Linux Doc-guide Documentation

The kernel development community

Jul 14, 2020

CONTENTS

CHAPTER
ONE

INTRODUCTION

The Linux kernel uses Sphinx to generate pretty documentation from reStruc-
turedText files under Documentation. To build the documentation in HTML or PDF
formats, use make htmldocs or make pdfdocs. The generated documentation is
placed in Documentation/output.

The reStructuredText files may contain directives to include structured documen-
tation comments, or kernel-doc comments, from source files. Usually these are
used to describe the functions and types and design of the code. The kernel-doc
comments have some special structure and formatting, but beyond that they are
also treated as reStructuredText.

Finally, there are thousands of plain text documentation files scattered around
Documentation. Some of these will likely be converted to reStructuredText over
time, but the bulk of them will remain in plain text.

http://www.sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

Linux Doc-guide Documentation

2 Chapter 1. Introduction

CHAPTER
TWO

SPHINX INSTALL

The ReST markups currently used by the Documentation/ files are meant to be
built with Sphinx version 1.3 or higher.

There’ s a script that checks for the Sphinx requirements. Please see Checking
for Sphinx dependencies for further details.

Most distributions are shipped with Sphinx, but its toolchain is fragile, and it is
not uncommon that upgrading it or some other Python packages on your machine
would cause the documentation build to break.

A way to avoid that is to use a different version than the one shipped with your
distributions. In order to do so, it is recommended to install Sphinx inside a virtual
environment, using virtualenv-3 or virtualenv, depending on how your distri-
bution packaged Python 3.

Note:

1) Sphinx versions below 1.5 don’ t work properly with Python’ s docutils version
0.13.1 or higher. So, if you’ re willing to use those versions, you should run
pip install 'docutils==0.12".

2) It is recommended to use the RTD theme for html output. Depending on
the Sphinx version, it should be installed in separate, with pip install
sphinx_rtd theme.

3) Some ReST pages contain math expressions. Due to the way Sphinx work,
those expressions are written using LaTeX notation. It needs texlive installed
with amdfonts and amsmath in order to evaluate them.

In summary, if you want to install Sphinx version 1.7.9, you should do:

$ virtualenv sphinx 1.7.9
$. sphinx 1.7.9/bin/activate
(sphinx 1.7.9) $ pip install -r Documentation/sphinx/requirements.txt

After running . sphinx 1.7.9/bin/activate, the prompt will change, in order to
indicate that you’ re using the new environment. If you open a new shell, you need
to rerun this command to enter again at the virtual environment before building
the documentation.

Linux Doc-guide Documentation

2.1 Image output

The kernel documentation build system contains an extension that handles images
on both GraphViz and SVG formats (see Figures & Images).

For it to work, you need to install both GraphViz and ImageMagick packages. If
those packages are not installed, the build system will still build the documenta-
tion, but won’ t include any images at the output.

2.2 PDF and LaTeX builds

Such builds are currently supported only with Sphinx versions 1.4 and higher.
For PDF and LaTeX output, you’ 1l also need XeLaTeX version 3.14159265.

Depending on the distribution, you may also need to install a series of texlive
packages that provide the minimal set of functionalities required for XeLaTeX to
work.

2.3 Checking for Sphinx dependencies

There’ s a script that automatically check for Sphinx dependencies. If it can rec-
ognize your distribution, it will also give a hint about the install command line
options for your distro:

$./scripts/sphinx-pre-install

Checking if the needed tools for Fedora release 26 (Twenty Six) are,
—available

Warning: better to also install "texlive-luatex85".

You should run:

sudo dnf install -y texlive-luatex85
/usr/bin/virtualenv sphinx 1.7.9

. sphinx 1.7.9/bin/activate

pip install -r Documentation/sphinx/requirements.txt

Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-
—install line 468.

By default, it checks all the requirements for both html and PDF, including the
requirements for images, math expressions and LaTeX build, and assumes that
a virtual Python environment will be used. The ones needed for html builds are
assumed to be mandatory; the others to be optional.

It supports two optional parameters:
--no-pdf Disable checks for PDF;

--no-virtualenv Use OS packaging for Sphinx instead of Python virtual environ-
ment.

4 Chapter 2. Sphinx Install

CHAPTER
THREE

SPHINX BUILD

The usual way to generate the documentation is to run make htmldocs or make
pdfdocs. There are also other formats available, see the documentation section of
make help. The generated documentation is placed in format-specific subdirecto-
ries under Documentation/output.

To generate documentation, Sphinx (sphinx-build) must obviously be installed.
For prettier HTML output, the Read the Docs Sphinx theme (sphinx_rtd theme)is
used if available. For PDF output you’ 1l also need XeLaTeX and convert(1) from
ImageMagick (https://www.imagemagick.org). All of these are widely available
and packaged in distributions.

To pass extra options to Sphinx, you can use the SPHINXOPTS make variable. For
example, use make SPHINXOPTS=-v htmldocs to get more verbose output.

To remove the generated documentation, run make cleandocs.

https://www.imagemagick.org

Linux Doc-guide Documentation

6 Chapter 3. Sphinx Build

CHAPTER
FOUR

WRITING DOCUMENTATION

Adding new documentation can be as simple as:
1. Add a new .rst file somewhere under Documentation.
2. Refer to it from the Sphinx main TOC tree in Documentation/index.rst.

This is usually good enough for simple documentation (like the one you’ re reading
right now), but for larger documents it may be advisable to create a subdirectory
(or use an existing one). For example, the graphics subsystem documentation is
under Documentation/gpu, split to several .rst files, and has a separate index.
rst (with a toctree of its own) referenced from the main index.

See the documentation for Sphinx and reStructuredText on what you can do with
them. In particular, the Sphinx reStructuredText Primer is a good place to get
started with reStructuredText. There are also some Sphinx specific markup con-
structs.

4.1 Specific guidelines for the kernel documentation

Here are some specific guidelines for the kernel documentation:

e Please don’ t go overboard with reStructuredText markup. Keep it simple.
For the most part the documentation should be plain text with just enough
consistency in formatting that it can be converted to other formats.

* Please keep the formatting changes minimal when converting existing docu-
mentation to reStructuredText.

* Also update the content, not just the formatting, when converting documen-
tation.

* Please stick to this order of heading adornments:

1. = with overline for document title:

Document title

2. = for chapters:

Chapters

http://www.sphinx-doc.org/en/stable/markup/toctree.html
http://www.sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/markup/index.html
http://www.sphinx-doc.org/en/stable/markup/index.html

Linux Doc-guide Documentation

3. - for sections:

Section

4. ~ for subsections:

Subsection

Although RST doesn’ t mandate a specific order (“Rather than imposing a
fixed number and order of section title adornment styles, the order enforced
will be the order as encountered.”), having the higher levels the same overall
makes it easier to follow the documents.

* For inserting fixed width text blocks (for code examples, use case examples,
etc.), use :: for anything that doesn’ t really benefit from syntax highlighting,
especially short snippets. Use .. code-block:: <language> forlonger code
blocks that benefit from highlighting. For a short snippet of code embedded
in the text, use .

4.2 the C domain

The Sphinx C Domain (name c) is suited for documentation of C API. E.g. a
function prototype:

. c:function:: int ioctl(int fd, int request)

The C domain of the kernel-doc has some additional features. E.g. you can rename
the reference name of a function with a common name like open or ioctl:

. c:function:: int ioctl(int fd, int request)
:name: VIDIOC LOG_STATUS

The func-name (e.g. ioctl) remains in the output but the ref-name changed from
ioctl to VIDIOC LOG STATUS. The index entry for this function is also changed to
VIDIOC LOG STATUS.

Please note that there is no need to use c:func: to generate cross references to
function documentation. Due to some Sphinx extension magic, the documentation
build system will automatically turn a reference to function() into a cross refer-
ence if an index entry for the given function name exists. If you see c: func: use
in a kernel document, please feel free to remove it.

8 Chapter 4. Writing Documentation

Linux Doc-guide Documentation

4.3 list tables

We recommend the use oflist table formats. The list table formats are double-stage
lists. Compared to the ASCII-art they might not be as comfortable for readers of
the text files. Their advantage is that they are easy to create or modify and that
the diff of a modification is much more meaningful, because it is limited to the
modified content.

The flat-table is a double-stage list similar to the list-table with some addi-
tional features:

* column-span: with the role cspan a cell can be extended through additional
columns

* row-span: with the role rspan a cell can be extended through additional rows

* auto span rightmost cell of a table row over the missing cells on the right
side of that table-row. With Option : fill-cells: this behavior can changed
from auto span to auto fill, which automatically inserts (empty) cells instead
of spanning the last cell.

options:

* :header-rows: [int] count of header rows

e :stub-columns: [int] count of stub columns

e :widths: [[int] [int] -] widths of columns

 :fill-cells: instead of auto-spanning missing cells, insert missing cells
roles:

e :cspan: [int] additional columns (morecols)

e :rspan: [int] additional rows (morerows)

The example below shows how to use this markup. The first level of the staged list
is the table-row. In the table-row there is only one markup allowed, the list of the
cells in this table-row. Exceptions are comments (..) and targets (e.g. a ref to
:ref: last row <last row>" /last row).

. flat-table:: table title
:widths: 2 1 1 3
* - head col
- head col
- head col
- head col

AP WN PR

- column 1
- field 1.1
- field 1.2 with autospan

- column 2
- field 2.1
- :rspan: 1 :cspan: 1 field 2.2 - 3.3

* .. “last row :

(continues on next page)

4.3. list tables 9

Linux Doc-guide Documentation

(continued from previous page)

- column 3

Rendered as:

Table 1: table title

head col 1 | head col 2 | head col 3 \ head col 4
column 1 | field 1.1 field 1.2 with autospan
column 2 field 2.1 field 2.2 - 3.3

column 3

10

Chapter 4. Writing Documentation

CHAPTER
FIVE

FIGURES & IMAGES

If you want to add an image, you should use the kernel-figure and kernel-image
directives. E.g. to insert a figure with a scalable image format use SVG (SVG image
example):

. kernel-figure:: svg image.svg
ralt: simple SVG image

SVG image example

g7

Fig. 1: SVG image example

The kernel figure (and image) directive support DOT formated files, see
* DOT: http://graphviz.org/pdf/dotguide.pdf
* Graphviz: http://www.graphviz.org/content/dot-language

A simple example (DOT’ s hello world example):

. kernel-figure:: hello.dot
ralt: hello world

DOT's hello world example

Embed render markups (or languages) like Graphviz’ s DOT is provided by the
kernel-render directives.:

. kernel-render:: DOT
:alt: foobar digraph
:caption: Embedded **DOT** (Graphviz) code

digraph foo {
Ilbarll -> Ilbazll;

}

How this will be rendered depends on the installed tools. If Graphviz is installed,
you will see an vector image. If not the raw markup is inserted as literal-block
(Embedded DOT (Graphviz) code).

11

http://graphviz.org/pdf/dotguide.pdf
http://www.graphviz.org/content/dot-language

Linux Doc-guide Documentation

Fig. 2: DOT’ s hello world example

Fig. 3: Embedded DOT (Graphviz) code

12 Chapter 5. Figures & Images

Linux Doc-guide Documentation

The render directive has all the options known from the figure directive, plus op-
tion caption. If caption has a value, a figure node is inserted. If not, a image

node is inserted. A caption is also needed, if you want to refer it (Embedded SVG
markup).

Embedded SVG:

. kernel-render:: SVG
:caption: Embedded **SVG** markup
talt: so-nw-arrow

<?xml version="1.0" encoding="UTF-8"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1" ...>

/

Fig. 4: Embedded SVG markup

</svg>

13

Linux Doc-guide Documentation

14 Chapter 5. Figures & Images

CHAPTER
SIX

WRITING KERNEL-DOC COMMENTS

The Linux kernel source files may contain structured documentation comments in
the kernel-doc format to describe the functions, types and design of the code. It
is easier to keep documentation up-to-date when it is embedded in source files.

Note: The kernel-doc format is deceptively similar to javadoc, gtk-doc or Doxy-
gen, yet distinctively different, for historical reasons. The kernel source contains
tens of thousands of kernel-doc comments. Please stick to the style described here.

The kernel-doc structure is extracted from the comments, and proper Sphinx C
Domain function and type descriptions with anchors are generated from them. The
descriptions are filtered for special kernel-doc highlights and cross-references.
See below for details.

Every function that is exported to loadable modules using EXPORT SYMBOL or
EXPORT SYMBOL GPL should have a kernel-doc comment. Functions and data struc-
tures in header files which are intended to be used by modules should also have
kernel-doc comments.

It is good practice to also provide kernel-doc formatted documentation for func-
tions externally visible to other kernel files (not marked static). We also rec-
ommend providing kernel-doc formatted documentation for private (file static)
routines, for consistency of kernel source code layout. This is lower priority and
at the discretion of the maintainer of that kernel source file.

6.1 How to format kernel-doc comments

The opening comment mark /** is used for kernel-doc comments. The kernel-doc
tool will extract comments marked this way. The rest of the comment is formatted
like a normal multi-line comment with a column of asterisks on the left side, closing
with */ on a line by itself.

The function and type kernel-doc comments should be placed just before the func-
tion or type being described in order to maximise the chance that somebody chang-
ing the code will also change the documentation. The overview kernel-doc com-
ments may be placed anywhere at the top indentation level.

Running the kernel-doc tool with increased verbosity and without actual output
generation may be used to verify proper formatting of the documentation com-
ments. For example:

15

http://www.sphinx-doc.org/en/stable/domains.html
http://www.sphinx-doc.org/en/stable/domains.html

Linux Doc-guide Documentation

scripts/kernel-doc -v -none drivers/foo/bar.c

The documentation format is verified by the kernel build when it is requested to
perform extra gcc checks:

make W=n

6.2 Function documentation

The general format of a function and function-like macro kernel-doc comment is:

* function name() - Brief description of function.
* @rgl: Describe the first argument.

* @arg2: Describe the second argument.

* One can provide multiple line descriptions
* for arguments.

*

*

A longer description, with more discussion of the function function
—name()
that might be useful to those using or modifying it. Begins with an
empty comment line, and may include additional embedded empty
comment lines.

The longer description may have multiple paragraphs.

*
*
*
*
%
*
* Context: Describes whether the function can sleep, what locks it takes,
* releases, or expects to be held. It can extend over multiple

* lines.

* Return: Describe the return value of function name.

*

* The return value description can also have multiple paragraphs, and,
—should

* pe placed at the end of the comment block.

*/

The brief description following the function name may span multiple lines, and
ends with an argument description, a blank comment line, or the end of the com-
ment block.

6.2.1 Function parameters

Each function argument should be described in order, immediately following the
short function description. Do not leave a blank line between the function descrip-
tion and the arguments, nor between the arguments.

Each @argument: description may span multiple lines.

Note: If the @argument description has multiple lines, the continuation of the
description should start at the same column as the previous line:

16 Chapter 6. Writing kernel-doc comments

Linux Doc-guide Documentation

* @argument: some long description
* that continues on next lines

or:

* @argument:
* some long description
* that continues on next lines

If a function has a variable number of arguments, its description should be written
in kernel-doc notation as:

* @...: description

6.2.2 Function context

The context in which a function can be called should be described in a section
named Context. This should include whether the function sleeps or can be called
from interrupt context, as well as what locks it takes, releases and expects to be
held by its caller.

Examples:

* Context: Any context.

* Context: Any context. Takes and releases the RCU lock.

* Context: Any context. Expects <lock> to be held by caller.

* Context: Process context. May sleep if @gfp flags permit.

* Context: Process context. Takes and releases <mutex>.

* Context: Softirqg or process context. Takes and releases <lock>, BH-safe.
*

Context: Interrupt context.

6.2.3 Return values

The return value, if any, should be described in a dedicated section named Return.

Note:

1) The multi-line descriptive text you provide does not recognize line breaks, so
if you try to format some text nicely, as in:

* Return:

*0 - 0K

* -EINVAL - invalid argument
* -ENOMEM - out of memory

this will all run together and produce:

Return: 0 - OK -EINVAL - invalid argument -ENOMEM - out of memory

So, in order to produce the desired line breaks, you need to use a ReST list,
e. g.:

6.2. Function documentation 17

Linux Doc-guide Documentation

* Return:
¥ * 0 - OK to runtime suspend the device
* * -EBUSY - Device should not be runtime suspended

2) If the descriptive text you provide has lines that begin with some phrase fol-
lowed by a colon, each of those phrases will be taken as a new section heading,
which probably won’ t produce the desired effect.

6.3 Structure, union, and enumeration documentation

The general format of a struct, union, and enum kernel-doc comment is:

* struct struct name - Brief description.

* @memberl: Description of memberl.

* @member2: Description of member2.

* One can provide multiple line descriptions
* for members.

*

*

Description of the structure.

You can replace the struct in the above example with union or enum to describe
unions or enums. member is used to mean struct and union member names as well
as enumerations in an enum.

The brief description following the structure name may span multiple lines, and
ends with a member description, a blank comment line, or the end of the comment
block.

6.3.1 Members

Members of structs, unions and enums should be documented the same way as
function parameters; they immediately succeed the short description and may be
multi-line.

Inside a struct or union description, you can use the private: and public: com-
ment tags. Structure fields that are inside a private: area are not listed in the
generated output documentation.

The private: and public: tags must begin immediately following a /* comment
marker. They may optionally include comments between the : and the ending */
marker.

Example:

/**
* struct my struct - short description
* @a: first member
* @b: second member
* @d: fourth member

(continues on next page)

18 Chapter 6. Writing kernel-doc comments

Linux Doc-guide Documentation

(continued from previous page)

X
* Longer description

*/

struct my struct {
int a;
int b;

/* private: internal use only */
int c;

/* public: the next one is public */
int d;

+

6.3.2 Nested structs/unions

It is possible to document nested structs and unions, like:

/**
*
%
*
b3
k
* @bar: non-anonymous union
* @bar.stl: struct stl inside @bar
* @bar.st2: struct st2 inside @bar
*
b3
*
*

*/

struct nested foobar {
/* Anonymous union/struct*/
union {

struct {
int membl;
int memb2;
}
struct {
void *memb3;
int memb4;
}
}
union {
struct {
int membl;
int memb2;
} stl;
struct {
void *membl;
int memb2;
} st2;

} bar;
}

struct nested foobar - a struct with nested unions and structs
@membl: first member of anonymous union/anonymous struct
@memb2: second member of anonymous union/anonymous struct
@memb3: third member of anonymous union/anonymous struct
@memb4: fourth member of anonymous union/anonymous struct

@bar.stl.membl: first member of struct stl on union bar
@bar.stl.memb2: second member of struct stl on union bar
@bar.st2.membl: first member of struct st2 on union bar
@bar.st2.memb2: second member of struct st2 on union bar

6.3. Structure, union, and enumeration documentation 19

Linux Doc-guide Documentation

Note:

1) When documenting nested structs or unions, if the struct/union foo is named,
the member bar inside it should be documented as @foo.bar:

2) When the nested struct/union is anonymous, the member bar in it should be
documented as @bar:

6.3.3 In-line member documentation comments

The structure members may also be documented in-line within the definition.
There are two styles, single-line comments where both the opening /** and clos-
ing */ are on the same line, and multi-line comments where they are each on a
line of their own, like all other kernel-doc comments:

/**
* struct foo - Brief description.
* @foo: The Foo member.

*/
struct foo {
int foo;
/**
* @bar: The Bar member.
*/
int bar;
/**
* @baz: The Baz member.
*x
* Here, the member description may contain several paragraphs.
*/
int baz;
union {
/** @foobar: Single line description. */
int foobar;
}
/** @bar2: Description for struct @bar2 inside @foo */
struct {
/**
* @bar2.barbar: Description for @barbar inside @foo.bar2
*/
int barbar;
} bar2;
}

20 Chapter 6. Writing kernel-doc comments

Linux Doc-guide Documentation

6.4 Typedef documentation

The general format of a typedef kernel-doc comment is:

/**
* typedef type name - Brief description.
*

* Description of the type.
*/

Typedefs with function prototypes can also be documented:

/**
typedef type name - Brief description.
@argl: description of argl
@arg2: description of arg2

Context: Locking context.
Return: Meaning of the return value.
*/
typedef void (*type name) (struct v412 ctrl *argl, void *arg2);

%
*
*
*
* Description of the type.
*
%
*

6.5 Highlights and cross-references

The following special patterns are recognized in the kernel-doc comment descrip-
tive text and converted to proper reStructuredText markup and Sphinx C Domain
references.

Attention: The below are only recognized within kernel-doc comments, not
within normal reStructuredText documents.

funcname() Function reference.

@parameter Name of a function parameter. (No cross-referencing, just format-
ting.)

%CONST Name of a constant. (No cross-referencing, just formatting.)

““literal’ " A literal block that should be handled as-is. The output will use a
monospaced font.

Useful if you need to use special characters that would otherwise have some
meaning either by kernel-doc script or by reStructuredText.

This is particularly useful if you need to use things like %ph inside a function
description.

$ENVVAR Name of an environment variable. (No cross-referencing, just format-
ting.)

&struct name Structure reference.

6.4. Typedef documentation 21

http://www.sphinx-doc.org/en/stable/domains.html

Linux Doc-guide Documentation

&enum name Enum reference.
&typedef name Typedef reference.

&struct_name->member or &struct_name.member Structure or union member
reference. The cross-reference will be to the struct or union definition, not
the member directly.

&name A generic type reference. Prefer using the full reference described above
instead. This is mostly for legacy comments.

6.5.1 Cross-referencing from reStructuredText

To cross-reference the functions and types defined in the kernel-doc comments
from reStructuredText documents, please use the Sphinx C Domain references.
For example:

See function :c:func: foo and struct/union/enum/typedef :c:type: bar’.

While the type reference works with just the type name, without the
struct/union/enum/typedef part in front, you may want to use:

See :c:type: struct foo <foo>".
See :c:type: union bar <bar>".
See :c:type: enum baz <baz>".
See :c:type: typedef meh <meh>".

This will produce prettier links, and is in line with how kernel-doc does the cross-
references.

For further details, please refer to the Sphinx C Domain documentation.

6.6 Overview documentation comments

To facilitate having source code and comments close together, you can include
kernel-doc documentation blocks that are free-form comments instead of being
kernel-doc for functions, structures, unions, enums, or typedefs. This could be
used for something like a theory of operation for a driver or library code, for ex-
ample.

This is done by using a DOC: section keyword with a section title.

The general format of an overview or high-level documentation comment is:

/**
* DOC: Theory of Operation
*
* The whizbang foobar is a dilly of a gizmo. It can do whatever you
* want it to do, at any time. It reads your mind. Here's how it works.
*
* foo bar splat
*
*

The only drawback to this gizmo is that is can sometimes damage

(continues on next page)

22 Chapter 6. Writing kernel-doc comments

http://www.sphinx-doc.org/en/stable/domains.html
http://www.sphinx-doc.org/en/stable/domains.html

Linux Doc-guide Documentation

(continued from previous page)

* hardware, software, or its subject(s).
*/

The title following DOC: acts as a heading within the source file, but also as an iden-
tifier for extracting the documentation comment. Thus, the title must be unique
within the file.

6.6. Overview documentation comments 23

Linux Doc-guide Documentation

24 Chapter 6. Writing kernel-doc comments

CHAPTER
SEVEN

INCLUDING KERNEL-DOC COMMENTS

The documentation comments may be included in any of the reStructuredText doc-
uments using a dedicated kernel-doc Sphinx directive extension.

The kernel-doc directive is of the format:

. kernel-doc:: source
:option:

The source is the path to a source file, relative to the kernel source tree. The
following directive options are supported:

export: [source-pattern ‘-] Include documentation for all functions in source
that have been exported using EXPORT SYMBOL or EXPORT SYMBOL GPL either
in source or in any of the files specified by source-pattern.

The source-pattern is useful when the kernel-doc comments have been placed
in header files, while EXPORT SYMBOL and EXPORT SYMBOL GPL are next to the
function definitions.

Examples:

. kernel-doc:: lib/bitmap.c
rexport:

. kernel-doc:: include/net/mac80211.h
rexport: net/mac80211/*.c

internal: [source-pattern ‘:-] Include documentation for all functions and
types in source that have not been exported using EXPORT SYMBOL or
EXPORT SYMBOL GPL either in source or in any of the files specified by source-
pattern.

Example:

. kernel-doc:: drivers/gpu/drm/i915/intel audio.c
:internal:

identifiers: [function/type ‘::] Include documentation for each function and
type in source. If no function is specified, the documentation for all functions
and types in the source will be included.

Examples:

25

Linux Doc-guide Documentation

. kernel-doc:: lib/bitmap.c
:identifiers: bitmap parselist bitmap parselist user

. kernel-doc:: lib/idr.c
:identifiers:

functions: [function/type -] This is an alias of the ‘identifiers’ directive and
deprecated.

doc: title Include documentation for the DOC: paragraph identified by title in
source. Spaces are allowed in title; do not quote the title. The title is only used
as an identifier for the paragraph, and is not included in the output. Please
make sure to have an appropriate heading in the enclosing reStructuredText
document.

Example:

. kernel-doc:: drivers/gpu/drm/i915/intel audio.c
:doc: High Definition Audio over HDMI and Display Port

Without options, the kernel-doc directive includes all documentation comments
from the source file.

The kernel-doc extension is included in the kernel source tree, at Documentation/
sphinx/kerneldoc.py. Internally, it uses the scripts/kernel-doc script to ex-
tract the documentation comments from the source.

7.1 How to use kernel-doc to generate man pages

If you just want to use kernel-doc to generate man pages you can do this from the
kernel git tree:

$ scripts/kernel-doc -man \
$(git grep -1 '/**' -- :”“Documentation :~tools) \
| scripts/split-man.pl /tmp/man

Some older versions of git do not support some of the variants of syntax for path
exclusion. One of the following commands may work for those versions:

$ scripts/kernel-doc -man \
$(git grep -1 '"/**' -- . ':IDocumentation' ':!tools') \
| scripts/split-man.pl /tmp/man

$ scripts/kernel-doc -man \
$(git grep -1 '/**' -- . ":(exclude)Documentation" ":(exclude)tools") \
| scripts/split-man.pl /tmp/man

26 Chapter 7. Including kernel-doc comments

CHAPTER
EIGHT

INCLUDING UAPI HEADER FILES

Sometimes, it is useful to include header files and C example codes in order to
describe the userspace API and to generate cross-references between the code
and the documentation. Adding cross-references for userspace API files has an
additional vantage: Sphinx will generate warnings if a symbol is not found at the
documentation. That helps to keep the uAPI documentation in sync with the Kernel
changes. The parse headers.pl provide a way to generate such cross-references.
It has to be called via Makefile, while building the documentation. Please see
Documentation/userspace-api/media/Makefile for an example about how to
use it inside the Kernel tree.

8.1 parse_headers.pl

8.1.1 NAME

parse headers.pl - parse a C file, in order to identify functions, structs, enums and
defines and create cross-references to a Sphinx book.

8.1.2 SYNOPSIS

parse_headers.pl [<options>] <C FILE> <OUT FILE> [<EXCEPTIONS FILE>]

Where <options> can be: -debug, -help or -usage.

8.1.3 OPTIONS

-debug

Put the script in verbose mode, useful for debugging.
-usage

Prints a brief help message and exits.
-help

Prints a more detailed help message and exits.

27

Linux Doc-guide Documentation

8.1.4 DESCRIPTION

Convert a C header or source file (C FILE), into a ReStructured Text included
via ..parsed-literal block with cross-references for the documentation files that
describe the API. It accepts an optional EXCEPTIONS FILE with describes what
elements will be either ignored or be pointed to a non-default reference.

The output is written at the (OUT FILE).

It is capable of identifying defines, functions, structs, typedefs, enums and enum
symbols and create cross-references for all of them. Itis also capable of distinguish
#define used for specifying a Linux ioctl.

The EXCEPTIONS FILE contain two types of statements: ignore or replace.
The syntax for the ignore tag is:
ignore type name

The ignore means that it won’ t generate cross references for a name symbol of
type type.

The syntax for the replace tag is:

replace type name new_value

The replace means that it will generate cross references for a name symbol
of type type, but, instead of using the default replacement rule, it will use
new_value.

For both statements, type can be either one of the following:
ioctl
The ignore or replace statement will apply to ioctl definitions like:

#define VIDIOC DBG S REGISTER IOW(V' , 79, struct
v412_dbg register)

define

The ignore or replace statement will apply to any other #define found at
C FILE.

typedef

The ignore or replace statement will apply to typedef statements at
C FILE.

struct

The ignore or replace statement will apply to the name of struct state-
ments at C_FILE.

enum

The ignore or replace statement will apply to the name of enum state-
ments at C_FILE.

symbol

28 Chapter 8. Including uAPI header files

Linux Doc-guide Documentation

The ignore or replace statement will apply to the name of enum value at
C FILE.

For replace statements, new_value will automatically use :c:type: ref-
erences for typedef, enum and struct types. It will use :ref: for ioctl,
define and symbol types. The type of reference can also be explicitly
defined at the replace statement.

8.1.5 EXAMPLES

ignore define VIDEODEV2 H

Ignore a #define VIDEODEV2 H at the C FILE.

ignore symbol PRIVATE

On a struct like:

enum foo { BAR1, BAR2, PRIVATE };

It won’ t generate cross-references for PRIVATE.

replace symbol BARI1 :c:type: foo™ replace symbol BAR2 :c:type: foo"
On a struct like:

enum foo { BAR1, BAR2, PRIVATE };

It will make the BAR1 and BAR2 enum symbols to cross reference the foo symbol
at the C domain.

8.1.6 BUGS

Report bugs to Mauro Carvalho Chehab <mchehab@kernel.org>

8.1.7 COPYRIGHT

Copyright (c¢) 2016 by Mauro Carvalho Chehab <mchehab+samsung@kernel.org>.
License GPLv2: GNU GPL version 2 <https://gnu.org/licenses/gpl.html>.

This is free software: you are free to change and redistribute it. There is NO
WARRANTY, to the extent permitted by law.

8.1. parse_headers.pl 29

mailto:mchehab@kernel.org
mailto:mchehab+samsung@kernel.org
https://gnu.org/licenses/gpl.html

Linux Doc-guide Documentation

30 Chapter 8. Including uAPI header files

CHAPTER
NINE

HOW TO HELP IMPROVE KERNEL DOCUMENTATION

Documentation is an important part of any software-development project. Good
documentation helps to bring new developers in and helps established developers
work more effectively. Without top-quality documentation, a lot of time is wasted
in reverse-engineering the code and making avoidable mistakes.

Unfortunately, the kernel’ s documentation currently falls far short of what it needs
to be to support a project of this size and importance.

This guide is for contributors who would like to improve that situation. Kernel
documentation improvements can be made by developers at a variety of skill levels;
they are a relatively easy way to learn the kernel process in general and find a place
in the community. The bulk of what follows is the documentation maintainer’ s list
of tasks that most urgently need to be done.

9.1 The documentation TODO list

There is an endless list of tasks that need to be carried out to get our documen-
tation to where it should be. This list contains a number of important items, but
is far from exhaustive; if you see a different way to improve the documentation,
please do not hold back!

9.1.1 Addressing warnings

The documentation build currently spews out an unbelievable number of warnings.
When you have that many, you might as well have none at all; people ignore them,
and they will never notice when their work adds new ones. For this reason, elim-
inating warnings is one of the highest-priority tasks on the documentation TODO
list. The task itself is reasonably straightforward, but it must be approached in
the right way to be successful.

Warnings issued by a compiler for C code can often be dismissed as false positives,
leading to patches aimed at simply shutting the compiler up. Warnings from the
documentation build almost always point at a real problem; making those warnings
go away requires understanding the problem and fixing it at its source. For this
reason, patches fixing documentation warnings should probably not say “fix a
warning” in the changelog title; they should indicate the real problem that has
been fixed.

31

Linux Doc-guide Documentation

Another important point is that documentation warnings are often created by prob-
lems in kerneldoc comments in C code. While the documentation maintainer ap-
preciates being copied on fixes for these warnings, the documentation tree is often
not the right one to actually carry those fixes; they should go to the maintainer of
the subsystem in question.

For example, in a documentation build I grabbed a pair of warnings nearly at ran-
dom:

./drivers/devfreq/devfreq.c:1818: warning: bad line:

- Resource-managed devfreq register notifier()
./drivers/devfreq/devfreq.c:1854: warning: bad line:

- Resource-managed devfreq unregister notifier()

(The lines were split for readability).

A quick look at the source file named above turned up a couple of kerneldoc com-
ments that look like this:

/**
* devm devfreq register notifier()
- Resource-managed devfreq register notifier()

* @dev: The devfreq user device. (parent of devfreq)

* @devfreq: The devfreq object.

* @nb: The notifier block to be unregistered.
* @list: DEVFREQ TRANSITION NOTIFIER.

*/

The problem is the missing “*” , which confuses the build system’ s simplistic idea
of what C comment blocks look like. This problem had been present since that
comment was added in 2016 —a full four years. Fixing it was a matter of adding
the missing asterisks. A quick look at the history for that file showed what the
normal format for subject lines is, and scripts/get maintainer.pl told me who
should receive it. The resulting patch looked like this:

[PATCH] PM / devfreq: Fix two malformed kerneldoc comments

Two kerneldoc comments in devfreq.c fail to adhere to the required format,
resulting in these doc-build warnings:

./drivers/devfreq/devfreq.c:1818: warning: bad line:

- Resource-managed devfreq register notifier()
./drivers/devfreq/devfreq.c:1854: warning: bad line:

- Resource-managed devfreq unregister notifier()

Add a couple of missing asterisks and make kerneldoc a little happier.

Signed-off-by: Jonathan Corbet <corbet@lwn.net>
drivers/devfreq/devfreq.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/drivers/devfreq/devfreq.c b/drivers/devfreq/devfreq.c
index 57f6944d65a6..00c9b80b3d33 100644

--- a/drivers/devfreqg/devfreq.c

+++ b/drivers/devfreq/devfreq.c

(continues on next page)

32 Chapter 9. How to help improve kernel documentation

Linux Doc-guide Documentation

(continued from previous page)

@@ -1814,7 +1814,7 @@ static void devm devfreq notifier release(struct,
—.device *dev, void *res)

/**
* devm devfreq register notifier()
- - Resource-managed devfreq register notifier()

+ X - Resource-managed devfreq register notifier()
* @dev: The devfreq user device. (parent of devfreq)
* @devfreq: The devfreq object.
* @nb: The notifier block to be unregistered.

@@ -1850,7 +1850,7 @@ EXPORT _SYMBOL (devm devfreq register notifier);

/**
* devm _devfreq unregister notifier()
- - Resource-managed devfreq unregister notifier()

+ * - Resource-managed devfreq unregister notifier()

* @dev: The devfreq user device. (parent of devfreq)

* @devfreq: The devfreq object.

* @nb: The notifier block to be unregistered.
2.24.1

The entire process only took a few minutes. Of course, I then found that somebody
else had fixed it in a separate tree, highlighting another lesson: always check linux-
next to see if a problem has been fixed before you dig into it.

Other fixes will take longer, especially those relating to structure members or func-
tion parameters that lack documentation. In such cases, it is necessary to work
out what the role of those members or parameters is and describe them correctly.
Overall, this task gets a little tedious at times, but it" s highly important. If we
can actually eliminate warnings from the documentation build, then we can start
expecting developers to avoid adding new ones.

9.1.2 Languishing kerneldoc comments

Developers are encouraged to write kerneldoc comments for their code, but many
of those comments are never pulled into the docs build. That makes this infor-
mation harder to find and, for example, makes Sphinx unable to generate links to
that documentation. Adding kernel-doc directives to the documentation to bring
those comments in can help the community derive the full value of the work that
has gone into creating them.

The scripts/find-unused-docs.sh tool can be used to find these overlooked
comments.

Note that the most value comes from pulling in the documentation for exported
functions and data structures. Many subsystems also have kerneldoc comments
for internal use; those should not be pulled into the documentation build unless
they are placed in a document that is specifically aimed at developers working
within the relevant subsystem.

9.1. The documentation TODO list 33

Linux Doc-guide Documentation

9.1.3 Typo fixes

Fixing typographical or formatting errors in the documentation is a quick way to
figure out how to create and send patches, and it is a useful service. I am always
willing to accept such patches. That said, once you have fixed a few, please con-
sider moving on to more advanced tasks, leaving some typos for the next beginner
to address.

Please note that some things are not typos and should not be “fixed” :

* Both American and British English spellings are allowed within the kernel
documentation. There is no need to fix one by replacing it with the other.

* The question of whether a period should be followed by one or two spaces
is not to be debated in the context of kernel documentation. Other areas of
rational disagreement, such as the “Oxford comma” , are also off-topic here.

As with any patch to any project, please consider whether your change is really
making things better.

9.1.4 Ancient documentation

Some kernel documentation is current, maintained, and useful. Some documen-
tation is :-'not. Dusty, old, and inaccurate documentation can mislead readers
and casts doubt on our documentation as a whole. Anything that can be done to
address such problems is more than welcome.

Whenever you are working with a document, please consider whether it is current,
whether it needs updating, or whether it should perhaps be removed altogether.
There are a number of warning signs that you can pay attention to here:

e References to 2.x kernels

Pointers to SourceForge repositories

Nothing but typo fixes in the history for several years
* Discussion of pre-Git workflows

The best thing to do, of course, would be to bring the documentation current,
adding whatever information is needed. Such work often requires the coopera-
tion of developers familiar with the subsystem in question, of course. Developers
are often more than willing to cooperate with people working to improve the doc-
umentation when asked nicely, and when their answers are listened to and acted
upon.

Some documentation is beyond hope; we occasionally find documents that refer to
code that was removed from the kernel long ago, for example. There is surprising
resistance to removing obsolete documentation, but we should do that anyway.
Extra cruft in our documentation helps nobody.

In cases where there is perhaps some useful information in a badly outdated docu-
ment, and you are unable to update it, the best thing to do may be to add a warning
at the beginning. The following text is recommended:

34 Chapter 9. How to help improve kernel documentation

Linux Doc-guide Documentation

. warning ::
This document is outdated and in need of attention. Please use
this information with caution, and please consider sending patches
to update it.

That way, at least our long-suffering readers have been warned that the document
may lead them astray.

9.1.5 Documentation coherency

The old-timers around here will remember the Linux books that showed up on
the shelves in the 1990s. They were simply collections of documentation files
scrounged from various locations on the net. The books have (mostly) improved
since then, but the kernel’ s documentation is still mostly built on that model.
It is thousands of files, almost each of which was written in isolation from all of
the others. We don’ t have a coherent body of kernel documentation; we have
thousands of individual documents.

We have been trying to improve the situation through the creation of a set of
“books” that group documentation for specific readers. These include:

* ../admin-guide/index
* ../core-api/index
* ../driver-api/index
* ../userspace-api/index
As well as this book on documentation itself.

Moving documents into the appropriate books is an important task and needs to
continue. There are a couple of challenges associated with this work, though.
Moving documentation files creates short-term pain for the people who work with
those files; they are understandably unenthusiastic about such changes. Usually
the case can be made to move a document once; we really don’ t want to keep
shifting them around, though.

Even when all documents are in the right place, though, we have only managed to
turn a big pile into a group of smaller piles. The work of trying to knit all of those
documents together into a single whole has not yet begun. If you have bright ideas
on how we could proceed on that front, we would be more than happy to hear them.

9.1.6 Stylesheet improvements

With the adoption of Sphinx we have much nicer-looking HTML output than we
once did. But it could still use a lot of improvement; Donald Knuth and Edward
Tufte would be unimpressed. That requires tweaking our stylesheets to create
more typographically sound, accessible, and readable output.

Be warned: if you take on this task you are heading into classic bikeshed territory.
Expect a lot of opinions and discussion for even relatively obvious changes. That
is, alas, the nature of the world we live in.

9.1. The documentation TODO list 35

Linux Doc-guide Documentation

9.1.7 Non-LaTeX PDF build

This is a decidedly nontrivial task for somebody with a lot of time and Python
skills. The Sphinx toolchain is relatively small and well contained; it is easy to add
to a development system. But building PDF or EPUB output requires installing
LaTeX, which is anything but small or well contained. That would be a nice thing
to eliminate.

The original hope had been to use the rst2pdf tool (https://rst2pdf.org/) for PDF
generation, but it turned out to not be up to the task. Development work on rst2pdf
seems to have picked up again in recent times, though, which is a hopeful sign.
If a suitably motivated developer were to work with that project to make rst2pdf
work with the kernel documentation build, the world would be eternally grateful.

9.1.8 Write more documentation

Naturally, there are massive parts of the kernel that are severely underdocu-
mented. If you have the knowledge to document a specific kernel subsystem and
the desire to do so, please do not hesitate to do some writing and contribute the
result to the kernel. Untold numbers of kernel developers and users will thank
you.

36 Chapter 9. How to help improve kernel documentation

https://rst2pdf.org/

CHAPTER
TEN

DOCUMENTATION SUBSYSTEM MAINTAINER ENTRY
PROFILE

The documentation “subsystem” is the central coordinating point for the kernel’ s
documentation and associated infrastructure. It covers the hierarchy under Docu-
mentation/ (with the exception of Documentation/devicetree), various utilities un-
der scripts/ and, at least some of the time, LICENSES/.

It’ s worth noting, though, that the boundaries of this subsystem are rather fuzzier
than normal. Many other subsystem maintainers like to keep control of portions of
Documentation/, and many more freely apply changes there when it is convenient.
Beyond that, much of the kernel’ s documentation is found in the source as ker-
neldoc comments; those are usually (but not always) maintained by the relevant
subsystem maintainer.

The mailing list for documentation is linux-doc@vger.kernel.org. Patches should
be made against the docs-next tree whenever possible.

10.1 Submit checklist addendum

When making documentation changes, you should actually build the documenta-
tion and ensure that no new errors or warnings have been introduced. Generating
HTML documents and looking at the result will help to avoid unsightly misunder-
standings about how things will be rendered.

10.2 Key cycle dates

Patches can be sent anytime, but response will be slower than usual during the
merge window. The docs tree tends to close late before the merge window opens,
since the risk of regressions from documentation patches is low.

37

mailto:linux-doc@vger.kernel.org

Linux Doc-guide Documentation

10.3 Review cadence

I am the sole maintainer for the documentation subsystem, and I am doing the
work on my own time, so the response to patches will occasionally be slow. I try
to always send out a notification when a patch is merged (or when I decide that
one cannot be). Do not hesitate to send a ping if you have not heard back within a
week of sending a patch.

38 Chapter 10. Documentation subsystem maintainer entry profile

