 11.67 10.00 22.01 18.32
32bpp 16.18 18.29* 12.71 12.74 24.44 21.00

TEXT
8x16
Millennium I G200

TEXT 3.29 1.50

* Yes, it is slower than Millennium I.

72 Chapter 20. What is matroxfb?

Linux Fb Documentation

20.7 Dualhead G400

Driver supports dualhead G400 with some limitations:
• secondary head shares videomemory with primary head. It is not prob-
lem if you have 32MB of videoram, but if you have only 16MB, you
may have to think twice before choosing videomode (for example twice
1880x1440x32bpp is not possible).

• due to hardware limitation, secondary head can use only 16 and 32bpp
videomodes.

• secondary head is not accelerated. There were bad problems with accel-
erated XFree when secondary head used to use acceleration.

• secondary head always powerups in 640x480@60-32 videomode. You
have to use fbset to change this mode.

• secondary head always powerups in monitor mode. You have to use fb-
matroxset to change it to TV mode. Also, you must select at least 525
lines for NTSC output and 625 lines for PAL output.

• kernel is not fully multihead ready. So some things are impossible to do.

• if you compiled it as module, you must insert i2c-matroxfb, ma-
troxfb_maven and matroxfb_crtc2 into kernel.

20.8 Dualhead G450

Driver supports dualhead G450 with some limitations:
• secondary head shares videomemory with primary head. It is not prob-
lem if you have 32MB of videoram, but if you have only 16MB, you may
have to think twice before choosing videomode.

• due to hardware limitation, secondary head can use only 16 and 32bpp
videomodes.

• secondary head is not accelerated.

• secondary head always powerups in 640x480@60-32 videomode. You
have to use fbset to change this mode.

• TV output is not supported

• kernel is not fully multihead ready, so some things are impossible to do.

• if you compiled it as module, you must insert matroxfb_g450 and ma-
troxfb_crtc2 into kernel.

Petr Vandrovec <vandrove@vc.cvut.cz>

20.7. Dualhead G400 73

mailto:640x480@60-32
mailto:640x480@60-32
mailto:vandrove@vc.cvut.cz

Linux Fb Documentation

74 Chapter 20. What is matroxfb?

CHAPTER

TWENTYONE

METRONOMEFB

Maintained by Jaya Kumar <jayakumar.lkml.gmail.com>

Last revised: Mar 10, 2008

Metronomefb is a driver for the Metronome display controller. The controller is
from E-Ink Corporation. It is intended to be used to drive the E-Ink Vizplex display
media. E-Ink hosts some details of this controller and the display media here
http://www.e-ink.com/products/matrix/metronome.html .

Metronome is interfaced to the host CPU through the AMLCD interface. The host
CPU generates the control information and the image in a framebuffer which is
then delivered to the AMLCD interface by a host specific method. The display and
error status are each pulled through individual GPIOs.

Metronomefb is platform independent and depends on a board specific driver to
do all physical IO work. Currently, an example is implemented for the PXA board
used in the AM-200 EPD devkit. This example is am200epd.c

Metronomefb requires waveform information which is delivered via the AMLCD
interface to the metronome controller. The waveform information is expected to
be delivered from userspace via the firmware class interface. The waveform file
can be compressed as long as your udev or hotplug script is aware of the need
to uncompress it before delivering it. metronomefb will ask for metronome.wbf
which would typically go into /lib/firmware/metronome.wbf depending on your
udev/hotplug setup. I have only tested with a single waveform file which was
originally labeled 23P01201_60_WT0107_MTC. I do not know what it stands for.
Caution should be exercised when manipulating the waveform as there may be
a possibility that it could have some permanent effects on the display media. I
neither have access to nor know exactly what the waveform does in terms of the
physical media.

Metronomefb uses the deferred IO interface so that it can provide a memory map-
pable frame buffer. It has been tested with tinyx (Xfbdev). It is known to work at
this time with xeyes, xclock, xloadimage, xpdf.

75

http://www.e-ink.com/products/matrix/metronome.html

Linux Fb Documentation

76 Chapter 21. Metronomefb

CHAPTER

TWENTYTWO

MODEDB DEFAULT VIDEO MODE SUPPORT

Currently all frame buffer device drivers have their own video mode databases,
which is a mess and a waste of resources. The main idea of modedb is to have

• one routine to probe for video modes, which can be used by all frame buffer
devices

• one generic video mode database with a fair amount of standard videomodes
(taken from XFree86)

• the possibility to supply your own mode database for graphics hardware that
needs non-standard modes, like amifb and Mac frame buffer drivers (which
use macmodes.c)

When a frame buffer device receives a video= option it doesn’t know, it should
consider that to be a video mode option. If no frame buffer device is specified in a
video= option, fbmem considers that to be a global video mode option.

Valid mode specifiers (mode_option argument):

<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
<name>[-<bpp>][@<refresh>]

with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a
string. Things between square brackets are optional.

If‘M’is specified in the mode_option argument (after <yres> and before <bpp>
and <refresh>, if specified) the timings will be calculated using VESA(TM) Co-
ordinated Video Timings instead of looking up the mode from a table. If ‘R’is
specified, do a‘reduced blanking’calculation for digital displays. If‘i’is speci-
fied, calculate for an interlaced mode. And if‘m’is specified, add margins to the
calculation (1.8% of xres rounded down to 8 pixels and 1.8% of yres).

Sample usage: 1024x768M@60m - CVT timing with margins

DRM drivers also add options to enable or disable outputs:

‘e’will force the display to be enabled, i.e. it will override the detection if a display
is connected.‘D’will force the display to be enabled and use digital output. This is
useful for outputs that have both analog and digital signals (e.g. HDMI and DVI-I).
For other outputs it behaves like ‘e’. If ‘d’is specified the output is disabled.
You can additionally specify which output the options matches to. To force the
VGA output to be enabled and drive a specific mode say:

77

mailto:1024x768M@60m

Linux Fb Documentation

video=VGA-1:1280x1024@60me

Specifying the option multiple times for different ports is possible, e.g.:

video=LVDS-1:d video=HDMI-1:D

Options can also be passed after the mode, using commas as separator.

Sample usage: 720x480,rotate=180 - 720x480 mode, rotated by 180
degrees

Valid options are:

- margin_top, margin_bottom, margin_left, margin_right (integer):
Number of pixels in the margins, typically to deal with overscan on TVs

- reflect_x (boolean): Perform an axial symmetry on the X axis
- reflect_y (boolean): Perform an axial symmetry on the Y axis
- rotate (integer): Rotate the initial framebuffer by x

degrees. Valid values are 0, 90, 180 and 270.
- panel_orientation, one of "normal", "upside_down", "left_side_up", or

"right_side_up". For KMS drivers only, this sets the "panel orientation"
property on the kms connector as hint for kms users.

22.1 What is the VESA(TM) Coordinated Video Timings
(CVT)?

From the VESA(TM) Website:

“The purpose of CVT is to provide a method for generating a consistent
and coordinated set of standard formats, display refresh rates, and
timing specifications for computer display products, both those
employing CRTs, and those using other display technologies. The
intention of CVT is to give both source and display manufacturers
a common set of tools to enable new timings to be developed in a
consistent manner that ensures greater compatibility.”

This is the third standard approved by VESA(TM) concerning video timings. The
first was the Discrete Video Timings (DVT) which is a collection of pre-defined
modes approved by VESA(TM). The second is the Generalized Timing Formula
(GTF) which is an algorithm to calculate the timings, given the pixelclock, the
horizontal sync frequency, or the vertical refresh rate.

The GTF is limited by the fact that it is designed mainly for CRT displays. It arti-
ficially increases the pixelclock because of its high blanking requirement. This is
inappropriate for digital display interface with its high data rate which requires
that it conserves the pixelclock as much as possible. Also, GTF does not take into
account the aspect ratio of the display.

The CVT addresses these limitations. If used with CRT’s, the formula used is
a derivation of GTF with a few modifications. If used with digital displays, the
“reduced blanking”calculation can be used.

78 Chapter 22. modedb default video mode support

Linux Fb Documentation

From the framebuffer subsystem perspective, new formats need not be added to
the global mode database whenever a new mode is released by display manufac-
turers. Specifying for CVTwill work for most, if not all, relatively new CRT displays
and probably with most flatpanels, if‘reduced blanking’calculation is specified.
(The CVT compatibility of the display can be determined from its EDID. The version
1.3 of the EDID has extra 128-byte blocks where additional timing information is
placed. As of this time, there is no support yet in the layer to parse this additional
blocks.)

CVT also introduced a new naming convention (should be seen from dmesg out-
put):

<pix>M<a>[-R]

where: pix = total amount of pixels in MB (xres x yres)
M = always present
a = aspect ratio (3 - 4:3; 4 - 5:4; 9 - 15:9, 16:9; A - 16:10)

-R = reduced blanking

example: .48M3-R - 800x600 with reduced blanking

Note: VESA(TM) has restrictions on what is a standard CVT timing:

• aspect ratio can only be one of the above values

• acceptable refresh rates are 50, 60, 70 or 85 Hz only

• if reduced blanking, the refresh rate must be at 60Hz

If one of the above are not satisfied, the kernel will print a warning but the timings
will still be calculated.

To find a suitable video mode, you just call:

int __init fb_find_mode(struct fb_var_screeninfo *var,
struct fb_info *info, const char *mode_option,
const struct fb_videomode *db, unsigned int dbsize,
const struct fb_videomode *default_mode,
unsigned int default_bpp)

with db/dbsize your non-standard video mode database, or NULL to use the stan-
dard video mode database.

fb_find_mode() first tries the specified video mode (or any mode that matches, e.g.
there can be multiple 640x480 modes, each of them is tried). If that fails, the
default mode is tried. If that fails, it walks over all modes.

To specify a video mode at bootup, use the following boot options:

video=<driver>:<xres>x<yres>[-<bpp>][@refresh]

where <driver> is a name from the table below. Valid default modes can be found
in linux/drivers/video/modedb.c. Check your driver’s documentation. There may
be more modes:

22.1. What is the VESA(TM) Coordinated Video Timings (CVT)? 79

Linux Fb Documentation

Drivers that support modedb boot options
Boot Name Cards Supported

amifb - Amiga chipset frame buffer
aty128fb - ATI Rage128 / Pro frame buffer
atyfb - ATI Mach64 frame buffer
pm2fb - Permedia 2/2V frame buffer
pm3fb - Permedia 3 frame buffer
sstfb - Voodoo 1/2 (SST1) chipset frame buffer
tdfxfb - 3D Fx frame buffer
tridentfb - Trident (Cyber)blade chipset frame buffer
vt8623fb - VIA 8623 frame buffer

BTW, only a few fb drivers use this at the moment. Others are to follow (feel free
to send patches). The DRM drivers also support this.

80 Chapter 22. modedb default video mode support

CHAPTER

TWENTYTHREE

WHAT IS PVR2FB?

This is a driver for PowerVR 2 based graphics frame buffers, such as the one found
in the Dreamcast.

Advantages:

• It provides a nice large console (128 cols + 48 lines with 1024x768) without
using tiny, unreadable fonts (NOT on the Dreamcast)

• You can run XF86_FBDev on top of /dev/fb0

• Most important: boot logo :-)

Disadvantages:

• Driver is largely untested on non-Dreamcast systems.

23.1 Configuration

You can pass kernel command line options to pvr2fb with
video=pvr2fb:option1,option2:value2,option3 (multiple options should be sepa-
rated by comma, values are separated from options by :).

Accepted options:

81

Linux Fb Documentation

font:Xdefault font to use. All fonts are supported, including the SUN12x22 font
which is very nice at high resolutions.

mode:Xdefault video mode with format [xres]x[yres]-<bpp>@<refresh rate> The
following video modes are supported: 640x640-16@60, 640x480-24@60,
640x480-32@60. The Dreamcast defaults to 640x480-16@60. At the time
of writing the 24bpp and 32bpp modes function poorly. Work to fix that is
ongoing
Note: the 640x240 mode is currently broken, and should not be used for
any reason. It is only mentioned here as a reference.

in-
verse

invert colors on screen (for LCD displays)

nomtrrdisables write combining on frame buffer. This slows down driver but there
is reported minor incompatibility between GUS DMA and XFree under high
loads if write combining is enabled (sound dropouts). MTRR is enabled by
default on systems that have it configured and that support it.

ca-
ble:X

cable type. This can be any of the following: vga, rgb, and composite. If
none is specified, we guess.

out-
put:X

output type. This can be any of the following: pal, ntsc, and vga. If none is
specified, we guess.

23.2 X11

XF86_FBDev has been shown to work on the Dreamcast in the past - though not
yet on any 2.6 series kernel.

Paul Mundt <lethal@linuxdc.org>

Updated by Adrian McMenamin <adrian@mcmen.demon.co.uk>

82 Chapter 23. What is pvr2fb?

mailto:640x640-16@60
mailto:640x480-24@60
mailto:640x480-32@60
mailto:640x480-16@60
mailto:lethal@linuxdc.org
mailto:adrian@mcmen.demon.co.uk

CHAPTER

TWENTYFOUR

DRIVER FOR PXA25X LCD CONTROLLER

The driver supports the following options, either via options=<OPTIONS> when
modular or video=pxafb:<OPTIONS> when built in.

For example:

modprobe pxafb options=vmem:2M,mode:640x480-8,passive

or on the kernel command line:

video=pxafb:vmem:2M,mode:640x480-8,passive

vmem: VIDEO_MEM_SIZE

Amount of video memory to allocate (can be suffixed with K or M for
kilobytes or megabytes)

mode:XRESxYRES[-BPP]

XRES == LCCR1_PPL + 1

YRES == LLCR2_LPP + 1

The resolution of the display in pixels

BPP == The bit depth. Valid values are 1, 2, 4, 8 and 16.

pixclock:PIXCLOCK

Pixel clock in picoseconds

left:LEFT == LCCR1_BLW + 1

right:RIGHT == LCCR1_ELW + 1

hsynclen:HSYNC == LCCR1_HSW + 1

upper:UPPER == LCCR2_BFW

lower:LOWER == LCCR2_EFR

vsynclen:VSYNC == LCCR2_VSW + 1

Display margins and sync times

color | mono => LCCR0_CMS

umm⋯
active | passive => LCCR0_PAS

83

Linux Fb Documentation

Active (TFT) or Passive (STN) display

single | dual => LCCR0_SDS

Single or dual panel passive display

4pix | 8pix => LCCR0_DPD

4 or 8 pixel monochrome single panel data

hsync:HSYNC, vsync:VSYNC

Horizontal and vertical sync. 0 => active low, 1 => active high.

dpc:DPC

Double pixel clock. 1=>true, 0=>false

outputen:POLARITY

Output Enable Polarity. 0 => active low, 1 => active high

pixclockpol:POLARITY

pixel clock polarity 0 => falling edge, 1 => rising edge

24.1 Overlay Support for PXA27x and later LCD con-
trollers

PXA27x and later processors support overlay1 and overlay2 on-top of the
base framebuffer (although under-neath the base is also possible). They
support palette and no-palette RGB formats, as well as YUV formats (only
available on overlay2). These overlays have dedicated DMA channels
and behave in a similar way as a framebuffer.

However, there are some differences between these overlay frame-
buffers and normal framebuffers, as listed below:

1. overlay can start at a 32-bit word aligned position within the base
framebuffer, which means they have a start (x, y). This information
is encoded into var->nonstd (no, var->xoffset and var->yoffset are
not for such purpose).

2. overlay framebuffer is allocated dynamically according to specified
‘struct fb_var_screeninfo’, the amount is decided by:
var->xres_virtual * var->yres_virtual * bpp

bpp = 16 – for RGB565 or RGBT555

bpp = 24 – for YUV444 packed

bpp = 24 – for YUV444 planar

bpp = 16 – for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)

bpp = 12 – for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)

NOTE:

84 Chapter 24. Driver for PXA25x LCD controller

Linux Fb Documentation

a. overlay does not support panning in x-direction, thus var-
>xres_virtual will always be equal to var->xres

b. line length of overlay(s) must be on a 32-bit word boundary, for
YUV planar modes, it is a requirement for the component with
minimum bits per pixel, e.g. for YUV420, Cr component for one
pixel is actually 2-bits, it means the line length should be a mul-
tiple of 16-pixels

c. starting horizontal position (XPOS) should start on a 32-bit word
boundary, otherwise the fb_check_var() will just fail.

d. the rectangle of the overlay should be within the base plane,
otherwise fail

Applications should follow the sequence below to operate an overlay
framebuffer:

a. open(“/dev/fb[1-2]”, ⋯)
b. ioctl(fd, FBIOGET_VSCREENINFO, ⋯)
c. modify ‘var’with desired parameters:
1) var->xres and var->yres

2) larger var->yres_virtual if more memory is required, usually
for double-buffering

3) var->nonstd for starting (x, y) and color format

4) var->{red, green, blue, transp} if RGB mode is to be used

d. ioctl(fd, FBIOPUT_VSCREENINFO, ⋯)
e. ioctl(fd, FBIOGET_FSCREENINFO, ⋯)
f. mmap

g. ⋯
3. for YUV planar formats, these are actually not supported within the
framebuffer framework, application has to take care of the offsets
and lengths of each component within the framebuffer.

4. var->nonstd is used to pass starting (x, y) position and color format,
the detailed bit fields are shown below:

31 23 20 10 0
+-----------------+---+----------+----------+
| ... unused ... |FOR| XPOS | YPOS |
+-----------------+---+----------+----------+

FOR - color format, as defined by OVERLAY_FORMAT_* in pxafb.h

• 0 - RGB

• 1 - YUV444 PACKED

• 2 - YUV444 PLANAR

• 3 - YUV422 PLANAR

24.1. Overlay Support for PXA27x and later LCD controllers 85

Linux Fb Documentation

• 4 - YUR420 PLANAR

XPOS - starting horizontal position

YPOS - starting vertical position

86 Chapter 24. Driver for PXA25x LCD controller

CHAPTER

TWENTYFIVE

S3FB - FBDEV DRIVER FOR S3 TRIO/VIRGE CHIPS

25.1 Supported Hardware

S3 Trio32 S3 Trio64 (and variants V+, UV+, V2/DX, V2/GX) S3 Virge
(and variants VX, DX, GX and GX2+) S3 Plato/PX (completely untested)
S3 Aurora64V+ (completely untested)

• only PCI bus supported

• only BIOS initialized VGA devices supported

• probably not working on big endian

I tested s3fb on Trio64 (plain, V+ and V2/DX) and Virge (plain, VX, DX), all on i386.

25.2 Supported Features

• 4 bpp pseudocolor modes (with 18bit palette, two variants)

• 8 bpp pseudocolor mode (with 18bit palette)

• 16 bpp truecolor modes (RGB 555 and RGB 565)

• 24 bpp truecolor mode (RGB 888) on (only on Virge VX)

• 32 bpp truecolor mode (RGB 888) on (not on Virge VX)

• text mode (activated by bpp = 0)

• interlaced mode variant (not available in text mode)

• doublescan mode variant (not available in text mode)

• panning in both directions

• suspend/resume support

• DPMS support

Text mode is supported even in higher resolutions, but there is limitation to lower
pixclocks (maximum usually between 50-60MHz, depending on specific hardware,
i get best results from plain S3 Trio32 card - about 75 MHz). This limitation is not
enforced by driver. Text mode supports 8bit wide fonts only (hardware limitation)
and 16bit tall fonts (driver limitation). Text mode support is broken on S3 Trio64
V2/DX.

87

Linux Fb Documentation

There are two 4 bpp modes. First mode (selected if nonstd == 0) is mode with
packed pixels, high nibble first. Second mode (selected if nonstd == 1) is mode
with interleaved planes (1 byte interleave), MSB first. Both modes support 8bit
wide fonts only (driver limitation).

Suspend/resume works on systems that initialize video card during resume and if
device is active (for example used by fbcon).

25.3 Missing Features

(alias TODO list)

• secondary (not initialized by BIOS) device support

• big endian support

• Zorro bus support

• MMIO support

• 24 bpp mode support on more cards

• support for fontwidths != 8 in 4 bpp modes

• support for fontheight != 16 in text mode

• composite and external sync (is anyone able to test this?)

• hardware cursor

• video overlay support

• vsync synchronization

• feature connector support

• acceleration support (8514-like 2D, Virge 3D, busmaster transfers)

• better values for some magic registers (performance issues)

25.4 Known bugs

• cursor disable in text mode doesn’t work
• text mode broken on S3 Trio64 V2/DX

– Ondrej Zajicek <santiago@crfreenet.org>

88 Chapter 25. s3fb - fbdev driver for S3 Trio/Virge chips

mailto:santiago@crfreenet.org

CHAPTER

TWENTYSIX

WHAT IS SA1100FB?

This is a driver for a graphic framebuffer for the SA-1100 LCD controller.

26.1 Configuration

For most common passive displays, giving the option:

video=sa1100fb:bpp:<value>,lccr0:<value>,lccr1:<value>,lccr2:<value>,lccr3:
↪→<value>

on the kernel command line should be enough to configure the controller. The bits
per pixel (bpp) value should be 4, 8, 12, or 16. LCCR values are display-specific and
should be computed as documented in the SA-1100 Developer’s Manual, Section
11.7. Dual-panel displays are supported as long as the SDS bit is set in LCCR0;
GPIO<9:2> are used for the lower panel.

For active displays or displays requiring additional configuration (controlling
backlights, powering on the LCD, etc.), the command line options may not be
enough to configure the display. Adding sections to sa1100fb_init_fbinfo(),
sa1100fb_activate_var(), sa1100fb_disable_lcd_controller(), and
sa1100fb_enable_lcd_controller() will probably be necessary.

Accepted options:

bpp:<value> Configure for <value> bits per pixel
lccr0:<value> Configure LCD control register 0 (11.7.3)
lccr1:<value> Configure LCD control register 1 (11.7.4)
lccr2:<value> Configure LCD control register 2 (11.7.5)
lccr3:<value> Configure LCD control register 3 (11.7.6)

Mark Huang <mhuang@livetoy.com>

89

mailto:mhuang@livetoy.com

Linux Fb Documentation

90 Chapter 26. What is sa1100fb?

CHAPTER

TWENTYSEVEN

SH7760/SH7763 INTEGRATED LCDC FRAMEBUFFER
DRIVER

27.1 0. Overview

The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
supports (in theory) resolutions ranging from 1x1 to 1024x1024, with color depths
ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.

Caveats:

• Framebuffer memory must be a large chunk allocated at the top of Area3 (HW
requirement). Because of this requirement you should NOT make the driver
a module since at runtime it may become impossible to get a large enough
contiguous chunk of memory.

• The driver does not support changing resolution while loaded (displays aren’
t hotpluggable anyway)

• Heavy flickering may be observed a) if you’re using 15/16bit color modes
at >= 640x480 px resolutions, b) during PCMCIA (or any other slow bus)
activity.

• Rotation works only 90degress clockwise, and only if horizontal resolution is
<= 320 pixels.

Files:
• drivers/video/sh7760fb.c

• include/asm-sh/sh7760fb.h

• Documentation/fb/sh7760fb.rst

27.2 1. Platform setup

SH7760: Video data is fetched via the DMABRG DMA engine, so you have to con-
figure the SH DMAC for DMABRGmode (write 0x94808080 to the DMARSRA
register somewhere at boot).

PFC registers PCCR and PCDR must be set to peripheral mode. (write zeros
to both).

91

Linux Fb Documentation

The driver does NOT do the above for you since board setup is, well, job of the
board setup code.

27.3 2. Panel definitions

The LCDC must explicitly be told about the type of LCD panel attached. Data
must be wrapped in a “struct sh7760fb_platdata”and passed to the driver as
platform_data.

Suggest you take a closer look at the SH7760 Manual, Section 30. (http://
documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)

The following code illustrates what needs to be done to get the framebuffer work-
ing on a 640x480 TFT:

#include <linux/fb.h>
#include <asm/sh7760fb.h>

/*
* NEC NL6440bc26-01 640x480 TFT
* dotclock 25175 kHz
* Xres 640 Yres 480
* Htotal 800 Vtotal 525
* HsynStart 656 VsynStart 490
* HsynLenn 30 VsynLenn 2
*
* The linux framebuffer layer does not use the syncstart/synclen
* values but right/left/upper/lower margin values. The comments
* for the x_margin explain how to calculate those from given
* panel sync timings.
*/

static struct fb_videomode nl6448bc26 = {
.name = "NL6448BC26",
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39683, /* in picoseconds! */
.hsync_len = 30,
.vsync_len = 2,
.left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
.right_margin = 16, /* HSYNSTART - XRES */
.upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
.lower_margin = 10, /* VSYNSTART - YRES */
.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
.vmode = FB_VMODE_NONINTERLACED,
.flag = 0,

};

static struct sh7760fb_platdata sh7760fb_nl6448 = {
.def_mode = &nl6448bc26,
.ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
.lddfr = LDDFR_8BPP, /* we want 8bit output */
.ldpmmr = 0x0070,
.ldpspr = 0x0500,
.ldaclnr = 0,

(continues on next page)

92 Chapter 27. SH7760/SH7763 integrated LCDC Framebuffer driver

http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf
http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf

Linux Fb Documentation

(continued from previous page)
.ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |

LDICKR_CLKDIV(1),
.rotate = 0,
.novsync = 1,
.blank = NULL,

};

/* SH7760:
* 0xFE300800: 256 * 4byte xRGB palette ram
* 0xFE300C00: 42 bytes ctrl registers
*/

static struct resource sh7760_lcdc_res[] = {
[0] = {

.start = 0xFE300800,

.end = 0xFE300CFF,

.flags = IORESOURCE_MEM,
},
[1] = {

.start = 65,

.end = 65,

.flags = IORESOURCE_IRQ,
},

};

static struct platform_device sh7760_lcdc_dev = {
.dev = {

.platform_data = &sh7760fb_nl6448,
},
.name = "sh7760-lcdc",
.id = -1,
.resource = sh7760_lcdc_res,
.num_resources = ARRAY_SIZE(sh7760_lcdc_res),

};

27.3. 2. Panel definitions 93

Linux Fb Documentation

94 Chapter 27. SH7760/SH7763 integrated LCDC Framebuffer driver

CHAPTER

TWENTYEIGHT

WHAT IS SISFB?

sisfb is a framebuffer device driver for SiS (Silicon Integrated Systems) graphics
chips. Supported are:

• SiS 300 series: SiS 300/305, 540, 630(S), 730(S)

• SiS 315 series: SiS 315/H/PRO, 55x, (M)65x, 740, (M)661(F/M)X, (M)741(GX)

• SiS 330 series: SiS 330 (“Xabre”), (M)760

28.1 Why do I need a framebuffer driver?

sisfb is eg. useful if you want a high-resolution text console. Besides that, sisfb
is required to run DirectFB (which comes with an additional, dedicated driver for
the 315 series).

On the 300 series, sisfb on kernels older than 2.6.3 furthermore plays an impor-
tant role in connection with DRM/DRI: Sisfb manages the memory heap used by
DRM/DRI for 3D texture and other data. This memory management is required
for using DRI/DRM.

Kernels >= around 2.6.3 do not need sisfb any longer for DRI/DRM memory man-
agement. The SiS DRM driver has been updated and features a memory manager
of its own (which will be used if sisfb is not compiled). So unless you want a graph-
ical console, you don’t need sisfb on kernels >=2.6.3.
Sidenote: Since this seems to be a commonly made mistake: sisfb and vesafb
cannot be active at the same time! Do only select one of them in your kernel
configuration.

28.2 How are parameters passed to sisfb?

Well, it depends: If compiled statically into the kernel, use lilo’s append statement
to add the parameters to the kernel command line. Please see lilo’s (or GRUB’s)
documentation for more information. If sisfb is a kernel module, parameters are
given with the modprobe (or insmod) command.

Example for sisfb as part of the static kernel: Add the following line to your
lilo.conf:

95

Linux Fb Documentation

append="video=sisfb:mode:1024x768x16,mem:12288,rate:75"

Example for sisfb as a module: Start sisfb by typing:

modprobe sisfb mode=1024x768x16 rate=75 mem=12288

A common mistake is that folks use a wrong parameter format when using the
driver compiled into the kernel. Please note: If compiled into the kernel, the pa-
rameter format is video=sisfb:mode:none or video=sisfb:mode:1024x768x16 (or
whatever mode you want to use, alternatively using any other format described
above or the vesa keyword instead of mode). If compiled as a module, the parame-
ter format reads mode=none or mode=1024x768x16 (or whatever mode you want
to use). Using a “=”for a “:”(and vice versa) is a huge difference! Addition-
ally: If you give more than one argument to the in-kernel sisfb, the arguments are
separated with “,”. For example:
video=sisfb:mode:1024x768x16,rate:75,mem:12288

28.3 How do I use it?

Preface statement: This file only covers very little of the driver’s capabilities and
features. Please refer to the author’s and maintainer’s website at http://www.
winischhofer.net/linuxsisvga.shtml for more information. Additionally, “modinfo
sisfb”gives an overview over all supported options including some explanation.
The desired display mode can be specified using the keyword “mode”with a pa-
rameter in one of the following formats:

• XxYxDepth or

• XxY-Depth or

• XxY-Depth@Rate or

• XxY

• or simply use the VESA mode number in hexadecimal or decimal.

For example: 1024x768x16, 1024x768-16@75, 1280x1024-16. If no depth is spec-
ified, it defaults to 8. If no rate is given, it defaults to 60Hz. Depth 32 means 24bit
color depth (but 32 bit framebuffer depth, which is not relevant to the user).

Additionally, sisfb understands the keyword“vesa”followed by a VESA mode num-
ber in decimal or hexadecimal. For example: vesa=791 or vesa=0x117. Please use
either “mode”or “vesa”but not both.
Linux 2.4 only: If no mode is given, sisfb defaults to “no mode”(mode=none) if
compiled as a module; if sisfb is statically compiled into the kernel, it defaults to
800x600x8 unless CRT2 type is LCD, in which case the LCD’s native resolution is
used. If you want to switch to a different mode, use the fbset shell command.

Linux 2.6 only: If no mode is given, sisfb defaults to 800x600x8 unless CRT2 type
is LCD, in which case it defaults to the LCD’s native resolution. If you want to
switch to another mode, use the stty shell command.

96 Chapter 28. What is sisfb?

http://www.winischhofer.net/linuxsisvga.shtml
http://www.winischhofer.net/linuxsisvga.shtml
mailto:XxY-Depth@Rate
mailto:1024x768-16@75

Linux Fb Documentation

You should compile in both vgacon (to boot if you remove you SiS card from your
system) and sisfb (for graphics mode). Under Linux 2.6, also“Framebuffer console
support”(fbcon) is needed for a graphical console.
You should not compile-in vesafb. And please do not use the “vga=”keyword in
lilo’s or grub’s configuration file; mode selection is done using the “mode”or
“vesa”keywords as a parameter. See above and below.

28.4 X11

If using XFree86 or X.org, it is recommended that you don’t use the“fbdev”driver
but the dedicated “sis”X driver. The “sis”X driver and sisfb are developed by
the same person (Thomas Winischhofer) and cooperate well with each other.

28.5 SVGALib

SVGALib, if directly accessing the hardware, never restores the screen correctly,
especially on laptops or if the output devices are LCD or TV. Therefore, use the
chipset“FBDEV”in SVGALib configuration. This will make SVGALib use the frame-
buffer device for mode switches and restoration.

28.6 Configuration

(Some) accepted options:

off Disable sisfb. This option is only understood if sisfb is in-kernel, not a
module.

mem:Xsize of memory for the console, rest will be used for DRI/DRM. X is in kilo-
bytes. On 300 series, the default is 4096, 8192 or 16384 (each in kilobyte)
depending on how much video ram the card has. On 315/330 series, the
default is the maximum available ram (since DRI/DRM is not supported for
these chipsets).

noac-
cel

do not use 2D acceleration engine. (Default: use acceleration)

noy-
pan

disable y-panning and scroll by redrawing the entire screen. This is much
slower than y-panning. (Default: use y-panning)

vesa:Xselects startup videomode. X is number from 0 to 0x1FF and represents
the VESA mode number (can be given in decimal or hexadecimal form, the
latter prefixed with “0x”).

mode:Xselects startup videomode. Please see above for the format of “X”.

Boolean options such as“noaccel”or“noypan”are to be given without a parameter
if sisfb is in-kernel (for example“video=sisfb:noypan). If sisfb is a module, these
are to be set to 1 (for example “modprobe sisfb noypan=1”).
Thomas Winischhofer <thomas@winischhofer.net>

May 27, 2004

28.4. X11 97

mailto:thomas@winischhofer.net

Linux Fb Documentation

98 Chapter 28. What is sisfb?

CHAPTER

TWENTYNINE

SM501FB

Configuration:

You can pass the following kernel command line options to sm501 videoframe-
buffer:

sm501fb.bpp= SM501 Display driver:
Specify bits-per-pixel if not specified by 'mode'

sm501fb.mode= SM501 Display driver:
Specify resolution as
"<xres>x<yres>[-<bpp>][@<refresh>]"

99

Linux Fb Documentation

100 Chapter 29. sm501fb

CHAPTER

THIRTY

WHAT IS SM712FB?

This is a graphics framebuffer driver for Silicon Motion SM712 based processors.

30.1 How to use it?

Switching modes is done using the video=sm712fb:⋯boot parameter.
If you want, for example, enable a resolution of 1280x1024x24bpp you should pass
to the kernel this command line: “video=sm712fb:0x31B”.
You should not compile-in vesafb.

Currently supported video modes are:

30.1.1 Graphic modes

bpp 640x480 800x600 1024x768 1280x1024
8 0x301 0x303 0x305 0x307
16 0x311 0x314 0x317 0x31A
24 0x312 0x315 0x318 0x31B

30.2 Missing Features

(alias TODO list)

• 2D acceleratrion

• dual-head support

101

Linux Fb Documentation

102 Chapter 30. What is sm712fb?

CHAPTER

THIRTYONE

SSTFB

31.1 Introduction

This is a frame buffer device driver for 3dfx’Voodoo Graphics (aka voodoo 1, aka
sst1) and Voodoo2 (aka Voodoo 2, aka CVG) based video boards. It’s highly exper-
imental code, but is guaranteed to work on my computer, with my “Maxi Gamer
3D”and“Maxi Gamer 3d2”boards, and with me“between chair and keyboard”
. Some people tested other combinations and it seems that it works. The main
page is located at <http://sstfb.sourceforge.net>, and if you want the latest ver-
sion, check out the CVS, as the driver is a work in progress, I feel uncomfortable
with releasing tarballs of something not completely working⋯Don’t worry, it’s
still more than usable (I eat my own dog food)

Please read the Bug section, and report any success or failure to me (Ghozlane
Toumi <gtoumi@laposte.net>). BTW, If you have only one monitor , and you don’
t feel like playing with the vga passthrou cable, I can only suggest borrowing a
screen somewhere⋯

31.2 Installation

This driver (should) work on ix86, with “late”2.2.x kernel (tested with x = 19)
and “recent”2.4.x kernel, as a module or compiled in. It has been included in
mainstream kernel since the infamous 2.4.10. You can apply the patches found in
sstfb/kernel/*-2.{2|4}.x.patch, and copy sstfb.c to linux/drivers/video/, or apply a
single patch, sstfb/patch-2.{2|4}.x-sstfb-yymmdd to your linux source tree.

Then configure your kernel as usual: choose“m”or“y”to 3Dfx Voodoo Graphics
in section “console”. Compile, install, have fun⋯and please drop me a report :)

103

http://sstfb.sourceforge.net
mailto:gtoumi@laposte.net

Linux Fb Documentation

31.3 Module Usage

Warning:
1. You should read completely this section before issuing any command.

2. If you have only one monitor to play with, once you insmod the module,
the 3dfx takes control of the output, so you’ll have to plug the monitor
to the “normal”video board in order to issue the commands, or you can
blindly use sst_dbg_vgapass in the tools directory (See Tools). The latest
solution is pass the parameter vgapass=1 when insmodding the driver.
(See Kernel/Modules Options)

31.3.1 Module insertion

1. insmod sstfb.o

you should see some strange output from the board: a big blue square, a
green and a red small squares and a vertical white rectangle. why? the
function’s name is self-explanatory: “sstfb_test()”⋯(if you don’t have a
second monitor, you’ll have to plug your monitor directly to the 2D videocard
to see what you’re typing)

2. con2fb /dev/fbx /dev/ttyx

bind a tty to the new frame buffer. if you already have a frame buffer driver,
the voodoo fb will likely be /dev/fb1. if not, the device will be /dev/fb0. You
can check this by doing a cat /proc/fb. You can find a copy of con2fb in tools/
directory. if you don’t have another fb device, this step is superfluous, as the
console subsystem automagicaly binds ttys to the fb.

3. switch to the virtual console you just mapped. “tadaaa”⋯

31.3.2 Module removal

1. con2fb /dev/fbx /dev/ttyx

bind the tty to the old frame buffer so the module can be removed. (how does
it work with vgacon ? short answer : it doesn’t work)

2. rmmod sstfb

104 Chapter 31. sstfb

Linux Fb Documentation

31.3.3 Kernel/Modules Options

You can pass some options to the sstfb module, and via the kernel command line
when the driver is compiled in: for module : insmod sstfb.o option1=value1 op-
tion2=value2 ⋯in kernel : video=sstfb:option1,option2:value2,option3 ⋯
sstfb supports the following options:

Module Kernel Description
vgapass=0 vganopass Enable or disable VGA

passthrou cable.
vgapass=1 vgapass When enabled, the mon-

itor will get the signal
from the VGA board and
not from the voodoo.
Default: nopass

mem=x mem:x Force frame buffer mem-
ory in MiB allowed val-
ues: 0, 1, 2, 4.
Default: 0 (= autodetect)

inverse=1 inverse Supposed to enable in-
verse console. doesn’t
work yet⋯

clipping=1 clipping Enable or disable clip-
ping.

clipping=0 noclipping With clipping enabled,
all offscreen reads and
writes are discarded.
Default: enable clipping.

gfxclk=x gfxclk:x Force graphic clock fre-
quency (in MHz). Be
careful with this option,
it may be DANGEROUS.
Default: auto
• 50Mhz for Voodoo
1,

• 75MHz for Voodoo
2.

slowpci=1 fastpci Enable or disable fast
PCI read/writes.

slowpci=1 slowpci Default : fastpci
dev=x dev:x Attach the driver to de-

vice number x. 0 is the
first compatible board (in
lspci order)

31.3. Module Usage 105

Linux Fb Documentation

31.4 Tools

These tools are mostly for debugging purposes, but you can find some of these
interesting:

• con2fb, maps a tty to a fbramebuffer:

con2fb /dev/fb1 /dev/tty5

• sst_dbg_vgapass, changes vga passthrou. You have to recompile the driver
with SST_DEBUG and SST_DEBUG_IOCTL set to 1:

sst_dbg_vgapass /dev/fb1 1 (enables vga cable)
sst_dbg_vgapass /dev/fb1 0 (disables vga cable)

• glide_reset, resets the voodoo using glide use this after rmmoding sstfb, if
the module refuses to reinsert.

31.5 Bugs

• DO NOT use glide while the sstfb module is in, you’ll most likely hang your
computer.

• If you see some artefacts (pixels not cleaning and stuff like that), try turning
off clipping (clipping=0), and/or using slowpci

• the driver don’t detect the 4Mb frame buffer voodoos, it seems that the 2
last Mbs wrap around. looking into that .

• The driver is 16 bpp only, 24/32 won’t work.
• The driver is not your_favorite_toy-safe. this includes SMP⋯

[Actually from inspection it seems to be safe - Alan]

• When using XFree86 FBdev (X over fbdev) youmay see strange color patterns
at the border of your windows (the pixels lose the lowest byte -> basically
the blue component and some of the green). I’m unable to reproduce this
with XFree86-3.3, but one of the testers has this problem with XFree86-4.
Apparently recent Xfree86-4.x solve this problem.

• I didn’t really test changing the palette, so you may find some weird things
when playing with that.

• Sometimes the driver will not recognise the DAC, and the initialisation will
fail. This is specifically true for voodoo 2 boards, but it should be solved in
recent versions. Please contact me.

• The 24/32 is not likely to work anytime soon, knowing that the hardware does
⋯unusual things in 24/32 bpp.

• When used with another video board, current limitations of the linux console
subsystem can cause some troubles, specifically, you should disable software
scrollback, as it can oops badly ⋯

106 Chapter 31. sstfb

Linux Fb Documentation

31.6 Todo

• Get rid of the previous paragraph.

• Buy more coffee.

• test/port to other arch.

• try to add panning using tweeks with front and back buffer .

• try to implement accel on voodoo2, this board can actually do a lot in 2D even
if it was sold as a 3D only board ⋯

Ghozlane Toumi <gtoumi@laposte.net>

Date: 2002/05/09 20:11:45

http://sstfb.sourceforge.net/README

31.6. Todo 107

mailto:gtoumi@laposte.net
http://sstfb.sourceforge.net/README

Linux Fb Documentation

108 Chapter 31. sstfb

CHAPTER

THIRTYTWO

WHAT IS TGAFB?

This is a driver for DECChip 21030 based graphics framebuffers, a.k.a. TGA cards,
which are usually found in older Digital Alpha systems. The following models are
supported:

• ZLxP-E1 (8bpp, 2 MB VRAM)

• ZLxP-E2 (32bpp, 8 MB VRAM)

• ZLxP-E3 (32bpp, 16 MB VRAM, Zbuffer)

This version is an almost complete rewrite of the code written by Geert Uytterho-
even, which was based on the original TGA console code written by Jay Estabrook.

Major new features since Linux 2.0.x:

• Support for multiple resolutions

• Support for fixed-frequency and other oddball monitors (by allowing the video
mode to be set at boot time)

User-visible changes since Linux 2.2.x:

• Sync-on-green is now handled properly

• More useful information is printed on bootup (this helps if people run into
problems)

This driver does not (yet) support the TGA2 family of framebuffers, so the Pow-
erStorm 3D30/4D20 (also known as PBXGB) cards are not supported. These can
however be used with the standard VGA Text Console driver.

32.1 Configuration

You can pass kernel command line options to tgafb with
video=tgafb:option1,option2:value2,option3 (multiple options should be sep-
arated by comma, values are separated from options by :).

Accepted options:

109

Linux Fb Documentation

font:Xdefault font to use. All fonts are supported, including the SUN12x22 font
which is very nice at high resolutions.

mode:Xdefault video mode. The following video modes are supported: 640x480-
60, 800x600-56, 640x480-72, 800x600-60, 800x600-72, 1024x768-60,
1152x864-60, 1024x768-70, 1024x768-76, 1152x864-70, 1280x1024-61,
1024x768-85, 1280x1024-70, 1152x864-84, 1280x1024-76, 1280x1024-85

32.2 Known Issues

The XFree86 FBDev server has been reported not to work, since tgafb doesn’t
do mmap(). Running the standard XF86_TGA server from XFree86 3.3.x works
fine for me, however this server does not do acceleration, which make certain
operations quite slow. Support for acceleration is being progressively integrated
in XFree86 4.x.

When running tgafb in resolutions higher than 640x480, on switching VCs from
tgafb to XF86_TGA 3.3.x, the entire screen is not re-drawn and must be manually
refreshed. This is an X server problem, not a tgafb problem, and is fixed in XFree86
4.0.

Enjoy!

Martin Lucina <mato@kotelna.sk>

110 Chapter 32. What is tgafb?

mailto:mato@kotelna.sk

CHAPTER

THIRTYTHREE

TRIDENTFB

Tridentfb is a framebuffer driver for some Trident chip based cards.

The following list of chips is thought to be supported although not all are tested:

those from the TGUI series 9440/96XX and with Cyber in their names those from
the Image series and with Cyber in their names those with Blade in their names
(Blade3D,CyberBlade⋯) the newer CyberBladeXP family
All families are accelerated. Only PCI/AGP based cards are supported, none of
the older Tridents. The driver supports 8, 16 and 32 bits per pixel depths. The
TGUI family requires a line length to be power of 2 if acceleration is enabled. This
means that range of possible resolutions and bpp is limited comparing to the range
if acceleration is disabled (see list of parameters below).

Known bugs:

1. The driver randomly locks up on 3DImage975 chip with acceleration enabled.
The same happens in X11 (Xorg).

2. The ramdac speeds require some more fine tuning. It is possible to switch
resolution which the chip does not support at some depths for older chips.

33.1 How to use it?

When booting you can pass the video parameter:

video=tridentfb

The parameters for tridentfb are concatenated with a ‘:’as in this example:
video=tridentfb:800x600-16@75,noaccel

The second level parameters that tridentfb understands are:

111

Linux Fb Documentation

noac-
cel

turns off acceleration (when it doesn’t work for your card)

fp use flat panel related stuff
crt assume monitor is present instead of fp
cen-
ter

for flat panels and resolutions smaller than native size center the image,
otherwise use

stretch
mem-
size

integer value in KB, use if your card’s memory size is misdetected. look
at the driver output to see what it says when initializing.

memd-
iff

integer value in KB, should be nonzero if your card reports more memory
than it actually has. For instance mine is 192K less than detection says
in all three BIOS selectable situations 2M, 4M, 8M. Only use if your video
memory is taken from main memory hence of configurable size. Other-
wise use memsize. If in some modes which barely fit the memory you see
garbage at the bottom this might help by not letting change to that mode
anymore.

na-
tivex

the width in pixels of the flat panel.If you know it (usually 1024 800 or
1280) and it is not what the driver seems to detect use it.

bpp bits per pixel (8,16 or 32)
modea mode name like 800x600-8@75 as described in Documenta-

tion/fb/modedb.rst

Using insane values for the above parameters will probably result in driver misbe-
haviour so take care(for instance memsize=12345678 or memdiff=23784 or na-
tivex=93)

Contact: jani@astechnix.ro

112 Chapter 33. Tridentfb

mailto:800x600-8@75
mailto:jani@astechnix.ro

CHAPTER

THIRTYFOUR

WHAT IS UDLFB?

This is a driver for DisplayLink USB 2.0 era graphics chips.

DisplayLink chips provide simple hline/blit operations with some compression,
pairing that with a hardware framebuffer (16MB) on the other end of the USB
wire. That hardware framebuffer is able to drive the VGA, DVI, or HDMI monitor
with no CPU involvement until a pixel has to change.

The CPU or other local resource does all the rendering; optionally compares the
result with a local shadow of the remote hardware framebuffer to identify the
minimal set of pixels that have changed; and compresses and sends those pixels
line-by-line via USB bulk transfers.

Because of the efficiency of bulk transfers and a protocol on top that does not
require any acks - the effect is very low latency that can support surprisingly high
resolutions with good performance for non-gaming and non-video applications.

Mode setting, EDID read, etc are other bulk or control transfers. Mode setting is
very flexible - able to set nearly arbitrary modes from any timing.

Advantages of USB graphics in general:

• Ability to add a nearly arbitrary number of displays to any USB 2.0 capable
system. On Linux, number of displays is limited by fbdev interface (FB_MAX
is currently 32). Of course, all USB devices on the same host controller share
the same 480Mbs USB 2.0 interface.

Advantages of supporting DisplayLink chips with kernel framebuffer interface:

• The actual hardware functionality of DisplayLink chipsmatches nearly one-to-
one with the fbdev interface, making the driver quite small and tight relative
to the functionality it provides.

• X servers and other applications can use the standard fbdev interface from
user mode to talk to the device, without needing to know anything about USB
or DisplayLink’s protocol at all. A“displaylink”X driver and a slightly modified
“fbdev”X driver are among those that already do.

Disadvantages:

• Fbdev’s mmap interface assumes a real hardware framebuffer is mapped. In
the case of USB graphics, it is just an allocated (virtual) buffer. Writes need
to be detected and encoded into USB bulk transfers by the CPU. Accurate
damage/changed area notifications work around this problem. In the future,
hopefully fbdev will be enhanced with an small standard interface to allow

113

Linux Fb Documentation

mmap clients to report damage, for the benefit of virtual or remote frame-
buffers.

• Fbdev does not arbitrate client ownership of the framebuffer well.

• Fbcon assumes the first framebuffer it finds should be consumed for console.

• It’s not clear what the future of fbdev is, given the rise of KMS/DRM.

34.1 How to use it?

Udlfb, when loaded as a module, will match against all USB 2.0 generation Dis-
playLink chips (Alex and Ollie family). It will then attempt to read the EDID of the
monitor, and set the best common mode between the DisplayLink device and the
monitor’s capabilities.
If the DisplayLink device is successful, it will paint a“green screen”which means
that from a hardware and fbdev software perspective, everything is good.

At that point, a /dev/fb? interface will be present for user-mode applications to
open and begin writing to the framebuffer of the DisplayLink device using standard
fbdev calls. Note that if mmap() is used, by default the user mode application
must send down damage notifications to trigger repaints of the changed regions.
Alternatively, udlfb can be recompiled with experimental defio support enabled,
to support a page-fault based detection mechanism that can work without explicit
notification.

The most common client of udlfb is xf86-video-displaylink or a modified xf86-video-
fbdev X server. These servers have no real DisplayLink specific code. They write to
the standard framebuffer interface and rely on udlfb to do its thing. The one extra
feature they have is the ability to report rectangles from the X DAMAGE protocol
extension down to udlfb via udlfb’s damage interface (which will hopefully be
standardized for all virtual framebuffers that need damage info). These damage
notifications allow udlfb to efficiently process the changed pixels.

34.2 Module Options

Special configuration for udlfb is usually unnecessary. There are a few options,
however.

From the command line, pass options to modprobe modprobe udlfb fb_defio=0
console=1 shadow=1

Or modify options on the fly at /sys/module/udlfb/parameters directory via sudo
nano fb_defio change the parameter in place, and save the file.

Unplug/replug USB device to apply with new settings

Or for permanent option, create file like /etc/modprobe.d/udlfb.conf with text op-
tions udlfb fb_defio=0 console=1 shadow=1

Accepted boolean options:

114 Chapter 34. What is udlfb?

Linux Fb Documentation

fb_defioMake use of the fb_defio (CONFIG_FB_DEFERRED_IO) kernel module to
track changed areas of the framebuffer by page faults. Standard fbdev ap-
plications that use mmap but that do not report damage, should be able to
work with this enabled. Disable when running with X server that supports
reporting changed regions via ioctl, as this method is simpler, more stable,
and higher performance. default: fb_defio=1

con-
sole

Allow fbcon to attach to udlfb provided framebuffers. Can be disabled if
fbcon and other clients (e.g. X with –shared-vt) are in conflict. default:
console=1

shadowAllocate a 2nd framebuffer to shadow what’s currently across the USB bus
in device memory. If any pixels are unchanged, do not transmit. Spends
host memory to save USB transfers. Enabled by default. Only disable on
very low memory systems. default: shadow=1

34.3 Sysfs Attributes

Udlfb creates several files in /sys/class/graphics/fb? Where ? is the sequential
framebuffer id of the particular DisplayLink device

edid If a valid EDID blob is written to this file (typically by a udev rule), then
udlfb will use this EDID as a backup in case reading the actual EDID of the
monitor attached to the DisplayLink device fails. This is especially useful
for fixed panels, etc. that cannot communicate their capabilities via EDID.
Reading this file returns the current EDID of the attached monitor (or
last backup value written). This is useful to get the EDID of the attached
monitor, which can be passed to utilities like parse-edid.

met-
rics_bytes_rendered

32-bit count of pixel bytes rendered

met-
rics_bytes_identical

32-bit count of how many of those bytes were found to be unchanged,
based on a shadow framebuffer check

met-
rics_bytes_sent

32-bit count of how many bytes were transferred over USB to communi-
cate the resulting changed pixels to the hardware. Includes compression
and protocol overhead

met-
rics_cpu_kcycles_used

32-bit count of CPU cycles used in processing the above pixels (in thou-
sands of cycles).

met-
rics_reset

Write-only. Any write to this file resets all metrics above to zero. Note that
the 32-bit counters above roll over very quickly. To get reliable results,
design performance tests to start and finish in a very short period of time
(one minute or less is safe).

Bernie Thompson <bernie@plugable.com>

34.3. Sysfs Attributes 115

mailto:bernie@plugable.com

Linux Fb Documentation

116 Chapter 34. What is udlfb?

CHAPTER

THIRTYFIVE

UVESAFB - A GENERIC DRIVER FOR VBE2+ COMPLIANT
VIDEO CARDS

35.1 1. Requirements

uvesafb should work with any video card that has a Video BIOS compliant with the
VBE 2.0 standard.

Unlike other drivers, uvesafb makes use of a userspace helper called v86d. v86d
is used to run the x86 Video BIOS code in a simulated and controlled environ-
ment. This allows uvesafb to function on arches other than x86. Check the v86d
documentation for a list of currently supported arches.

v86d source code can be downloaded from the following website:

https://github.com/mjanusz/v86d

Please refer to the v86d documentation for detailed configuration and installation
instructions.

Note that the v86d userspace helper has to be available at all times in order for
uvesafb to work properly. If you want to use uvesafb during early boot, you will
have to include v86d into an initramfs image, and either compile it into the kernel
or use it as an initrd.

35.2 2. Caveats and limitations

uvesafb is a _generic_ driver which supports a wide variety of video cards, but
which is ultimately limited by the Video BIOS interface. The most important limi-
tations are:

• Lack of any type of acceleration.

• A strict and limited set of supported videomodes. Often the native or most op-
timal resolution/refresh rate for your setup will not work with uvesafb, simply
because the Video BIOS doesn’t support the video mode you want to use. This
can be especially painful with widescreen panels, where native video modes
don’t have the 4:3 aspect ratio, which is what most BIOS-es are limited to.

• Adjusting the refresh rate is only possible with a VBE 3.0 compliant Video
BIOS. Note that many nVidia Video BIOS-es claim to be VBE 3.0 compliant,
while they simply ignore any refresh rate settings.

117

https://github.com/mjanusz/v86d

Linux Fb Documentation

35.3 3. Configuration

uvesafb can be compiled either as a module, or directly into the kernel. In both
cases it supports the same set of configuration options, which are either given on
the kernel command line or as module parameters, e.g.:

video=uvesafb:1024x768-32,mtrr:3,ywrap (compiled into the kernel)

modprobe uvesafb mode_option=1024x768-32 mtrr=3 scroll=ywrap (module)

Accepted options:

ypanEnable display panning using the VESA protected mode interface. The
visible screen is just a window of the video memory, console scrolling is
done by changing the start of the window. This option is available on x86
only and is the default option on that architecture.

ywrapSame as ypan, but assumes your gfx board can wrap-around the video
memory (i.e. starts reading from top if it reaches the end of video memory).
Faster than ypan. Available on x86 only.

re-
draw

Scroll by redrawing the affected part of the screen, this is the default on
non-x86.

(If you’re using uvesafb as a module, the above three options are used a parameter
of the scroll option, e.g. scroll=ypan.)

118Chapter 35. uvesafb - A Generic Driver for VBE2+ compliant video cards

Linux Fb Documentation

vgapal Use the standard VGA registers for
palette changes.

pmipal Use the protected mode interface for
palette changes. This is the default if
the protected mode interface is avail-
able. Available on x86 only.

mtrr:n Setup memory type range registers for
the framebuffer where n:
• 0 - disabled (equivalent to nomtrr)
• 3 - write-combining (default)

Values other than 0 and 3 will result in
a warning and will be treated just like
3.

nomtrr Do not use memory type range regis-
ters.

vremap:n Remap‘n’MiB of video RAM. If 0 or not
specified, remap memory according to
video mode.

vtotal:n If the video BIOS of your card incor-
rectly determines the total amount of
video RAM, use this option to override
the BIOS (in MiB).

<mode> The mode you want to set, in the
standard modedb format. Refer to
modedb.txt for a detailed description.
When uvesafb is compiled as a module,
the mode string should be provided as
a value of the ‘mode_option’option.

vbemode:x Force the use of VBE mode x. The
mode will only be set if it’s found in the
VBE-provided list of supported modes.
NOTE: The mode number ‘x’should
be specified in VESA mode number no-
tation, not the Linux kernel one (eg.
257 instead of 769). HINT: If you use
this option because normal <mode>
parameter does not work for you and
you use a X server, you’ll probably
want to set the‘nocrtc’option to en-
sure that the videomode is properly re-
stored after console <-> X switches.

nocrtc Do not use CRTC timings while setting
the video mode. This option has any
effect only if the Video BIOS is VBE
3.0 compliant. Use it if you have prob-
lems with modes set the standard way.
Note that using this option implies that
any refresh rate adjustments will be ig-
nored and the refresh rate will stay at
your BIOS default (60 Hz).

noedid Do not try to fetch and use EDID-
provided modes.

noblank Disable hardware blanking.
v86d:path Set path to the v86d executable. This

option is only available as a module
parameter, and not as a part of the
video= string. If you need to use it and
have uvesafb built into the kernel, use
uvesafb.v86d=”path”.

35.3. 3. Configuration 119

Linux Fb Documentation

Additionally, the following parameters may be provided. They all override the
EDID-provided values and BIOS defaults. Refer to your monitor’s specs to get the
correct values for maxhf, maxvf and maxclk for your hardware.

maxhf:n Maximum horizontal frequency (in kHz).
maxvf:n Maximum vertical frequency (in Hz).
maxclk:n Maximum pixel clock (in MHz).

35.4 4. The sysfs interface

uvesafb provides several sysfs nodes for configurable parameters and additional
information.

Driver attributes:

/sys/bus/platform/drivers/uvesafb
v86d (default: /sbin/v86d)

Path to the v86d executable. v86d is started by uvesafb if an instance of
the daemon isn’t already running.

Device attributes:

/sys/bus/platform/drivers/uvesafb/uvesafb.0
nocrtc Use the default refresh rate (60 Hz) if set to 1.
oem_product_name, oem_product_rev, oem_string, oem_vendor

Information about the card and its maker.

vbe_modes A list of video modes supported by the Video BIOS along with
their VBE mode numbers in hex.

vbe_version A BCD value indicating the implemented VBE standard.

35.5 5. Miscellaneous

Uvesafb will set a video mode with the default refresh rate and timings from the
Video BIOS if you set pixclock to 0 in fb_var_screeninfo.

Michal Januszewski <spock@gentoo.org>

Last updated: 2017-10-10

Documentation of the uvesafb options is loosely based on vesafb.txt.

120Chapter 35. uvesafb - A Generic Driver for VBE2+ compliant video cards

mailto:spock@gentoo.org

CHAPTER

THIRTYSIX

WHAT IS VESAFB?

This is a generic driver for a graphic framebuffer on intel boxes.

The idea is simple: Turn on graphics mode at boot time with the help of the BIOS,
and use this as framebuffer device /dev/fb0, like the m68k (and other) ports do.

This means we decide at boot time whenever we want to run in text or graphics
mode. Switching mode later on (in protected mode) is impossible; BIOS calls work
in real mode only. VESA BIOS Extensions Version 2.0 are required, because we
need a linear frame buffer.

Advantages:

• It provides a nice large console (128 cols + 48 lines with 1024x768) without
using tiny, unreadable fonts.

• You can run XF68_FBDev on top of /dev/fb0 (=> non-accelerated X11 support
for every VBE 2.0 compliant graphics board).

• Most important: boot logo :-)

Disadvantages:

• graphic mode is slower than text mode⋯

36.1 How to use it?

Switching modes is done using the vga=⋯boot parameter. Read
Documentation/admin-guide/svga.rst for details.

You should compile in both vgacon (for text mode) and vesafb (for graphics mode).
Which of them takes over the console depends on whenever the specified mode is
text or graphics.

The graphic modes are NOT in the list which you get if you boot with vga=ask
and hit return. The mode you wish to use is derived from the VESA mode number.
Here are those VESA mode numbers:

colors 640x480 800x600 1024x768 1280x1024
256 0x101 0x103 0x105 0x107
32k 0x110 0x113 0x116 0x119
64k 0x111 0x114 0x117 0x11A
16M 0x112 0x115 0x118 0x11B

121

Linux Fb Documentation

The video mode number of the Linux kernel is the VESA mode number plus 0x200:

Linux_kernel_mode_number = VESA_mode_number + 0x200

So the table for the Kernel mode numbers are:

colors 640x480 800x600 1024x768 1280x1024
256 0x301 0x303 0x305 0x307
32k 0x310 0x313 0x316 0x319
64k 0x311 0x314 0x317 0x31A
16M 0x312 0x315 0x318 0x31B

To enable one of those modes you have to specify “vga=ask”in the lilo.conf file
and rerun LILO. Then you can type in the desired mode at the“vga=ask”prompt.
For example if you like to use 1024x768x256 colors you have to say“305”at this
prompt.

If this does not work, this might be because your BIOS does not support linear
framebuffers or because it does not support this mode at all. Even if your board
does, it might be the BIOS which does not. VESA BIOS Extensions v2.0 are re-
quired, 1.2 is NOT sufficient. You will get a“bad mode number”message if some-
thing goes wrong.

1. Note: LILO cannot handle hex, for booting directly with“vga=mode-number”
you have to transform the numbers to decimal.

2. Note: Some newer versions of LILO appear to work with those hex values, if
you set the 0x in front of the numbers.

36.2 X11

XF68_FBDev should work just fine, but it is non-accelerated. Running another
(accelerated) X-Server like XF86_SVGA might or might not work. It depends on
X-Server and graphics board.

The X-Server must restore the video mode correctly, else you end up with a broken
console (and vesafb cannot do anything about this).

36.3 Refresh rates

There is no way to change the vesafb video mode and/or timings after booting
linux. If you are not happy with the 60 Hz refresh rate, you have these options:

• configure and load the DOS-Tools for the graphics board (if available) and
boot linux with loadlin.

• use a native driver (matroxfb/atyfb) instead if vesafb. If none is available,
write a new one!

• VBE 3.0 might work too. I have neither a gfx board with VBE 3.0 support nor
the specs, so I have not checked this yet.

122 Chapter 36. What is vesafb?

Linux Fb Documentation

36.4 Configuration

The VESA BIOS provides protected mode interface for changing some parameters.
vesafb can use it for palette changes and to pan the display. It is turned off by de-
fault because it seems not to work with some BIOS versions, but there are options
to turn it on.

You can pass options to vesafb using “video=vesafb:option”on the kernel
command line. Multiple options should be separated by comma, like this:
“video=vesafb:ypan,inverse”
Accepted options:

inverse use inverse color map

36.4. Configuration 123

Linux Fb Documentation

ypan enable display panning using the VESA
protected mode interface. The visible
screen is just a window of the video
memory, console scrolling is done by
changing the start of the window.
pro:
• scrolling (fullscreen) is fast, be-
cause there is no need to copy
around data.

• You’ll get scrollback (the Shift-
PgUp thing), the video memory
can be used as scrollback buffer

kontra:
• scrolling only parts of the screen
causes some ugly flicker effects
(boot logo flickers for example).

ywrap Same as ypan, but assumes your gfx
board canwrap-around the videomem-
ory (i.e. starts reading from top if
it reaches the end of video memory).
Faster than ypan.

redraw Scroll by redrawing the affected part of
the screen, this is the safe (and slow)
default.

vgapal Use the standard vga registers for
palette changes. This is the default.

pmipal Use the protected mode interface for
palette changes.

mtrr:n Setup memory type range registers for
the vesafb framebuffer where n:
• 0 - disabled (equivalent to nomtrr)
(default)

• 1 - uncachable
• 2 - write-back
• 3 - write-combining
• 4 - write-through

If you see the following in dmesg,
choose the type that matches the old
one. In this example, use “mtrr:2”.

⋯
mtrr: type mismatch for e0000000,8000000

old: write-back new: write-combining
⋯
nomtrr disable mtrr
vremap:n Remap ‘n’MiB of video RAM. If 0 or

not specified, remap memory accord-
ing to video mode. (2.5.66 patch/idea
by Antonino Daplas reversed to give
override possibility (allocate more fb
memory than the kernel would) to 2.4
by tmb@iki.fi)

vtotal:n If the video BIOS of your card incor-
rectly determines the total amount of
video RAM, use this option to override
the BIOS (in MiB).

124 Chapter 36. What is vesafb?

mailto:tmb@iki.fi

Linux Fb Documentation

Have fun!

Gerd Knorr <kraxel@goldbach.in-berlin.de>

Minor (mostly typo) changes by Nico Schmoigl <schmoigl@rumms.uni-
mannheim.de>

36.4. Configuration 125

mailto:kraxel@goldbach.in-berlin.de
mailto:schmoigl@rumms.uni-mannheim.de
mailto:schmoigl@rumms.uni-mannheim.de

Linux Fb Documentation

126 Chapter 36. What is vesafb?

CHAPTER

THIRTYSEVEN

VIA INTEGRATION GRAPHIC CHIP CONSOLE
FRAMEBUFFER DRIVER

37.1 Platform

The console framebuffer driver is for graphics chips of VIA UniChrome
Family (CLE266, PM800 / CN400 / CN300, P4M800CE / P4M800Pro /
CN700 / VN800, CX700 / VX700, K8M890, P4M890, CN896 / P4M900,
VX800, VX855)

37.2 Driver features

Device: CRT, LCD, DVI

Support viafb_mode:

CRT:
640x480(60, 75, 85, 100, 120 Hz), 720x480(60 Hz),
720x576(60 Hz), 800x600(60, 75, 85, 100, 120 Hz),
848x480(60 Hz), 856x480(60 Hz), 1024x512(60 Hz),
1024x768(60, 75, 85, 100 Hz), 1152x864(75 Hz),
1280x768(60 Hz), 1280x960(60 Hz), 1280x1024(60, 75, 85 Hz),
1440x1050(60 Hz), 1600x1200(60, 75 Hz), 1280x720(60 Hz),
1920x1080(60 Hz), 1400x1050(60 Hz), 800x480(60 Hz)

color depth: 8 bpp, 16 bpp, 32 bpp supports.

Support 2D hardware accelerator.

37.3 Using the viafb module

Start viafb with default settings:

#modprobe viafb

Start viafb with user options:

#modprobe viafb viafb_mode=800x600 viafb_bpp=16 viafb_refresh=60
viafb_active_dev=CRT+DVI viafb_dvi_port=DVP1

(continues on next page)

127

Linux Fb Documentation

(continued from previous page)
viafb_mode1=1024x768 viafb_bpp=16 viafb_refresh1=60
viafb_SAMM_ON=1

viafb_mode:
• 640x480 (default)

• 720x480

• 800x600

• 1024x768

viafb_bpp:
• 8, 16, 32 (default:32)

viafb_refresh:
• 60, 75, 85, 100, 120 (default:60)

viafb_lcd_dsp_method:
• 0 : expansion (default)

• 1 : centering

viafb_lcd_mode: 0 : LCD panel with LSB data format input (default) 1
: LCD panel with MSB data format input

viafb_lcd_panel_id:
• 0 : Resolution: 640x480, Channel: single, Dithering: Enable

• 1 : Resolution: 800x600, Channel: single, Dithering: Enable

• 2 : Resolution: 1024x768, Channel: single, Dithering: Enable
(default)

• 3 : Resolution: 1280x768, Channel: single, Dithering: Enable

• 4 : Resolution: 1280x1024, Channel: dual, Dithering: Enable

• 5 : Resolution: 1400x1050, Channel: dual, Dithering: Enable

• 6 : Resolution: 1600x1200, Channel: dual, Dithering: Enable

• 8 : Resolution: 800x480, Channel: single, Dithering: Enable

• 9 : Resolution: 1024x768, Channel: dual, Dithering: Enable

• 10: Resolution: 1024x768, Channel: single, Dithering: Disable

• 11: Resolution: 1024x768, Channel: dual, Dithering: Disable

• 12: Resolution: 1280x768, Channel: single, Dithering: Disable

• 13: Resolution: 1280x1024, Channel: dual, Dithering: Disable

• 14: Resolution: 1400x1050, Channel: dual, Dithering: Disable

• 15: Resolution: 1600x1200, Channel: dual, Dithering: Disable

• 16: Resolution: 1366x768, Channel: single, Dithering: Disable

128Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

• 17: Resolution: 1024x600, Channel: single, Dithering: Enable

• 18: Resolution: 1280x768, Channel: dual, Dithering: Enable

• 19: Resolution: 1280x800, Channel: single, Dithering: Enable

viafb_accel:
• 0 : No 2D Hardware Acceleration

• 1 : 2D Hardware Acceleration (default)

viafb_SAMM_ON:
• 0 : viafb_SAMM_ON disable (default)

• 1 : viafb_SAMM_ON enable

viafb_mode1: (secondary display device)
• 640x480 (default)

• 720x480

• 800x600

• 1024x768

viafb_bpp1: (secondary display device)
• 8, 16, 32 (default:32)

viafb_refresh1: (secondary display device)
• 60, 75, 85, 100, 120 (default:60)

viafb_active_dev: This option is used to specify active devices.(CRT,
DVI, CRT+LCD⋯) DVI stands for DVI or HDMI, E.g., If you want
to enable HDMI, set viafb_active_dev=DVI. In SAMM case, the pre-
vious of viafb_active_dev is primary device, and the following is sec-
ondary device.

For example:

To enable one device, such as DVI only, we can use:

modprobe viafb viafb_active_dev=DVI

To enable two devices, such as CRT+DVI:

modprobe viafb viafb_active_dev=CRT+DVI;

For DuoView case, we can use:

modprobe viafb viafb_active_dev=CRT+DVI

OR:

modprobe viafb viafb_active_dev=DVI+CRT...

For SAMM case:

If CRT is primary and DVI is secondary, we should use:

37.3. Using the viafb module 129

Linux Fb Documentation

modprobe viafb viafb_active_dev=CRT+DVI viafb_SAMM_ON=1...

If DVI is primary and CRT is secondary, we should use:

modprobe viafb viafb_active_dev=DVI+CRT viafb_SAMM_ON=1...

viafb_display_hardware_layout: This option is used to specify display
hardware layout for CX700 chip.

• 1 : LCD only

• 2 : DVI only

• 3 : LCD+DVI (default)

• 4 : LCD1+LCD2 (internal + internal)

• 16: LCD1+ExternalLCD2 (internal + external)

viafb_second_size: This option is used to set second device memory
size(MB) in SAMM case. The minimal size is 16.

viafb_platform_epia_dvi: This option is used to enable DVI on EPIA -
M

• 0 : No DVI on EPIA - M (default)

• 1 : DVI on EPIA - M

viafb_bus_width: When using 24 - Bit Bus Width Digital Interface, this
option should be set.

• 12: 12-Bit LVDS or 12-Bit TMDS (default)

• 24: 24-Bit LVDS or 24-Bit TMDS

viafb_device_lcd_dualedge: When using Dual Edge Panel, this option
should be set.

• 0 : No Dual Edge Panel (default)

• 1 : Dual Edge Panel

viafb_lcd_port: This option is used to specify LCD output port, available
values are“DVP0”“DVP1”“DFP_HIGHLOW”“DFP_HIGH”“DFP_LOW”
.

for external LCD + external DVI on CX700(External LCD is on
DVP0), we should use:

modprobe viafb viafb_lcd_port=DVP0...

Notes:
1. CRT may not display properly for DuoView CRT & DVI display at the
“640x480”PAL mode with DVI overscan enabled.
2. SAMM stands for single adapter multi monitors. It is different frommulti-
head since SAMM support multi monitor at driver layers, thus fbcon layer
doesn’t even know about it; SAMM’s second screen doesn’t have a
device node file, thus a user mode application can’t access it directly.

130Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

When SAMM is enabled, viafb_mode and viafb_mode1, viafb_bpp and vi-
afb_bpp1, viafb_refresh and viafb_refresh1 can be different.

3. When console is depending on viafbinfo1, dynamically change resolution
and bpp, need to call VIAFB specified ioctl interface VIAFB_SET_DEVICE
instead of calling common ioctl function FBIOPUT_VSCREENINFO since
viafb doesn’t support multi-head well, or it will cause screen crush.

37.4 Configure viafb with “fbset”tool

“fbset”is an inbox utility of Linux.
1. Inquire current viafb information, type:

fbset -i

2. Set various resolutions and viafb_refresh rates:

fbset <resolution-vertical_sync>

example:

fbset "1024x768-75"

or:

fbset -g 1024 768 1024 768 32

Check the file “/etc/fb.modes”to find display modes available.
3. Set the color depth:

fbset -depth <value>

example:

fbset -depth 16

37.5 Configure viafb via /proc

The following files exist in /proc/viafb

supported_output_devices This read-only file contains a full ‘,’sep-
arated list containing all output devices that could be available on
your platform. It is likely that not all of those have a connector on
your hardware but it should provide a good starting point to figure
out which of those names match a real connector.

Example:

cat /proc/viafb/supported_output_devices

37.4. Configure viafb with “fbset”tool 131

Linux Fb Documentation

iga1/output_devices, iga2/output_devices These two files are read-
able and writable. iga1 and iga2 are the two independent units that
produce the screen image. Those images can be forwarded to one
or more output devices. Reading those files is a way to query which
output devices are currently used by an iga.

Example:

cat /proc/viafb/iga1/output_devices

If there are no output devices printed the output of this iga is lost.
This can happen for example if only one (the other) iga is used. Writ-
ing to these files allows adjusting the output devices during runtime.
One can add new devices, remove existing ones or switch between
igas. Essentially you can write a‘,’separated list of device names
(or a single one) in the same format as the output to those files. You
can add a‘+’or‘-‘as a prefix allowing simple addition and removal
of devices. So a prefix ‘+’adds the devices from your list to the
already existing ones, ‘-‘removes the listed devices from the ex-
isting ones and if no prefix is given it replaces all existing ones with
the listed ones. If you remove devices they are expected to turn off.
If you add devices that are already part of the other iga they are
removed there and added to the new one.

Examples:

Add CRT as output device to iga1:

echo +CRT > /proc/viafb/iga1/output_devices

Remove (turn off) DVP1 and LVDS1 as output devices of iga2:

echo -DVP1,LVDS1 > /proc/viafb/iga2/output_devices

Replace all iga1 output devices by CRT:

echo CRT > /proc/viafb/iga1/output_devices

132Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

37.6 Bootup with viafb

Add the following line to your grub.conf:

append = "video=viafb:viafb_mode=1024x768,viafb_bpp=32,viafb_refresh=85"

37.6.1 VIA Framebuffer modes

#
#
These data are based on the CRTC parameters in
#
VIA Integration Graphics Chip
(C) 2004 VIA Technologies Inc.
#

#
640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock)
#
Horizontal Vertical
Resolution 640 480
Scan Frequency 31.469 kHz 59.94 Hz
Sync Width 3.813 us 0.064 ms
12 chars 2 lines
Front Porch 0.636 us 0.318 ms
2 chars 10 lines
Back Porch 1.907 us 1.048 ms
6 chars 33 lines
Active Time 25.422 us 15.253 ms
80 chars 480 lines
Blank Time 6.356 us 1.430 ms
20 chars 45 lines
Polarity negative negative
#

mode "640x480-60"
D: 25.175 MHz, H: 31.469 kHz, V: 59.94 Hz

geometry 640 480 640 480 32
timings 39722 48 16 33 10 96 2 endmode mode "480x640-60"

D: 24.823 MHz, H: 39.780 kHz, V: 60.00 Hz
geometry 480 640 480 640 32 timings 39722 72 24 19 1 48 3 endmode

#
640x480, 75 Hz, Non-Interlaced (31.50 MHz dotclock)
#
Horizontal Vertical
Resolution 640 480
Scan Frequency 37.500 kHz 75.00 Hz
Sync Width 2.032 us 0.080 ms
8 chars 3 lines
Front Porch 0.508 us 0.027 ms
2 chars 1 lines
Back Porch 3.810 us 0.427 ms
15 chars 16 lines
Active Time 20.317 us 12.800 ms

(continues on next page)

37.6. Bootup with viafb 133

Linux Fb Documentation

(continued from previous page)
80 chars 480 lines
Blank Time 6.349 us 0.533 ms
25 chars 20 lines
Polarity negative negative
#

mode "640x480-75"
D: 31.50 MHz, H: 37.500 kHz, V: 75.00 Hz

geometry 640 480 640 480 32 timings 31747 120 16 16 1 64 3 endmode
#
640x480, 85 Hz, Non-Interlaced (36.000 MHz dotclock)
#
Horizontal Vertical
Resolution 640 480
Scan Frequency 43.269 kHz 85.00 Hz
Sync Width 1.556 us 0.069 ms
7 chars 3 lines
Front Porch 1.556 us 0.023 ms
7 chars 1 lines
Back Porch 2.222 us 0.578 ms
10 chars 25 lines
Active Time 17.778 us 11.093 ms
80 chars 480 lines
Blank Time 5.333 us 0.670 ms
24 chars 29 lines
Polarity negative negative
#

mode "640x480-85"
D: 36.000 MHz, H: 43.269 kHz, V: 85.00 Hz

geometry 640 480 640 480 32 timings 27777 80 56 25 1 56 3 endmode
#
640x480, 100 Hz, Non-Interlaced (43.163 MHz dotclock)
#
Horizontal Vertical
Resolution 640 480
Scan Frequency 50.900 kHz 100.00 Hz
Sync Width 1.483 us 0.058 ms
8 chars 3 lines
Front Porch 0.927 us 0.019 ms
5 chars 1 lines
Back Porch 2.409 us 0.475 ms
13 chars 25 lines
Active Time 14.827 us 9.430 ms
80 chars 480 lines
Blank Time 4.819 us 0.570 ms
26 chars 29 lines
Polarity positive positive
#

mode "640x480-100"
D: 43.163 MHz, H: 50.900 kHz, V: 100.00 Hz

geometry 640 480 640 480 32 timings 23168 104 40 25 1 64 3 endmode
#
640x480, 120 Hz, Non-Interlaced (52.406 MHz dotclock)
#
Horizontal Vertical
Resolution 640 480
Scan Frequency 61.800 kHz 120.00 Hz

(continues on next page)

134Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
Sync Width 1.221 us 0.048 ms
8 chars 3 lines
Front Porch 0.763 us 0.016 ms
5 chars 1 lines
Back Porch 1.984 us 0.496 ms
13 chars 31 lines
Active Time 12.212 us 7.767 ms
80 chars 480 lines
Blank Time 3.969 us 0.566 ms
26 chars 35 lines
Polarity positive positive
#

mode "640x480-120"
D: 52.406 MHz, H: 61.800 kHz, V: 120.00 Hz

geometry 640 480 640 480 32 timings 19081 104 40 31 1 64 3 endmode
#
720x480, 60 Hz, Non-Interlaced (26.880 MHz dotclock)
#
Horizontal Vertical
Resolution 720 480
Scan Frequency 30.000 kHz 60.241 Hz
Sync Width 2.679 us 0.099 ms
9 chars 3 lines
Front Porch 0.595 us 0.033 ms
2 chars 1 lines
Back Porch 3.274 us 0.462 ms
11 chars 14 lines
Active Time 26.786 us 16.000 ms
90 chars 480 lines
Blank Time 6.548 us 0.600 ms
22 chars 18 lines
Polarity positive positive
#

mode "720x480-60"
D: 26.880 MHz, H: 30.000 kHz, V: 60.24 Hz

geometry 720 480 720 480 32 timings 37202 88 16 14 1 72 3 endmode
#
800x480, 60 Hz, Non-Interlaced (29.581 MHz dotclock)
#
Horizontal Vertical
Resolution 800 480
Scan Frequency 29.892 kHz 60.00 Hz
Sync Width 2.704 us 100.604 us
10 chars 3 lines
Front Porch 0.541 us 33.535 us
2 chars 1 lines
Back Porch 3.245 us 435.949 us
12 chars 13 lines
Active Time 27.044 us 16.097 ms
100 chars 480 lines
Blank Time 6.491 us 0.570 ms
24 chars 17 lines
Polarity positive positive
#

mode "800x480-60"
D: 29.500 MHz, H: 29.738 kHz, V: 60.00 Hz

(continues on next page)

37.6. Bootup with viafb 135

Linux Fb Documentation

(continued from previous page)
geometry 800 480 800 480 32 timings 33805 96 24 10 3 72 7 endmode

#
720x576, 60 Hz, Non-Interlaced (32.668 MHz dotclock)
#
Horizontal Vertical
Resolution 720 576
Scan Frequency 35.820 kHz 60.00 Hz
Sync Width 2.204 us 0.083 ms
9 chars 3 lines
Front Porch 0.735 us 0.027 ms
3 chars 1 lines
Back Porch 2.939 us 0.459 ms
12 chars 17 lines
Active Time 22.040 us 16.080 ms
90 chars 476 lines
Blank Time 5.877 us 0.586 ms
24 chars 21 lines
Polarity positive positive
#

mode "720x576-60"
D: 32.668 MHz, H: 35.820 kHz, V: 60.00 Hz

geometry 720 576 720 576 32 timings 30611 96 24 17 1 72 3 endmode
#
800x600, 60 Hz, Non-Interlaced (40.00 MHz dotclock)
#
Horizontal Vertical
Resolution 800 600
Scan Frequency 37.879 kHz 60.32 Hz
Sync Width 3.200 us 0.106 ms
16 chars 4 lines
Front Porch 1.000 us 0.026 ms
5 chars 1 lines
Back Porch 2.200 us 0.607 ms
11 chars 23 lines
Active Time 20.000 us 15.840 ms
100 chars 600 lines
Blank Time 6.400 us 0.739 ms
32 chars 28 lines
Polarity positive positive
#

mode "800x600-60"
D: 40.00 MHz, H: 37.879 kHz, V: 60.32 Hz

geometry 800 600 800 600 32
timings 25000 88 40 23 1 128 4 hsync high vsync high endmode

#
800x600, 75 Hz, Non-Interlaced (49.50 MHz dotclock)
#
Horizontal Vertical
Resolution 800 600
Scan Frequency 46.875 kHz 75.00 Hz
Sync Width 1.616 us 0.064 ms
10 chars 3 lines
Front Porch 0.323 us 0.021 ms
2 chars 1 lines
Back Porch 3.232 us 0.448 ms
20 chars 21 lines

(continues on next page)

136Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
Active Time 16.162 us 12.800 ms
100 chars 600 lines
Blank Time 5.172 us 0.533 ms
32 chars 25 lines
Polarity positive positive
#

mode "800x600-75"
D: 49.50 MHz, H: 46.875 kHz, V: 75.00 Hz

geometry 800 600 800 600 32
timings 20203 160 16 21 1 80 3 hsync high vsync high endmode

#
800x600, 85 Hz, Non-Interlaced (56.25 MHz dotclock)
#
Horizontal Vertical
Resolution 800 600
Scan Frequency 53.674 kHz 85.061 Hz
Sync Width 1.138 us 0.056 ms
8 chars 3 lines
Front Porch 0.569 us 0.019 ms
4 chars 1 lines
Back Porch 2.702 us 0.503 ms
19 chars 27 lines
Active Time 14.222 us 11.179 ms
100 chars 600 lines
Blank Time 4.409 us 0.578 ms
31 chars 31 lines
Polarity positive positive
#

mode "800x600-85"
D: 56.25 MHz, H: 53.674 kHz, V: 85.061 Hz

geometry 800 600 800 600 32
timings 17777 152 32 27 1 64 3 hsync high vsync high endmode

#
800x600, 100 Hz, Non-Interlaced (67.50 MHz dotclock)
#
Horizontal Vertical
Resolution 800 600
Scan Frequency 62.500 kHz 100.00 Hz
Sync Width 0.948 us 0.064 ms
8 chars 4 lines
Front Porch 0.000 us 0.112 ms
0 chars 7 lines
Back Porch 3.200 us 0.224 ms
27 chars 14 lines
Active Time 11.852 us 9.600 ms
100 chars 600 lines
Blank Time 4.148 us 0.400 ms
35 chars 25 lines
Polarity positive positive
#

mode "800x600-100"
D: 67.50 MHz, H: 62.500 kHz, V: 100.00 Hz

geometry 800 600 800 600 32
timings 14667 216 0 14 7 64 4 hsync high vsync high endmode

#
800x600, 120 Hz, Non-Interlaced (83.950 MHz dotclock)

(continues on next page)

37.6. Bootup with viafb 137

Linux Fb Documentation

(continued from previous page)
#
Horizontal Vertical
Resolution 800 600
Scan Frequency 77.160 kHz 120.00 Hz
Sync Width 1.048 us 0.039 ms
11 chars 3 lines
Front Porch 0.667 us 0.013 ms
7 chars 1 lines
Back Porch 1.715 us 0.507 ms
18 chars 39 lines
Active Time 9.529 us 7.776 ms
100 chars 600 lines
Blank Time 3.431 us 0.557 ms
36 chars 43 lines
Polarity positive positive
#

mode "800x600-120"
D: 83.950 MHz, H: 77.160 kHz, V: 120.00 Hz

geometry 800 600 800 600 32
timings 11912 144 56 39 1 88 3 hsync high vsync high endmode

#
848x480, 60 Hz, Non-Interlaced (31.490 MHz dotclock)
#
Horizontal Vertical
Resolution 848 480
Scan Frequency 29.820 kHz 60.00 Hz
Sync Width 2.795 us 0.099 ms
11 chars 3 lines
Front Porch 0.508 us 0.033 ms
2 chars 1 lines
Back Porch 3.303 us 0.429 ms
13 chars 13 lines
Active Time 26.929 us 16.097 ms
106 chars 480 lines
Blank Time 6.605 us 0.570 ms
26 chars 17 lines
Polarity positive positive
#

mode "848x480-60"
D: 31.500 MHz, H: 29.830 kHz, V: 60.00 Hz

geometry 848 480 848 480 32
timings 31746 104 24 12 3 80 5 hsync high vsync high endmode

#
856x480, 60 Hz, Non-Interlaced (31.728 MHz dotclock)
#
Horizontal Vertical
Resolution 856 480
Scan Frequency 29.820 kHz 60.00 Hz
Sync Width 2.774 us 0.099 ms
11 chars 3 lines
Front Porch 0.504 us 0.033 ms
2 chars 1 lines
Back Porch 3.728 us 0.429 ms
13 chars 13 lines
Active Time 26.979 us 16.097 ms
107 chars 480 lines

(continues on next page)

138Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
Blank Time 6.556 us 0.570 ms
26 chars 17 lines
Polarity positive positive
#

mode "856x480-60"
D: 31.728 MHz, H: 29.820 kHz, V: 60.00 Hz

geometry 856 480 856 480 32
timings 31518 104 16 13 1 88 3
hsync high vsync high endmode mode "960x600-60"

D: 45.250 MHz, H: 37.212 kHz, V: 60.00 Hz
geometry 960 600 960 600 32 timings 22099 128 32 15 3 96 6 endmode

#
1000x600, 60 Hz, Non-Interlaced (48.068 MHz dotclock)
#
Horizontal Vertical
Resolution 1000 600
Scan Frequency 37.320 kHz 60.00 Hz
Sync Width 2.164 us 0.080 ms
13 chars 3 lines
Front Porch 0.832 us 0.027 ms
5 chars 1 lines
Back Porch 2.996 us 0.483 ms
18 chars 18 lines
Active Time 20.804 us 16.077 ms
125 chars 600 lines
Blank Time 5.991 us 0.589 ms
36 chars 22 lines
Polarity negative positive
#

mode "1000x600-60"
D: 48.068 MHz, H: 37.320 kHz, V: 60.00 Hz

geometry 1000 600 1000 600 32
timings 20834 144 40 18 1 104 3 endmode mode "1024x576-60"

D: 46.996 MHz, H: 35.820 kHz, V: 60.00 Hz
geometry 1024 576 1024 576 32
timings 21278 144 40 17 1 104 3 endmode mode "1024x600-60"

D: 48.964 MHz, H: 37.320 kHz, V: 60.00 Hz
geometry 1024 600 1024 600 32
timings 20461 144 40 18 1 104 3 endmode mode "1088x612-60"

D: 52.952 MHz, H: 38.040 kHz, V: 60.00 Hz
geometry 1088 612 1088 612 32 timings 18877 152 48 16 3 104 5 endmode

#
1024x512, 60 Hz, Non-Interlaced (41.291 MHz dotclock)
#
Horizontal Vertical
Resolution 1024 512
Scan Frequency 31.860 kHz 60.00 Hz
Sync Width 2.519 us 0.094 ms
13 chars 3 lines
Front Porch 0.775 us 0.031 ms
4 chars 1 lines
Back Porch 3.294 us 0.465 ms
17 chars 15 lines
Active Time 24.800 us 16.070 ms
128 chars 512 lines
Blank Time 6.587 us 0.596 ms

(continues on next page)

37.6. Bootup with viafb 139

Linux Fb Documentation

(continued from previous page)
34 chars 19 lines
Polarity positive positive
#

mode "1024x512-60"
D: 41.291 MHz, H: 31.860 kHz, V: 60.00 Hz

geometry 1024 512 1024 512 32
timings 24218 126 32 15 1 104 3 hsync high vsync high endmode

#
1024x600, 60 Hz, Non-Interlaced (48.875 MHz dotclock)
#
Horizontal Vertical
Resolution 1024 768
Scan Frequency 37.252 kHz 60.00 Hz
Sync Width 2.128 us 80.532us
13 chars 3 lines
Front Porch 0.818 us 26.844 us
5 chars 1 lines
Back Porch 2.946 us 483.192 us
18 chars 18 lines
Active Time 20.951 us 16.697 ms
128 chars 622 lines
Blank Time 5.893 us 0.591 ms
36 chars 22 lines
Polarity negative positive
#
#mode "1024x600-60"
D: 48.875 MHz, H: 37.252 kHz, V: 60.00 Hz
geometry 1024 600 1024 600 32
timings 20460 144 40 18 1 104 3
endmode
#
1024x768, 60 Hz, Non-Interlaced (65.00 MHz dotclock)
#
Horizontal Vertical
Resolution 1024 768
Scan Frequency 48.363 kHz 60.00 Hz
Sync Width 2.092 us 0.124 ms
17 chars 6 lines
Front Porch 0.369 us 0.062 ms
3 chars 3 lines
Back Porch 2.462 us 0.601 ms
20 chars 29 lines
Active Time 15.754 us 15.880 ms
128 chars 768 lines
Blank Time 4.923 us 0.786 ms
40 chars 38 lines
Polarity negative negative
#

mode "1024x768-60"
D: 65.00 MHz, H: 48.363 kHz, V: 60.00 Hz

geometry 1024 768 1024 768 32 timings 15385 160 24 29 3 136 6 endmode
#
1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock)
#
Horizontal Vertical
Resolution 1024 768

(continues on next page)

140Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
Scan Frequency 60.023 kHz 75.03 Hz
Sync Width 1.219 us 0.050 ms
12 chars 3 lines
Front Porch 0.203 us 0.017 ms
2 chars 1 lines
Back Porch 2.235 us 0.466 ms
22 chars 28 lines
Active Time 13.003 us 12.795 ms
128 chars 768 lines
Blank Time 3.657 us 0.533 ms
36 chars 32 lines
Polarity positive positive
#

mode "1024x768-75"
D: 78.75 MHz, H: 60.023 kHz, V: 75.03 Hz

geometry 1024 768 1024 768 32
timings 12699 176 16 28 1 96 3 hsync high vsync high endmode

#
1024x768, 85 Hz, Non-Interlaced (94.50 MHz dotclock)
#
Horizontal Vertical
Resolution 1024 768
Scan Frequency 68.677 kHz 85.00 Hz
Sync Width 1.016 us 0.044 ms
12 chars 3 lines
Front Porch 0.508 us 0.015 ms
6 chars 1 lines
Back Porch 2.201 us 0.524 ms
26 chars 36 lines
Active Time 10.836 us 11.183 ms
128 chars 768 lines
Blank Time 3.725 us 0.582 ms
44 chars 40 lines
Polarity positive positive
#

mode "1024x768-85"
D: 94.50 MHz, H: 68.677 kHz, V: 85.00 Hz

geometry 1024 768 1024 768 32
timings 10582 208 48 36 1 96 3 hsync high vsync high endmode

#
1024x768, 100 Hz, Non-Interlaced (110.0 MHz dotclock)
#
Horizontal Vertical
Resolution 1024 768
Scan Frequency 79.023 kHz 99.78 Hz
Sync Width 0.800 us 0.101 ms
11 chars 8 lines
Front Porch 0.000 us 0.000 ms
0 chars 0 lines
Back Porch 2.545 us 0.202 ms
35 chars 16 lines
Active Time 9.309 us 9.719 ms
128 chars 768 lines
Blank Time 3.345 us 0.304 ms
46 chars 24 lines
Polarity negative negative

(continues on next page)

37.6. Bootup with viafb 141

Linux Fb Documentation

(continued from previous page)
#

mode "1024x768-100"
D: 113.3 MHz, H: 79.023 kHz, V: 99.78 Hz

geometry 1024 768 1024 768 32
timings 8825 280 0 16 0 88 8 endmode mode "1152x720-60"

D: 66.750 MHz, H: 44.859 kHz, V: 60.00 Hz
geometry 1152 720 1152 720 32 timings 14981 168 56 19 3 112 6 endmode

#
1152x864, 75 Hz, Non-Interlaced (110.0 MHz dotclock)
#
Horizontal Vertical
Resolution 1152 864
Scan Frequency 75.137 kHz 74.99 Hz
Sync Width 1.309 us 0.106 ms
18 chars 8 lines
Front Porch 0.245 us 0.599 ms
3 chars 45 lines
Back Porch 1.282 us 1.132 ms
18 chars 85 lines
Active Time 10.473 us 11.499 ms
144 chars 864 lines
Blank Time 2.836 us 1.837 ms
39 chars 138 lines
Polarity positive positive
#

mode "1152x864-75"
D: 110.0 MHz, H: 75.137 kHz, V: 74.99 Hz

geometry 1152 864 1152 864 32
timings 9259 144 24 85 45 144 8
hsync high vsync high endmode mode "1200x720-60"

D: 70.184 MHz, H: 44.760 kHz, V: 60.00 Hz
geometry 1200 720 1200 720 32
timings 14253 184 28 22 1 128 3 endmode mode "1280x600-60"

D: 61.503 MHz, H: 37.320 kHz, V: 60.00 Hz
geometry 1280 600 1280 600 32
timings 16260 184 28 18 1 128 3 endmode mode "1280x720-50"

D: 60.466 MHz, H: 37.050 kHz, V: 50.00 Hz
geometry 1280 720 1280 720 32
timings 16538 176 48 17 1 128 3 endmode mode "1280x768-50"

D: 65.178 MHz, H: 39.550 kHz, V: 50.00 Hz
geometry 1280 768 1280 768 32 timings 15342 184 28 19 1 128 3 endmode

#
1280x768, 60 Hz, Non-Interlaced (80.136 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 768
Scan Frequency 47.700 kHz 60.00 Hz
Sync Width 1.697 us 0.063 ms
17 chars 3 lines
Front Porch 0.799 us 0.021 ms
8 chars 1 lines
Back Porch 2.496 us 0.483 ms
25 chars 23 lines
Active Time 15.973 us 16.101 ms
160 chars 768 lines
Blank Time 4.992 us 0.566 ms

(continues on next page)

142Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
50 chars 27 lines
Polarity positive positive
#

mode "1280x768-60"
D: 80.13 MHz, H: 47.700 kHz, V: 60.00 Hz

geometry 1280 768 1280 768 32
timings 12480 200 48 23 1 126 3 hsync high vsync high endmode

#
1280x800, 60 Hz, Non-Interlaced (83.375 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 800
Scan Frequency 49.628 kHz 60.00 Hz
Sync Width 1.631 us 60.450 us
17 chars 3 lines
Front Porch 0.768 us 20.15 us
8 chars 1 lines
Back Porch 2.399 us 0.483 ms
25 chars 24 lines
Active Time 15.352 us 16.120 ms
160 chars 800 lines
Blank Time 4.798 us 0.564 ms
50 chars 28 lines
Polarity negative positive
#

mode "1280x800-60"
D: 83.500 MHz, H: 49.702 kHz, V: 60.00 Hz

geometry 1280 800 1280 800 32 timings 11994 200 72 22 3 128 6 endmode
#
1280x960, 60 Hz, Non-Interlaced (108.00 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 960
Scan Frequency 60.000 kHz 60.00 Hz
Sync Width 1.037 us 0.050 ms
14 chars 3 lines
Front Porch 0.889 us 0.017 ms
12 chars 1 lines
Back Porch 2.889 us 0.600 ms
39 chars 36 lines
Active Time 11.852 us 16.000 ms
160 chars 960 lines
Blank Time 4.815 us 0.667 ms
65 chars 40 lines
Polarity positive positive
#

mode "1280x960-60"
D: 108.00 MHz, H: 60.000 kHz, V: 60.00 Hz

geometry 1280 960 1280 960 32
timings 9259 312 96 36 1 112 3 hsync high vsync high endmode

#
1280x1024, 60 Hz, Non-Interlaced (108.00 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 1024
Scan Frequency 63.981 kHz 60.02 Hz

(continues on next page)

37.6. Bootup with viafb 143

Linux Fb Documentation

(continued from previous page)
Sync Width 1.037 us 0.047 ms
14 chars 3 lines
Front Porch 0.444 us 0.015 ms
6 chars 1 lines
Back Porch 2.297 us 0.594 ms
31 chars 38 lines
Active Time 11.852 us 16.005 ms
160 chars 1024 lines
Blank Time 3.778 us 0.656 ms
51 chars 42 lines
Polarity positive positive
#

mode "1280x1024-60"
D: 108.00 MHz, H: 63.981 kHz, V: 60.02 Hz

geometry 1280 1024 1280 1024 32
timings 9260 248 48 38 1 112 3 hsync high vsync high endmode

#
1280x1024, 75 Hz, Non-Interlaced (135.00 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 1024
Scan Frequency 79.976 kHz 75.02 Hz
Sync Width 1.067 us 0.038 ms
18 chars 3 lines
Front Porch 0.119 us 0.012 ms
2 chars 1 lines
Back Porch 1.837 us 0.475 ms
31 chars 38 lines
Active Time 9.481 us 12.804 ms
160 chars 1024 lines
Blank Time 3.022 us 0.525 ms
51 chars 42 lines
Polarity positive positive
#

mode "1280x1024-75"
D: 135.00 MHz, H: 79.976 kHz, V: 75.02 Hz

geometry 1280 1024 1280 1024 32
timings 7408 248 16 38 1 144 3 hsync high vsync high endmode

#
1280x1024, 85 Hz, Non-Interlaced (157.50 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 1024
Scan Frequency 91.146 kHz 85.02 Hz
Sync Width 1.016 us 0.033 ms
20 chars 3 lines
Front Porch 0.406 us 0.011 ms
8 chars 1 lines
Back Porch 1.422 us 0.483 ms
28 chars 44 lines
Active Time 8.127 us 11.235 ms
160 chars 1024 lines
Blank Time 2.844 us 0.527 ms
56 chars 48 lines
Polarity positive positive
#

(continues on next page)

144Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
mode "1280x1024-85"

D: 157.50 MHz, H: 91.146 kHz, V: 85.02 Hz
geometry 1280 1024 1280 1024 32
timings 6349 224 64 44 1 160 3
hsync high vsync high endmode mode "1440x900-60"

D: 106.500 MHz, H: 55.935 kHz, V: 60.00 Hz
geometry 1440 900 1440 900 32
timings 9390 232 80 25 3 152 6
hsync high vsync high endmode mode "1440x900-75"

D: 136.750 MHz, H: 70.635 kHz, V: 75.00 Hz
geometry 1440 900 1440 900 32
timings 7315 248 96 33 3 152 6 hsync high vsync high endmode

#
1440x1050, 60 Hz, Non-Interlaced (125.10 MHz dotclock)
#
Horizontal Vertical
Resolution 1440 1050
Scan Frequency 65.220 kHz 60.00 Hz
Sync Width 1.204 us 0.046 ms
19 chars 3 lines
Front Porch 0.760 us 0.015 ms
12 chars 1 lines
Back Porch 1.964 us 0.495 ms
31 chars 33 lines
Active Time 11.405 us 16.099 ms
180 chars 1050 lines
Blank Time 3.928 us 0.567 ms
62 chars 37 lines
Polarity positive positive
#

mode "1440x1050-60"
D: 125.10 MHz, H: 65.220 kHz, V: 60.00 Hz

geometry 1440 1050 1440 1050 32
timings 7993 248 96 33 1 152 3
hsync high vsync high endmode mode "1600x900-60"

D: 118.250 MHz, H: 55.990 kHz, V: 60.00 Hz
geometry 1600 900 1600 900 32
timings 8415 256 88 26 3 168 5 endmode mode "1600x1024-60"

D: 136.358 MHz, H: 63.600 kHz, V: 60.00 Hz
geometry 1600 1024 1600 1024 32 timings 7315 272 104 32 1 168 3 endmode

#
1600x1200, 60 Hz, Non-Interlaced (156.00 MHz dotclock)
#
Horizontal Vertical
Resolution 1600 1200
Scan Frequency 76.200 kHz 60.00 Hz
Sync Width 1.026 us 0.105 ms
20 chars 8 lines
Front Porch 0.205 us 0.131 ms
4 chars 10 lines
Back Porch 1.636 us 0.682 ms
32 chars 52 lines
Active Time 10.256 us 15.748 ms
200 chars 1200 lines
Blank Time 2.872 us 0.866 ms
56 chars 66 lines

(continues on next page)

37.6. Bootup with viafb 145

Linux Fb Documentation

(continued from previous page)
Polarity negative negative
#

mode "1600x1200-60"
D: 156.00 MHz, H: 76.200 kHz, V: 60.00 Hz

geometry 1600 1200 1600 1200 32 timings 6172 256 32 52 10 160 8 endmode
#
1600x1200, 75 Hz, Non-Interlaced (202.50 MHz dotclock)
#
Horizontal Vertical
Resolution 1600 1200
Scan Frequency 93.750 kHz 75.00 Hz
Sync Width 0.948 us 0.032 ms
24 chars 3 lines
Front Porch 0.316 us 0.011 ms
8 chars 1 lines
Back Porch 1.501 us 0.491 ms
38 chars 46 lines
Active Time 7.901 us 12.800 ms
200 chars 1200 lines
Blank Time 2.765 us 0.533 ms
70 chars 50 lines
Polarity positive positive
#

mode "1600x1200-75"
D: 202.50 MHz, H: 93.750 kHz, V: 75.00 Hz

geometry 1600 1200 1600 1200 32
timings 4938 304 64 46 1 192 3
hsync high vsync high endmode mode "1680x1050-60"

D: 146.250 MHz, H: 65.290 kHz, V: 59.954 Hz
geometry 1680 1050 1680 1050 32
timings 6814 280 104 30 3 176 6
hsync high vsync high endmode mode "1680x1050-75"

D: 187.000 MHz, H: 82.306 kHz, V: 74.892 Hz
geometry 1680 1050 1680 1050 32
timings 5348 296 120 40 3 176 6
hsync high vsync high endmode mode "1792x1344-60"

D: 202.975 MHz, H: 83.460 kHz, V: 60.00 Hz
geometry 1792 1344 1792 1344 32
timings 4902 320 128 43 1 192 3
hsync high vsync high endmode mode "1856x1392-60"

D: 218.571 MHz, H: 86.460 kHz, V: 60.00 Hz
geometry 1856 1392 1856 1392 32
timings 4577 336 136 45 1 200 3
hsync high vsync high endmode mode "1920x1200-60"

D: 193.250 MHz, H: 74.556 kHz, V: 60.00 Hz
geometry 1920 1200 1920 1200 32
timings 5173 336 136 36 3 200 6
hsync high vsync high endmode mode "1920x1440-60"

D: 234.000 MHz, H:90.000 kHz, V: 60.00 Hz
geometry 1920 1440 1920 1440 32
timings 4274 344 128 56 1 208 3
hsync high vsync high endmode mode "1920x1440-75"

D: 297.000 MHz, H:112.500 kHz, V: 75.00 Hz
geometry 1920 1440 1920 1440 32
timings 3367 352 144 56 1 224 3
hsync high vsync high endmode mode "2048x1536-60"

(continues on next page)

146Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

Linux Fb Documentation

(continued from previous page)
D: 267.250 MHz, H: 95.446 kHz, V: 60.00 Hz

geometry 2048 1536 2048 1536 32
timings 3742 376 152 49 3 224 4 hsync high vsync high endmode

#
1280x720, 60 Hz, Non-Interlaced (74.481 MHz dotclock)
#
Horizontal Vertical
Resolution 1280 720
Scan Frequency 44.760 kHz 60.00 Hz
Sync Width 1.826 us 67.024 ms
17 chars 3 lines
Front Porch 0.752 us 22.341 ms
7 chars 1 lines
Back Porch 2.578 us 491.510 ms
24 chars 22 lines
Active Time 17.186 us 16.086 ms
160 chars 720 lines
Blank Time 5.156 us 0.581 ms
48 chars 26 lines
Polarity negative negative
#

mode "1280x720-60"
D: 74.481 MHz, H: 44.760 kHz, V: 60.00 Hz

geometry 1280 720 1280 720 32 timings 13426 192 64 22 1 136 3 endmode
#
1920x1080, 60 Hz, Non-Interlaced (172.798 MHz dotclock)
#
Horizontal Vertical
Resolution 1920 1080
Scan Frequency 67.080 kHz 60.00 Hz
Sync Width 1.204 us 44.723 ms
26 chars 3 lines
Front Porch 0.694 us 14.908 ms
15 chars 1 lines
Back Porch 1.898 us 506.857 ms
41 chars 34 lines
Active Time 11.111 us 16.100 ms
240 chars 1080 lines
Blank Time 3.796 us 0.566 ms
82 chars 38 lines
Polarity negative negative
#

mode "1920x1080-60"
D: 74.481 MHz, H: 67.080 kHz, V: 60.00 Hz

geometry 1920 1080 1920 1080 32 timings 5787 328 120 34 1 208 3 endmode
#
1400x1050, 60 Hz, Non-Interlaced (122.61 MHz dotclock)
#
Horizontal Vertical
Resolution 1400 1050
Scan Frequency 65.218 kHz 59.99 Hz
Sync Width 1.037 us 0.047 ms
19 chars 3 lines
Front Porch 0.444 us 0.015 ms
11 chars 1 lines
Back Porch 1.185 us 0.188 ms

(continues on next page)

37.6. Bootup with viafb 147

Linux Fb Documentation

(continued from previous page)
30 chars 33 lines
Active Time 12.963 us 16.411 ms
175 chars 1050 lines
Blank Time 2.667 us 0.250 ms
60 chars 37 lines
Polarity negative positive
#

mode "1400x1050-60"
D: 122.750 MHz, H: 65.317 kHz, V: 59.99 Hz

geometry 1400 1050 1408 1050 32
timings 8214 232 88 32 3 144 4 endmode mode "1400x1050-75"

D: 156.000 MHz, H: 82.278 kHz, V: 74.867 Hz
geometry 1400 1050 1408 1050 32 timings 6410 248 104 42 3 144 4 endmode

#
1366x768, 60 Hz, Non-Interlaced (85.86 MHz dotclock)
#
Horizontal Vertical
Resolution 1366 768
Scan Frequency 47.700 kHz 60.00 Hz
Sync Width 1.677 us 0.063 ms
18 chars 3 lines
Front Porch 0.839 us 0.021 ms
9 chars 1 lines
Back Porch 2.516 us 0.482 ms
27 chars 23 lines
Active Time 15.933 us 16.101 ms
171 chars 768 lines
Blank Time 5.031 us 0.566 ms
54 chars 27 lines
Polarity negative positive
#

mode "1360x768-60"
D: 84.750 MHz, H: 47.720 kHz, V: 60.00 Hz

geometry 1360 768 1360 768 32
timings 11799 208 72 22 3 136 5 endmode mode "1366x768-60"

D: 85.86 MHz, H: 47.700 kHz, V: 60.00 Hz
geometry 1366 768 1366 768 32
timings 11647 216 72 23 1 144 3 endmode mode "1366x768-50"

D: 69,924 MHz, H: 39.550 kHz, V: 50.00 Hz
geometry 1366 768 1366 768 32 timings 14301 200 56 19 1 144 3 endmode

148Chapter 37. VIA Integration Graphic Chip Console Framebuffer Driver

CHAPTER

THIRTYEIGHT

VT8623FB - FBDEV DRIVER FOR GRAPHICS CORE IN VIA
VT8623 CHIPSET

38.1 Supported Hardware

VIA VT8623 [CLE266] chipset and its graphics core (known as CastleRock or
Unichrome)

I tested vt8623fb on VIA EPIA ML-6000

38.2 Supported Features

• 4 bpp pseudocolor modes (with 18bit palette, two variants)

• 8 bpp pseudocolor mode (with 18bit palette)

• 16 bpp truecolor mode (RGB 565)

• 32 bpp truecolor mode (RGB 888)

• text mode (activated by bpp = 0)

• doublescan mode variant (not available in text mode)

• panning in both directions

• suspend/resume support

• DPMS support

Text mode is supported even in higher resolutions, but there is limitation to lower
pixclocks (maximum about 100 MHz). This limitation is not enforced by driver.
Text mode supports 8bit wide fonts only (hardware limitation) and 16bit tall fonts
(driver limitation).

There are two 4 bpp modes. First mode (selected if nonstd == 0) is mode with
packed pixels, high nibble first. Second mode (selected if nonstd == 1) is mode
with interleaved planes (1 byte interleave), MSB first. Both modes support 8bit
wide fonts only (driver limitation).

Suspend/resume works on systems that initialize video card during resume and if
device is active (for example used by fbcon).

149

Linux Fb Documentation

38.3 Missing Features

(alias TODO list)

• secondary (not initialized by BIOS) device support

• MMIO support

• interlaced mode variant

• support for fontwidths != 8 in 4 bpp modes

• support for fontheight != 16 in text mode

• hardware cursor

• video overlay support

• vsync synchronization

• acceleration support (8514-like 2D, busmaster transfers)

38.4 Known bugs

• cursor disable in text mode doesn’t work
– Ondrej Zajicek <santiago@crfreenet.org>

150 Chapter 38. vt8623fb - fbdev driver for graphics core in VIA VT8623
chipset

mailto:santiago@crfreenet.org

