
Linux Crypto Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

Linux Crypto Documentation

Author Stephan Mueller

Author Marek Vasut

This documentation outlines the Linux kernel crypto API with its concepts, de-
tails about developing cipher implementations, employment of the API for crypto-
graphic use cases, as well as programming examples.

Table of contents

CONTENTS 1

Linux Crypto Documentation

2 CONTENTS

CHAPTER

ONE

KERNEL CRYPTO API INTERFACE SPECIFICATION

1.1 Introduction

The kernel crypto API offers a rich set of cryptographic ciphers as well as other
data transformation mechanisms and methods to invoke these. This document
contains a description of the API and provides example code.

To understand and properly use the kernel crypto API a brief explanation of its
structure is given. Based on the architecture, the API can be separated into dif-
ferent components. Following the architecture specification, hints to developers
of ciphers are provided. Pointers to the API function call documentation are given
at the end.

The kernel crypto API refers to all algorithms as “transformations”. Therefore,
a cipher handle variable usually has the name “tfm”. Besides cryptographic
operations, the kernel crypto API also knows compression transformations and
handles them the same way as ciphers.

The kernel crypto API serves the following entity types:

• consumers requesting cryptographic services

• data transformation implementations (typically ciphers) that can be called by
consumers using the kernel crypto API

This specification is intended for consumers of the kernel crypto API as well as
for developers implementing ciphers. This API specification, however, does not
discuss all API calls available to data transformation implementations (i.e. imple-
mentations of ciphers and other transformations (such as CRC or even compres-
sion algorithms) that can register with the kernel crypto API).

Note: The terms“transformation”and cipher algorithm are used interchangeably.

3

Linux Crypto Documentation

1.2 Terminology

The transformation implementation is an actual code or interface to hardware
which implements a certain transformation with precisely defined behavior.

The transformation object (TFM) is an instance of a transformation implementa-
tion. There can be multiple transformation objects associated with a single trans-
formation implementation. Each of those transformation objects is held by a crypto
API consumer or another transformation. Transformation object is allocated when
a crypto API consumer requests a transformation implementation. The consumer
is then provided with a structure, which contains a transformation object (TFM).

The structure that contains transformation objects may also be referred to as a
“cipher handle”. Such a cipher handle is always subject to the following phases
that are reflected in the API calls applicable to such a cipher handle:

1. Initialization of a cipher handle.

2. Execution of all intended cipher operations applicable for the handle where
the cipher handle must be furnished to every API call.

3. Destruction of a cipher handle.

When using the initialization API calls, a cipher handle is created and returned
to the consumer. Therefore, please refer to all initialization API calls that refer to
the data structure type a consumer is expected to receive and subsequently to use.
The initialization API calls have all the same naming conventions of crypto_alloc*.

The transformation context is private data associated with the transformation ob-
ject.

4 Chapter 1. Kernel Crypto API Interface Specification

CHAPTER

TWO

KERNEL CRYPTO API ARCHITECTURE

2.1 Cipher algorithm types

The kernel crypto API provides different API calls for the following cipher types:

• Symmetric ciphers

• AEAD ciphers

• Message digest, including keyed message digest

• Random number generation

• User space interface

2.2 Ciphers And Templates

The kernel crypto API provides implementations of single block ciphers and mes-
sage digests. In addition, the kernel crypto API provides numerous “templates”
that can be used in conjunction with the single block ciphers and message digests.
Templates include all types of block chaining mode, the HMAC mechanism, etc.

Single block ciphers and message digests can either be directly used by a caller
or invoked together with a template to form multi-block ciphers or keyed message
digests.

A single block cipher may even be called with multiple templates. However, tem-
plates cannot be used without a single cipher.

See /proc/crypto and search for “name”. For example:

• aes

• ecb(aes)

• cmac(aes)

• ccm(aes)

• rfc4106(gcm(aes))

• sha1

• hmac(sha1)

• authenc(hmac(sha1),cbc(aes))

5

Linux Crypto Documentation

In these examples,“aes”and“sha1”are the ciphers and all others are the templates.

2.3 Synchronous And Asynchronous Operation

The kernel crypto API provides synchronous and asynchronous API operations.

When using the synchronous API operation, the caller invokes a cipher operation
which is performed synchronously by the kernel crypto API. That means, the caller
waits until the cipher operation completes. Therefore, the kernel crypto API calls
work like regular function calls. For synchronous operation, the set of API calls is
small and conceptually similar to any other crypto library.

Asynchronous operation is provided by the kernel crypto API which implies that
the invocation of a cipher operation will complete almost instantly. That invoca-
tion triggers the cipher operation but it does not signal its completion. Before
invoking a cipher operation, the caller must provide a callback function the kernel
crypto API can invoke to signal the completion of the cipher operation. Further-
more, the caller must ensure it can handle such asynchronous events by applying
appropriate locking around its data. The kernel crypto API does not perform any
special serialization operation to protect the caller’s data integrity.

2.4 Crypto API Cipher References And Priority

A cipher is referenced by the caller with a string. That string has the following
semantics:

template(single block cipher)

where“template”and“single block cipher”is the aforementioned template and
single block cipher, respectively. If applicable, additional templates may enclose
other templates, such as

template1(template2(single block cipher)))

The kernel crypto API may provide multiple implementations of a template or a
single block cipher. For example, AES on newer Intel hardware has the following
implementations: AES-NI, assembler implementation, or straight C. Now, when
using the string“aes”with the kernel crypto API, which cipher implementation is
used? The answer to that question is the priority number assigned to each cipher
implementation by the kernel crypto API. When a caller uses the string to refer
to a cipher during initialization of a cipher handle, the kernel crypto API looks up
all implementations providing an implementation with that name and selects the
implementation with the highest priority.

Now, a caller may have the need to refer to a specific cipher implementation and
thus does not want to rely on the priority-based selection. To accommodate this
scenario, the kernel crypto API allows the cipher implementation to register a
unique name in addition to common names. When using that unique name, a
caller is therefore always sure to refer to the intended cipher implementation.

6 Chapter 2. Kernel Crypto API Architecture

Linux Crypto Documentation

The list of available ciphers is given in /proc/crypto. However, that list does not
specify all possible permutations of templates and ciphers. Each block listed in
/proc/crypto may contain the following information – if one of the components
listed as follows are not applicable to a cipher, it is not displayed:

• name: the generic name of the cipher that is subject to the priority-based
selection – this name can be used by the cipher allocation API calls (all names
listed above are examples for such generic names)

• driver: the unique name of the cipher – this name can be used by the cipher
allocation API calls

• module: the kernel module providing the cipher implementation (or“kernel”
for statically linked ciphers)

• priority: the priority value of the cipher implementation

• refcnt: the reference count of the respective cipher (i.e. the number of cur-
rent consumers of this cipher)

• selftest: specification whether the self test for the cipher passed

• type:

– skcipher for symmetric key ciphers

– cipher for single block ciphers that may be used with an additional tem-
plate

– shash for synchronous message digest

– ahash for asynchronous message digest

– aead for AEAD cipher type

– compression for compression type transformations

– rng for random number generator

– kpp for a Key-agreement Protocol Primitive (KPP) cipher such as an
ECDH or DH implementation

• blocksize: blocksize of cipher in bytes

• keysize: key size in bytes

• ivsize: IV size in bytes

• seedsize: required size of seed data for random number generator

• digestsize: output size of the message digest

• geniv: IV generator (obsolete)

2.4. Crypto API Cipher References And Priority 7

Linux Crypto Documentation

2.5 Key Sizes

When allocating a cipher handle, the caller only specifies the cipher type. Sym-
metric ciphers, however, typically support multiple key sizes (e.g. AES-128 vs.
AES-192 vs. AES-256). These key sizes are determined with the length of the pro-
vided key. Thus, the kernel crypto API does not provide a separate way to select
the particular symmetric cipher key size.

2.6 Cipher Allocation Type And Masks

The different cipher handle allocation functions allow the specification of a type
and mask flag. Both parameters have the following meaning (and are therefore
not covered in the subsequent sections).

The type flag specifies the type of the cipher algorithm. The caller usually provides
a 0 when the caller wants the default handling. Otherwise, the caller may provide
the following selections which match the aforementioned cipher types:

• CRYPTO_ALG_TYPE_CIPHER Single block cipher

• CRYPTO_ALG_TYPE_COMPRESS Compression

• CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with Associated Data
(MAC)

• CRYPTO_ALG_TYPE_KPP Key-agreement Protocol Primitive (KPP) such as an
ECDH or DH implementation

• CRYPTO_ALG_TYPE_HASH Raw message digest

• CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash

• CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash

• CRYPTO_ALG_TYPE_RNG Random Number Generation

• CRYPTO_ALG_TYPE_AKCIPHER Asymmetric cipher

• CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of
CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression
/ decompression instead of performing the operation on one seg-
ment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace
CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.

The mask flag restricts the type of cipher. The only allowed flag is
CRYPTO_ALG_ASYNC to restrict the cipher lookup function to asynchronous ci-
phers. Usually, a caller provides a 0 for the mask flag.

When the caller provides a mask and type specification, the caller limits the search
the kernel crypto API can perform for a suitable cipher implementation for the
given cipher name. That means, even when a caller uses a cipher name that exists
during its initialization call, the kernel crypto API may not select it due to the used
type and mask field.

8 Chapter 2. Kernel Crypto API Architecture

Linux Crypto Documentation

2.7 Internal Structure of Kernel Crypto API

The kernel crypto API has an internal structure where a cipher implementation
may use many layers and indirections. This section shall help to clarify how the
kernel crypto API uses various components to implement the complete cipher.

The following subsections explain the internal structure based on existing cipher
implementations. The first section addresses the most complex scenario where all
other scenarios form a logical subset.

2.7.1 Generic AEAD Cipher Structure

The following ASCII art decomposes the kernel crypto API layers when using the
AEAD cipher with the automated IV generation. The shown example is used by
the IPSEC layer.

For other use cases of AEAD ciphers, the ASCII art applies as well, but the caller
may not use the AEAD cipher with a separate IV generator. In this case, the caller
must generate the IV.

The depicted example decomposes the AEAD cipher of GCM(AES) based on the
generic C implementations (gcm.c, aes-generic.c, ctr.c, ghash-generic.c, seqiv.c).
The generic implementation serves as an example showing the complete logic of
the kernel crypto API.

It is possible that some streamlined cipher implementations (like AES-NI) provide
implementations merging aspects which in the view of the kernel crypto API can-
not be decomposed into layers any more. In case of the AES-NI implementation,
the CTRmode, the GHASH implementation and the AES cipher are all merged into
one cipher implementation registered with the kernel crypto API. In this case, the
concept described by the following ASCII art applies too. However, the decompo-
sition of GCM into the individual sub-components by the kernel crypto API is not
done any more.

Each block in the following ASCII art is an independent cipher instance obtained
from the kernel crypto API. Each block is accessed by the caller or by other blocks
using the API functions defined by the kernel crypto API for the cipher implemen-
tation type.

The blocks below indicate the cipher type as well as the specific logic implemented
in the cipher.

The ASCII art picture also indicates the call structure, i.e. who calls which com-
ponent. The arrows point to the invoked block where the caller uses the API ap-
plicable to the cipher type specified for the block.

kernel crypto API | IPSEC Layer
|

+-----------+ |
| | (1)
| aead | <----------------------------------- esp_output
| (seqiv) | ---+
+-----------+ |

| (2)
(continues on next page)

2.7. Internal Structure of Kernel Crypto API 9

Linux Crypto Documentation

(continued from previous page)
+-----------+ |
| | <--+ (2)
| aead | <----------------------------------- esp_input
| (gcm) | ------------+
+-----------+ |

| (3) | (5)
v v

+-----------+ +-----------+
skcipher		ahash
(ctr)	---+	(ghash)
+-----------+ | +-----------+

|
+-----------+ | (4)
| | <--+
| cipher |
| (aes) |
+-----------+

The following call sequence is applicable when the IPSEC layer triggers an encryp-
tion operation with the esp_output function. During configuration, the administra-
tor set up the use of seqiv(rfc4106(gcm(aes))) as the cipher for ESP. The following
call sequence is now depicted in the ASCII art above:

1. esp_output() invokes crypto_aead_encrypt() to trigger an encryption oper-
ation of the AEAD cipher with IV generator.

The SEQIV generates the IV.

2. Now, SEQIV uses the AEAD API function calls to invoke the associated AEAD
cipher. In our case, during the instantiation of SEQIV, the cipher handle for
GCM is provided to SEQIV. This means that SEQIV invokes AEAD cipher op-
erations with the GCM cipher handle.

During instantiation of the GCM handle, the CTR(AES) and GHASH ciphers
are instantiated. The cipher handles for CTR(AES) and GHASH are retained
for later use.

The GCM implementation is responsible to invoke the CTR mode AES and the
GHASH cipher in the right manner to implement the GCM specification.

3. The GCM AEAD cipher type implementation now invokes the SKCIPHER API
with the instantiated CTR(AES) cipher handle.

During instantiation of the CTR(AES) cipher, the CIPHER type implementa-
tion of AES is instantiated. The cipher handle for AES is retained.

That means that the SKCIPHER implementation of CTR(AES) only imple-
ments the CTR block chaining mode. After performing the block chaining
operation, the CIPHER implementation of AES is invoked.

4. The SKCIPHER of CTR(AES) now invokes the CIPHER API with the AES ci-
pher handle to encrypt one block.

5. The GCM AEAD implementation also invokes the GHASH cipher implemen-
tation via the AHASH API.

10 Chapter 2. Kernel Crypto API Architecture

Linux Crypto Documentation

When the IPSEC layer triggers the esp_input() function, the same call sequence is
followed with the only difference that the operation starts with step (2).

2.7.2 Generic Block Cipher Structure

Generic block ciphers follow the same concept as depicted with the ASCII art pic-
ture above.

For example, CBC(AES) is implemented with cbc.c, and aes-generic.c. The ASCII
art picture above applies as well with the difference that only step (4) is used and
the SKCIPHER block chaining mode is CBC.

2.7.3 Generic Keyed Message Digest Structure

Keyed message digest implementations again follow the same concept as depicted
in the ASCII art picture above.

For example, HMAC(SHA256) is implemented with hmac.c and sha256_generic.c.
The following ASCII art illustrates the implementation:

kernel crypto API | Caller
|

+-----------+ (1) |
| | <------------------ some_function
| ahash |
| (hmac) | ---+
+-----------+ |

| (2)
+-----------+ |
| | <--+
| shash |
| (sha256) |
+-----------+

The following call sequence is applicable when a caller triggers an HMAC opera-
tion:

1. The AHASH API functions are invoked by the caller. The HMAC implementa-
tion performs its operation as needed.

During initialization of the HMAC cipher, the SHASH cipher type of SHA256
is instantiated. The cipher handle for the SHA256 instance is retained.

At one time, the HMAC implementation requires a SHA256 operation where
the SHA256 cipher handle is used.

2. The HMAC instance now invokes the SHASH API with the SHA256 cipher
handle to calculate the message digest.

2.7. Internal Structure of Kernel Crypto API 11

Linux Crypto Documentation

12 Chapter 2. Kernel Crypto API Architecture

CHAPTER

THREE

DEVELOPING CIPHER ALGORITHMS

3.1 Registering And Unregistering Transformation

There are three distinct types of registration functions in the Crypto API. One is
used to register a generic cryptographic transformation, while the other two are
specific to HASH transformations and COMPRESSion. We will discuss the latter
two in a separate chapter, here we will only look at the generic ones.

Before discussing the register functions, the data structure to be filled with each,
struct crypto_alg, must be considered – see below for a description of this data
structure.

The generic registration functions can be found in include/linux/crypto.h and their
definition can be seen below. The former function registers a single transforma-
tion, while the latter works on an array of transformation descriptions. The latter
is useful when registering transformations in bulk, for example when a driver im-
plements multiple transformations.

int crypto_register_alg(struct crypto_alg *alg);
int crypto_register_algs(struct crypto_alg *algs, int count);

The counterparts to those functions are listed below.

void crypto_unregister_alg(struct crypto_alg *alg);
void crypto_unregister_algs(struct crypto_alg *algs, int count);

The registration functions return 0 on success, or a negative errno value on fail-
ure. crypto_register_algs() succeeds only if it successfully registered all the given
algorithms; if it fails partway through, then any changes are rolled back.

The unregistration functions always succeed, so they don’t have a return value.
Don’t try to unregister algorithms that aren’t currently registered.

13

Linux Crypto Documentation

3.2 Single-Block Symmetric Ciphers [CIPHER]

Example of transformations: aes, serpent, ⋯
This section describes the simplest of all transformation implementations, that
being the CIPHER type used for symmetric ciphers. The CIPHER type is used for
transformations which operate on exactly one block at a time and there are no
dependencies between blocks at all.

3.2.1 Registration specifics

The registration of [CIPHER] algorithm is specific in that struct crypto_alg field
.cra_type is empty. The .cra_u.cipher has to be filled in with proper callbacks to
implement this transformation.

See struct cipher_alg below.

3.2.2 Cipher Definition With struct cipher_alg

Struct cipher_alg defines a single block cipher.

Here are schematics of how these functions are called when operated from other
part of the kernel. Note that the .cia_setkey() call might happen before or after any
of these schematics happen, but must not happen during any of these are in-flight.

KEY ---. PLAINTEXT ---.
v v

.cia_setkey() -> .cia_encrypt()
|
'-----> CIPHERTEXT

Please note that a pattern where .cia_setkey() is called multiple times is also valid:

KEY1 --. PLAINTEXT1 --. KEY2 --. PLAINTEXT2 --.
v v v v

.cia_setkey() -> .cia_encrypt() -> .cia_setkey() -> .cia_encrypt()
| |
'---> CIPHERTEXT1 '--->␣

↪→CIPHERTEXT2

3.3 Multi-Block Ciphers

Example of transformations: cbc(aes), chacha20, ⋯
This section describes the multi-block cipher transformation implementations.
The multi-block ciphers are used for transformations which operate on scatterlists
of data supplied to the transformation functions. They output the result into a scat-
terlist of data as well.

14 Chapter 3. Developing Cipher Algorithms

Linux Crypto Documentation

3.3.1 Registration Specifics

The registration of multi-block cipher algorithms is one of the most standard pro-
cedures throughout the crypto API.

Note, if a cipher implementation requires a proper alignment of data, the caller
should use the functions of crypto_skcipher_alignmask() to identify a memory
alignment mask. The kernel crypto API is able to process requests that are un-
aligned. This implies, however, additional overhead as the kernel crypto API needs
to perform the realignment of the data which may imply moving of data.

3.3.2 Cipher Definition With struct skcipher_alg

Struct skcipher_alg defines a multi-block cipher, or more generally, a length-
preserving symmetric cipher algorithm.

3.3.3 Scatterlist handling

Some drivers will want to use the Generic ScatterWalk in case the hardware needs
to be fed separate chunks of the scatterlist which contains the plaintext and will
contain the ciphertext. Please refer to the ScatterWalk interface offered by the
Linux kernel scatter / gather list implementation.

3.4 Hashing [HASH]

Example of transformations: crc32, md5, sha1, sha256,⋯

3.4.1 Registering And Unregistering The Transformation

There are multiple ways to register a HASH transformation, depending on whether
the transformation is synchronous [SHASH] or asynchronous [AHASH] and the
amount of HASH transformations we are registering. You can find the prototypes
defined in include/crypto/internal/hash.h:

int crypto_register_ahash(struct ahash_alg *alg);

int crypto_register_shash(struct shash_alg *alg);
int crypto_register_shashes(struct shash_alg *algs, int count);

The respective counterparts for unregistering the HASH transformation are as
follows:

void crypto_unregister_ahash(struct ahash_alg *alg);

void crypto_unregister_shash(struct shash_alg *alg);
void crypto_unregister_shashes(struct shash_alg *algs, int count);

3.4. Hashing [HASH] 15

Linux Crypto Documentation

3.4.2 Cipher Definition With struct shash_alg and ahash_alg

Here are schematics of how these functions are called when operated from other
part of the kernel. Note that the .setkey() call might happen before or after any of
these schematics happen, but must not happen during any of these are in-flight.
Please note that calling .init() followed immediately by .finish() is also a perfectly
valid transformation.

I) DATA -----------.
v

.init() -> .update() -> .final() ! .update() might not be called
^ | | at all in this scenario.
'----' '---> HASH

II) DATA -----------.-----------.
v v

.init() -> .update() -> .finup() ! .update() may not be called
^ | | at all in this scenario.
'----' '---> HASH

III) DATA -----------.
v

.digest() ! The entire process is handled
| by the .digest() call.
'---------------> HASH

Here is a schematic of how the .export()/.import() functions are called when used
from another part of the kernel.

KEY--. DATA--.
v v ! .update() may not be␣

↪→called
.setkey() -> .init() -> .update() -> .export() at all in this scenario.

^ | |
'-----' '--> PARTIAL_HASH

----------- other transformations happen here -----------

PARTIAL_HASH--. DATA1--.
v v

.import -> .update() -> .final() ! .update() may not be␣
↪→called

^ | | at all in this scenario.
'----' '--> HASH1

PARTIAL_HASH--. DATA2-.
v v

.import -> .finup()
|
'---------------> HASH2

Note that it is perfectly legal to“abandon”a request object: - call .init() and then
(as many times) .update() - _not_ call any of .final(), .finup() or .export() at any point
in future

In other words implementations should mind the resource allocation and clean-
up. No resources related to request objects should remain allocated after a call to

16 Chapter 3. Developing Cipher Algorithms

Linux Crypto Documentation

.init() or .update(), since there might be no chance to free them.

3.4.3 Specifics Of Asynchronous HASH Transformation

Some of the drivers will want to use the Generic ScatterWalk in case the implemen-
tation needs to be fed separate chunks of the scatterlist which contains the input
data. The buffer containing the resulting hash will always be properly aligned to
.cra_alignmask so there is no need to worry about this.

3.4. Hashing [HASH] 17

Linux Crypto Documentation

18 Chapter 3. Developing Cipher Algorithms

CHAPTER

FOUR

USER SPACE INTERFACE

4.1 Introduction

The concepts of the kernel crypto API visible to kernel space is fully applicable
to the user space interface as well. Therefore, the kernel crypto API high level
discussion for the in-kernel use cases applies here as well.

The major difference, however, is that user space can only act as a consumer and
never as a provider of a transformation or cipher algorithm.

The following covers the user space interface exported by the kernel crypto API. A
working example of this description is libkcapi that can be obtained from [1]. That
library can be used by user space applications that require cryptographic services
from the kernel.

Some details of the in-kernel kernel crypto API aspects do not apply to user space,
however. This includes the difference between synchronous and asynchronous
invocations. The user space API call is fully synchronous.

[1] http://www.chronox.de/libkcapi.html

4.2 User Space API General Remarks

The kernel crypto API is accessible from user space. Currently, the following ci-
phers are accessible:

• Message digest including keyed message digest (HMAC, CMAC)

• Symmetric ciphers

• AEAD ciphers

• Random Number Generators

The interface is provided via socket type using the type AF_ALG. In addition, the
setsockopt option type is SOL_ALG. In case the user space header files do not
export these flags yet, use the following macros:

#ifndef AF_ALG
#define AF_ALG 38
#endif
#ifndef SOL_ALG

(continues on next page)

19

http://www.chronox.de/libkcapi.html

Linux Crypto Documentation

(continued from previous page)
#define SOL_ALG 279
#endif

A cipher is accessed with the same name as done for the in-kernel API calls. This
includes the generic vs. unique naming schema for ciphers as well as the enforce-
ment of priorities for generic names.

To interact with the kernel crypto API, a socket must be created by the user space
application. User space invokes the cipher operation with the send()/write() sys-
tem call family. The result of the cipher operation is obtained with the read()/recv()
system call family.

The following API calls assume that the socket descriptor is already opened by the
user space application and discusses only the kernel crypto API specific invoca-
tions.

To initialize the socket interface, the following sequence has to be performed by
the consumer:

1. Create a socket of type AF_ALG with the struct sockaddr_alg parameter spec-
ified below for the different cipher types.

2. Invoke bind with the socket descriptor

3. Invoke accept with the socket descriptor. The accept system call returns a
new file descriptor that is to be used to interact with the particular cipher
instance. When invoking send/write or recv/read system calls to send data
to the kernel or obtain data from the kernel, the file descriptor returned by
accept must be used.

4.3 In-place Cipher operation

Just like the in-kernel operation of the kernel crypto API, the user space interface
allows the cipher operation in-place. That means that the input buffer used for the
send/write system call and the output buffer used by the read/recv system call may
be one and the same. This is of particular interest for symmetric cipher operations
where a copying of the output data to its final destination can be avoided.

If a consumer on the other hand wants to maintain the plaintext and the ciphertext
in different memory locations, all a consumer needs to do is to provide different
memory pointers for the encryption and decryption operation.

4.4 Message Digest API

The message digest type to be used for the cipher operation is selected when in-
voking the bind syscall. bind requires the caller to provide a filled struct sockaddr
data structure. This data structure must be filled as follows:

struct sockaddr_alg sa = {
.salg_family = AF_ALG,
.salg_type = "hash", /* this selects the hash logic in the kernel */

(continues on next page)

20 Chapter 4. User Space Interface

Linux Crypto Documentation

(continued from previous page)
.salg_name = "sha1" /* this is the cipher name */

};

The salg_type value“hash”applies to message digests and keyed message digests.
Though, a keyed message digest is referenced by the appropriate salg_name.
Please see below for the setsockopt interface that explains how the key can be
set for a keyed message digest.

Using the send() system call, the application provides the data that should be pro-
cessed with the message digest. The send system call allows the following flags
to be specified:

• MSG_MORE: If this flag is set, the send system call acts like a message digest
update function where the final hash is not yet calculated. If the flag is not
set, the send system call calculates the final message digest immediately.

With the recv() system call, the application can read the message digest from
the kernel crypto API. If the buffer is too small for the message digest, the flag
MSG_TRUNC is set by the kernel.

In order to set a message digest key, the calling application must use the set-
sockopt() option of ALG_SET_KEY. If the key is not set the HMAC operation is
performed without the initial HMAC state change caused by the key.

4.5 Symmetric Cipher API

The operation is very similar to the message digest discussion. During initializa-
tion, the struct sockaddr data structure must be filled as follows:

struct sockaddr_alg sa = {
.salg_family = AF_ALG,
.salg_type = "skcipher", /* this selects the symmetric cipher */
.salg_name = "cbc(aes)" /* this is the cipher name */

};

Before data can be sent to the kernel using the write/send system call family, the
consumer must set the key. The key setting is described with the setsockopt invo-
cation below.

Using the sendmsg() system call, the application provides the data that should be
processed for encryption or decryption. In addition, the IV is specified with the
data structure provided by the sendmsg() system call.

The sendmsg system call parameter of struct msghdr is embedded into the struct
cmsghdr data structure. See recv(2) and cmsg(3) for more information on how
the cmsghdr data structure is used together with the send/recv system call fam-
ily. That cmsghdr data structure holds the following information specified with a
separate header instances:

• specification of the cipher operation type with one of these flags:

– ALG_OP_ENCRYPT - encryption of data

– ALG_OP_DECRYPT - decryption of data

4.5. Symmetric Cipher API 21

Linux Crypto Documentation

• specification of the IV information marked with the flag ALG_SET_IV

The send system call family allows the following flag to be specified:

• MSG_MORE: If this flag is set, the send system call acts like a cipher update
function where more input data is expected with a subsequent invocation of
the send system call.

Note: The kernel reports -EINVAL for any unexpected data. The caller must make
sure that all data matches the constraints given in /proc/crypto for the selected
cipher.

With the recv() system call, the application can read the result of the cipher op-
eration from the kernel crypto API. The output buffer must be at least as large as
to hold all blocks of the encrypted or decrypted data. If the output data size is
smaller, only as many blocks are returned that fit into that output buffer size.

4.6 AEAD Cipher API

The operation is very similar to the symmetric cipher discussion. During initial-
ization, the struct sockaddr data structure must be filled as follows:

struct sockaddr_alg sa = {
.salg_family = AF_ALG,
.salg_type = "aead", /* this selects the symmetric cipher */
.salg_name = "gcm(aes)" /* this is the cipher name */

};

Before data can be sent to the kernel using the write/send system call family, the
consumer must set the key. The key setting is described with the setsockopt invo-
cation below.

In addition, before data can be sent to the kernel using the write/send system call
family, the consumermust set the authentication tag size. To set the authentication
tag size, the caller must use the setsockopt invocation described below.

Using the sendmsg() system call, the application provides the data that should be
processed for encryption or decryption. In addition, the IV is specified with the
data structure provided by the sendmsg() system call.

The sendmsg system call parameter of struct msghdr is embedded into the struct
cmsghdr data structure. See recv(2) and cmsg(3) for more information on how
the cmsghdr data structure is used together with the send/recv system call fam-
ily. That cmsghdr data structure holds the following information specified with a
separate header instances:

• specification of the cipher operation type with one of these flags:

– ALG_OP_ENCRYPT - encryption of data

– ALG_OP_DECRYPT - decryption of data

• specification of the IV information marked with the flag ALG_SET_IV

• specification of the associated authentication data (AAD) with the flag
ALG_SET_AEAD_ASSOCLEN. The AAD is sent to the kernel together with the
plaintext / ciphertext. See below for the memory structure.

22 Chapter 4. User Space Interface

Linux Crypto Documentation

The send system call family allows the following flag to be specified:

• MSG_MORE: If this flag is set, the send system call acts like a cipher update
function where more input data is expected with a subsequent invocation of
the send system call.

Note: The kernel reports -EINVAL for any unexpected data. The caller must make
sure that all data matches the constraints given in /proc/crypto for the selected
cipher.

With the recv() system call, the application can read the result of the cipher op-
eration from the kernel crypto API. The output buffer must be at least as large as
defined with the memory structure below. If the output data size is smaller, the
cipher operation is not performed.

The authenticated decryption operation may indicate an integrity error. Such
breach in integrity is marked with the -EBADMSG error code.

4.6.1 AEAD Memory Structure

The AEAD cipher operates with the following information that is communicated
between user and kernel space as one data stream:

• plaintext or ciphertext

• associated authentication data (AAD)

• authentication tag

The sizes of the AAD and the authentication tag are provided with the sendmsg
and setsockopt calls (see there). As the kernel knows the size of the entire data
stream, the kernel is now able to calculate the right offsets of the data components
in the data stream.

The user space caller must arrange the aforementioned information in the follow-
ing order:

• AEAD encryption input: AAD || plaintext

• AEAD decryption input: AAD || ciphertext || authentication tag

The output buffer the user space caller provides must be at least as large to hold
the following data:

• AEAD encryption output: ciphertext || authentication tag

• AEAD decryption output: plaintext

4.6. AEAD Cipher API 23

Linux Crypto Documentation

4.7 Random Number Generator API

Again, the operation is very similar to the other APIs. During initialization, the
struct sockaddr data structure must be filled as follows:

struct sockaddr_alg sa = {
.salg_family = AF_ALG,
.salg_type = "rng", /* this selects the symmetric cipher */
.salg_name = "drbg_nopr_sha256" /* this is the cipher name */

};

Depending on the RNG type, the RNG must be seeded. The seed is provided using
the setsockopt interface to set the key. For example, the ansi_cprng requires a
seed. The DRBGs do not require a seed, but may be seeded.

Using the read()/recvmsg() system calls, random numbers can be obtained. The
kernel generates at most 128 bytes in one call. If user space requires more data,
multiple calls to read()/recvmsg() must be made.

WARNING: The user space caller may invoke the initially mentioned accept system
call multiple times. In this case, the returned file descriptors have the same state.

4.8 Zero-Copy Interface

In addition to the send/write/read/recv system call family, the AF_ALG interface
can be accessed with the zero-copy interface of splice/vmsplice. As the name in-
dicates, the kernel tries to avoid a copy operation into kernel space.

The zero-copy operation requires data to be aligned at the page boundary. Non-
aligned data can be used as well, but may require more operations of the kernel
which would defeat the speed gains obtained from the zero-copy interface.

The system-inherent limit for the size of one zero-copy operation is 16 pages. If
more data is to be sent to AF_ALG, user space must slice the input into segments
with a maximum size of 16 pages.

Zero-copy can be used with the following code example (a complete working ex-
ample is provided with libkcapi):

int pipes[2];

pipe(pipes);
/* input data in iov */
vmsplice(pipes[1], iov, iovlen, SPLICE_F_GIFT);
/* opfd is the file descriptor returned from accept() system call */
splice(pipes[0], NULL, opfd, NULL, ret, 0);
read(opfd, out, outlen);

24 Chapter 4. User Space Interface

Linux Crypto Documentation

4.9 Setsockopt Interface

In addition to the read/recv and send/write system call handling to send and re-
trieve data subject to the cipher operation, a consumer also needs to set the ad-
ditional information for the cipher operation. This additional information is set
using the setsockopt system call that must be invoked with the file descriptor of
the open cipher (i.e. the file descriptor returned by the accept system call).

Each setsockopt invocation must use the level SOL_ALG.

The setsockopt interface allows setting the following data using the mentioned
optname:

• ALG_SET_KEY – Setting the key. Key setting is applicable to:

– the skcipher cipher type (symmetric ciphers)

– the hash cipher type (keyed message digests)

– the AEAD cipher type

– the RNG cipher type to provide the seed

• ALG_SET_AEAD_AUTHSIZE – Setting the authentication tag size for AEAD
ciphers. For a encryption operation, the authentication tag of the given size
will be generated. For a decryption operation, the provided ciphertext is
assumed to contain an authentication tag of the given size (see section about
AEAD memory layout below).

4.10 User space API example

Please see [1] for libkcapi which provides an easy-to-use wrapper around the afore-
mentioned Netlink kernel interface. [1] also contains a test application that in-
vokes all libkcapi API calls.

[1] http://www.chronox.de/libkcapi.html

4.9. Setsockopt Interface 25

http://www.chronox.de/libkcapi.html

Linux Crypto Documentation

26 Chapter 4. User Space Interface

CHAPTER

FIVE

CRYPTO ENGINE

5.1 Overview

The crypto engine (CE) API is a crypto queue manager.

5.2 Requirement

You must put, at the start of your transform context your_tfm_ctx, the structure
crypto_engine:

struct your_tfm_ctx {
struct crypto_engine engine;
...

};

The crypto engine only manages asynchronous requests in the form of
crypto_async_request. It cannot know the underlying request type and thus only
has access to the transform structure. It is not possible to access the context using
container_of. In addition, the engine knows nothing about your structure“struct
your_tfm_ctx”. The engine assumes (requires) the placement of the known mem-
ber struct crypto_engine at the beginning.

5.3 Order of operations

You are required to obtain a struct crypto_engine via
crypto_engine_alloc_init(). Start it via crypto_engine_start(). When
finished with your work, shut down the engine using crypto_engine_stop() and
destroy the engine with crypto_engine_exit().

Before transferring any request, you have to fill the context enginectx by providing
functions for the following:

• prepare_crypt_hardware: Called once before any prepare functions are
called.

• unprepare_crypt_hardware: Called once after all unprepare functions have
been called.

27

Linux Crypto Documentation

• prepare_cipher_request/prepare_hash_request: Called before each cor-
responding request is performed. If some processing or other preparatory
work is required, do it here.

• unprepare_cipher_request/unprepare_hash_request: Called after each re-
quest is handled. Clean up / undo what was done in the prepare function.

• cipher_one_request/hash_one_request: Handle the current request by per-
forming the operation.

Note that these functions access the crypto_async_request structure associated
with the received request. You are able to retrieve the original request by using:

container_of(areq, struct yourrequesttype_request, base);

When your driver receives a crypto_request, you must to transfer it to the crypto
engine via one of:

• crypto_transfer_aead_request_to_engine()

• crypto_transfer_akcipher_request_to_engine()

• crypto_transfer_hash_request_to_engine()

• crypto_transfer_skcipher_request_to_engine()

At the end of the request process, a call to one of the following functions is needed:

• crypto_finalize_aead_request()

• crypto_finalize_akcipher_request()

• crypto_finalize_hash_request()

• crypto_finalize_skcipher_request()

28 Chapter 5. Crypto Engine

CHAPTER

SIX

PROGRAMMING INTERFACE

Table of contents

6.1 Block Cipher Algorithm Definitions

These data structures definemodular crypto algorithm implementations, managed
via crypto_register_alg() and crypto_unregister_alg().

struct cipher_alg
single-block symmetric ciphers definition

Definition

struct cipher_alg {
unsigned int cia_min_keysize;
unsigned int cia_max_keysize;
int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int␣

↪→keylen);
void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);

};

Members
cia_min_keysize Minimum key size supported by the transformation. This is the

smallest key length supported by this transformation algorithm. This must
be set to one of the pre-defined values as this is not hardware specific. Pos-
sible values for this field can be found via git grep “_MIN_KEY_SIZE”in-
clude/crypto/

cia_max_keysize Maximum key size supported by the transformation. This is the
largest key length supported by this transformation algorithm. This must be
set to one of the pre-defined values as this is not hardware specific. Pos-
sible values for this field can be found via git grep “_MAX_KEY_SIZE”in-
clude/crypto/

cia_setkey Set key for the transformation. This function is used to either pro-
gram a supplied key into the hardware or store the key in the transformation
context for programming it later. Note that this function does modify the
transformation context. This function can be called multiple times during
the existence of the transformation object, so one must make sure the key is
properly reprogrammed into the hardware. This function is also responsible
for checking the key length for validity.

29

Linux Crypto Documentation

cia_encrypt Encrypt a single block. This function is used to encrypt a single
block of data, which must be cra_blocksize big. This always operates on a
full cra_blocksize and it is not possible to encrypt a block of smaller size.
The supplied buffers must therefore also be at least of cra_blocksize size.
Both the input and output buffers are always aligned to cra_alignmask. In
case either of the input or output buffer supplied by user of the crypto API is
not aligned to cra_alignmask, the crypto API will re-align the buffers. The
re-alignment means that a new buffer will be allocated, the data will be copied
into the new buffer, then the processing will happen on the new buffer, then
the data will be copied back into the original buffer and finally the new buffer
will be freed. In case a software fallback was put in place in the cra_init call,
this function might need to use the fallback if the algorithm doesn’t support
all of the key sizes. In case the key was stored in transformation context, the
key might need to be re-programmed into the hardware in this function. This
function shall not modify the transformation context, as this function may be
called in parallel with the same transformation object.

cia_decrypt Decrypt a single block. This is a reverse counterpart to cia_encrypt,
and the conditions are exactly the same.

Description
All fields are mandatory and must be filled.

struct compress_alg
compression/decompression algorithm

Definition

struct compress_alg {
int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int␣

↪→slen, u8 *dst, unsigned int *dlen);
int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned␣

↪→int slen, u8 *dst, unsigned int *dlen);
};

Members
coa_compress Compress a buffer of specified length, storing the resulting data in

the specified buffer. Return the length of the compressed data in dlen.

coa_decompress Decompress the source buffer, storing the uncompressed data in
the specified buffer. The length of the data is returned in dlen.

Description
All fields are mandatory.

struct crypto_alg
definition of a cryptograpic cipher algorithm

Definition

struct crypto_alg {
struct list_head cra_list;
struct list_head cra_users;
u32 cra_flags;
unsigned int cra_blocksize;

(continues on next page)

30 Chapter 6. Programming Interface

Linux Crypto Documentation

(continued from previous page)
unsigned int cra_ctxsize;
unsigned int cra_alignmask;
int cra_priority;
refcount_t cra_refcnt;
char cra_name[CRYPTO_MAX_ALG_NAME];
char cra_driver_name[CRYPTO_MAX_ALG_NAME];
const struct crypto_type *cra_type;
union {

struct cipher_alg cipher;
struct compress_alg compress;

} cra_u;
int (*cra_init)(struct crypto_tfm *tfm);
void (*cra_exit)(struct crypto_tfm *tfm);
void (*cra_destroy)(struct crypto_alg *alg);
struct module *cra_module;

#ifdef CONFIG_CRYPTO_STATS;
union {

struct crypto_istat_aead aead;
struct crypto_istat_akcipher akcipher;
struct crypto_istat_cipher cipher;
struct crypto_istat_compress compress;
struct crypto_istat_hash hash;
struct crypto_istat_rng rng;
struct crypto_istat_kpp kpp;

} stats;
#endif ;
};

Members
cra_list internally used

cra_users internally used

cra_flags Flags describing this transformation. See include/linux/crypto.h
CRYPTO_ALG_* flags for the flags which go in here. Those are used for fine-
tuning the description of the transformation algorithm.

cra_blocksize Minimum block size of this transformation. The size in bytes of
the smallest possible unit which can be transformed with this algorithm. The
users must respect this value. In case of HASH transformation, it is possible
for a smaller block than cra_blocksize to be passed to the crypto API for
transformation, in case of any other transformation type, an error will be
returned upon any attempt to transform smaller than cra_blocksize chunks.

cra_ctxsize Size of the operational context of the transformation. This value
informs the kernel crypto API about the memory size needed to be allocated
for the transformation context.

cra_alignmask Alignment mask for the input and output data buffer. The data
buffer containing the input data for the algorithm must be aligned to this
alignment mask. The data buffer for the output data must be aligned to this
alignment mask. Note that the Crypto API will do the re-alignment in soft-
ware, but only under special conditions and there is a performance hit. The
re-alignment happens at these occasions for different cra_u types: cipher –
For both input data and output data buffer; ahash – For output hash destina-

6.1. Block Cipher Algorithm Definitions 31

Linux Crypto Documentation

tion buf; shash – For output hash destination buf. This is needed on hardware
which is flawed by design and cannot pick data from arbitrary addresses.

cra_priority Priority of this transformation implementation. In case multiple
transformations with same cra_name are available to the Crypto API, the
kernel will use the one with highest cra_priority.

cra_refcnt internally used

cra_name Generic name (usable by multiple implementations) of the transforma-
tion algorithm. This is the name of the transformation itself. This field is used
by the kernel when looking up the providers of particular transformation.

cra_driver_name Unique name of the transformation provider. This is the name
of the provider of the transformation. This can be any arbitrary value, but in
the usual case, this contains the name of the chip or provider and the name
of the transformation algorithm.

cra_type Type of the cryptographic transformation. This is a pointer to
struct crypto_type, which implements callbacks common for all transfor-
mation types. There are multiple options, such as crypto_skcipher_type,
crypto_ahash_type, crypto_rng_type. This field might be empty. In that
case, there are no common callbacks. This is the case for: cipher, compress,
shash.

cra_u Callbacks implementing the transformation. This is a union of multiple
structures. Depending on the type of transformation selected by cra_type
and cra_flags above, the associated structure must be filled with callbacks.
This field might be empty. This is the case for ahash, shash.

cra_u.cipher Union member which contains a single-block symmetric cipher def-
inition. See struct cipher_alg.

cra_u.compress Unionmember which contains a (de)compression algorithm. See
struct compress_alg.

cra_init Initialize the cryptographic transformation object. This function is used
to initialize the cryptographic transformation object. This function is called
only once at the instantiation time, right after the transformation context was
allocated. In case the cryptographic hardware has some special requirements
which need to be handled by software, this function shall check for the precise
requirement of the transformation and put any software fallbacks in place.

cra_exit Deinitialize the cryptographic transformation object. This is a counter-
part to cra_init, used to remove various changes set in cra_init.

cra_destroy internally used

cra_module Owner of this transformation implementation. Set to THIS_MODULE

stats union of all possible crypto_istat_xxx structures

stats.aead statistics for AEAD algorithm

stats.akcipher statistics for akcipher algorithm

stats.cipher statistics for cipher algorithm

stats.compress statistics for compress algorithm

32 Chapter 6. Programming Interface

Linux Crypto Documentation

stats.hash statistics for hash algorithm

stats.rng statistics for rng algorithm

stats.kpp statistics for KPP algorithm

Description
The struct crypto_alg describes a generic Crypto API algorithm and is common for
all of the transformations. Any variable not documented here shall not be used by
a cipher implementation as it is internal to the Crypto API.

6.2 Symmetric Key Cipher API

Symmetric key cipher API is used with the ciphers of type
CRYPTO_ALG_TYPE_SKCIPHER (listed as type “skcipher”in /proc/crypto).

Asynchronous cipher operations imply that the function invocation for a cipher
request returns immediately before the completion of the operation. The cipher
request is scheduled as a separate kernel thread and therefore load-balanced on
the different CPUs via the process scheduler. To allow the kernel crypto API to
inform the caller about the completion of a cipher request, the caller must provide
a callback function. That function is invoked with the cipher handle when the
request completes.

To support the asynchronous operation, additional information than just the cipher
handle must be supplied to the kernel crypto API. That additional information is
given by filling in the skcipher_request data structure.

For the symmetric key cipher API, the state is maintained with the tfm cipher
handle. A single tfm can be used across multiple calls and in parallel. For asyn-
chronous block cipher calls, context data supplied and only used by the caller
can be referenced the request data structure in addition to the IV used for the ci-
pher request. The maintenance of such state information would be important for
a crypto driver implementer to have, because when calling the callback function
upon completion of the cipher operation, that callback function may need some
information about which operation just finished if it invoked multiple in parallel.
This state information is unused by the kernel crypto API.

struct crypto_skcipher * crypto_alloc_skcipher(const char * alg_name,
u32 type, u32 mask)

allocate symmetric key cipher handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the skcipher cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Description
Allocate a cipher handle for an skcipher. The returned struct crypto_skcipher is the
cipher handle that is required for any subsequent API invocation for that skcipher.

6.2. Symmetric Key Cipher API 33

Linux Crypto Documentation

Return
allocated cipher handle in case of success; IS_ERR() is true in case of an

error, PTR_ERR() returns the error code.

void crypto_free_skcipher(struct crypto_skcipher * tfm)
zeroize and free cipher handle

Parameters
struct crypto_skcipher * tfm cipher handle to be freed

int crypto_has_skcipher(const char * alg_name, u32 type, u32 mask)
Search for the availability of an skcipher.

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the skcipher

u32 type specifies the type of the skcipher

u32 mask specifies the mask for the skcipher

Return
true when the skcipher is known to the kernel crypto API; false otherwise

unsigned int crypto_skcipher_ivsize(struct crypto_skcipher * tfm)
obtain IV size

Parameters
struct crypto_skcipher * tfm cipher handle

Description
The size of the IV for the skcipher referenced by the cipher handle is returned.
This IV size may be zero if the cipher does not need an IV.

Return
IV size in bytes

unsigned int crypto_skcipher_blocksize(struct crypto_skcipher * tfm)
obtain block size of cipher

Parameters
struct crypto_skcipher * tfm cipher handle

Description
The block size for the skcipher referenced with the cipher handle is returned.
The caller may use that information to allocate appropriate memory for the data
returned by the encryption or decryption operation

Return
block size of cipher

int crypto_skcipher_setkey(struct crypto_skcipher * tfm, const u8 * key,
unsigned int keylen)

set key for cipher

34 Chapter 6. Programming Interface

Linux Crypto Documentation

Parameters
struct crypto_skcipher * tfm cipher handle

const u8 * key buffer holding the key

unsigned int keylen length of the key in bytes

Description
The caller provided key is set for the skcipher referenced by the cipher handle.

Note, the key length determines the cipher type. Many block ciphers implement
different cipher modes depending on the key size, such as AES-128 vs AES-192
vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 is
performed.

Return
0 if the setting of the key was successful; < 0 if an error occurred

struct crypto_skcipher * crypto_skcipher_reqtfm(struct skcipher_request
* req)

obtain cipher handle from request

Parameters
struct skcipher_request * req skcipher_request out of which the cipher han-

dle is to be obtained

Description
Return the crypto_skcipher handle when furnishing an skcipher_request data
structure.

Return
crypto_skcipher handle

int crypto_skcipher_encrypt(struct skcipher_request * req)
encrypt plaintext

Parameters
struct skcipher_request * req reference to the skcipher_request handle that

holds all information needed to perform the cipher operation

Description
Encrypt plaintext data using the skcipher_request handle. That data structure and
how it is filled with data is discussed with the skcipher_request_* functions.

Return
0 if the cipher operation was successful; < 0 if an error occurred

int crypto_skcipher_decrypt(struct skcipher_request * req)
decrypt ciphertext

Parameters
struct skcipher_request * req reference to the skcipher_request handle that

holds all information needed to perform the cipher operation

6.2. Symmetric Key Cipher API 35

Linux Crypto Documentation

Description
Decrypt ciphertext data using the skcipher_request handle. That data structure
and how it is filled with data is discussed with the skcipher_request_* functions.

Return
0 if the cipher operation was successful; < 0 if an error occurred

6.3 Symmetric Key Cipher Request Handle

The skcipher_request data structure contains all pointers to data required for the
symmetric key cipher operation. This includes the cipher handle (which can be
used by multiple skcipher_request instances), pointer to plaintext and ciphertext,
asynchronous callback function, etc. It acts as a handle to the skcipher_request_*
API calls in a similar way as skcipher handle to the crypto_skcipher_* API calls.

unsigned int crypto_skcipher_reqsize(struct crypto_skcipher * tfm)
obtain size of the request data structure

Parameters
struct crypto_skcipher * tfm cipher handle

Return
number of bytes

void skcipher_request_set_tfm(struct skcipher_request * req, struct
crypto_skcipher * tfm)

update cipher handle reference in request

Parameters
struct skcipher_request * req request handle to be modified

struct crypto_skcipher * tfm cipher handle that shall be added to the request
handle

Description
Allow the caller to replace the existing skcipher handle in the request data struc-
ture with a different one.

struct skcipher_request * skcipher_request_alloc(struct crypto_skcipher
* tfm, gfp_t gfp)

allocate request data structure

Parameters
struct crypto_skcipher * tfm cipher handle to be registered with the request

gfp_t gfp memory allocation flag that is handed to kmalloc by the API call.

Description
Allocate the request data structure that must be used with the skcipher encrypt
and decrypt API calls. During the allocation, the provided skcipher handle is reg-
istered in the request data structure.

Return

36 Chapter 6. Programming Interface

Linux Crypto Documentation

allocated request handle in case of success, or NULL if out of memory

void skcipher_request_free(struct skcipher_request * req)
zeroize and free request data structure

Parameters
struct skcipher_request * req request data structure cipher handle to be

freed

void skcipher_request_set_callback(struct skcipher_request
* req, u32 flags,
crypto_completion_t compl, void
* data)

set asynchronous callback function

Parameters
struct skcipher_request * req request handle

u32 flags specify zero or an ORing of the flags
CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back
log and increase the wait queue beyond the initial maximum size;
CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep

crypto_completion_t compl callback function pointer to be registered with the
request handle

void * data The data pointer refers to memory that is not used by the kernel
crypto API, but provided to the callback function for it to use. Here, the caller
can provide a reference to memory the callback function can operate on. As
the callback function is invoked asynchronously to the related functionality, it
may need to access data structures of the related functionality which can be
referenced using this pointer. The callback function can access the memory
via the “data”field in the crypto_async_request data structure provided to
the callback function.

Description
This function allows setting the callback function that is triggered once the cipher
operation completes.

The callback function is registered with the skcipher_request handle and must
comply with the following template:

void callback_function(struct crypto_async_request *req, int error)

void skcipher_request_set_crypt(struct skcipher_request * req, struct
scatterlist * src, struct scatterlist * dst,
unsigned int cryptlen, void * iv)

set data buffers

Parameters
struct skcipher_request * req request handle

struct scatterlist * src source scatter / gather list

struct scatterlist * dst destination scatter / gather list

6.3. Symmetric Key Cipher Request Handle 37

Linux Crypto Documentation

unsigned int cryptlen number of bytes to process from src
void * iv IV for the cipher operation which must comply with the IV size defined

by crypto_skcipher_ivsize

Description
This function allows setting of the source data and destination data scatter / gather
lists.

For encryption, the source is treated as the plaintext and the destination is the
ciphertext. For a decryption operation, the use is reversed - the source is the
ciphertext and the destination is the plaintext.

6.4 Single Block Cipher API

The single block cipher API is used with the ciphers of type
CRYPTO_ALG_TYPE_CIPHER (listed as type “cipher”in /proc/crypto).

Using the single block cipher API calls, operations with the basic cipher primitive
can be implemented. These cipher primitives exclude any block chaining opera-
tions including IV handling.

The purpose of this single block cipher API is to support the implementation of
templates or other concepts that only need to perform the cipher operation on one
block at a time. Templates invoke the underlying cipher primitive block-wise and
process either the input or the output data of these cipher operations.

struct crypto_cipher * crypto_alloc_cipher(const char * alg_name,
u32 type, u32 mask)

allocate single block cipher handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the single block cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Description
Allocate a cipher handle for a single block cipher. The returned struct
crypto_cipher is the cipher handle that is required for any subsequent API invoca-
tion for that single block cipher.

Return
allocated cipher handle in case of success; IS_ERR() is true in case of an

error, PTR_ERR() returns the error code.

void crypto_free_cipher(struct crypto_cipher * tfm)
zeroize and free the single block cipher handle

Parameters
struct crypto_cipher * tfm cipher handle to be freed

38 Chapter 6. Programming Interface

Linux Crypto Documentation

int crypto_has_cipher(const char * alg_name, u32 type, u32 mask)
Search for the availability of a single block cipher

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the single block cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Return
true when the single block cipher is known to the kernel crypto API; false

otherwise

unsigned int crypto_cipher_blocksize(struct crypto_cipher * tfm)
obtain block size for cipher

Parameters
struct crypto_cipher * tfm cipher handle

Description
The block size for the single block cipher referenced with the cipher handle tfm is
returned. The caller may use that information to allocate appropriate memory for
the data returned by the encryption or decryption operation

Return
block size of cipher

int crypto_cipher_setkey(struct crypto_cipher * tfm, const u8 * key, un-
signed int keylen)

set key for cipher

Parameters
struct crypto_cipher * tfm cipher handle

const u8 * key buffer holding the key

unsigned int keylen length of the key in bytes

Description
The caller provided key is set for the single block cipher referenced by the cipher
handle.

Note, the key length determines the cipher type. Many block ciphers implement
different cipher modes depending on the key size, such as AES-128 vs AES-192
vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 is
performed.

Return
0 if the setting of the key was successful; < 0 if an error occurred

void crypto_cipher_encrypt_one(struct crypto_cipher * tfm, u8 * dst, const
u8 * src)

encrypt one block of plaintext

6.4. Single Block Cipher API 39

Linux Crypto Documentation

Parameters
struct crypto_cipher * tfm cipher handle

u8 * dst points to the buffer that will be filled with the ciphertext

const u8 * src buffer holding the plaintext to be encrypted

Description
Invoke the encryption operation of one block. The caller must ensure that the
plaintext and ciphertext buffers are at least one block in size.

void crypto_cipher_decrypt_one(struct crypto_cipher * tfm, u8 * dst, const
u8 * src)

decrypt one block of ciphertext

Parameters
struct crypto_cipher * tfm cipher handle

u8 * dst points to the buffer that will be filled with the plaintext

const u8 * src buffer holding the ciphertext to be decrypted

Description
Invoke the decryption operation of one block. The caller must ensure that the
plaintext and ciphertext buffers are at least one block in size.

6.5 Authenticated Encryption With Associated Data
(AEAD) Algorithm Definitions

The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
(listed as type “aead”in /proc/crypto)

The most prominent examples for this type of encryption is GCM and CCM. How-
ever, the kernel supports other types of AEAD ciphers which are defined with the
following cipher string:

authenc(keyed message digest, block cipher)

For example: authenc(hmac(sha256), cbc(aes))

The example code provided for the symmetric key cipher operation applies
here as well. Naturally all skcipher symbols must be exchanged the aead pen-
dants discussed in the following. In addition, for the AEAD operation, the
aead_request_set_ad function must be used to set the pointer to the associated
data memory location before performing the encryption or decryption operation.
In case of an encryption, the associated data memory is filled during the encryp-
tion operation. For decryption, the associated data memory must contain data
that is used to verify the integrity of the decrypted data. Another deviation from
the asynchronous block cipher operation is that the caller should explicitly check
for -EBADMSG of the crypto_aead_decrypt. That error indicates an authentication
error, i.e. a breach in the integrity of the message. In essence, that -EBADMSG
error code is the key bonus an AEAD cipher has over “standard”block chaining
modes.

40 Chapter 6. Programming Interface

Linux Crypto Documentation

Memory Structure:

The source scatterlist must contain the concatenation of associated data || plain-
text or ciphertext.

The destination scatterlist has the same layout, except that the plaintext (resp. ci-
phertext) will grow (resp. shrink) by the authentication tag size during encryption
(resp. decryption).

In-place encryption/decryption is enabled by using the same scatterlist pointer for
both the source and destination.

Even in the out-of-place case, space must be reserved in the destination for the
associated data, even though it won’t be written to. This makes the in-place
and out-of-place cases more consistent. It is permissible for the “destination”
associated data to alias the “source”associated data.

As with the other scatterlist crypto APIs, zero-length scatterlist elements are not
allowed in the used part of the scatterlist. Thus, if there is no associated data, the
first element must point to the plaintext/ciphertext.

To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309, rfc4543,
and rfc7539esp ciphers. For these ciphers, the final ‘ivsize’bytes of the associ-
ated data buffer must contain a second copy of the IV. This is in addition to the
copy passed to aead_request_set_crypt(). These two IV copies must not differ;
different implementations of the same algorithm may behave differently in that
case. Note that the algorithm might not actually treat the IV as associated data;
nevertheless the length passed to aead_request_set_ad() must include it.

struct aead_request
AEAD request

Definition

struct aead_request {
struct crypto_async_request base;
unsigned int assoclen;
unsigned int cryptlen;
u8 *iv;
struct scatterlist *src;
struct scatterlist *dst;
void *__ctx[] ;

};

Members
base Common attributes for async crypto requests

assoclen Length in bytes of associated data for authentication

cryptlen Length of data to be encrypted or decrypted

iv Initialisation vector

src Source data

dst Destination data

__ctx Start of private context data

6.5. Authenticated Encryption With Associated Data (AEAD) Algorithm
Definitions

41

Linux Crypto Documentation

struct aead_alg
AEAD cipher definition

Definition

struct aead_alg {
int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int␣

↪→keylen);
int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
int (*encrypt)(struct aead_request *req);
int (*decrypt)(struct aead_request *req);
int (*init)(struct crypto_aead *tfm);
void (*exit)(struct crypto_aead *tfm);
unsigned int ivsize;
unsigned int maxauthsize;
unsigned int chunksize;
struct crypto_alg base;

};

Members
setkey see struct skcipher_alg

setauthsize Set authentication size for the AEAD transformation. This function
is used to specify the consumer requested size of the authentication tag to be
either generated by the transformation during encryption or the size of the
authentication tag to be supplied during the decryption operation. This func-
tion is also responsible for checking the authentication tag size for validity.

encrypt see struct skcipher_alg

decrypt see struct skcipher_alg

init Initialize the cryptographic transformation object. This function is used to
initialize the cryptographic transformation object. This function is called only
once at the instantiation time, right after the transformation context was al-
located. In case the cryptographic hardware has some special requirements
which need to be handled by software, this function shall check for the precise
requirement of the transformation and put any software fallbacks in place.

exit Deinitialize the cryptographic transformation object. This is a counterpart
to init, used to remove various changes set in init.

ivsize see struct skcipher_alg

maxauthsize Set the maximum authentication tag size supported by the transfor-
mation. A transformation may support smaller tag sizes. As the authentica-
tion tag is a message digest to ensure the integrity of the encrypted data, a
consumer typically wants the largest authentication tag possible as defined
by this variable.

chunksize see struct skcipher_alg

base Definition of a generic crypto cipher algorithm.

Description
All fields except ivsize is mandatory and must be filled.

42 Chapter 6. Programming Interface

Linux Crypto Documentation

6.6 Authenticated Encryption With Associated Data
(AEAD) Cipher API

struct crypto_aead * crypto_alloc_aead(const char * alg_name, u32 type,
u32 mask)

allocate AEAD cipher handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the AEAD cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Description
Allocate a cipher handle for an AEAD. The returned struct crypto_aead is the cipher
handle that is required for any subsequent API invocation for that AEAD.

Return
allocated cipher handle in case of success; IS_ERR() is true in case of an

error, PTR_ERR() returns the error code.

void crypto_free_aead(struct crypto_aead * tfm)
zeroize and free aead handle

Parameters
struct crypto_aead * tfm cipher handle to be freed

unsigned int crypto_aead_ivsize(struct crypto_aead * tfm)
obtain IV size

Parameters
struct crypto_aead * tfm cipher handle

Description
The size of the IV for the aead referenced by the cipher handle is returned. This
IV size may be zero if the cipher does not need an IV.

Return
IV size in bytes

unsigned int crypto_aead_authsize(struct crypto_aead * tfm)
obtain maximum authentication data size

Parameters
struct crypto_aead * tfm cipher handle

Description
The maximum size of the authentication data for the AEAD cipher referenced by
the AEAD cipher handle is returned. The authentication data size may be zero if
the cipher implements a hard-coded maximum.

The authentication data may also be known as “tag value”.

6.6. Authenticated Encryption With Associated Data (AEAD) Cipher API43

Linux Crypto Documentation

Return
authentication data size / tag size in bytes

unsigned int crypto_aead_blocksize(struct crypto_aead * tfm)
obtain block size of cipher

Parameters
struct crypto_aead * tfm cipher handle

Description
The block size for the AEAD referenced with the cipher handle is returned. The
caller may use that information to allocate appropriate memory for the data re-
turned by the encryption or decryption operation

Return
block size of cipher

int crypto_aead_setkey(struct crypto_aead * tfm, const u8 * key, unsigned
int keylen)

set key for cipher

Parameters
struct crypto_aead * tfm cipher handle

const u8 * key buffer holding the key

unsigned int keylen length of the key in bytes

Description
The caller provided key is set for the AEAD referenced by the cipher handle.

Note, the key length determines the cipher type. Many block ciphers implement
different cipher modes depending on the key size, such as AES-128 vs AES-192
vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 is
performed.

Return
0 if the setting of the key was successful; < 0 if an error occurred

int crypto_aead_setauthsize(struct crypto_aead * tfm, unsigned
int authsize)

set authentication data size

Parameters
struct crypto_aead * tfm cipher handle

unsigned int authsize size of the authentication data / tag in bytes

Description
Set the authentication data size / tag size. AEAD requires an authentication tag
(or MAC) in addition to the associated data.

Return
0 if the setting of the key was successful; < 0 if an error occurred

44 Chapter 6. Programming Interface

Linux Crypto Documentation

int crypto_aead_encrypt(struct aead_request * req)
encrypt plaintext

Parameters
struct aead_request * req reference to the aead_request handle that holds all

information needed to perform the cipher operation

Description
Encrypt plaintext data using the aead_request handle. That data structure and
how it is filled with data is discussed with the aead_request_* functions.

IMPORTANT NOTE The encryption operation creates the authentication data /
tag. That data is concatenated with the created ciphertext. The ciphertext
memory size is therefore the given number of block cipher blocks + the size
defined by the crypto_aead_setauthsize invocation. The caller must ensure
that sufficient memory is available for the ciphertext and the authentication
tag.

Return
0 if the cipher operation was successful; < 0 if an error occurred

int crypto_aead_decrypt(struct aead_request * req)
decrypt ciphertext

Parameters
struct aead_request * req reference to the aead_request handle that holds all

information needed to perform the cipher operation

Description
Decrypt ciphertext data using the aead_request handle. That data structure and
how it is filled with data is discussed with the aead_request_* functions.

IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
authentication data / tag. That authentication data / tag must have the size
defined by the crypto_aead_setauthsize invocation.

Return
0 if the cipher operation was successful; -EBADMSG: The AEAD cipher op-

eration performs the authentication of the data during the decryption oper-
ation. Therefore, the function returns this error if the authentication of the
ciphertext was unsuccessful (i.e. the integrity of the ciphertext or the associ-
ated data was violated); < 0 if an error occurred.

6.6. Authenticated Encryption With Associated Data (AEAD) Cipher API45

Linux Crypto Documentation

6.7 Asynchronous AEAD Request Handle

The aead_request data structure contains all pointers to data required for the
AEAD cipher operation. This includes the cipher handle (which can be used bymul-
tiple aead_request instances), pointer to plaintext and ciphertext, asynchronous
callback function, etc. It acts as a handle to the aead_request_* API calls in a
similar way as AEAD handle to the crypto_aead_* API calls.

unsigned int crypto_aead_reqsize(struct crypto_aead * tfm)
obtain size of the request data structure

Parameters
struct crypto_aead * tfm cipher handle

Return
number of bytes

void aead_request_set_tfm(struct aead_request * req, struct crypto_aead
* tfm)

update cipher handle reference in request

Parameters
struct aead_request * req request handle to be modified

struct crypto_aead * tfm cipher handle that shall be added to the request han-
dle

Description
Allow the caller to replace the existing aead handle in the request data structure
with a different one.

struct aead_request * aead_request_alloc(struct crypto_aead * tfm,
gfp_t gfp)

allocate request data structure

Parameters
struct crypto_aead * tfm cipher handle to be registered with the request

gfp_t gfp memory allocation flag that is handed to kmalloc by the API call.

Description
Allocate the request data structure that must be used with the AEAD encrypt and
decrypt API calls. During the allocation, the provided aead handle is registered in
the request data structure.

Return
allocated request handle in case of success, or NULL if out of memory

void aead_request_free(struct aead_request * req)
zeroize and free request data structure

Parameters
struct aead_request * req request data structure cipher handle to be freed

46 Chapter 6. Programming Interface

Linux Crypto Documentation

void aead_request_set_callback(struct aead_request * req, u32 flags,
crypto_completion_t compl, void * data)

set asynchronous callback function

Parameters
struct aead_request * req request handle

u32 flags specify zero or an ORing of the flags
CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back
log and increase the wait queue beyond the initial maximum size;
CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep

crypto_completion_t compl callback function pointer to be registered with the
request handle

void * data The data pointer refers to memory that is not used by the kernel
crypto API, but provided to the callback function for it to use. Here, the caller
can provide a reference to memory the callback function can operate on. As
the callback function is invoked asynchronously to the related functionality, it
may need to access data structures of the related functionality which can be
referenced using this pointer. The callback function can access the memory
via the “data”field in the crypto_async_request data structure provided to
the callback function.

Description
Setting the callback function that is triggered once the cipher operation completes

The callback function is registered with the aead_request handle and must comply
with the following template:

void callback_function(struct crypto_async_request *req, int error)

void aead_request_set_crypt(struct aead_request * req, struct scatterlist
* src, struct scatterlist * dst, unsigned
int cryptlen, u8 * iv)

set data buffers

Parameters
struct aead_request * req request handle

struct scatterlist * src source scatter / gather list

struct scatterlist * dst destination scatter / gather list

unsigned int cryptlen number of bytes to process from src
u8 * iv IV for the cipher operation which must comply with the IV size defined

by crypto_aead_ivsize()

Description
Setting the source data and destination data scatter / gather lists which hold the
associated data concatenated with the plaintext or ciphertext. See below for the
authentication tag.

For encryption, the source is treated as the plaintext and the destination is the
ciphertext. For a decryption operation, the use is reversed - the source is the

6.7. Asynchronous AEAD Request Handle 47

Linux Crypto Documentation

ciphertext and the destination is the plaintext.

The memory structure for cipher operation has the following structure:

• AEAD encryption input: assoc data || plaintext

• AEAD encryption output: assoc data || cipherntext || auth tag

• AEAD decryption input: assoc data || ciphertext || auth tag

• AEAD decryption output: assoc data || plaintext

Albeit the kernel requires the presence of the AAD buffer, however, the kernel
does not fill the AAD buffer in the output case. If the caller wants to have that data
buffer filled, the caller must either use an in-place cipher operation (i.e. same
memory location for input/output memory location).

void aead_request_set_ad(struct aead_request * req, unsigned
int assoclen)

set associated data information

Parameters
struct aead_request * req request handle

unsigned int assoclen number of bytes in associated data

Description
Setting the AD information. This function sets the length of the associated data.

6.8 Message Digest Algorithm Definitions

These data structures define modular message digest algorithm imple-
mentations, managed via crypto_register_ahash(), crypto_register_shash(),
crypto_unregister_ahash() and crypto_unregister_shash().

struct hash_alg_common
define properties of message digest

Definition

struct hash_alg_common {
unsigned int digestsize;
unsigned int statesize;
struct crypto_alg base;

};

Members
digestsize Size of the result of the transformation. A buffer of this size must be

available to the final and finup calls, so they can store the resulting hash
into it. For various predefined sizes, search include/crypto/ using git grep
_DIGEST_SIZE include/crypto.

statesize Size of the block for partial state of the transformation. A buffer of this
size must be passed to the export function as it will save the partial state of
the transformation into it. On the other side, the import function will load
the state from a buffer of this size as well.

48 Chapter 6. Programming Interface

Linux Crypto Documentation

base Start of data structure of cipher algorithm. The common data struc-
ture of crypto_alg contains information common to all ciphers. The
hash_alg_common data structure now adds the hash-specific information.

struct ahash_alg
asynchronous message digest definition

Definition

struct ahash_alg {
int (*init)(struct ahash_request *req);
int (*update)(struct ahash_request *req);
int (*final)(struct ahash_request *req);
int (*finup)(struct ahash_request *req);
int (*digest)(struct ahash_request *req);
int (*export)(struct ahash_request *req, void *out);
int (*import)(struct ahash_request *req, const void *in);
int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int␣

↪→keylen);
struct hash_alg_common halg;

};

Members
init [mandatory] Initialize the transformation context. Intended only to initial-

ize the state of the HASH transformation at the beginning. This shall fill in the
internal structures used during the entire duration of the whole transforma-
tion. No data processing happens at this point. Driver code implementation
must not use req->result.

update [mandatory] Push a chunk of data into the driver for transformation. This
function actually pushes blocks of data from upper layers into the driver,
which then passes those to the hardware as seen fit. This function must not
finalize the HASH transformation by calculating the final message digest as
this only adds more data into the transformation. This function shall not mod-
ify the transformation context, as this function may be called in parallel with
the same transformation object. Data processing can happen synchronously
[SHASH] or asynchronously [AHASH] at this point. Driver must not use req-
>result.

final [mandatory] Retrieve result from the driver. This function finalizes the
transformation and retrieves the resulting hash from the driver and pushes it
back to upper layers. No data processing happens at this point unless hard-
ware requires it to finish the transformation (then the data buffered by the
device driver is processed).

finup [optional] Combination of update and final. This function is effectively
a combination of update and final calls issued in sequence. As some hard-
ware cannot do update and final separately, this callback was added to allow
such hardware to be used at least by IPsec. Data processing can happen syn-
chronously [SHASH] or asynchronously [AHASH] at this point.

digest Combination of init and update and final. This function effectively be-
haves as the entire chain of operations, init, update and final issued in se-
quence. Just like finup, this was added for hardware which cannot do even
the finup, but can only do the whole transformation in one run. Data pro-

6.8. Message Digest Algorithm Definitions 49

Linux Crypto Documentation

cessing can happen synchronously [SHASH] or asynchronously [AHASH] at
this point.

export Export partial state of the transformation. This function dumps the entire
state of the ongoing transformation into a provided block of data so it can be
import‘ed back later on. This is useful in case you want to save partial result
of the transformation after processing certain amount of data and reload this
partial result multiple times later on for multiple re-use. No data processing
happens at this point. Driver must not use req->result.

import Import partial state of the transformation. This function loads the entire
state of the ongoing transformation from a provided block of data so the trans-
formation can continue from this point onward. No data processing happens
at this point. Driver must not use req->result.

setkey Set optional key used by the hashing algorithm. Intended to push op-
tional key used by the hashing algorithm from upper layers into the driver.
This function can store the key in the transformation context or can outright
program it into the hardware. In the former case, one must be careful to pro-
gram the key into the hardware at appropriate time and one must be care-
ful that .setkey() can be called multiple times during the existence of the
transformation object. Not all hashing algorithms do implement this function
as it is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do imple-
ment this function. This function must be called before any other of the init,
update, final, finup, digest is called. No data processing happens at this
point.

halg see struct hash_alg_common

struct shash_alg
synchronous message digest definition

Definition

struct shash_alg {
int (*init)(struct shash_desc *desc);
int (*update)(struct shash_desc *desc, const u8 *data, unsigned int len);
int (*final)(struct shash_desc *desc, u8 *out);
int (*finup)(struct shash_desc *desc, const u8 *data, unsigned int len,␣

↪→u8 *out);
int (*digest)(struct shash_desc *desc, const u8 *data, unsigned int len,␣

↪→u8 *out);
int (*export)(struct shash_desc *desc, void *out);
int (*import)(struct shash_desc *desc, const void *in);
int (*setkey)(struct crypto_shash *tfm, const u8 *key, unsigned int␣

↪→keylen);
int (*init_tfm)(struct crypto_shash *tfm);
void (*exit_tfm)(struct crypto_shash *tfm);
unsigned int descsize;
unsigned int digestsize ;
unsigned int statesize;
struct crypto_alg base;

};

Members

50 Chapter 6. Programming Interface

Linux Crypto Documentation

init see struct ahash_alg

update see struct ahash_alg

final see struct ahash_alg

finup see struct ahash_alg

digest see struct ahash_alg

export see struct ahash_alg

import see struct ahash_alg

setkey see struct ahash_alg

init_tfm Initialize the cryptographic transformation object. This function is
called only once at the instantiation time, right after the transformation con-
text was allocated. In case the cryptographic hardware has some special re-
quirements which need to be handled by software, this function shall check
for the precise requirement of the transformation and put any software fall-
backs in place.

exit_tfm Deinitialize the cryptographic transformation object. This is a counter-
part to init_tfm, used to remove various changes set in init_tfm.

descsize Size of the operational state for the message digest. This state size is
the memory size that needs to be allocated for shash_desc.__ctx

digestsize see struct ahash_alg

statesize see struct ahash_alg

base internally used

6.9 Asynchronous Message Digest API

The asynchronous message digest API is used with the ciphers of type
CRYPTO_ALG_TYPE_AHASH (listed as type “ahash”in /proc/crypto)

The asynchronous cipher operation discussion provided for the
CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.

struct crypto_ahash * crypto_alloc_ahash(const char * alg_name,
u32 type, u32 mask)

allocate ahash cipher handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the ahash cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Description
Allocate a cipher handle for an ahash. The returned struct crypto_ahash is the
cipher handle that is required for any subsequent API invocation for that ahash.

6.9. Asynchronous Message Digest API 51

Linux Crypto Documentation

Return
allocated cipher handle in case of success; IS_ERR() is true in case of an

error, PTR_ERR() returns the error code.

void crypto_free_ahash(struct crypto_ahash * tfm)
zeroize and free the ahash handle

Parameters
struct crypto_ahash * tfm cipher handle to be freed

unsigned int crypto_ahash_digestsize(struct crypto_ahash * tfm)
obtain message digest size

Parameters
struct crypto_ahash * tfm cipher handle

Description
The size for the message digest created by the message digest cipher referenced
with the cipher handle is returned.

Return
message digest size of cipher

unsigned int crypto_ahash_statesize(struct crypto_ahash * tfm)
obtain size of the ahash state

Parameters
struct crypto_ahash * tfm cipher handle

Description
Return the size of the ahash state. With the crypto_ahash_export() function, the
caller can export the state into a buffer whose size is defined with this function.

Return
size of the ahash state

struct crypto_ahash * crypto_ahash_reqtfm(struct ahash_request * req)
obtain cipher handle from request

Parameters
struct ahash_request * req asynchronous request handle that contains the

reference to the ahash cipher handle

Description
Return the ahash cipher handle that is registered with the asynchronous request
handle ahash_request.

Return
ahash cipher handle

unsigned int crypto_ahash_reqsize(struct crypto_ahash * tfm)
obtain size of the request data structure

Parameters

52 Chapter 6. Programming Interface

Linux Crypto Documentation

struct crypto_ahash * tfm cipher handle

Return
size of the request data

int crypto_ahash_setkey(struct crypto_ahash * tfm, const u8 * key, un-
signed int keylen)

set key for cipher handle

Parameters
struct crypto_ahash * tfm cipher handle

const u8 * key buffer holding the key

unsigned int keylen length of the key in bytes

Description
The caller provided key is set for the ahash cipher. The cipher handle must point
to a keyed hash in order for this function to succeed.

Return
0 if the setting of the key was successful; < 0 if an error occurred

int crypto_ahash_finup(struct ahash_request * req)
update and finalize message digest

Parameters
struct ahash_request * req reference to the ahash_request handle that holds

all information needed to perform the cipher operation

Description
This function is a“short-hand”for the function calls of crypto_ahash_update and
crypto_ahash_final. The parameters have the samemeaning as discussed for those
separate functions.

Return
see crypto_ahash_final()

int crypto_ahash_final(struct ahash_request * req)
calculate message digest

Parameters
struct ahash_request * req reference to the ahash_request handle that holds

all information needed to perform the cipher operation

Description
Finalize the message digest operation and create the message digest based on all
data added to the cipher handle. The message digest is placed into the output
buffer registered with the ahash_request handle.

Return
0 if the message digest was successfully calculated; -EINPROGRESS if data is
feeded into hardware (DMA) or queued for later; -EBUSY if queue is full and re-
quest should be resubmitted later; other < 0 if an error occurred

6.9. Asynchronous Message Digest API 53

Linux Crypto Documentation

int crypto_ahash_digest(struct ahash_request * req)
calculate message digest for a buffer

Parameters
struct ahash_request * req reference to the ahash_request handle that holds

all information needed to perform the cipher operation

Description
This function is a “short-hand”for the function calls of crypto_ahash_init,
crypto_ahash_update and crypto_ahash_final. The parameters have the same
meaning as discussed for those separate three functions.

Return
see crypto_ahash_final()

int crypto_ahash_export(struct ahash_request * req, void * out)
extract current message digest state

Parameters
struct ahash_request * req reference to the ahash_request handle whose

state is exported

void * out output buffer of sufficient size that can hold the hash state

Description
This function exports the hash state of the ahash_request handle into the caller-
allocated output buffer out which must have sufficient size (e.g. by calling
crypto_ahash_statesize()).

Return
0 if the export was successful; < 0 if an error occurred

int crypto_ahash_import(struct ahash_request * req, const void * in)
import message digest state

Parameters
struct ahash_request * req reference to ahash_request handle the state is im-

ported into

const void * in buffer holding the state

Description
This function imports the hash state into the ahash_request handle from the in-
put buffer. That buffer should have been generated with the crypto_ahash_export
function.

Return
0 if the import was successful; < 0 if an error occurred

int crypto_ahash_init(struct ahash_request * req)
(re)initialize message digest handle

Parameters

54 Chapter 6. Programming Interface

Linux Crypto Documentation

struct ahash_request * req ahash_request handle that already is initialized
with all necessary data using the ahash_request_* API functions

Description
The call (re-)initializes the message digest referenced by the ahash_request han-
dle. Any potentially existing state created by previous operations is discarded.

Return
see crypto_ahash_final()

6.10 Asynchronous Hash Request Handle

The ahash_request data structure contains all pointers to data required for the
asynchronous cipher operation. This includes the cipher handle (which can be
used by multiple ahash_request instances), pointer to plaintext and the message
digest output buffer, asynchronous callback function, etc. It acts as a handle to the
ahash_request_* API calls in a similar way as ahash handle to the crypto_ahash_*
API calls.

void ahash_request_set_tfm(struct ahash_request * req, struct
crypto_ahash * tfm)

update cipher handle reference in request

Parameters
struct ahash_request * req request handle to be modified

struct crypto_ahash * tfm cipher handle that shall be added to the request
handle

Description
Allow the caller to replace the existing ahash handle in the request data structure
with a different one.

struct ahash_request * ahash_request_alloc(struct crypto_ahash * tfm,
gfp_t gfp)

allocate request data structure

Parameters
struct crypto_ahash * tfm cipher handle to be registered with the request

gfp_t gfp memory allocation flag that is handed to kmalloc by the API call.

Description
Allocate the request data structure that must be used with the ahash message
digest API calls. During the allocation, the provided ahash handle is registered in
the request data structure.

Return
allocated request handle in case of success, or NULL if out of memory

void ahash_request_free(struct ahash_request * req)
zeroize and free the request data structure

6.10. Asynchronous Hash Request Handle 55

Linux Crypto Documentation

Parameters
struct ahash_request * req request data structure cipher handle to be freed

void ahash_request_set_callback(struct ahash_request * req, u32 flags,
crypto_completion_t compl, void
* data)

set asynchronous callback function

Parameters
struct ahash_request * req request handle

u32 flags specify zero or an ORing of the flags
CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back
log and increase the wait queue beyond the initial maximum size;
CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep

crypto_completion_t compl callback function pointer to be registered with the
request handle

void * data The data pointer refers to memory that is not used by the kernel
crypto API, but provided to the callback function for it to use. Here, the caller
can provide a reference to memory the callback function can operate on. As
the callback function is invoked asynchronously to the related functionality, it
may need to access data structures of the related functionality which can be
referenced using this pointer. The callback function can access the memory
via the“data”field in the crypto_async_request data structure provided to
the callback function.

Description
This function allows setting the callback function that is triggered once the cipher
operation completes.

The callback function is registered with the ahash_request handle and must com-
ply with the following template:

void callback_function(struct crypto_async_request *req, int error)

void ahash_request_set_crypt(struct ahash_request * req, struct scat-
terlist * src, u8 * result, unsigned
int nbytes)

set data buffers

Parameters
struct ahash_request * req ahash_request handle to be updated

struct scatterlist * src source scatter/gather list

u8 * result buffer that is filled with the message digest – the caller must
ensure that the buffer has sufficient space by, for example, calling
crypto_ahash_digestsize()

unsigned int nbytes number of bytes to process from the source scatter/gather
list

Description

56 Chapter 6. Programming Interface

Linux Crypto Documentation

By using this call, the caller references the source scatter/gather list. The source
scatter/gather list points to the data the message digest is to be calculated for.

6.11 Synchronous Message Digest API

The synchronous message digest API is used with the ciphers of type
CRYPTO_ALG_TYPE_SHASH (listed as type “shash”in /proc/crypto)

The message digest API is able to maintain state information for the caller.

The synchronous message digest API can store user-related context in in its
shash_desc request data structure.

struct crypto_shash * crypto_alloc_shash(const char * alg_name,
u32 type, u32 mask)

allocate message digest handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the message digest cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Description
Allocate a cipher handle for amessage digest. The returned struct crypto_shash
is the cipher handle that is required for any subsequent API invocation for that
message digest.

Return
allocated cipher handle in case of success; IS_ERR() is true in case of an

error, PTR_ERR() returns the error code.

void crypto_free_shash(struct crypto_shash * tfm)
zeroize and free the message digest handle

Parameters
struct crypto_shash * tfm cipher handle to be freed

unsigned int crypto_shash_blocksize(struct crypto_shash * tfm)
obtain block size for cipher

Parameters
struct crypto_shash * tfm cipher handle

Description
The block size for the message digest cipher referenced with the cipher handle is
returned.

Return
block size of cipher

6.11. Synchronous Message Digest API 57

Linux Crypto Documentation

unsigned int crypto_shash_digestsize(struct crypto_shash * tfm)
obtain message digest size

Parameters
struct crypto_shash * tfm cipher handle

Description
The size for the message digest created by the message digest cipher referenced
with the cipher handle is returned.

Return
digest size of cipher

unsigned int crypto_shash_descsize(struct crypto_shash * tfm)
obtain the operational state size

Parameters
struct crypto_shash * tfm cipher handle

Description
The size of the operational state the cipher needs during operation is returned for
the hash referenced with the cipher handle. This size is required to calculate the
memory requirements to allow the caller allocating sufficient memory for opera-
tional state.

The operational state is defined with struct shash_desc where the size
of that data structure is to be calculated as sizeof(struct shash_desc) +
crypto_shash_descsize(alg)

Return
size of the operational state

int crypto_shash_setkey(struct crypto_shash * tfm, const u8 * key, un-
signed int keylen)

set key for message digest

Parameters
struct crypto_shash * tfm cipher handle

const u8 * key buffer holding the key

unsigned int keylen length of the key in bytes

Description
The caller provided key is set for the keyed message digest cipher. The cipher
handle must point to a keyed message digest cipher in order for this function to
succeed.

Context
Any context.

Return
0 if the setting of the key was successful; < 0 if an error occurred

58 Chapter 6. Programming Interface

Linux Crypto Documentation

int crypto_shash_digest(struct shash_desc * desc, const u8 * data, un-
signed int len, u8 * out)

calculate message digest for buffer

Parameters
struct shash_desc * desc see crypto_shash_final()

const u8 * data see crypto_shash_update()

unsigned int len see crypto_shash_update()

u8 * out see crypto_shash_final()

Description
This function is a “short-hand”for the function calls of crypto_shash_init,
crypto_shash_update and crypto_shash_final. The parameters have the same
meaning as discussed for those separate three functions.

Context
Any context.

Return
0 if the message digest creation was successful; < 0 if an error occurred

int crypto_shash_export(struct shash_desc * desc, void * out)
extract operational state for message digest

Parameters
struct shash_desc * desc reference to the operational state handle whose

state is exported

void * out output buffer of sufficient size that can hold the hash state

Description
This function exports the hash state of the operational state handle into the
caller-allocated output buffer out which must have sufficient size (e.g. by calling
crypto_shash_descsize).

Context
Any context.

Return
0 if the export creation was successful; < 0 if an error occurred

int crypto_shash_import(struct shash_desc * desc, const void * in)
import operational state

Parameters
struct shash_desc * desc reference to the operational state handle the state

imported into

const void * in buffer holding the state

Description

6.11. Synchronous Message Digest API 59

Linux Crypto Documentation

This function imports the hash state into the operational state handle from the in-
put buffer. That buffer should have been generated with the crypto_ahash_export
function.

Context
Any context.

Return
0 if the import was successful; < 0 if an error occurred

int crypto_shash_init(struct shash_desc * desc)
(re)initialize message digest

Parameters
struct shash_desc * desc operational state handle that is already filled

Description
The call (re-)initializes the message digest referenced by the operational state han-
dle. Any potentially existing state created by previous operations is discarded.

Context
Any context.

Return
0 if the message digest initialization was successful; < 0 if an error oc-

curred

int crypto_shash_update(struct shash_desc * desc, const u8 * data, un-
signed int len)

add data to message digest for processing

Parameters
struct shash_desc * desc operational state handle that is already initialized

const u8 * data input data to be added to the message digest

unsigned int len length of the input data

Description
Updates the message digest state of the operational state handle.

Context
Any context.

Return
0 if the message digest update was successful; < 0 if an error occurred

int crypto_shash_final(struct shash_desc * desc, u8 * out)
calculate message digest

Parameters
struct shash_desc * desc operational state handle that is already filled with

data

60 Chapter 6. Programming Interface

Linux Crypto Documentation

u8 * out output buffer filled with the message digest

Description
Finalize the message digest operation and create the message digest based on all
data added to the cipher handle. The message digest is placed into the output
buffer. The caller must ensure that the output buffer is large enough by using
crypto_shash_digestsize.

Context
Any context.

Return
0 if the message digest creation was successful; < 0 if an error occurred

int crypto_shash_finup(struct shash_desc * desc, const u8 * data, unsigned
int len, u8 * out)

calculate message digest of buffer

Parameters
struct shash_desc * desc see crypto_shash_final()

const u8 * data see crypto_shash_update()

unsigned int len see crypto_shash_update()

u8 * out see crypto_shash_final()

Description
This function is a“short-hand”for the function calls of crypto_shash_update and
crypto_shash_final. The parameters have the same meaning as discussed for those
separate functions.

Context
Any context.

Return
0 if the message digest creation was successful; < 0 if an error occurred

6.12 Random Number Algorithm Definitions

struct rng_alg
random number generator definition

Definition

struct rng_alg {
int (*generate)(struct crypto_rng *tfm,const u8 *src, unsigned int slen,␣

↪→u8 *dst, unsigned int dlen);
int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen);
void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int␣

↪→len);
unsigned int seedsize;

(continues on next page)

6.12. Random Number Algorithm Definitions 61

Linux Crypto Documentation

(continued from previous page)
struct crypto_alg base;

};

Members
generate The function defined by this variable obtains a random number. The

random number generator transform must generate the random number out
of the context provided with this call, plus any additional data if provided to
the call.

seed Seed or reseed the random number generator. With the invocation of this
function call, the random number generator shall become ready for genera-
tion. If the random number generator requires a seed for setting up a new
state, the seed must be provided by the consumer while invoking this func-
tion. The required size of the seed is defined with seedsize .

set_ent Set entropy that would otherwise be obtained from entropy source. In-
ternal use only.

seedsize The seed size required for a random number generator initialization
defined with this variable. Some random number generators does not require
a seed as the seeding is implemented internally without the need of support
by the consumer. In this case, the seed size is set to zero.

base Common crypto API algorithm data structure.

6.13 Crypto API Random Number API

The random number generator API is used with the ciphers of type
CRYPTO_ALG_TYPE_RNG (listed as type “rng”in /proc/crypto)

struct crypto_rng * crypto_alloc_rng(const char * alg_name, u32 type,
u32 mask)

• allocate RNG handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the message digest cipher

u32 type specifies the type of the cipher

u32 mask specifies the mask for the cipher

Description
Allocate a cipher handle for a random number generator. The returned struct
crypto_rng is the cipher handle that is required for any subsequent API invocation
for that random number generator.

For all random number generators, this call creates a new private copy of the
random number generator that does not share a state with other instances. The
only exception is the “krng”random number generator which is a kernel crypto
API use case for the get_random_bytes() function of the /dev/random driver.

Return

62 Chapter 6. Programming Interface

Linux Crypto Documentation

allocated cipher handle in case of success; IS_ERR() is true in case of an
error, PTR_ERR() returns the error code.

struct rng_alg * crypto_rng_alg(struct crypto_rng * tfm)
obtain name of RNG

Parameters
struct crypto_rng * tfm cipher handle

Description
Return the generic name (cra_name) of the initialized random number generator

Return
generic name string

void crypto_free_rng(struct crypto_rng * tfm)
zeroize and free RNG handle

Parameters
struct crypto_rng * tfm cipher handle to be freed

int crypto_rng_generate(struct crypto_rng * tfm, const u8 * src, unsigned
int slen, u8 * dst, unsigned int dlen)

get random number

Parameters
struct crypto_rng * tfm cipher handle

const u8 * src Input buffer holding additional data, may be NULL

unsigned int slen Length of additional data

u8 * dst output buffer holding the random numbers

unsigned int dlen length of the output buffer

Description
This function fills the caller-allocated buffer with random numbers using the ran-
dom number generator referenced by the cipher handle.

Return
0 function was successful; < 0 if an error occurred

int crypto_rng_get_bytes(struct crypto_rng * tfm, u8 * rdata, unsigned
int dlen)

get random number

Parameters
struct crypto_rng * tfm cipher handle

u8 * rdata output buffer holding the random numbers

unsigned int dlen length of the output buffer

Description
This function fills the caller-allocated buffer with random numbers using the ran-
dom number generator referenced by the cipher handle.

6.13. Crypto API Random Number API 63

Linux Crypto Documentation

Return
0 function was successful; < 0 if an error occurred

int crypto_rng_reset(struct crypto_rng * tfm, const u8 * seed, unsigned
int slen)

re-initialize the RNG

Parameters
struct crypto_rng * tfm cipher handle

const u8 * seed seed input data

unsigned int slen length of the seed input data

Description
The reset function completely re-initializes the random number generator refer-
enced by the cipher handle by clearing the current state. The new state is ini-
tialized with the caller provided seed or automatically, depending on the random
number generator type (the ANSI X9.31 RNG requires caller-provided seed, the
SP800-90A DRBGs perform an automatic seeding). The seed is provided as a pa-
rameter to this function call. The provided seed should have the length of the seed
size defined for the random number generator as defined by crypto_rng_seedsize.

Return
0 if the setting of the key was successful; < 0 if an error occurred

int crypto_rng_seedsize(struct crypto_rng * tfm)
obtain seed size of RNG

Parameters
struct crypto_rng * tfm cipher handle

Description
The function returns the seed size for the random number generator referenced
by the cipher handle. This value may be zero if the random number generator
does not implement or require a reseeding. For example, the SP800-90A DRBGs
implement an automated reseeding after reaching a pre-defined threshold.

Return
seed size for the random number generator

6.14 Asymmetric Cipher Algorithm Definitions

struct akcipher_request
public key request

Definition

struct akcipher_request {
struct crypto_async_request base;
struct scatterlist *src;
struct scatterlist *dst;

(continues on next page)

64 Chapter 6. Programming Interface

Linux Crypto Documentation

(continued from previous page)
unsigned int src_len;
unsigned int dst_len;
void *__ctx[] ;

};

Members
base Common attributes for async crypto requests

src Source data For verify op this is signature + digest, in that case total size of
src is src_len + dst_len.

dst Destination data (Should be NULL for verify op)

src_len Size of the input buffer For verify op it’s size of signature part of src,
this part is supposed to be operated by cipher.

dst_len Size of dst buffer (for all ops except verify). It needs to be at least as big
as the expected result depending on the operation. After operation it will be
updated with the actual size of the result. In case of error where the dst sgl
size was insufficient, it will be updated to the size required for the operation.
For verify op this is size of digest part in src.

__ctx Start of private context data

struct akcipher_alg
generic public key algorithm

Definition

struct akcipher_alg {
int (*sign)(struct akcipher_request *req);
int (*verify)(struct akcipher_request *req);
int (*encrypt)(struct akcipher_request *req);
int (*decrypt)(struct akcipher_request *req);
int (*set_pub_key)(struct crypto_akcipher *tfm, const void *key,␣

↪→unsigned int keylen);
int (*set_priv_key)(struct crypto_akcipher *tfm, const void *key,␣

↪→unsigned int keylen);
unsigned int (*max_size)(struct crypto_akcipher *tfm);
int (*init)(struct crypto_akcipher *tfm);
void (*exit)(struct crypto_akcipher *tfm);
unsigned int reqsize;
struct crypto_alg base;

};

Members
sign Function performs a sign operation as defined by public key algorithm. In

case of error, where the dst_len was insufficient, the req->dst_len will be
updated to the size required for the operation

verify Function performs a complete verify operation as defined by public key
algorithm, returning verification status. Requires digest value as input pa-
rameter.

encrypt Function performs an encrypt operation as defined by public key algo-
rithm. In case of error, where the dst_len was insufficient, the req->dst_len

6.14. Asymmetric Cipher Algorithm Definitions 65

Linux Crypto Documentation

will be updated to the size required for the operation

decrypt Function performs a decrypt operation as defined by public key algo-
rithm. In case of error, where the dst_len was insufficient, the req->dst_len
will be updated to the size required for the operation

set_pub_key Function invokes the algorithm specific set public key function,
which knows how to decode and interpret the BER encoded public key and
parameters

set_priv_key Function invokes the algorithm specific set private key function,
which knows how to decode and interpret the BER encoded private key and
parameters

max_size Function returns dest buffer size required for a given key.

init Initialize the cryptographic transformation object. This function is used to
initialize the cryptographic transformation object. This function is called only
once at the instantiation time, right after the transformation context was al-
located. In case the cryptographic hardware has some special requirements
which need to be handled by software, this function shall check for the precise
requirement of the transformation and put any software fallbacks in place.

exit Deinitialize the cryptographic transformation object. This is a counterpart
to init, used to remove various changes set in init.

reqsize Request context size required by algorithm implementation

base Common crypto API algorithm data structure

6.15 Asymmetric Cipher API

The Public Key API is used with the algorithms of type
CRYPTO_ALG_TYPE_AKCIPHER (listed as type “akcipher”in /proc/crypto)

struct crypto_akcipher * crypto_alloc_akcipher(const char * alg_name,
u32 type, u32 mask)

allocate AKCIPHER tfm handle

Parameters
const char * alg_name is the cra_name / name or cra_driver_name / driver name

of the public key algorithm e.g. “rsa”
u32 type specifies the type of the algorithm

u32 mask specifies the mask for the algorithm

Description
Allocate a handle for public key algorithm. The returned struct crypto_akcipher
is the handle that is required for any subsequent API invocation for the public key
operations.

Return

66 Chapter 6. Programming Interface

Linux Crypto Documentation

allocated handle in case of success; IS_ERR() is true in case of an error,
PTR_ERR() returns the error code.

void crypto_free_akcipher(struct crypto_akcipher * tfm)
free AKCIPHER tfm handle

Parameters
struct crypto_akcipher * tfm AKCIPHER tfm handle allocated with

crypto_alloc_akcipher()

unsigned int crypto_akcipher_maxsize(struct crypto_akcipher * tfm)
Get len for output buffer

Parameters
struct crypto_akcipher * tfm AKCIPHER tfm handle allocated with

crypto_alloc_akcipher()

Description
Function returns the dest buffer size required for a given key. Function assumes
that the key is already set in the transformation. If this function is called without
a setkey or with a failed setkey, you will end up in a NULL dereference.

int crypto_akcipher_encrypt(struct akcipher_request * req)
Invoke public key encrypt operation

Parameters
struct akcipher_request * req asymmetric key request

Description
Function invokes the specific public key encrypt operation for a given public key
algorithm

Return
zero on success; error code in case of error

int crypto_akcipher_decrypt(struct akcipher_request * req)
Invoke public key decrypt operation

Parameters
struct akcipher_request * req asymmetric key request

Description
Function invokes the specific public key decrypt operation for a given public key
algorithm

Return
zero on success; error code in case of error

int crypto_akcipher_sign(struct akcipher_request * req)
Invoke public key sign operation

Parameters
struct akcipher_request * req asymmetric key request

6.15. Asymmetric Cipher API 67

Linux Crypto Documentation

Description
Function invokes the specific public key sign operation for a given public key al-
gorithm

Return
zero on success; error code in case of error

int crypto_akcipher_verify(struct akcipher_request * req)
Invoke public key signature verification

Parameters
struct akcipher_request * req asymmetric key request

Description
Function invokes the specific public key signature verification operation for a given
public key algorithm.

Note
req->dst should be NULL, req->src should point to SG of size (req->src_size + req-
>dst_size), containing signature (of req->src_size length) with appended digest (of
req->dst_size length).

Return
zero on verification success; error code in case of error.

int crypto_akcipher_set_pub_key(struct crypto_akcipher * tfm, const void
* key, unsigned int keylen)

Invoke set public key operation

Parameters
struct crypto_akcipher * tfm tfm handle

const void * key BER encoded public key, algo OID, paramlen, BER encoded
parameters

unsigned int keylen length of the key (not including other data)

Description
Function invokes the algorithm specific set key function, which knows how to de-
code and interpret the encoded key and parameters

Return
zero on success; error code in case of error

int crypto_akcipher_set_priv_key(struct crypto_akcipher * tfm, const
void * key, unsigned int keylen)

Invoke set private key operation

Parameters
struct crypto_akcipher * tfm tfm handle

const void * key BER encoded private key, algo OID, paramlen, BER encoded
parameters

68 Chapter 6. Programming Interface

Linux Crypto Documentation

unsigned int keylen length of the key (not including other data)

Description
Function invokes the algorithm specific set key function, which knows how to de-
code and interpret the encoded key and parameters

Return
zero on success; error code in case of error

6.16 Asymmetric Cipher Request Handle

struct akcipher_request * akcipher_request_alloc(struct crypto_akcipher
* tfm, gfp_t gfp)

allocates public key request

Parameters
struct crypto_akcipher * tfm AKCIPHER tfm handle allocated with

crypto_alloc_akcipher()

gfp_t gfp allocation flags

Return
allocated handle in case of success or NULL in case of an error.

void akcipher_request_free(struct akcipher_request * req)
zeroize and free public key request

Parameters
struct akcipher_request * req request to free

void akcipher_request_set_callback(struct akcipher_request * req,
u32 flgs, crypto_completion_t cmpl,
void * data)

Sets an asynchronous callback.

Parameters
struct akcipher_request * req request that the callback will be set for

u32 flgs specify for instance if the operation may backlog

crypto_completion_t cmpl callback which will be called

void * data private data used by the caller

Description
Callback will be called when an asynchronous operation on a given request is fin-
ished.

void akcipher_request_set_crypt(struct akcipher_request * req, struct
scatterlist * src, struct scatterlist
* dst, unsigned int src_len, unsigned
int dst_len)

Sets request parameters

6.16. Asymmetric Cipher Request Handle 69

Linux Crypto Documentation

Parameters
struct akcipher_request * req public key request

struct scatterlist * src ptr to input scatter list

struct scatterlist * dst ptr to output scatter list or NULL for verify op

unsigned int src_len size of the src input scatter list to be processed

unsigned int dst_len size of the dst output scatter list or size of signature por-
tion in src for verify op

Description
Sets parameters required by crypto operation

6.17 Key-agreement Protocol Primitives (KPP) Cipher
Algorithm Definitions

struct kpp_request

Definition

struct kpp_request {
struct crypto_async_request base;
struct scatterlist *src;
struct scatterlist *dst;
unsigned int src_len;
unsigned int dst_len;
void *__ctx[] ;

};

Members
base Common attributes for async crypto requests

src Source data

dst Destination data

src_len Size of the input buffer

dst_len Size of the output buffer. It needs to be at least as big as the expected
result depending on the operation After operation it will be updated with the
actual size of the result. In case of error where the dst sgl size was insuffi-
cient, it will be updated to the size required for the operation.

__ctx Start of private context data

struct crypto_kpp
user-instantiated object which encapsulate algorithms and core processing
logic

Definition

struct crypto_kpp {
struct crypto_tfm base;

};

70 Chapter 6. Programming Interface

Linux Crypto Documentation

Members
base Common crypto API algorithm data structure

struct kpp_alg
generic key-agreement protocol primitives

Definition

struct kpp_alg {
int (*set_secret)(struct crypto_kpp *tfm, const void *buffer, unsigned␣

↪→int len);
int (*generate_public_key)(struct kpp_request *req);
int (*compute_shared_secret)(struct kpp_request *req);
unsigned int (*max_size)(struct crypto_kpp *tfm);
int (*init)(struct crypto_kpp *tfm);
void (*exit)(struct crypto_kpp *tfm);
unsigned int reqsize;
struct crypto_alg base;

};

Members
set_secret Function invokes the protocol specific function to store the secret

private key along with parameters. The implementation knows how to decode
the buffer

generate_public_key Function generate the public key to be sent to the coun-
terpart. In case of error, where output is not big enough req->dst_len will be
updated to the size required

compute_shared_secret Function compute the shared secret as defined by the
algorithm. The result is given back to the user. In case of error, where output
is not big enough, req->dst_len will be updated to the size required

max_size Function returns the size of the output buffer

init Initialize the object. This is called only once at instantiation time. In case
the cryptographic hardware needs to be initialized. Software fallback should
be put in place here.

exit Undo everything init did.
reqsize Request context size required by algorithm implementation

base Common crypto API algorithm data structure

struct kpp_secret
small header for packing secret buffer

Definition

struct kpp_secret {
unsigned short type;
unsigned short len;

};

Members
type define type of secret. Each kpp type will define its own

6.17. Key-agreement Protocol Primitives (KPP) Cipher Algorithm
Definitions

71

Linux Crypto Documentation

len specify the len of the secret, include the header, that follows the struct

6.18 Key-agreement Protocol Primitives (KPP) Cipher
API

The KPP API is used with the algorithm type CRYPTO_ALG_TYPE_KPP (listed as
type “kpp”in /proc/crypto)

struct crypto_kpp * crypto_alloc_kpp(const char * alg_name, u32 type,
u32 mask)

allocate KPP tfm handle

Parameters
const char * alg_name is the name of the kpp algorithm (e.g. “dh”,“ecdh”)
u32 type specifies the type of the algorithm

u32 mask specifies the mask for the algorithm

Description
Allocate a handle for kpp algorithm. The returned struct crypto_kpp is required
for any following API invocation

Return
allocated handle in case of success; IS_ERR() is true in case of an error,

PTR_ERR() returns the error code.

void crypto_free_kpp(struct crypto_kpp * tfm)
free KPP tfm handle

Parameters
struct crypto_kpp * tfm KPP tfm handle allocated with crypto_alloc_kpp()

int crypto_kpp_set_secret(struct crypto_kpp * tfm, const void * buffer, un-
signed int len)

Invoke kpp operation

Parameters
struct crypto_kpp * tfm tfm handle

const void * buffer Buffer holding the packet representation of the private
key. The structure of the packet key depends on the particular KPP imple-
mentation. Packing and unpacking helpers are provided for ECDH and DH
(see the respective header files for those implementations).

unsigned int len Length of the packet private key buffer.

Description
Function invokes the specific kpp operation for a given alg.

Return
zero on success; error code in case of error

72 Chapter 6. Programming Interface

Linux Crypto Documentation

int crypto_kpp_generate_public_key(struct kpp_request * req)
Invoke kpp operation

Parameters
struct kpp_request * req kpp key request

Description
Function invokes the specific kpp operation for generating the public part for a
given kpp algorithm.

To generate a private key, the caller should use a random number generator. The
output of the requested length serves as the private key.

Return
zero on success; error code in case of error

int crypto_kpp_compute_shared_secret(struct kpp_request * req)
Invoke kpp operation

Parameters
struct kpp_request * req kpp key request

Description
Function invokes the specific kpp operation for computing the shared secret for a
given kpp algorithm.

Return
zero on success; error code in case of error

unsigned int crypto_kpp_maxsize(struct crypto_kpp * tfm)
Get len for output buffer

Parameters
struct crypto_kpp * tfm KPP tfm handle allocated with crypto_alloc_kpp()

Description
Function returns the output buffer size required for a given key. Function assumes
that the key is already set in the transformation. If this function is called without
a setkey or with a failed setkey, you will end up in a NULL dereference.

6.19 Key-agreement Protocol Primitives (KPP) Cipher
Request Handle

struct kpp_request * kpp_request_alloc(struct crypto_kpp * tfm, gfp_t gfp)
allocates kpp request

Parameters
struct crypto_kpp * tfm KPP tfm handle allocated with crypto_alloc_kpp()

gfp_t gfp allocation flags

6.19. Key-agreement Protocol Primitives (KPP) Cipher Request Handle73

Linux Crypto Documentation

Return
allocated handle in case of success or NULL in case of an error.

void kpp_request_free(struct kpp_request * req)
zeroize and free kpp request

Parameters
struct kpp_request * req request to free

void kpp_request_set_callback(struct kpp_request * req, u32 flgs,
crypto_completion_t cmpl, void * data)

Sets an asynchronous callback.

Parameters
struct kpp_request * req request that the callback will be set for

u32 flgs specify for instance if the operation may backlog

crypto_completion_t cmpl callback which will be called

void * data private data used by the caller

Description
Callback will be called when an asynchronous operation on a given request is fin-
ished.

void kpp_request_set_input(struct kpp_request * req, struct scatterlist
* input, unsigned int input_len)

Sets input buffer

Parameters
struct kpp_request * req kpp request

struct scatterlist * input ptr to input scatter list

unsigned int input_len size of the input scatter list

Description
Sets parameters required by generate_public_key

void kpp_request_set_output(struct kpp_request * req, struct scatterlist
* output, unsigned int output_len)

Sets output buffer

Parameters
struct kpp_request * req kpp request

struct scatterlist * output ptr to output scatter list

unsigned int output_len size of the output scatter list

Description
Sets parameters required by kpp operation

74 Chapter 6. Programming Interface

Linux Crypto Documentation

6.20 ECDH Helper Functions

To use ECDH with the KPP cipher API, the following data structure and functions
should be used.

The ECC curves known to the ECDH implementation are specified in this header
file.

To use ECDH with KPP, the following functions should be used to operate on an
ECDH private key. The packet private key that can be set with the KPP API function
call of crypto_kpp_set_secret.

struct ecdh
define an ECDH private key

Definition

struct ecdh {
unsigned short curve_id;
char *key;
unsigned short key_size;

};

Members
curve_id ECC curve the key is based on.

key Private ECDH key

key_size Size of the private ECDH key

unsigned int crypto_ecdh_key_len(const struct ecdh * params)
Obtain the size of the private ECDH key

Parameters
const struct ecdh * params private ECDH key

Description
This function returns the packet ECDH key size. A caller can use that with the
provided ECDH private key reference to obtain the required memory size to hold
a packet key.

Return
size of the key in bytes

int crypto_ecdh_encode_key(char * buf, unsigned int len, const struct ecdh
* p)

encode the private key

Parameters
char * buf Buffer allocated by the caller to hold the packet ECDH private key.

The buffer should be at least crypto_ecdh_key_len bytes in size.

unsigned int len Length of the packet private key buffer

const struct ecdh * p Buffer with the caller-specified private key

6.20. ECDH Helper Functions 75

Linux Crypto Documentation

Description
The ECDH implementations operate on a packet representation of the private key.

Return
-EINVAL if buffer has insufficient size, 0 on success

int crypto_ecdh_decode_key(const char * buf, unsigned int len, struct ecdh
* p)

decode a private key

Parameters
const char * buf Buffer holding a packet key that should be decoded

unsigned int len Length of the packet private key buffer

struct ecdh * p Buffer allocated by the caller that is filled with the unpacked
ECDH private key.

Description
The unpacking obtains the private key by pointing p to the correct location in buf.
Thus, both pointers refer to the same memory.

Return
-EINVAL if buffer has insufficient size, 0 on success

6.21 DH Helper Functions

To use DH with the KPP cipher API, the following data structure and functions
should be used.

To use DH with KPP, the following functions should be used to operate on a DH
private key. The packet private key that can be set with the KPP API function call
of crypto_kpp_set_secret.

struct dh
define a DH private key

Definition

struct dh {
void *key;
void *p;
void *q;
void *g;
unsigned int key_size;
unsigned int p_size;
unsigned int q_size;
unsigned int g_size;

};

Members
key Private DH key

p Diffie-Hellman parameter P

76 Chapter 6. Programming Interface

Linux Crypto Documentation

q Diffie-Hellman parameter Q

g Diffie-Hellman generator G

key_size Size of the private DH key

p_size Size of DH parameter P

q_size Size of DH parameter Q

g_size Size of DH generator G

unsigned int crypto_dh_key_len(const struct dh * params)
Obtain the size of the private DH key

Parameters
const struct dh * params private DH key

Description
This function returns the packet DH key size. A caller can use that with the pro-
vided DH private key reference to obtain the requiredmemory size to hold a packet
key.

Return
size of the key in bytes

int crypto_dh_encode_key(char * buf, unsigned int len, const struct dh
* params)

encode the private key

Parameters
char * buf Buffer allocated by the caller to hold the packet DH private key. The

buffer should be at least crypto_dh_key_len bytes in size.

unsigned int len Length of the packet private key buffer

const struct dh * params Buffer with the caller-specified private key

Description
The DH implementations operate on a packet representation of the private key.

Return
-EINVAL if buffer has insufficient size, 0 on success

int crypto_dh_decode_key(const char * buf, unsigned int len, struct dh
* params)

decode a private key

Parameters
const char * buf Buffer holding a packet key that should be decoded

unsigned int len Length of the packet private key buffer

struct dh * params Buffer allocated by the caller that is filled with the unpacked
DH private key.

6.21. DH Helper Functions 77

Linux Crypto Documentation

Description
The unpacking obtains the private key by pointing p to the correct location in buf.
Thus, both pointers refer to the same memory.

Return
-EINVAL if buffer has insufficient size, 0 on success

78 Chapter 6. Programming Interface

CHAPTER

SEVEN

CODE EXAMPLES

7.1 Code Example For Symmetric Key Cipher Operation

This code encrypts some data with AES-256-XTS. For sake of example, all inputs
are random bytes, the encryption is done in-place, and it’s assumed the code is
running in a context where it can sleep.

static int test_skcipher(void)
{

struct crypto_skcipher *tfm = NULL;
struct skcipher_request *req = NULL;
u8 *data = NULL;
const size_t datasize = 512; /* data size in bytes */
struct scatterlist sg;
DECLARE_CRYPTO_WAIT(wait);
u8 iv[16]; /* AES-256-XTS takes a 16-byte IV */
u8 key[64]; /* AES-256-XTS takes a 64-byte key */
int err;

/*
* Allocate a tfm (a transformation object) and set the key.
*
* In real-world use, a tfm and key are typically used for many
* encryption/decryption operations. But in this example, we'll␣

↪→just do a
* single encryption operation with it (which is not very␣

↪→efficient).
*/

tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
if (IS_ERR(tfm)) {

pr_err("Error allocating xts(aes) handle: %ld\n", PTR_
↪→ERR(tfm));

return PTR_ERR(tfm);
}

get_random_bytes(key, sizeof(key));
err = crypto_skcipher_setkey(tfm, key, sizeof(key));
if (err) {

pr_err("Error setting key: %d\n", err);
goto out;

}

(continues on next page)

79

Linux Crypto Documentation

(continued from previous page)
/* Allocate a request object */
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {

err = -ENOMEM;
goto out;

}

/* Prepare the input data */
data = kmalloc(datasize, GFP_KERNEL);
if (!data) {

err = -ENOMEM;
goto out;

}
get_random_bytes(data, datasize);

/* Initialize the IV */
get_random_bytes(iv, sizeof(iv));

/*
* Encrypt the data in-place.
*
* For simplicity, in this example we wait for the request to␣

↪→complete
* before proceeding, even if the underlying implementation is␣

↪→asynchronous.
*
* To decrypt instead of encrypt, just change crypto_skcipher_

↪→encrypt() to
* crypto_skcipher_decrypt().
*/

sg_init_one(&sg, data, datasize);
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |

CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);

skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
if (err) {

pr_err("Error encrypting data: %d\n", err);
goto out;

}

pr_debug("Encryption was successful\n");
out:

crypto_free_skcipher(tfm);
skcipher_request_free(req);
kfree(data);
return err;

}

80 Chapter 7. Code Examples

Linux Crypto Documentation

7.2 Code Example For Use of Operational State Memory
With SHASH

struct sdesc {
struct shash_desc shash;
char ctx[];

};

static struct sdesc *init_sdesc(struct crypto_shash *alg)
{

struct sdesc *sdesc;
int size;

size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
sdesc = kmalloc(size, GFP_KERNEL);
if (!sdesc)

return ERR_PTR(-ENOMEM);
sdesc->shash.tfm = alg;
return sdesc;

}

static int calc_hash(struct crypto_shash *alg,
const unsigned char *data, unsigned int datalen,
unsigned char *digest)

{
struct sdesc *sdesc;
int ret;

sdesc = init_sdesc(alg);
if (IS_ERR(sdesc)) {

pr_info("can't alloc sdesc\n");
return PTR_ERR(sdesc);

}

ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
kfree(sdesc);
return ret;

}

static int test_hash(const unsigned char *data, unsigned int datalen,
unsigned char *digest)

{
struct crypto_shash *alg;
char *hash_alg_name = "sha1-padlock-nano";
int ret;

alg = crypto_alloc_shash(hash_alg_name, 0, 0);
if (IS_ERR(alg)) {

pr_info("can't alloc alg %s\n", hash_alg_name);
return PTR_ERR(alg);

}
ret = calc_hash(alg, data, datalen, digest);
crypto_free_shash(alg);
return ret;

}

7.2. Code Example For Use of Operational State Memory With SHASH 81

Linux Crypto Documentation

7.3 Code Example For RandomNumber Generator Usage

static int get_random_numbers(u8 *buf, unsigned int len)
{

struct crypto_rng *rng = NULL;
char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
int ret;

if (!buf || !len) {
pr_debug("No output buffer provided\n");
return -EINVAL;

}

rng = crypto_alloc_rng(drbg, 0, 0);
if (IS_ERR(rng)) {

pr_debug("could not allocate RNG handle for %s\n", drbg);
return PTR_ERR(rng);

}

ret = crypto_rng_get_bytes(rng, buf, len);
if (ret < 0)

pr_debug("generation of random numbers failed\n");
else if (ret == 0)

pr_debug("RNG returned no data");
else

pr_debug("RNG returned %d bytes of data\n", ret);

out:
crypto_free_rng(rng);
return ret;

}

82 Chapter 7. Code Examples

