
Linux Core-api Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

Linux Core-api Documentation

This is the beginning of a manual for core kernel APIs. The conversion (and writ-
ing!) of documents for this manual is much appreciated!

CONTENTS 1

Linux Core-api Documentation

2 CONTENTS

CHAPTER

ONE

CORE UTILITIES

This section has general and “core core”documentation. The first is a massive
grab-bag of kerneldoc info left over from the docbook days; it should really be
broken up someday when somebody finds the energy to do it.

1.1 The Linux Kernel API

1.1.1 List Management Functions

void INIT_LIST_HEAD(struct list_head * list)
Initialize a list_head structure

Parameters
struct list_head * list list_head structure to be initialized.

Description
Initializes the list_head to point to itself. If it is a list header, the result is an empty
list.

void list_add(struct list_head * new, struct list_head * head)
add a new entry

Parameters
struct list_head * new new entry to be added

struct list_head * head list head to add it after

Description
Insert a new entry after the specified head. This is good for implementing stacks.

void list_add_tail(struct list_head * new, struct list_head * head)
add a new entry

Parameters
struct list_head * new new entry to be added

struct list_head * head list head to add it before

Description

3

Linux Core-api Documentation

Insert a new entry before the specified head. This is useful for implementing
queues.

void list_del(struct list_head * entry)
deletes entry from list.

Parameters
struct list_head * entry the element to delete from the list.

Note
list_empty() on entry does not return true after this, the entry is in an undefined
state.

void list_replace(struct list_head * old, struct list_head * new)
replace old entry by new one

Parameters
struct list_head * old the element to be replaced

struct list_head * new the new element to insert

Description
If old was empty, it will be overwritten.
void list_replace_init(struct list_head * old, struct list_head * new)

replace old entry by new one and initialize the old one

Parameters
struct list_head * old the element to be replaced

struct list_head * new the new element to insert

Description
If old was empty, it will be overwritten.
void list_swap(struct list_head * entry1, struct list_head * entry2)

replace entry1 with entry2 and re-add entry1 at entry2’s position
Parameters
struct list_head * entry1 the location to place entry2

struct list_head * entry2 the location to place entry1

void list_del_init(struct list_head * entry)
deletes entry from list and reinitialize it.

Parameters
struct list_head * entry the element to delete from the list.

void list_move(struct list_head * list, struct list_head * head)
delete from one list and add as another’s head

Parameters
struct list_head * list the entry to move

struct list_head * head the head that will precede our entry

4 Chapter 1. Core utilities

Linux Core-api Documentation

void list_move_tail(struct list_head * list, struct list_head * head)
delete from one list and add as another’s tail

Parameters
struct list_head * list the entry to move

struct list_head * head the head that will follow our entry

void list_bulk_move_tail(struct list_head * head, struct list_head * first,
struct list_head * last)

move a subsection of a list to its tail

Parameters
struct list_head * head the head that will follow our entry

struct list_head * first first entry to move

struct list_head * last last entry to move, can be the same as first

Description
Move all entries between first and including last before head. All three entries
must belong to the same linked list.

int list_is_first(const struct list_head * list, const struct list_head * head)

• tests whether list is the first entry in list head
Parameters
const struct list_head * list the entry to test

const struct list_head * head the head of the list

int list_is_last(const struct list_head * list, const struct list_head * head)
tests whether list is the last entry in list head

Parameters
const struct list_head * list the entry to test

const struct list_head * head the head of the list

int list_empty(const struct list_head * head)
tests whether a list is empty

Parameters
const struct list_head * head the list to test.

int list_empty_careful(const struct list_head * head)
tests whether a list is empty and not being modified

Parameters
const struct list_head * head the list to test

Description
tests whether a list is empty _and_ checks that no other CPU might be in the pro-
cess of modifying either member (next or prev)

NOTE

1.1. The Linux Kernel API 5

Linux Core-api Documentation

using list_empty_careful() without synchronization can only be safe if the only
activity that can happen to the list entry is list_del_init(). Eg. it cannot be
used if another CPU could re-list_add() it.

void list_rotate_left(struct list_head * head)
rotate the list to the left

Parameters
struct list_head * head the head of the list

void list_rotate_to_front(struct list_head * list, struct list_head * head)
Rotate list to specific item.

Parameters
struct list_head * list The desired new front of the list.

struct list_head * head The head of the list.

Description
Rotates list so that list becomes the new front of the list.
int list_is_singular(const struct list_head * head)

tests whether a list has just one entry.

Parameters
const struct list_head * head the list to test.

void list_cut_position(struct list_head * list, struct list_head * head,
struct list_head * entry)

cut a list into two

Parameters
struct list_head * list a new list to add all removed entries

struct list_head * head a list with entries

struct list_head * entry an entry within head, could be the head itself and if
so we won’t cut the list

Description
This helper moves the initial part of head, up to and including entry, from head
to list. You should pass on entry an element you know is on head. list should be
an empty list or a list you do not care about losing its data.

void list_cut_before(struct list_head * list, struct list_head * head, struct
list_head * entry)

cut a list into two, before given entry

Parameters
struct list_head * list a new list to add all removed entries

struct list_head * head a list with entries

struct list_head * entry an entry within head, could be the head itself

Description

6 Chapter 1. Core utilities

Linux Core-api Documentation

This helper moves the initial part of head, up to but excluding entry, from head
to list. You should pass in entry an element you know is on head. list should be
an empty list or a list you do not care about losing its data. If entry == head, all
entries on head are moved to list.
void list_splice(const struct list_head * list, struct list_head * head)

join two lists, this is designed for stacks

Parameters
const struct list_head * list the new list to add.

struct list_head * head the place to add it in the first list.

void list_splice_tail(struct list_head * list, struct list_head * head)
join two lists, each list being a queue

Parameters
struct list_head * list the new list to add.

struct list_head * head the place to add it in the first list.

void list_splice_init(struct list_head * list, struct list_head * head)
join two lists and reinitialise the emptied list.

Parameters
struct list_head * list the new list to add.

struct list_head * head the place to add it in the first list.

Description
The list at list is reinitialised
void list_splice_tail_init(struct list_head * list, struct list_head * head)

join two lists and reinitialise the emptied list

Parameters
struct list_head * list the new list to add.

struct list_head * head the place to add it in the first list.

Description
Each of the lists is a queue. The list at list is reinitialised
list_entry(ptr, type, member)

get the struct for this entry

Parameters
ptr the struct list_head pointer.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

list_first_entry(ptr, type, member)
get the first element from a list

Parameters

1.1. The Linux Kernel API 7

Linux Core-api Documentation

ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description
Note, that list is expected to be not empty.

list_last_entry(ptr, type, member)
get the last element from a list

Parameters
ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description
Note, that list is expected to be not empty.

list_first_entry_or_null(ptr, type, member)
get the first element from a list

Parameters
ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description
Note that if the list is empty, it returns NULL.

list_next_entry(pos, member)
get the next element in list

Parameters
pos the type * to cursor

member the name of the list_head within the struct.

list_prev_entry(pos, member)
get the prev element in list

Parameters
pos the type * to cursor

member the name of the list_head within the struct.

list_for_each(pos, head)
iterate over a list

Parameters
pos the struct list_head to use as a loop cursor.

head the head for your list.

8 Chapter 1. Core utilities

Linux Core-api Documentation

list_for_each_continue(pos, head)
continue iteration over a list

Parameters
pos the struct list_head to use as a loop cursor.

head the head for your list.

Description
Continue to iterate over a list, continuing after the current position.

list_for_each_prev(pos, head)
iterate over a list backwards

Parameters
pos the struct list_head to use as a loop cursor.

head the head for your list.

list_for_each_safe(pos, n, head)
iterate over a list safe against removal of list entry

Parameters
pos the struct list_head to use as a loop cursor.

n another struct list_head to use as temporary storage

head the head for your list.

list_for_each_prev_safe(pos, n, head)
iterate over a list backwards safe against removal of list entry

Parameters
pos the struct list_head to use as a loop cursor.

n another struct list_head to use as temporary storage

head the head for your list.

list_for_each_entry(pos, head, member)
iterate over list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

list_for_each_entry_reverse(pos, head, member)
iterate backwards over list of given type.

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

1.1. The Linux Kernel API 9

Linux Core-api Documentation

list_prepare_entry(pos, head, member)
prepare a pos entry for use in list_for_each_entry_continue()

Parameters
pos the type * to use as a start point

head the head of the list

member the name of the list_head within the struct.

Description
Prepares a pos entry for use as a start point in list_for_each_entry_continue().

list_for_each_entry_continue(pos, head, member)
continue iteration over list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description
Continue to iterate over list of given type, continuing after the current position.

list_for_each_entry_continue_reverse(pos, head, member)
iterate backwards from the given point

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description
Start to iterate over list of given type backwards, continuing after the current
position.

list_for_each_entry_from(pos, head, member)
iterate over list of given type from the current point

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description
Iterate over list of given type, continuing from current position.

list_for_each_entry_from_reverse(pos, head, member)
iterate backwards over list of given type from the current point

Parameters

10 Chapter 1. Core utilities

Linux Core-api Documentation

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description
Iterate backwards over list of given type, continuing from current position.

list_for_each_entry_safe(pos, n, head, member)
iterate over list of given type safe against removal of list entry

Parameters
pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

list_for_each_entry_safe_continue(pos, n, head, member)
continue list iteration safe against removal

Parameters
pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

Description
Iterate over list of given type, continuing after current point, safe against removal
of list entry.

list_for_each_entry_safe_from(pos, n, head, member)
iterate over list from current point safe against removal

Parameters
pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

Description
Iterate over list of given type from current point, safe against removal of list entry.

list_for_each_entry_safe_reverse(pos, n, head, member)
iterate backwards over list safe against removal

Parameters
pos the type * to use as a loop cursor.

1.1. The Linux Kernel API 11

Linux Core-api Documentation

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

Description
Iterate backwards over list of given type, safe against removal of list entry.

list_safe_reset_next(pos, n, member)
reset a stale list_for_each_entry_safe loop

Parameters
pos the loop cursor used in the list_for_each_entry_safe loop

n temporary storage used in list_for_each_entry_safe

member the name of the list_head within the struct.

Description
list_safe_reset_next is not safe to use in general if the list may be modified con-
currently (eg. the lock is dropped in the loop body). An exception to this is if the
cursor element (pos) is pinned in the list, and list_safe_reset_next is called after
re-taking the lock and before completing the current iteration of the loop body.

int hlist_unhashed(const struct hlist_node * h)
Has node been removed from list and reinitialized?

Parameters
const struct hlist_node * h Node to be checked

Description
Not that not all removal functions will leave a node in unhashed state. For ex-
ample, hlist_nulls_del_init_rcu() does leave the node in unhashed state, but
hlist_nulls_del() does not.

int hlist_unhashed_lockless(const struct hlist_node * h)
Version of hlist_unhashed for lockless use

Parameters
const struct hlist_node * h Node to be checked

Description
This variant of hlist_unhashed() must be used in lockless contexts to avoid po-
tential load-tearing. The READ_ONCE() is paired with the various WRITE_ONCE()
in hlist helpers that are defined below.

int hlist_empty(const struct hlist_head * h)
Is the specified hlist_head structure an empty hlist?

Parameters
const struct hlist_head * h Structure to check.

void hlist_del(struct hlist_node * n)
Delete the specified hlist_node from its list

12 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
struct hlist_node * n Node to delete.

Description
Note that this function leaves the node in hashed state. Use hlist_del_init() or
similar instead to unhash n.
void hlist_del_init(struct hlist_node * n)

Delete the specified hlist_node from its list and initialize

Parameters
struct hlist_node * n Node to delete.

Description
Note that this function leaves the node in unhashed state.

void hlist_add_head(struct hlist_node * n, struct hlist_head * h)
add a new entry at the beginning of the hlist

Parameters
struct hlist_node * n new entry to be added

struct hlist_head * h hlist head to add it after

Description
Insert a new entry after the specified head. This is good for implementing stacks.

void hlist_add_before(struct hlist_node * n, struct hlist_node * next)
add a new entry before the one specified

Parameters
struct hlist_node * n new entry to be added

struct hlist_node * next hlist node to add it before, which must be non-NULL

void hlist_add_behind(struct hlist_node * n, struct hlist_node * prev)
add a new entry after the one specified

Parameters
struct hlist_node * n new entry to be added

struct hlist_node * prev hlist node to add it after, which must be non-NULL

void hlist_add_fake(struct hlist_node * n)
create a fake hlist consisting of a single headless node

Parameters
struct hlist_node * n Node to make a fake list out of

Description
This makes n appear to be its own predecessor on a headless hlist. The point of
this is to allow things like hlist_del() to work correctly in cases where there is
no list.

1.1. The Linux Kernel API 13

Linux Core-api Documentation

bool hlist_fake(struct hlist_node * h)

Parameters
struct hlist_node * h Node to check for being a self-referential fake hlist.

bool hlist_is_singular_node(struct hlist_node * n, struct hlist_head * h)
is node the only element of the specified hlist?

Parameters
struct hlist_node * n Node to check for singularity.

struct hlist_head * h Header for potentially singular list.

Description
Check whether the node is the only node of the head without accessing head, thus
avoiding unnecessary cache misses.

void hlist_move_list(struct hlist_head * old, struct hlist_head * new)
Move an hlist

Parameters
struct hlist_head * old hlist_head for old list.

struct hlist_head * new hlist_head for new list.

Description
Move a list from one list head to another. Fixup the pprev reference of the first
entry if it exists.

hlist_for_each_entry(pos, head, member)
iterate over list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the hlist_node within the struct.

hlist_for_each_entry_continue(pos, member)
iterate over a hlist continuing after current point

Parameters
pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

hlist_for_each_entry_from(pos, member)
iterate over a hlist continuing from current point

Parameters
pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

hlist_for_each_entry_safe(pos, n, head, member)
iterate over list of given type safe against removal of list entry

14 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
pos the type * to use as a loop cursor.

n a struct hlist_node to use as temporary storage

head the head for your list.

member the name of the hlist_node within the struct.

1.1.2 Basic C Library Functions

When writing drivers, you cannot in general use routines which are from the C
Library. Some of the functions have been found generally useful and they are listed
below. The behaviour of these functions may vary slightly from those defined by
ANSI, and these deviations are noted in the text.

String Conversions

unsigned long long simple_strtoull(const char * cp, char ** endp, un-
signed int base)

convert a string to an unsigned long long

Parameters
const char * cp The start of the string

char ** endp A pointer to the end of the parsed string will be placed here

unsigned int base The number base to use

Description
This function has caveats. Please use kstrtoull instead.

unsigned long simple_strtoul(const char * cp, char ** endp, unsigned
int base)

convert a string to an unsigned long

Parameters
const char * cp The start of the string

char ** endp A pointer to the end of the parsed string will be placed here

unsigned int base The number base to use

Description
This function has caveats. Please use kstrtoul instead.

long simple_strtol(const char * cp, char ** endp, unsigned int base)
convert a string to a signed long

Parameters
const char * cp The start of the string

char ** endp A pointer to the end of the parsed string will be placed here

unsigned int base The number base to use

1.1. The Linux Kernel API 15

Linux Core-api Documentation

Description
This function has caveats. Please use kstrtol instead.

long long simple_strtoll(const char * cp, char ** endp, unsigned int base)
convert a string to a signed long long

Parameters
const char * cp The start of the string

char ** endp A pointer to the end of the parsed string will be placed here

unsigned int base The number base to use

Description
This function has caveats. Please use kstrtoll instead.

int vsnprintf(char * buf, size_t size, const char * fmt, va_list args)
Format a string and place it in a buffer

Parameters
char * buf The buffer to place the result into

size_t size The size of the buffer, including the trailing null space

const char * fmt The format string to use

va_list args Arguments for the format string

Description
This function generally follows C99 vsnprintf, but has some extensions and a few
limitations:

• ``n`` is unsupported

• ``p``* is handled by pointer()

See pointer() or Documentation/core-api/printk-formats.rst for more extensive de-
scription.

Please update the documentation in both places when making changes
The return value is the number of characters which would be generated for the
given input, excluding the trailing ‘0’, as per ISO C99. If you want to have the
exact number of characters written into buf as return value (not including the
trailing‘0’), use vscnprintf(). If the return is greater than or equal to size, the
resulting string is truncated.

If you’re not already dealing with a va_list consider using snprintf().
int vscnprintf(char * buf, size_t size, const char * fmt, va_list args)

Format a string and place it in a buffer

Parameters
char * buf The buffer to place the result into

size_t size The size of the buffer, including the trailing null space

const char * fmt The format string to use

16 Chapter 1. Core utilities

Linux Core-api Documentation

va_list args Arguments for the format string

Description
The return value is the number of characters which have been written into the buf
not including the trailing ‘0’. If size is == 0 the function returns 0.
If you’re not already dealing with a va_list consider using scnprintf().
See the vsnprintf() documentation for format string extensions over C99.

int snprintf(char * buf, size_t size, const char * fmt, ...)
Format a string and place it in a buffer

Parameters
char * buf The buffer to place the result into

size_t size The size of the buffer, including the trailing null space

const char * fmt The format string to use

... Arguments for the format string

Description
The return value is the number of characters which would be generated for the
given input, excluding the trailing null, as per ISO C99. If the return is greater
than or equal to size, the resulting string is truncated.
See the vsnprintf() documentation for format string extensions over C99.

int scnprintf(char * buf, size_t size, const char * fmt, ...)
Format a string and place it in a buffer

Parameters
char * buf The buffer to place the result into

size_t size The size of the buffer, including the trailing null space

const char * fmt The format string to use

... Arguments for the format string

Description
The return value is the number of characters written into buf not including the
trailing ‘0’. If size is == 0 the function returns 0.
int vsprintf(char * buf, const char * fmt, va_list args)

Format a string and place it in a buffer

Parameters
char * buf The buffer to place the result into

const char * fmt The format string to use

va_list args Arguments for the format string

Description
The function returns the number of characters written into buf. Use vsnprintf()
or vscnprintf() in order to avoid buffer overflows.

1.1. The Linux Kernel API 17

Linux Core-api Documentation

If you’re not already dealing with a va_list consider using sprintf().
See the vsnprintf() documentation for format string extensions over C99.

int sprintf(char * buf, const char * fmt, ...)
Format a string and place it in a buffer

Parameters
char * buf The buffer to place the result into

const char * fmt The format string to use

... Arguments for the format string

Description
The function returns the number of characters written into buf. Use snprintf()
or scnprintf() in order to avoid buffer overflows.

See the vsnprintf() documentation for format string extensions over C99.

int vbin_printf(u32 * bin_buf, size_t size, const char * fmt, va_list args)
Parse a format string and place args’binary value in a buffer

Parameters
u32 * bin_buf The buffer to place args’binary value
size_t size The size of the buffer(by words(32bits), not characters)

const char * fmt The format string to use

va_list args Arguments for the format string

Description
The format follows C99 vsnprintf, except n is ignored, and its argument is skipped.

The return value is the number of words(32bits) which would be generated for the
given input.

NOTE
If the return value is greater than size, the resulting bin_buf is NOT valid for
bstr_printf().

int bstr_printf(char * buf, size_t size, const char * fmt, const u32
* bin_buf)

Format a string from binary arguments and place it in a buffer

Parameters
char * buf The buffer to place the result into

size_t size The size of the buffer, including the trailing null space

const char * fmt The format string to use

const u32 * bin_buf Binary arguments for the format string

Description

18 Chapter 1. Core utilities

Linux Core-api Documentation

This function like C99 vsnprintf, but the difference is that vsnprintf gets arguments
from stack, and bstr_printf gets arguments from bin_buf which is a binary buffer
that generated by vbin_printf.

The format follows C99 vsnprintf, but has some extensions: see vsnprintf
comment for details.

The return value is the number of characters which would be generated for the
given input, excluding the trailing ‘0’, as per ISO C99. If you want to have the
exact number of characters written into buf as return value (not including the
trailing‘0’), use vscnprintf(). If the return is greater than or equal to size, the
resulting string is truncated.

int bprintf(u32 * bin_buf, size_t size, const char * fmt, ...)
Parse a format string and place args’binary value in a buffer

Parameters
u32 * bin_buf The buffer to place args’binary value
size_t size The size of the buffer(by words(32bits), not characters)

const char * fmt The format string to use

... Arguments for the format string

Description
The function returns the number of words(u32) written into bin_buf.
int vsscanf(const char * buf, const char * fmt, va_list args)

Unformat a buffer into a list of arguments

Parameters
const char * buf input buffer

const char * fmt format of buffer

va_list args arguments

int sscanf(const char * buf, const char * fmt, ...)
Unformat a buffer into a list of arguments

Parameters
const char * buf input buffer

const char * fmt formatting of buffer

... resulting arguments

int kstrtol(const char * s, unsigned int base, long * res)
convert a string to a long

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign or a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with

1.1. The Linux Kernel API 19

Linux Core-api Documentation

the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

long * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the simple_strtoull. Return code must be checked.

int kstrtoul(const char * s, unsigned int base, unsigned long * res)
convert a string to an unsigned long

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign, but not a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the simple_strtoull. Return code must be checked.

int kstrtoull(const char * s, unsigned int base, unsigned long long * res)
convert a string to an unsigned long long

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign, but not a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long long * res Where to write the result of the conversion on suc-
cess.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the obsolete simple_strtoull. Return code must be checked.

int kstrtoll(const char * s, unsigned int base, long long * res)
convert a string to a long long

Parameters

20 Chapter 1. Core utilities

Linux Core-api Documentation

const char * s The start of the string. The string must be null-terminated, and
may also include a single newline before its terminating null. The first char-
acter may also be a plus sign or a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

long long * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the obsolete simple_strtoull. Return code must be checked.

int kstrtouint(const char * s, unsigned int base, unsigned int * res)
convert a string to an unsigned int

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign, but not a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned int * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the obsolete simple_strtoull. Return code must be checked.

int kstrtoint(const char * s, unsigned int base, int * res)
convert a string to an int

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign or a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

int * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the obsolete simple_strtoull. Return code must be checked.

1.1. The Linux Kernel API 21

Linux Core-api Documentation

int kstrtobool(const char * s, bool * res)
convert common user inputs into boolean values

Parameters
const char * s input string

bool * res result

Description
This routine returns 0 iff the first character is one of ‘Yy1Nn0’, or [oO][NnFf]
for “on”and “off”. Otherwise it will return -EINVAL. Value pointed to by res is
updated upon finding a match.

void string_get_size(u64 size, u64 blk_size, const enum
string_size_units units, char * buf, int len)

get the size in the specified units

Parameters
u64 size The size to be converted in blocks

u64 blk_size Size of the block (use 1 for size in bytes)

const enum string_size_units units units to use (powers of 1000 or 1024)

char * buf buffer to format to

int len length of buffer

Description
This function returns a string formatted to 3 significant figures giving the size in
the required units. buf should have room for at least 9 bytes and will always be
zero terminated.

int string_unescape(char * src, char * dst, size_t size, unsigned int flags)
unquote characters in the given string

Parameters
char * src source buffer (escaped)

char * dst destination buffer (unescaped)

size_t size size of the destination buffer (0 to unlimit)

unsigned int flags combination of the flags.

Description
The function unquotes characters in the given string.

Because the size of the output will be the same as or less than the size of the input,
the transformation may be performed in place.

Caller must provide valid source and destination pointers. Be aware that des-
tination buffer will always be NULL-terminated. Source string must be NULL-
terminated as well. The supported flags are:

22 Chapter 1. Core utilities

Linux Core-api Documentation

UNESCAPE_SPACE:
'\f' - form feed
'\n' - new line
'\r' - carriage return
'\t' - horizontal tab
'\v' - vertical tab

UNESCAPE_OCTAL:
'\NNN' - byte with octal value NNN (1 to 3 digits)

UNESCAPE_HEX:
'\xHH' - byte with hexadecimal value HH (1 to 2 digits)

UNESCAPE_SPECIAL:
'\"' - double quote
'\\' - backslash
'\a' - alert (BEL)
'\e' - escape

UNESCAPE_ANY:
all previous together

Return
The amount of the characters processed to the destination buffer excluding trailing
‘0’is returned.
int string_escape_mem(const char * src, size_t isz, char * dst, size_t osz, un-

signed int flags, const char * only)
quote characters in the given memory buffer

Parameters
const char * src source buffer (unescaped)

size_t isz source buffer size

char * dst destination buffer (escaped)

size_t osz destination buffer size

unsigned int flags combination of the flags

const char * only NULL-terminated string containing characters used to limit
the selected escape class. If characters are included in only that would not
normally be escaped by the classes selected in flags, they will be copied to
dst unescaped.

Description
The process of escaping byte buffer includes several parts. They are applied in the
following sequence.

1. The character is matched to the printable class, if asked, and in case of match
it passes through to the output.

2. The character is not matched to the one from only string and thus must go
as-is to the output.

3. The character is checked if it falls into the class given by flags. ESCAPE_OCTAL
and ESCAPE_HEX are going last since they cover any character. Note that they
actually can’t go together, otherwise ESCAPE_HEX will be ignored.

1.1. The Linux Kernel API 23

Linux Core-api Documentation

Caller must provide valid source and destination pointers. Be aware that desti-
nation buffer will not be NULL-terminated, thus caller have to append it if needs.
The supported flags are:

%ESCAPE_SPACE: (special white space, not space itself)
'\f' - form feed
'\n' - new line
'\r' - carriage return
'\t' - horizontal tab
'\v' - vertical tab

%ESCAPE_SPECIAL:
'\\' - backslash
'\a' - alert (BEL)
'\e' - escape

%ESCAPE_NULL:
'\0' - null

%ESCAPE_OCTAL:
'\NNN' - byte with octal value NNN (3 digits)

%ESCAPE_ANY:
all previous together

%ESCAPE_NP:
escape only non-printable characters (checked by isprint)

%ESCAPE_ANY_NP:
all previous together

%ESCAPE_HEX:
'\xHH' - byte with hexadecimal value HH (2 digits)

Return
The total size of the escaped output that would be generated for the given input
and flags. To check whether the output was truncated, compare the return value
to osz. There is room left in dst for a ‘0’terminator if and only if ret < osz.

String Manipulation

int strncasecmp(const char * s1, const char * s2, size_t len)
Case insensitive, length-limited string comparison

Parameters
const char * s1 One string

const char * s2 The other string

size_t len the maximum number of characters to compare

char * strcpy(char * dest, const char * src)
Copy a NUL terminated string

Parameters
char * dest Where to copy the string to

const char * src Where to copy the string from

char * strncpy(char * dest, const char * src, size_t count)
Copy a length-limited, C-string

Parameters

24 Chapter 1. Core utilities

Linux Core-api Documentation

char * dest Where to copy the string to

const char * src Where to copy the string from

size_t count The maximum number of bytes to copy

Description
The result is not NUL-terminated if the source exceeds count bytes.
In the case where the length of src is less than that of count, the remainder of
dest will be padded with NUL.
size_t strlcpy(char * dest, const char * src, size_t size)

Copy a C-string into a sized buffer

Parameters
char * dest Where to copy the string to

const char * src Where to copy the string from

size_t size size of destination buffer

Description
Compatible with *BSD: the result is always a valid NUL-terminated string that fits
in the buffer (unless, of course, the buffer size is zero). It does not pad out the
result like strncpy() does.

ssize_t strscpy(char * dest, const char * src, size_t count)
Copy a C-string into a sized buffer

Parameters
char * dest Where to copy the string to

const char * src Where to copy the string from

size_t count Size of destination buffer

Description
Copy the string, or as much of it as fits, into the dest buffer. The behavior is
undefined if the string buffers overlap. The destination buffer is always NUL ter-
minated, unless it’s zero-sized.
Preferred to strlcpy() since the API doesn’t require reading memory from the
src string beyond the specified“count”bytes, and since the return value is easier
to error-check than strlcpy()’s. In addition, the implementation is robust to the
string changing out from underneath it, unlike the current strlcpy() implemen-
tation.

Preferred to strncpy() since it always returns a valid string, and doesn’t unnec-
essarily force the tail of the destination buffer to be zeroed. If zeroing is desired
please use strscpy_pad().

Return
• The number of characters copied (not including the trailing NUL)

• -E2BIG if count is 0 or src was truncated.

1.1. The Linux Kernel API 25

Linux Core-api Documentation

ssize_t strscpy_pad(char * dest, const char * src, size_t count)
Copy a C-string into a sized buffer

Parameters
char * dest Where to copy the string to

const char * src Where to copy the string from

size_t count Size of destination buffer

Description
Copy the string, or as much of it as fits, into the dest buffer. The behavior is unde-
fined if the string buffers overlap. The destination buffer is always NUL terminated,
unless it’s zero-sized.
If the source string is shorter than the destination buffer, zeros the tail of the
destination buffer.

For full explanation of why you may want to consider using the‘strscpy’functions
please see the function docstring for strscpy().

Return
• The number of characters copied (not including the trailing NUL)

• -E2BIG if count is 0 or src was truncated.
char * strcat(char * dest, const char * src)

Append one NUL-terminated string to another

Parameters
char * dest The string to be appended to

const char * src The string to append to it

char * strncat(char * dest, const char * src, size_t count)
Append a length-limited, C-string to another

Parameters
char * dest The string to be appended to

const char * src The string to append to it

size_t count The maximum numbers of bytes to copy

Description
Note that in contrast to strncpy(), strncat() ensures the result is terminated.

size_t strlcat(char * dest, const char * src, size_t count)
Append a length-limited, C-string to another

Parameters
char * dest The string to be appended to

const char * src The string to append to it

size_t count The size of the destination buffer.

26 Chapter 1. Core utilities

Linux Core-api Documentation

int strcmp(const char * cs, const char * ct)
Compare two strings

Parameters
const char * cs One string

const char * ct Another string

int strncmp(const char * cs, const char * ct, size_t count)
Compare two length-limited strings

Parameters
const char * cs One string

const char * ct Another string

size_t count The maximum number of bytes to compare

char * strchr(const char * s, int c)
Find the first occurrence of a character in a string

Parameters
const char * s The string to be searched

int c The character to search for

Description
Note that the NUL-terminator is considered part of the string, and can be searched
for.

char * strchrnul(const char * s, int c)
Find and return a character in a string, or end of string

Parameters
const char * s The string to be searched

int c The character to search for

Description
Returns pointer to first occurrence of ‘c’in s. If c is not found, then return a
pointer to the null byte at the end of s.

char * strrchr(const char * s, int c)
Find the last occurrence of a character in a string

Parameters
const char * s The string to be searched

int c The character to search for

char * strnchr(const char * s, size_t count, int c)
Find a character in a length limited string

Parameters
const char * s The string to be searched

size_t count The number of characters to be searched

1.1. The Linux Kernel API 27

Linux Core-api Documentation

int c The character to search for

Description
Note that the NUL-terminator is considered part of the string, and can be searched
for.

char * skip_spaces(const char * str)
Removes leading whitespace from str.

Parameters
const char * str The string to be stripped.

Description
Returns a pointer to the first non-whitespace character in str.
char * strim(char * s)

Removes leading and trailing whitespace from s.
Parameters
char * s The string to be stripped.

Description
Note that the first trailing whitespace is replaced with a NUL-terminator in the
given string s. Returns a pointer to the first non-whitespace character in s.
size_t strlen(const char * s)

Find the length of a string

Parameters
const char * s The string to be sized

size_t strnlen(const char * s, size_t count)
Find the length of a length-limited string

Parameters
const char * s The string to be sized

size_t count The maximum number of bytes to search

size_t strspn(const char * s, const char * accept)
Calculate the length of the initial substring of s which only contain letters in
accept

Parameters
const char * s The string to be searched

const char * accept The string to search for

size_t strcspn(const char * s, const char * reject)
Calculate the length of the initial substring of swhich does not contain letters
in reject

Parameters
const char * s The string to be searched

const char * reject The string to avoid

28 Chapter 1. Core utilities

Linux Core-api Documentation

char * strpbrk(const char * cs, const char * ct)
Find the first occurrence of a set of characters

Parameters
const char * cs The string to be searched

const char * ct The characters to search for

char * strsep(char ** s, const char * ct)
Split a string into tokens

Parameters
char ** s The string to be searched

const char * ct The characters to search for

Description
strsep() updates s to point after the token, ready for the next call.
It returns empty tokens, too, behaving exactly like the libc function of that name.
In fact, it was stolen from glibc2 and de-fancy-fied. Same semantics, slimmer
shape. ;)

bool sysfs_streq(const char * s1, const char * s2)
return true if strings are equal, modulo trailing newline

Parameters
const char * s1 one string

const char * s2 another string

Description
This routine returns true iff two strings are equal, treating both NUL and newline-
then-NUL as equivalent string terminations. It’s geared for use with sysfs input
strings, which generally terminate with newlines but are compared against values
without newlines.

int match_string(const char *const * array, size_t n, const char * string)
matches given string in an array

Parameters
const char *const * array array of strings

size_t n number of strings in the array or -1 for NULL terminated arrays

const char * string string to match with

Description
This routine will look for a string in an array of strings up to the n-th element in
the array or until the first NULL element.

Historically the value of -1 for n, was used to search in arrays that are NULL
terminated. However, the function does not make a distinction when finishing the
search: either n elements have been compared OR the first NULL element was
found.

Return

1.1. The Linux Kernel API 29

Linux Core-api Documentation

index of a string in the array if matches, or -EINVAL otherwise.
int __sysfs_match_string(const char *const * array, size_t n, const char

* str)
matches given string in an array

Parameters
const char *const * array array of strings

size_t n number of strings in the array or -1 for NULL terminated arrays

const char * str string to match with

Description
Returns index of str in the array or -EINVAL, just like match_string(). Uses
sysfs_streq instead of strcmp for matching.

This routine will look for a string in an array of strings up to the n-th element in
the array or until the first NULL element.

Historically the value of -1 for n, was used to search in arrays that are NULL
terminated. However, the function does not make a distinction when finishing the
search: either n elements have been compared OR the first NULL element was
found.

void * memset(void * s, int c, size_t count)
Fill a region of memory with the given value

Parameters
void * s Pointer to the start of the area.

int c The byte to fill the area with

size_t count The size of the area.

Description
Do not use memset() to access IO space, use memset_io() instead.

void * memset16(uint16_t * s, uint16_t v, size_t count)
Fill a memory area with a uint16_t

Parameters
uint16_t * s Pointer to the start of the area.

uint16_t v The value to fill the area with

size_t count The number of values to store

Description
Differs from memset() in that it fills with a uint16_t instead of a byte. Remember
that count is the number of uint16_ts to store, not the number of bytes.
void * memset32(uint32_t * s, uint32_t v, size_t count)

Fill a memory area with a uint32_t

Parameters
uint32_t * s Pointer to the start of the area.

30 Chapter 1. Core utilities

Linux Core-api Documentation

uint32_t v The value to fill the area with

size_t count The number of values to store

Description
Differs from memset() in that it fills with a uint32_t instead of a byte. Remember
that count is the number of uint32_ts to store, not the number of bytes.
void * memset64(uint64_t * s, uint64_t v, size_t count)

Fill a memory area with a uint64_t

Parameters
uint64_t * s Pointer to the start of the area.

uint64_t v The value to fill the area with

size_t count The number of values to store

Description
Differs from memset() in that it fills with a uint64_t instead of a byte. Remember
that count is the number of uint64_ts to store, not the number of bytes.
void * memcpy(void * dest, const void * src, size_t count)

Copy one area of memory to another

Parameters
void * dest Where to copy to

const void * src Where to copy from

size_t count The size of the area.

Description
You should not use this function to access IO space, use memcpy_toio() or mem-
cpy_fromio() instead.

void * memmove(void * dest, const void * src, size_t count)
Copy one area of memory to another

Parameters
void * dest Where to copy to

const void * src Where to copy from

size_t count The size of the area.

Description
Unlike memcpy(), memmove() copes with overlapping areas.

__visible int memcmp(const void * cs, const void * ct, size_t count)
Compare two areas of memory

Parameters
const void * cs One area of memory

const void * ct Another area of memory

size_t count The size of the area.

1.1. The Linux Kernel API 31

Linux Core-api Documentation

int bcmp(const void * a, const void * b, size_t len)
returns 0 if and only if the buffers have identical contents.

Parameters
const void * a pointer to first buffer.

const void * b pointer to second buffer.

size_t len size of buffers.

Description
The sign or magnitude of a non-zero return value has no particular meaning, and
architectures may implement their own more efficient bcmp(). So while this par-
ticular implementation is a simple (tail) call to memcmp, do not rely on anything
but whether the return value is zero or non-zero.

void * memscan(void * addr, int c, size_t size)
Find a character in an area of memory.

Parameters
void * addr The memory area

int c The byte to search for

size_t size The size of the area.

Description
returns the address of the first occurrence of c, or 1 byte past the area if c is not
found

char * strstr(const char * s1, const char * s2)
Find the first substring in a NUL terminated string

Parameters
const char * s1 The string to be searched

const char * s2 The string to search for

char * strnstr(const char * s1, const char * s2, size_t len)
Find the first substring in a length-limited string

Parameters
const char * s1 The string to be searched

const char * s2 The string to search for

size_t len the maximum number of characters to search

void * memchr(const void * s, int c, size_t n)
Find a character in an area of memory.

Parameters
const void * s The memory area

int c The byte to search for

size_t n The size of the area.

32 Chapter 1. Core utilities

Linux Core-api Documentation

Description
returns the address of the first occurrence of c, or NULL if c is not found
void * memchr_inv(const void * start, int c, size_t bytes)

Find an unmatching character in an area of memory.

Parameters
const void * start The memory area

int c Find a character other than c

size_t bytes The size of the area.

Description
returns the address of the first character other than c, or NULL if the whole buffer
contains just c.
char * strreplace(char * s, char old, char new)

Replace all occurrences of character in string.

Parameters
char * s The string to operate on.

char old The character being replaced.

char new The character old is replaced with.
Description
Returns pointer to the nul byte at the end of s.
sysfs_match_string(_a, _s)

matches given string in an array

Parameters
_a array of strings

_s string to match with

Description
Helper for __sysfs_match_string(). Calculates the size of a automatically.
bool strstarts(const char * str, const char * prefix)

does str start with prefix?
Parameters
const char * str string to examine

const char * prefix prefix to look for.

void memzero_explicit(void * s, size_t count)
Fill a region of memory (e.g. sensitive keying data) with 0s.

Parameters
void * s Pointer to the start of the area.

size_t count The size of the area.

1.1. The Linux Kernel API 33

Linux Core-api Documentation

Note
usually using memset() is just fine (!), but in cases where clearing out _local_ data
at the end of a scope is necessary, memzero_explicit() should be used instead in
order to prevent the compiler from optimising away zeroing.

Description
memzero_explicit() doesn’t need an arch-specific version as it just invokes the
one of memset() implicitly.

const char * kbasename(const char * path)
return the last part of a pathname.

Parameters
const char * path path to extract the filename from.

void memcpy_and_pad(void * dest, size_t dest_len, const void * src,
size_t count, int pad)

Copy one buffer to another with padding

Parameters
void * dest Where to copy to

size_t dest_len The destination buffer size

const void * src Where to copy from

size_t count The number of bytes to copy

int pad Character to use for padding if space is left in destination.

size_t str_has_prefix(const char * str, const char * prefix)
Test if a string has a given prefix

Parameters
const char * str The string to test

const char * prefix The string to see if str starts with
Description
A common way to test a prefix of a string is to do: strncmp(str, prefix,

sizeof(prefix) - 1)

But this can lead to bugs due to typos, or if prefix is a pointer and not a constant.
Instead use str_has_prefix().

Return
• strlen(prefix) if str starts with prefix
• 0 if str does not start with prefix

char * kstrdup(const char * s, gfp_t gfp)
allocate space for and copy an existing string

Parameters
const char * s the string to duplicate

gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory

34 Chapter 1. Core utilities

Linux Core-api Documentation

Return
newly allocated copy of s or NULL in case of error
const char * kstrdup_const(const char * s, gfp_t gfp)

conditionally duplicate an existing const string

Parameters
const char * s the string to duplicate

gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory

Note
Strings allocated by kstrdup_const should be freed by kfree_const.

Return
source string if it is in .rodata section otherwise fallback to kstrdup.

char * kstrndup(const char * s, size_t max, gfp_t gfp)
allocate space for and copy an existing string

Parameters
const char * s the string to duplicate

size_t max read at most max chars from s
gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory

Note
Use kmemdup_nul() instead if the size is known exactly.

Return
newly allocated copy of s or NULL in case of error
void * kmemdup(const void * src, size_t len, gfp_t gfp)

duplicate region of memory

Parameters
const void * src memory region to duplicate

size_t len memory region length

gfp_t gfp GFP mask to use

Return
newly allocated copy of src or NULL in case of error
char * kmemdup_nul(const char * s, size_t len, gfp_t gfp)

Create a NUL-terminated string from unterminated data

Parameters
const char * s The data to stringify

size_t len The size of the data

gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory

1.1. The Linux Kernel API 35

Linux Core-api Documentation

Return
newly allocated copy of s with NUL-termination or NULL in case of error
void * memdup_user(const void __user * src, size_t len)

duplicate memory region from user space

Parameters
const void __user * src source address in user space

size_t len number of bytes to copy

Return
an ERR_PTR() on failure. Result is physically contiguous, to be freed by kfree().

void * vmemdup_user(const void __user * src, size_t len)
duplicate memory region from user space

Parameters
const void __user * src source address in user space

size_t len number of bytes to copy

Return
an ERR_PTR() on failure. Result may be not physically contiguous. Use kvfree()
to free.

char * strndup_user(const char __user * s, long n)
duplicate an existing string from user space

Parameters
const char __user * s The string to duplicate

long n Maximum number of bytes to copy, including the trailing NUL.

Return
newly allocated copy of s or an ERR_PTR() in case of error
void * memdup_user_nul(const void __user * src, size_t len)

duplicate memory region from user space and NUL-terminate

Parameters
const void __user * src source address in user space

size_t len number of bytes to copy

Return
an ERR_PTR() on failure.

36 Chapter 1. Core utilities

Linux Core-api Documentation

1.1.3 Basic Kernel Library Functions

The Linux kernel provides more basic utility functions.

Bit Operations

void set_bit(long nr, volatile unsigned long * addr)
Atomically set a bit in memory

Parameters
long nr the bit to set

volatile unsigned long * addr the address to start counting from

Description
This is a relaxed atomic operation (no implied memory barriers).

Note that nr may be almost arbitrarily large; this function is not restricted to
acting on a single-word quantity.

void clear_bit(long nr, volatile unsigned long * addr)
Clears a bit in memory

Parameters
long nr Bit to clear

volatile unsigned long * addr Address to start counting from

Description
This is a relaxed atomic operation (no implied memory barriers).

void change_bit(long nr, volatile unsigned long * addr)
Toggle a bit in memory

Parameters
long nr Bit to change

volatile unsigned long * addr Address to start counting from

Description
This is a relaxed atomic operation (no implied memory barriers).

Note that nr may be almost arbitrarily large; this function is not restricted to
acting on a single-word quantity.

bool test_and_set_bit(long nr, volatile unsigned long * addr)
Set a bit and return its old value

Parameters
long nr Bit to set

volatile unsigned long * addr Address to count from

Description
This is an atomic fully-ordered operation (implied full memory barrier).

1.1. The Linux Kernel API 37

Linux Core-api Documentation

bool test_and_clear_bit(long nr, volatile unsigned long * addr)
Clear a bit and return its old value

Parameters
long nr Bit to clear

volatile unsigned long * addr Address to count from

Description
This is an atomic fully-ordered operation (implied full memory barrier).

bool test_and_change_bit(long nr, volatile unsigned long * addr)
Change a bit and return its old value

Parameters
long nr Bit to change

volatile unsigned long * addr Address to count from

Description
This is an atomic fully-ordered operation (implied full memory barrier).

void __set_bit(long nr, volatile unsigned long * addr)
Set a bit in memory

Parameters
long nr the bit to set

volatile unsigned long * addr the address to start counting from

Description
Unlike set_bit(), this function is non-atomic. If it is called on the same region of
memory concurrently, the effect may be that only one operation succeeds.

void __clear_bit(long nr, volatile unsigned long * addr)
Clears a bit in memory

Parameters
long nr the bit to clear

volatile unsigned long * addr the address to start counting from

Description
Unlike clear_bit(), this function is non-atomic. If it is called on the same region
of memory concurrently, the effect may be that only one operation succeeds.

void __change_bit(long nr, volatile unsigned long * addr)
Toggle a bit in memory

Parameters
long nr the bit to change

volatile unsigned long * addr the address to start counting from

38 Chapter 1. Core utilities

Linux Core-api Documentation

Description
Unlike change_bit(), this function is non-atomic. If it is called on the same region
of memory concurrently, the effect may be that only one operation succeeds.

bool __test_and_set_bit(long nr, volatile unsigned long * addr)
Set a bit and return its old value

Parameters
long nr Bit to set

volatile unsigned long * addr Address to count from

Description
This operation is non-atomic. If two instances of this operation race, one can ap-
pear to succeed but actually fail.

bool __test_and_clear_bit(long nr, volatile unsigned long * addr)
Clear a bit and return its old value

Parameters
long nr Bit to clear

volatile unsigned long * addr Address to count from

Description
This operation is non-atomic. If two instances of this operation race, one can ap-
pear to succeed but actually fail.

bool __test_and_change_bit(long nr, volatile unsigned long * addr)
Change a bit and return its old value

Parameters
long nr Bit to change

volatile unsigned long * addr Address to count from

Description
This operation is non-atomic. If two instances of this operation race, one can ap-
pear to succeed but actually fail.

bool test_bit(long nr, const volatile unsigned long * addr)
Determine whether a bit is set

Parameters
long nr bit number to test

const volatile unsigned long * addr Address to start counting from

void clear_bit_unlock(long nr, volatile unsigned long * addr)
Clear a bit in memory, for unlock

Parameters
long nr the bit to set

volatile unsigned long * addr the address to start counting from

1.1. The Linux Kernel API 39

Linux Core-api Documentation

Description
This operation is atomic and provides release barrier semantics.

void __clear_bit_unlock(long nr, volatile unsigned long * addr)
Clears a bit in memory

Parameters
long nr Bit to clear

volatile unsigned long * addr Address to start counting from

Description
This is a non-atomic operation but implies a release barrier before the memory
operation. It can be used for an unlock if no other CPUs can concurrently modify
other bits in the word.

bool test_and_set_bit_lock(long nr, volatile unsigned long * addr)
Set a bit and return its old value, for lock

Parameters
long nr Bit to set

volatile unsigned long * addr Address to count from

Description
This operation is atomic and provides acquire barrier semantics if the returned
value is 0. It can be used to implement bit locks.

bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long
* addr)

Clear a bit in memory and test if bottom byte is negative, for unlock.

Parameters
long nr the bit to clear

volatile unsigned long * addr the address to start counting from

Description
This operation is atomic and provides release barrier semantics.

This is a bit of a one-trick-pony for the filemap code, which clears PG_locked and
tests PG_waiters,

Bitmap Operations

bitmaps provide an array of bits, implemented using an an array of unsigned longs.
The number of valid bits in a given bitmap does _not_ need to be an exact multiple
of BITS_PER_LONG.

The possible unused bits in the last, partially used word of a bitmap are ‘don’t
care’. The implementationmakes no particular effort to keep them zero. It ensures
that their value will not affect the results of any operation. The bitmap operations
that return Boolean (bitmap_empty, for example) or scalar (bitmap_weight, for
example) results carefully filter out these unused bits from impacting their results.

40 Chapter 1. Core utilities

Linux Core-api Documentation

The byte ordering of bitmaps is more natural on little endian architectures. See
the big-endian headers include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
for the best explanations of this ordering.

The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used to declare
an array named‘name’of just enough unsigned longs to contain all bit positions
from 0 to ‘bits’- 1.
The available bitmap operations and their rough meaning in the case that the
bitmap is a single unsigned long are thus:

The generated code is more efficient when nbits is known at compile-time and at
most BITS_PER_LONG.

bitmap_zero(dst, nbits) *dst = 0UL
bitmap_fill(dst, nbits) *dst = ~0UL
bitmap_copy(dst, src, nbits) *dst = *src
bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
bitmap_complement(dst, src, nbits) *dst = ~(*src)
bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
bitmap_empty(src, nbits) Are all bits zero in *src?
bitmap_full(src, nbits) Are all bits set in *src?
bitmap_weight(src, nbits) Hamming Weight: number set bits
bitmap_set(dst, pos, nbits) Set specified bit area
bitmap_clear(dst, pos, nbits) Clear specified bit area
bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above
bitmap_next_clear_region(map, :c:type:`start`, :c:type:`end`, nbits) Find␣
↪→next clear region
bitmap_next_set_region(map, :c:type:`start`, :c:type:`end`, nbits) Find␣
↪→next set region
bitmap_for_each_clear_region(map, rs, re, start, end)

Iterate over all clear regions
bitmap_for_each_set_region(map, rs, re, start, end)

Iterate over all set regions
bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy␣
↪→rest
bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) |␣
↪→(*new & *mask)
bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel␣
↪→buf
bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel␣
↪→buf
bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region

(continues on next page)

1.1. The Linux Kernel API 41

Linux Core-api Documentation

(continued from previous page)
bitmap_release_region(bitmap, pos, order) Free specified bit region
bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to␣
↪→dst
bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[]␣
↪→dst
bitmap_get_value8(map, start) Get 8bit value from map at␣
↪→start
bitmap_set_value8(map, value, start) Set 8bit value to map at start

Note, bitmap_zero() and bitmap_fill() operate over the region of unsigned longs,
that is, bits behind bitmap till the unsigned long boundary will be zeroed or filled
as well. Consider to use bitmap_clear() or bitmap_set() to make explicit zeroing or
filling respectively.

Also the following operations in asm/bitops.h apply to bitmaps.:

set_bit(bit, addr) *addr |= bit
clear_bit(bit, addr) *addr &= ~bit
change_bit(bit, addr) *addr ^= bit
test_bit(bit, addr) Is bit set in *addr?
test_and_set_bit(bit, addr) Set bit and return old value
test_and_clear_bit(bit, addr) Clear bit and return old value
test_and_change_bit(bit, addr) Change bit and return old value
find_first_zero_bit(addr, nbits) Position first zero bit in *addr
find_first_bit(addr, nbits) Position first set bit in *addr
find_next_zero_bit(addr, nbits, bit)

Position next zero bit in *addr >= bit
find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
find_next_and_bit(addr1, addr2, nbits, bit)

Same as find_next_bit, but in
(*addr1 & *addr2)

void __bitmap_shift_right(unsigned long * dst, const unsigned long * src,
unsigned shift, unsigned nbits)

logical right shift of the bits in a bitmap

Parameters
unsigned long * dst destination bitmap

const unsigned long * src source bitmap

unsigned shift shift by this many bits

unsigned nbits bitmap size, in bits

Description
Shifting right (dividing) means moving bits in the MS -> LS bit direction. Zeros
are fed into the vacated MS positions and the LS bits shifted off the bottom are
lost.

void __bitmap_shift_left(unsigned long * dst, const unsigned long * src,
unsigned int shift, unsigned int nbits)

logical left shift of the bits in a bitmap

Parameters

42 Chapter 1. Core utilities

Linux Core-api Documentation

unsigned long * dst destination bitmap

const unsigned long * src source bitmap

unsigned int shift shift by this many bits

unsigned int nbits bitmap size, in bits

Description
Shifting left (multiplying) means moving bits in the LS -> MS direction. Zeros are
fed into the vacated LS bit positions and those MS bits shifted off the top are lost.

void bitmap_cut(unsigned long * dst, const unsigned long * src, unsigned
int first, unsigned int cut, unsigned int nbits)

remove bit region from bitmap and right shift remaining bits

Parameters
unsigned long * dst destination bitmap, might overlap with src

const unsigned long * src source bitmap

unsigned int first start bit of region to be removed

unsigned int cut number of bits to remove

unsigned int nbits bitmap size, in bits

Description
Set the n-th bit of dst iff the n-th bit of src is set and n is less than first, or the
m-th bit of src is set for any m such that first <= n < nbits, and m = n + cut.
In pictures, example for a big-endian 32-bit architecture:

The src bitmap is:

31 63
| |
10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101

| | | |
16 14 0 32

if cut is 3, and first is 14, bits 14-16 in src are cut and dst is:

31 63
| |
10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010

| | |
14 (bit 17 0 32

from @src)

Note that dst and src might overlap partially or entirely.
This is implemented in the obvious way, with a shift and carry step for each moved
bit. Optimisation is left as an exercise for the compiler.

1.1. The Linux Kernel API 43

Linux Core-api Documentation

unsigned long bitmap_find_next_zero_area_off(unsigned long * map,
unsigned long size,
unsigned long start, un-
signed int nr, unsigned
long align_mask, un-
signed long align_offset)

find a contiguous aligned zero area

Parameters
unsigned long * map The address to base the search on

unsigned long size The bitmap size in bits

unsigned long start The bitnumber to start searching at

unsigned int nr The number of zeroed bits we’re looking for
unsigned long align_mask Alignment mask for zero area

unsigned long align_offset Alignment offset for zero area.

Description
The align_mask should be one less than a power of 2; the effect is that the bit
offset of all zero areas this function finds plus align_offset is multiple of that power
of 2.

int bitmap_parse_user(const char __user * ubuf, unsigned int ulen, un-
signed long * maskp, int nmaskbits)

convert an ASCII hex string in a user buffer into a bitmap

Parameters
const char __user * ubuf pointer to user buffer containing string.

unsigned int ulen buffer size in bytes. If string is smaller than this then it must
be terminated with a 0.

unsigned long * maskp pointer to bitmap array that will contain result.

int nmaskbits size of bitmap, in bits.

int bitmap_print_to_pagebuf(bool list, char * buf, const unsigned long
* maskp, int nmaskbits)

convert bitmap to list or hex format ASCII string

Parameters
bool list indicates whether the bitmap must be list

char * buf page aligned buffer into which string is placed

const unsigned long * maskp pointer to bitmap to convert

int nmaskbits size of bitmap, in bits

Description
Output format is a comma-separated list of decimal numbers and ranges if list is
specified or hex digits grouped into comma-separated sets of 8 digits/set. Returns
the number of characters written to buf.

44 Chapter 1. Core utilities

Linux Core-api Documentation

It is assumed that buf is a pointer into a PAGE_SIZE, page-aligned
area and that sufficient storage remains at buf to accommodate the
bitmap_print_to_pagebuf() output. Returns the number of characters actually
printed to buf, excluding terminating ‘0’.
int bitmap_parselist(const char * buf, unsigned long * maskp,

int nmaskbits)
convert list format ASCII string to bitmap

Parameters
const char * buf read user string from this buffer; must be terminated with a 0

or n.

unsigned long * maskp write resulting mask here

int nmaskbits number of bits in mask to be written

Description
Input format is a comma-separated list of decimal numbers and ranges. Consecu-
tively set bits are shown as two hyphen-separated decimal numbers, the smallest
and largest bit numbers set in the range. Optionally each range can be postfixed
to denote that only parts of it should be set. The range will divided to groups of
specific size. From each group will be used only defined amount of bits. Syntax:
range:used_size/group_size

Example
0-1023:2/256 ==> 0,1,256,257,512,513,768,769

Return
0 on success, -errno on invalid input strings. Error values:

• -EINVAL: wrong region format

• -EINVAL: invalid character in string

• -ERANGE: bit number specified too large for mask

• -EOVERFLOW: integer overflow in the input parameters

int bitmap_parselist_user(const char __user * ubuf, unsigned int ulen, un-
signed long * maskp, int nmaskbits)

Parameters
const char __user * ubuf pointer to user buffer containing string.

unsigned int ulen buffer size in bytes. If string is smaller than this then it must
be terminated with a 0.

unsigned long * maskp pointer to bitmap array that will contain result.

int nmaskbits size of bitmap, in bits.

Description
Wrapper for bitmap_parselist(), providing it with user buffer.

int bitmap_parse(const char * start, unsigned int buflen, unsigned long
* maskp, int nmaskbits)

convert an ASCII hex string into a bitmap.

1.1. The Linux Kernel API 45

Linux Core-api Documentation

Parameters
const char * start pointer to buffer containing string.

unsigned int buflen buffer size in bytes. If string is smaller than this then it
must be terminated with a 0 or n. In that case, UINT_MAX may be provided
instead of string length.

unsigned long * maskp pointer to bitmap array that will contain result.

int nmaskbits size of bitmap, in bits.

Description
Commas group hex digits into chunks. Each chunk defines exactly 32 bits of the
resultant bitmask. No chunk may specify a value larger than 32 bits (-EOVERFLOW),
and if a chunk specifies a smaller value then leading 0-bits are prepended. -EINVAL
is returned for illegal characters. Grouping such as“1„5”,“,44”,“,”or“”is
allowed. Leading, embedded and trailing whitespace accepted.

int bitmap_find_free_region(unsigned long * bitmap, unsigned int bits,
int order)

find a contiguous aligned mem region

Parameters
unsigned long * bitmap array of unsigned longs corresponding to the bitmap

unsigned int bits number of bits in the bitmap

int order region size (log base 2 of number of bits) to find

Description
Find a region of free (zero) bits in a bitmap of bits bits and allocate them (set
them to one). Only consider regions of length a power (order) of two, aligned to
that power of two, which makes the search algorithm much faster.

Return the bit offset in bitmap of the allocated region, or -errno on failure.

void bitmap_release_region(unsigned long * bitmap, unsigned int pos,
int order)

release allocated bitmap region

Parameters
unsigned long * bitmap array of unsigned longs corresponding to the bitmap

unsigned int pos beginning of bit region to release

int order region size (log base 2 of number of bits) to release

Description
This is the complement to __bitmap_find_free_region() and releases the found re-
gion (by clearing it in the bitmap).

No return value.

int bitmap_allocate_region(unsigned long * bitmap, unsigned int pos,
int order)

allocate bitmap region

Parameters

46 Chapter 1. Core utilities

Linux Core-api Documentation

unsigned long * bitmap array of unsigned longs corresponding to the bitmap

unsigned int pos beginning of bit region to allocate

int order region size (log base 2 of number of bits) to allocate

Description
Allocate (set bits in) a specified region of a bitmap.

Return 0 on success, or -EBUSY if specified region wasn’t free (not all bits were
zero).

void bitmap_copy_le(unsigned long * dst, const unsigned long * src, un-
signed int nbits)

copy a bitmap, putting the bits into little-endian order.

Parameters
unsigned long * dst destination buffer

const unsigned long * src bitmap to copy

unsigned int nbits number of bits in the bitmap

Description
Require nbits % BITS_PER_LONG == 0.

void bitmap_from_arr32(unsigned long * bitmap, const u32 * buf, unsigned
int nbits)

copy the contents of u32 array of bits to bitmap

Parameters
unsigned long * bitmap array of unsigned longs, the destination bitmap

const u32 * buf array of u32 (in host byte order), the source bitmap

unsigned int nbits number of bits in bitmap
void bitmap_to_arr32(u32 * buf, const unsigned long * bitmap, unsigned

int nbits)
copy the contents of bitmap to a u32 array of bits

Parameters
u32 * buf array of u32 (in host byte order), the dest bitmap

const unsigned long * bitmap array of unsigned longs, the source bitmap

unsigned int nbits number of bits in bitmap
int bitmap_pos_to_ord(const unsigned long * buf, unsigned int pos, un-

signed int nbits)
find ordinal of set bit at given position in bitmap

Parameters
const unsigned long * buf pointer to a bitmap

unsigned int pos a bit position in buf (0 <= pos < nbits)
unsigned int nbits number of valid bit positions in buf

1.1. The Linux Kernel API 47

Linux Core-api Documentation

Description
Map the bit at position pos in buf (of length nbits) to the ordinal of which set bit
it is. If it is not set or if pos is not a valid bit position, map to -1.
If for example, just bits 4 through 7 are set in buf, then pos values 4 through 7 will
get mapped to 0 through 3, respectively, and other pos values will get mapped to
-1. When pos value 7 gets mapped to (returns) ord value 3 in this example, that
means that bit 7 is the 3rd (starting with 0th) set bit in buf.
The bit positions 0 through bits are valid positions in buf.
unsigned int bitmap_ord_to_pos(const unsigned long * buf, unsigned

int ord, unsigned int nbits)
find position of n-th set bit in bitmap

Parameters
const unsigned long * buf pointer to bitmap

unsigned int ord ordinal bit position (n-th set bit, n >= 0)

unsigned int nbits number of valid bit positions in buf
Description
Map the ordinal offset of bit ord in buf to its position in buf. Value of ord should
be in range 0 <= ord < weight(buf). If ord >= weight(buf), returns nbits.
If for example, just bits 4 through 7 are set in buf, then ord values 0 through
3 will get mapped to 4 through 7, respectively, and all other ord values returns
nbits. When ord value 3 gets mapped to (returns) pos value 7 in this example,
that means that the 3rd set bit (starting with 0th) is at position 7 in buf.
The bit positions 0 through nbits-1 are valid positions in buf.
void bitmap_remap(unsigned long * dst, const unsigned long * src, const un-

signed long * old, const unsigned long * new, unsigned
int nbits)

Apply map defined by a pair of bitmaps to another bitmap

Parameters
unsigned long * dst remapped result

const unsigned long * src subset to be remapped

const unsigned long * old defines domain of map

const unsigned long * new defines range of map

unsigned int nbits number of bits in each of these bitmaps

Description
Let old and new define a mapping of bit positions, such that whatever position is
held by the n-th set bit in old is mapped to the n-th set bit in new. In the more
general case, allowing for the possibility that the weight ‘w’of new is less than
the weight of old, map the position of the n-th set bit in old to the position of the
m-th set bit in new, where m == n % w.

If either of the old and new bitmaps are empty, or if src and dst point to the same
location, then this routine copies src to dst.

48 Chapter 1. Core utilities

Linux Core-api Documentation

The positions of unset bits in old are mapped to themselves (the identify map).
Apply the above specified mapping to src, placing the result in dst, clearing any
bits previously set in dst.
For example, lets say that old has bits 4 through 7 set, and new has bits 12 through
15 set. This defines the mapping of bit position 4 to 12, 5 to 13, 6 to 14 and 7 to
15, and of all other bit positions unchanged. So if say src comes into this routine
with bits 1, 5 and 7 set, then dst should leave with bits 1, 13 and 15 set.
int bitmap_bitremap(int oldbit, const unsigned long * old, const unsigned

long * new, int bits)
Apply map defined by a pair of bitmaps to a single bit

Parameters
int oldbit bit position to be mapped

const unsigned long * old defines domain of map

const unsigned long * new defines range of map

int bits number of bits in each of these bitmaps

Description
Let old and new define a mapping of bit positions, such that whatever position is
held by the n-th set bit in old is mapped to the n-th set bit in new. In the more
general case, allowing for the possibility that the weight ‘w’of new is less than
the weight of old, map the position of the n-th set bit in old to the position of the
m-th set bit in new, where m == n % w.

The positions of unset bits in old are mapped to themselves (the identify map).
Apply the above specified mapping to bit position oldbit, returning the new bit
position.

For example, lets say that old has bits 4 through 7 set, and new has bits 12 through
15 set. This defines the mapping of bit position 4 to 12, 5 to 13, 6 to 14 and 7 to
15, and of all other bit positions unchanged. So if say oldbit is 5, then this routine
returns 13.

void bitmap_onto(unsigned long * dst, const unsigned long * orig, const un-
signed long * relmap, unsigned int bits)

translate one bitmap relative to another

Parameters
unsigned long * dst resulting translated bitmap

const unsigned long * orig original untranslated bitmap

const unsigned long * relmap bitmap relative to which translated

unsigned int bits number of bits in each of these bitmaps

Description
Set the n-th bit of dst iff there exists some m such that the n-th bit of relmap is
set, the m-th bit of orig is set, and the n-th bit of relmap is also the m-th _set_ bit
of relmap. (If you understood the previous sentence the first time your read it,
you’re overqualified for your current job.)

1.1. The Linux Kernel API 49

Linux Core-api Documentation

In other words, orig is mapped onto (surjectively) dst, using the map { <n, m> |
the n-th bit of relmap is the m-th set bit of relmap }.
Any set bits in orig above bit number W, where W is the weight of (number of set
bits in) relmap are mapped nowhere. In particular, if for all bits m set in orig,
m >= W, then dst will end up empty. In situations where the possibility of such
an empty result is not desired, one way to avoid it is to use the bitmap_fold()
operator, below, to first fold the orig bitmap over itself so that all its set bits x are
in the range 0 <= x < W. The bitmap_fold() operator does this by setting the bit
(m % W) in dst, for each bit (m) set in orig.
Example [1] for bitmap_onto(): Let’s say relmap has bits 30-39 set, and orig

has bits 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, dst will
have bits 31, 33, 35, 37 and 39 set.

When bit 0 is set in orig, it means turn on the bit in dst corresponding to
whatever is the first bit (if any) that is turned on in relmap. Since bit 0 was
off in the above example, we leave off that bit (bit 30) in dst.
When bit 1 is set in orig (as in the above example), it means turn on the bit in
dst corresponding to whatever is the second bit that is turned on in relmap.
The second bit in relmap that was turned on in the above example was bit
31, so we turned on bit 31 in dst.
Similarly, we turned on bits 33, 35, 37 and 39 in dst, because they were the
4th, 6th, 8th and 10th set bits set in relmap, and the 4th, 6th, 8th and 10th
bits of orig (i.e. bits 3, 5, 7 and 9) were also set.
When bit 11 is set in orig, it means turn on the bit in dst corresponding to
whatever is the twelfth bit that is turned on in relmap. In the above example,
there were only ten bits turned on in relmap (30..39), so that bit 11 was set
in orig had no affect on dst.

Example [2] for bitmap_fold() + bitmap_onto(): Let’s say relmap has these
ten bits set:

40 41 42 43 45 48 53 61 74 95

(for the curious, that’s 40 plus the first ten terms of the Fibonacci sequence.)
Further lets say we use the following code, invoking bitmap_fold() then
bitmap_onto, as suggested above to avoid the possibility of an empty dst re-
sult:

unsigned long *tmp; // a temporary bitmap's bits

bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
bitmap_onto(dst, tmp, relmap, bits);

Then this table shows what various values of dst would be, for various orig’
s. I list the zero-based positions of each set bit. The tmp column shows the
intermediate result, as computed by using bitmap_fold() to fold the orig
bitmap modulo ten (the weight of relmap):

50 Chapter 1. Core utilities

Linux Core-api Documentation

orig tmp dst
0 0 40
1 1 41
9 9 95
10 0 401
1 3 5 7 1 3 5 7 41 43 48 61
0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
0 9 18 27 0 9 8 7 40 61 74 95
0 10 20 30 0 40
0 11 22 33 0 1 2 3 40 41 42 43
0 12 24 36 0 2 4 6 40 42 45 53
78 102 211 1 2 8 41 42 741

If either of orig or relmap is empty (no set bits), then dst will be returned empty.
If (as explained above) the only set bits in orig are in positions m where m >= W,
(where W is the weight of relmap) then dst will once again be returned empty.
All bits in dst not set by the above rule are cleared.
void bitmap_fold(unsigned long * dst, const unsigned long * orig, unsigned

int sz, unsigned int nbits)
fold larger bitmap into smaller, modulo specified size

Parameters
unsigned long * dst resulting smaller bitmap

const unsigned long * orig original larger bitmap

unsigned int sz specified size

unsigned int nbits number of bits in each of these bitmaps

Description
For each bit oldbit in orig, set bit oldbit mod sz in dst. Clear all other bits in dst.
See further the comment and Example [2] for bitmap_onto() for why and how to
use this.

unsigned long bitmap_find_next_zero_area(unsigned long * map, un-
signed long size, unsigned
long start, unsigned int nr,
unsigned long align_mask)

find a contiguous aligned zero area

Parameters
unsigned long * map The address to base the search on

unsigned long size The bitmap size in bits

unsigned long start The bitnumber to start searching at

unsigned int nr The number of zeroed bits we’re looking for
1 For these marked lines, if we hadn’t first done bitmap_fold() into tmp, then the dst result

would have been empty.

1.1. The Linux Kernel API 51

Linux Core-api Documentation

unsigned long align_mask Alignment mask for zero area

Description
The align_mask should be one less than a power of 2; the effect is that the
bit offset of all zero areas this function finds is multiples of that power of 2. A
align_mask of 0 means no alignment is required.
bool bitmap_or_equal(const unsigned long * src1, const unsigned long

* src2, const unsigned long * src3, unsigned
int nbits)

Check whether the or of two bitmaps is equal to a third

Parameters
const unsigned long * src1 Pointer to bitmap 1

const unsigned long * src2 Pointer to bitmap 2 will be or’ed with bitmap 1
const unsigned long * src3 Pointer to bitmap 3. Compare to the result of

*src1 | *src2
unsigned int nbits number of bits in each of these bitmaps

Return
True if (*src1 | *src2) == *src3, false otherwise
BITMAP_FROM_U64(n)

Represent u64 value in the format suitable for bitmap.

Parameters
n u64 value

Description
Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit integers in 32-bit
environment, and 64-bit integers in 64-bit one.

There are four combinations of endianness and length of the word in linux ABIs:
LE64, BE64, LE32 and BE32.

On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in bitmaps and
therefore don’t require any special handling.
On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory prior
to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the other hand is
represented as an array of 32-bit words and the position of bit N may therefore
be calculated as: word #(N/32) and bit #(N``32``) in that word. For example, bit
#42 is located at 10th position of 2nd word. It matches 32-bit LE ABI, and we can
simply let the compiler store 64-bit values in memory as it usually does. But for
BE we need to swap hi and lo words manually.

With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and lo
parts of u64. For LE32 it does nothing, and for BE environment it swaps hi and lo
words, as is expected by bitmap.

void bitmap_from_u64(unsigned long * dst, u64 mask)
Check and swap words within u64.

Parameters

52 Chapter 1. Core utilities

Linux Core-api Documentation

unsigned long * dst destination bitmap

u64 mask source bitmap

Description
In 32-bit Big Endian kernel, when using (u32 *)(:c:type:`val`)[*] to read u64
mask, we will get the wrong word. That is (u32 *)(:c:type:`val`)[0] gets the
upper 32 bits, but we expect the lower 32-bits of u64.

unsigned long bitmap_get_value8(const unsigned long * map, unsigned
long start)

get an 8-bit value within a memory region

Parameters
const unsigned long * map address to the bitmap memory region

unsigned long start bit offset of the 8-bit value; must be a multiple of 8

Description
Returns the 8-bit value located at the start bit offset within the srcmemory region.

void bitmap_set_value8(unsigned long * map, unsigned long value, un-
signed long start)

set an 8-bit value within a memory region

Parameters
unsigned long * map address to the bitmap memory region

unsigned long value the 8-bit value; values wider than 8 bits may clobber
bitmap

unsigned long start bit offset of the 8-bit value; must be a multiple of 8

Command-line Parsing

int get_option(char ** str, int * pint)
Parse integer from an option string

Parameters
char ** str option string

int * pint (output) integer value parsed from str
Read an int from an option string; if available accept a subsequent comma as
well.

Return values: 0 - no int in string 1 - int found, no subsequent comma 2 - int
found including a subsequent comma 3 - hyphen found to denote a range

char * get_options(const char * str, int nints, int * ints)
Parse a string into a list of integers

Parameters
const char * str String to be parsed

1.1. The Linux Kernel API 53

Linux Core-api Documentation

int nints size of integer array

int * ints integer array

This function parses a string containing a comma-separated list of integers, a
hyphen-separated range of _positive_ integers, or a combination of both. The
parse halts when the array is full, or when no more numbers can be retrieved
from the string.

Return value is the character in the string which caused the parse to end
(typically a null terminator, if str is completely parseable).

unsigned long long memparse(const char * ptr, char ** retptr)
parse a string with mem suffixes into a number

Parameters
const char * ptr Where parse begins

char ** retptr (output) Optional pointer to next char after parse completes

Parses a string into a number. The number stored at ptr is potentially suffixed
with K, M, G, T, P, E.

Sorting

void sort_r(void * base, size_t num, size_t size, cmp_r_func_t cmp_func,
swap_func_t swap_func, const void * priv)

sort an array of elements

Parameters
void * base pointer to data to sort

size_t num number of elements

size_t size size of each element

cmp_r_func_t cmp_func pointer to comparison function

swap_func_t swap_func pointer to swap function or NULL

const void * priv third argument passed to comparison function

Description
This function does a heapsort on the given array. You may provide a swap_func
function if you need to do something more than a memory copy (e.g. fix up pointers
or auxiliary data), but the built-in swap avoids a slow retpoline and so is signifi-
cantly faster.

Sorting time is O(n log n) both on average and worst-case. While quicksort is
slightly faster on average, it suffers from exploitable O(n*n) worst-case behavior
and extra memory requirements that make it less suitable for kernel use.

void list_sort(void * priv, struct list_head * head, int (*cmp)(void *priv,
struct list_head *a, struct list_head *b))

sort a list

Parameters

54 Chapter 1. Core utilities

Linux Core-api Documentation

void * priv private data, opaque to list_sort(), passed to cmp
struct list_head * head the list to sort

int (*)(void *priv, struct list_head *a, struct list_head *b) cmp the
elements comparison function

Description
The comparison funtion cmp must return > 0 if a should sort after b (“a > b”if
you want an ascending sort), and <= 0 if a should sort before b or their original
order should be preserved. It is always called with the element that came first in
the input in a, and list_sort is a stable sort, so it is not necessary to distinguish the
a < b and a == b cases.
This is compatible with two styles of cmp function: - The traditional style which
returns <0 / =0 / >0, or - Returning a boolean 0/1. The latter offers a chance
to save a few cycles in the comparison (which is used by e.g. plug_ctx_cmp() in
block/blk-mq.c).

A good way to write a multi-word comparison is:

if (a->high != b->high)
return a->high > b->high;

if (a->middle != b->middle)
return a->middle > b->middle;

return a->low > b->low;

This mergesort is as eager as possible while always performing at least 2:1 bal-
anced merges. Given two pending sublists of size 2^k, they are merged to a size-
2^(k+1) list as soon as we have 2^k following elements.

Thus, it will avoid cache thrashing as long as 3*2^k elements can fit into the cache.
Not quite as good as a fully-eager bottom-upmergesort, but it does use 0.2*n fewer
comparisons, so is faster in the common case that everything fits into L1.

The merging is controlled by “count”, the number of elements in the pending
lists. This is beautiully simple code, but rather subtle.

Each time we increment“count”, we set one bit (bit k) and clear bits k-1 .. 0. Each
time this happens (except the very first time for each bit, when count increments
to 2^k), we merge two lists of size 2^k into one list of size 2^(k+1).

This merge happens exactly when the count reaches an odd multiple of 2^k, which
is when we have 2^k elements pending in smaller lists, so it’s safe to merge away
two lists of size 2^k.

After this happens twice, we have created two lists of size 2^(k+1), which will be
merged into a list of size 2^(k+2) before we create a third list of size 2^(k+1), so
there are never more than two pending.

The number of pending lists of size 2^k is determined by the state of bit k of
“count”plus two extra pieces of information:

• The state of bit k-1 (when k == 0, consider bit -1 always set), and

• Whether the higher-order bits are zero or non-zero (i.e. is count >= 2^(k+1)).

There are six states we distinguish. “x”represents some arbitrary bits, and “y”
represents some arbitrary non-zero bits: 0: 00x: 0 pending of size 2^k; x pending

1.1. The Linux Kernel API 55

Linux Core-api Documentation

of sizes < 2^k 1: 01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k 2:
x10x: 0 pending of size 2^k; 2^k + x pending of sizes < 2^k 3: x11x: 1 pending of
size 2^k; 2^(k-1) + x pending of sizes < 2^k 4: y00x: 1 pending of size 2^k; 2^k
+ x pending of sizes < 2^k 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending
of sizes < 2^k (merge and loop back to state 2)

We gain lists of size 2^k in the 2->3 and 4->5 transitions (because bit k-1 is set
while the more significant bits are non-zero) and merge them away in the 5->2
transition. Note in particular that just before the 5->2 transition, all lower-order
bits are 11 (state 3), so there is one list of each smaller size.

When we reach the end of the input, we merge all the pending lists, from smallest
to largest. If you work through cases 2 to 5 above, you can see that the number
of elements we merge with a list of size 2^k varies from 2^(k-1) (cases 3 and 5
when x == 0) to 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1).

Text Searching

INTRODUCTION

The textsearch infrastructure provides text searching facilities for both
linear and non-linear data. Individual search algorithms are imple-
mented in modules and chosen by the user.

ARCHITECTURE

User
+----------------+
| finish()|<--------------(6)-----------------+
|get_next_block()|<--------------(5)---------------+ |
| | Algorithm | |
| | +------------------------------+
| | | init() find() destroy() |
| | +------------------------------+
| | Core API ^ ^ ^
| | +---------------+ (2) (4) (8)
| (1)|----->| prepare() |---+ | |
| (3)|----->| find()/next() |-----------+ |
| (7)|----->| destroy() |----------------------+
+----------------+ +---------------+

(1) User configures a search by calling textsearch_prepare() specifying
the search parameters such as the pattern and algorithm name.

(2) Core requests the algorithm to allocate and initialize a search
configuration according to the specified parameters.

(3) User starts the search(es) by calling textsearch_find() or
textsearch_next() to fetch subsequent occurrences. A state variable
is provided to the algorithm to store persistent variables.

(4) Core eventually resets the search offset and forwards the find()
request to the algorithm.

(5) Algorithm calls get_next_block() provided by the user continuously
to fetch the data to be searched in block by block.

(6) Algorithm invokes finish() after the last call to get_next_block
to clean up any leftovers from get_next_block. (Optional)

(7) User destroys the configuration by calling textsearch_destroy().
(continues on next page)

56 Chapter 1. Core utilities

Linux Core-api Documentation

(continued from previous page)
(8) Core notifies the algorithm to destroy algorithm specific

allocations. (Optional)

USAGE

Before a search can be performed, a configuration must be created by
calling textsearch_prepare() specifying the searching algorithm, the
pattern to look for and flags. As a flag, you can set TS_IGNORECASE to
perform case insensitive matching. But it might slow down performance
of algorithm, so you should use it at own your risk. The returned con-
figuration may then be used for an arbitrary amount of times and even
in parallel as long as a separate struct ts_state variable is provided to
every instance.

The actual search is performed by either calling
textsearch_find_continuous() for linear data or by providing an
own get_next_block() implementation and calling textsearch_find().
Both functions return the position of the first occurrence of the pattern
or UINT_MAX if no match was found. Subsequent occurrences can be
found by calling textsearch_next() regardless of the linearity of the
data.

Once you’re done using a configuration it must be given back via
textsearch_destroy.

EXAMPLE:

int pos;
struct ts_config *conf;
struct ts_state state;
const char *pattern = "chicken";
const char *example = "We dance the funky chicken";

conf = textsearch_prepare("kmp", pattern, strlen(pattern),
GFP_KERNEL, TS_AUTOLOAD);

if (IS_ERR(conf)) {
err = PTR_ERR(conf);
goto errout;

}

pos = textsearch_find_continuous(conf, &state, example, strlen(example));
if (pos != UINT_MAX)

panic("Oh my god, dancing chickens at %d\n", pos);

textsearch_destroy(conf);

int textsearch_register(struct ts_ops * ops)
register a textsearch module

Parameters
struct ts_ops * ops operations lookup table

Description
This function must be called by textsearch modules to announce their presence.
The specified &**ops** must have name set to a unique identifier and the callbacks

1.1. The Linux Kernel API 57

Linux Core-api Documentation

find(), init(), get_pattern(), and get_pattern_len() must be implemented.

Returns 0 or -EEXISTS if another module has already registered with same name.

int textsearch_unregister(struct ts_ops * ops)
unregister a textsearch module

Parameters
struct ts_ops * ops operations lookup table

Description
This function must be called by textsearch modules to announce their disappear-
ance for examples when the module gets unloaded. The ops parameter must be
the same as the one during the registration.

Returns 0 on success or -ENOENT if no matching textsearch registration was
found.

unsigned int textsearch_find_continuous(struct ts_config * conf, struct
ts_state * state, const void
* data, unsigned int len)

search a pattern in continuous/linear data

Parameters
struct ts_config * conf search configuration

struct ts_state * state search state

const void * data data to search in

unsigned int len length of data

Description
A simplified version of textsearch_find() for continuous/linear data. Call
textsearch_next() to retrieve subsequent matches.

Returns the position of first occurrence of the pattern or UINT_MAX if no occurrence
was found.

struct ts_config * textsearch_prepare(const char * algo, const void
* pattern, unsigned int len,
gfp_t gfp_mask, int flags)

Prepare a search

Parameters
const char * algo name of search algorithm

const void * pattern pattern data

unsigned int len length of pattern

gfp_t gfp_mask allocation mask

int flags search flags

Description

58 Chapter 1. Core utilities

Linux Core-api Documentation

Looks up the search algorithm module and creates a new textsearch configuration
for the specified pattern.

Returns a new textsearch configuration according to the specified parameters or
a ERR_PTR(). If a zero length pattern is passed, this function returns EINVAL.

Note
The format of the pattern may not be compatible between the various

search algorithms.

void textsearch_destroy(struct ts_config * conf)
destroy a search configuration

Parameters
struct ts_config * conf search configuration

Description
Releases all references of the configuration and frees up the memory.

unsigned int textsearch_next(struct ts_config * conf, struct ts_state
* state)

continue searching for a pattern

Parameters
struct ts_config * conf search configuration

struct ts_state * state search state

Description
Continues a search looking for more occurrences of the pattern.
textsearch_find() must be called to find the first occurrence in order to
reset the state.

Returns the position of the next occurrence of the pattern or UINT_MAX if not
match was found.

unsigned int textsearch_find(struct ts_config * conf, struct ts_state
* state)

start searching for a pattern

Parameters
struct ts_config * conf search configuration

struct ts_state * state search state

Description
Returns the position of first occurrence of the pattern or UINT_MAX if no match
was found.

void * textsearch_get_pattern(struct ts_config * conf)
return head of the pattern

Parameters
struct ts_config * conf search configuration

1.1. The Linux Kernel API 59

Linux Core-api Documentation

unsigned int textsearch_get_pattern_len(struct ts_config * conf)
return length of the pattern

Parameters
struct ts_config * conf search configuration

1.1.4 CRC and Math Functions in Linux

CRC Functions

uint8_t crc4(uint8_t c, uint64_t x, int bits)
calculate the 4-bit crc of a value.

Parameters
uint8_t c starting crc4

uint64_t x value to checksum

int bits number of bits in x to checksum
Description
Returns the crc4 value of x, using polynomial 0b10111.
The x value is treated as left-aligned, and bits above bits are ignored in the crc
calculations.

u8 crc7_be(u8 crc, const u8 * buffer, size_t len)
update the CRC7 for the data buffer

Parameters
u8 crc previous CRC7 value

const u8 * buffer data pointer

size_t len number of bytes in the buffer

Context
any

Description
Returns the updated CRC7 value. The CRC7 is left-aligned in the byte (the lsbit
is always 0), as that makes the computation easier, and all callers want it in that
form.

void crc8_populate_msb(u8 table, u8 polynomial)
fill crc table for given polynomial in reverse bit order.

Parameters
u8 table table to be filled.

u8 polynomial polynomial for which table is to be filled.

void crc8_populate_lsb(u8 table, u8 polynomial)
fill crc table for given polynomial in regular bit order.

60 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
u8 table table to be filled.

u8 polynomial polynomial for which table is to be filled.

u8 crc8(const u8 table, u8 * pdata, size_t nbytes, u8 crc)
calculate a crc8 over the given input data.

Parameters
const u8 table crc table used for calculation.

u8 * pdata pointer to data buffer.

size_t nbytes number of bytes in data buffer.

u8 crc previous returned crc8 value.

u16 crc16(u16 crc, u8 const * buffer, size_t len)
compute the CRC-16 for the data buffer

Parameters
u16 crc previous CRC value

u8 const * buffer data pointer

size_t len number of bytes in the buffer

Description
Returns the updated CRC value.

u32 __pure crc32_le_generic(u32 crc, unsigned char const * p, size_t len,
const u32 (* tab, u32 polynomial)

Calculate bitwise little-endian Ethernet AUTODIN II CRC32/CRC32C

Parameters
u32 crc seed value for computation. ~0 for Ethernet, sometimes 0 for other uses,

or the previous crc32/crc32c value if computing incrementally.

unsigned char const * p pointer to buffer over which CRC32/CRC32C is run

size_t len length of buffer p
const u32 (* tab little-endian Ethernet table

u32 polynomial CRC32/CRC32c LE polynomial

u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
u32 polynomial)

Append len 0 bytes to crc, in logarithmic time
Parameters
u32 crc The original little-endian CRC (i.e. lsbit is x^31 coefficient)

size_t len The number of bytes. crc is multiplied by x^(8***len**)
u32 polynomial The modulus used to reduce the result to 32 bits.

Description

1.1. The Linux Kernel API 61

Linux Core-api Documentation

It’s possible to parallelize CRC computations by computing a CRC over separate
ranges of a buffer, then summing them. This shifts the given CRC by 8*len bits
(i.e. produces the same effect as appending len bytes of zero to the data), in time
proportional to log(len).

u32 __pure crc32_be_generic(u32 crc, unsigned char const * p, size_t len,
const u32 (* tab, u32 polynomial)

Calculate bitwise big-endian Ethernet AUTODIN II CRC32

Parameters
u32 crc seed value for computation. ~0 for Ethernet, sometimes 0 for other uses,

or the previous crc32 value if computing incrementally.

unsigned char const * p pointer to buffer over which CRC32 is run

size_t len length of buffer p
const u32 (* tab big-endian Ethernet table

u32 polynomial CRC32 BE polynomial

u16 crc_ccitt(u16 crc, u8 const * buffer, size_t len)
recompute the CRC (CRC-CCITT variant) for the data buffer

Parameters
u16 crc previous CRC value

u8 const * buffer data pointer

size_t len number of bytes in the buffer

u16 crc_ccitt_false(u16 crc, u8 const * buffer, size_t len)
recompute the CRC (CRC-CCITT-FALSE variant) for the data buffer

Parameters
u16 crc previous CRC value

u8 const * buffer data pointer

size_t len number of bytes in the buffer

u16 crc_itu_t(u16 crc, const u8 * buffer, size_t len)
Compute the CRC-ITU-T for the data buffer

Parameters
u16 crc previous CRC value

const u8 * buffer data pointer

size_t len number of bytes in the buffer

Description
Returns the updated CRC value

62 Chapter 1. Core utilities

Linux Core-api Documentation

Base 2 log and power Functions

bool is_power_of_2(unsigned long n)
check if a value is a power of two

Parameters
unsigned long n the value to check

Description
Determine whether some value is a power of two, where zero is not considered a
power of two.

Return
true if n is a power of 2, otherwise false.
unsigned long __roundup_pow_of_two(unsigned long n)

round up to nearest power of two

Parameters
unsigned long n value to round up

unsigned long __rounddown_pow_of_two(unsigned long n)
round down to nearest power of two

Parameters
unsigned long n value to round down

const_ilog2(n)
log base 2 of 32-bit or a 64-bit constant unsigned value

Parameters
n parameter

Description
Use this where sparse expects a true constant expression, e.g. for array indices.

ilog2(n)
log base 2 of 32-bit or a 64-bit unsigned value

Parameters
n parameter

Description
constant-capable log of base 2 calculation - this can be used to initialise global
variables from constant data, hence the massive ternary operator construction

selects the appropriately-sized optimised version depending on sizeof(n)

roundup_pow_of_two(n)
round the given value up to nearest power of two

Parameters
n parameter

1.1. The Linux Kernel API 63

Linux Core-api Documentation

Description
round the given value up to the nearest power of two - the result is undefined when
n == 0 - this can be used to initialise global variables from constant data

rounddown_pow_of_two(n)
round the given value down to nearest power of two

Parameters
n parameter

Description
round the given value down to the nearest power of two - the result is undefined
when n == 0 - this can be used to initialise global variables from constant data

order_base_2(n)
calculate the (rounded up) base 2 order of the argument

Parameters
n parameter

Description
The first few values calculated by this routine: ob2(0) = 0 ob2(1) = 0 ob2(2)

= 1 ob2(3) = 2 ob2(4) = 2 ob2(5) = 3 ⋯and so on.
bits_per(n)

calculate the number of bits required for the argument

Parameters
n parameter

Description
This is constant-capable and can be used for compile time initializations, e.g bit-
fields.

The first few values calculated by this routine: bf(0) = 1 bf(1) = 1 bf(2) = 2 bf(3)
= 2 bf(4) = 3 ⋯and so on.

Integer power Functions

u64 int_pow(u64 base, unsigned int exp)
computes the exponentiation of the given base and exponent

Parameters
u64 base base which will be raised to the given power

unsigned int exp power to be raised to

Description
Computes: pow(base, exp), i.e. base raised to the exp power
unsigned long int_sqrt(unsigned long x)

computes the integer square root

Parameters

64 Chapter 1. Core utilities

Linux Core-api Documentation

unsigned long x integer of which to calculate the sqrt

Description
Computes: floor(sqrt(x))

u32 int_sqrt64(u64 x)
strongly typed int_sqrt function when minimum 64 bit input is expected.

Parameters
u64 x 64bit integer of which to calculate the sqrt

Division Functions

do_div(n, base)
returns 2 values: calculate remainder and update new dividend

Parameters
n uint64_t dividend (will be updated)

base uint32_t divisor

Description
Summary: uint32_t remainder = n % base; n = n / base;

Return
(uint32_t)remainder

NOTE
macro parameter n is evaluated multiple times, beware of side effects!
u64 div_u64_rem(u64 dividend, u32 divisor, u32 * remainder)

unsigned 64bit divide with 32bit divisor with remainder

Parameters
u64 dividend unsigned 64bit dividend

u32 divisor unsigned 32bit divisor

u32 * remainder pointer to unsigned 32bit remainder

Return
sets *remainder, then returns dividend / divisor

Description
This is commonly provided by 32bit archs to provide an optimized 64bit divide.

s64 div_s64_rem(s64 dividend, s32 divisor, s32 * remainder)
signed 64bit divide with 32bit divisor with remainder

Parameters
s64 dividend signed 64bit dividend

s32 divisor signed 32bit divisor

s32 * remainder pointer to signed 32bit remainder

1.1. The Linux Kernel API 65

Linux Core-api Documentation

Return
sets *remainder, then returns dividend / divisor

u64 div64_u64_rem(u64 dividend, u64 divisor, u64 * remainder)
unsigned 64bit divide with 64bit divisor and remainder

Parameters
u64 dividend unsigned 64bit dividend

u64 divisor unsigned 64bit divisor

u64 * remainder pointer to unsigned 64bit remainder

Return
sets *remainder, then returns dividend / divisor

u64 div64_u64(u64 dividend, u64 divisor)
unsigned 64bit divide with 64bit divisor

Parameters
u64 dividend unsigned 64bit dividend

u64 divisor unsigned 64bit divisor

Return
dividend / divisor

s64 div64_s64(s64 dividend, s64 divisor)
signed 64bit divide with 64bit divisor

Parameters
s64 dividend signed 64bit dividend

s64 divisor signed 64bit divisor

Return
dividend / divisor

u64 div_u64(u64 dividend, u32 divisor)
unsigned 64bit divide with 32bit divisor

Parameters
u64 dividend unsigned 64bit dividend

u32 divisor unsigned 32bit divisor

Description
This is the most common 64bit divide and should be used if possible, as many 32bit
archs can optimize this variant better than a full 64bit divide.

s64 div_s64(s64 dividend, s32 divisor)
signed 64bit divide with 32bit divisor

Parameters
s64 dividend signed 64bit dividend

66 Chapter 1. Core utilities

Linux Core-api Documentation

s32 divisor signed 32bit divisor

DIV64_U64_ROUND_CLOSEST(dividend, divisor)
unsigned 64bit divide with 64bit divisor rounded to nearest integer

Parameters
dividend unsigned 64bit dividend

divisor unsigned 64bit divisor

Description
Divide unsigned 64bit dividend by unsigned 64bit divisor and round to closest
integer.

Return
dividend / divisor rounded to nearest integer

s64 div_s64_rem(s64 dividend, s32 divisor, s32 * remainder)
signed 64bit divide with 64bit divisor and remainder

Parameters
s64 dividend 64bit dividend

s32 divisor 64bit divisor

s32 * remainder 64bit remainder

u64 div64_u64_rem(u64 dividend, u64 divisor, u64 * remainder)
unsigned 64bit divide with 64bit divisor and remainder

Parameters
u64 dividend 64bit dividend

u64 divisor 64bit divisor

u64 * remainder 64bit remainder

Description
This implementation is a comparable to algorithm used by div64_u64. But this
operation, which includes math for calculating the remainder, is kept distinct to
avoid slowing down the div64_u64 operation on 32bit systems.

u64 div64_u64(u64 dividend, u64 divisor)
unsigned 64bit divide with 64bit divisor

Parameters
u64 dividend 64bit dividend

u64 divisor 64bit divisor

Description
This implementation is a modified version of the algorithm proposed by the book
‘Hacker’s Delight’. The original source and full proof can be found here and is
available for use without restriction.

‘http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt’

1.1. The Linux Kernel API 67

http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt

Linux Core-api Documentation

s64 div64_s64(s64 dividend, s64 divisor)
signed 64bit divide with 64bit divisor

Parameters
s64 dividend 64bit dividend

s64 divisor 64bit divisor

unsigned long gcd(unsigned long a, unsigned long b)
calculate and return the greatest common divisor of 2 unsigned longs

Parameters
unsigned long a first value

unsigned long b second value

UUID/GUID

void generate_random_uuid(unsigned char uuid)
generate a random UUID

Parameters
unsigned char uuid where to put the generated UUID

Description
Random UUID interface

Used to create a Boot ID or a filesystem UUID/GUID, but can be useful for other
kernel drivers.

bool uuid_is_valid(const char * uuid)
checks if a UUID string is valid

Parameters
const char * uuid UUID string to check

Description
It checks if the UUID string is following the format: xxxxxxxx-xxxx-xxxx-

xxxx-xxxxxxxxxxxx

where x is a hex digit.

Return
true if input is valid UUID string.

68 Chapter 1. Core utilities

Linux Core-api Documentation

1.1.5 Kernel IPC facilities

IPC utilities

int ipc_init(void)
initialise ipc subsystem

Parameters
void no arguments

Description
The various sysv ipc resources (semaphores, messages and shared memory) are
initialised.

A callback routine is registered into the memory hotplug notifier chain: since ms-
gmni scales to lowmem this callback routine will be called upon successful memory
add / remove to recompute msmgni.

void ipc_init_ids(struct ipc_ids * ids)
initialise ipc identifiers

Parameters
struct ipc_ids * ids ipc identifier set

Description
Set up the sequence range to use for the ipc identifier range (limited below
ipc_mni) then initialise the keys hashtable and ids idr.

void ipc_init_proc_interface(const char * path, const char * header,
int ids, int (*show)(struct seq_file *, void *))

create a proc interface for sysipc types using a seq_file interface.

Parameters
const char * path Path in procfs

const char * header Banner to be printed at the beginning of the file.

int ids ipc id table to iterate.

int (*)(struct seq_file *, void *) show show routine.

struct kern_ipc_perm * ipc_findkey(struct ipc_ids * ids, key_t key)
find a key in an ipc identifier set

Parameters
struct ipc_ids * ids ipc identifier set

key_t key key to find

Description
Returns the locked pointer to the ipc structure if found or NULL otherwise. If key
is found ipc points to the owning ipc structure

Called with writer ipc_ids.rwsem held.

1.1. The Linux Kernel API 69

Linux Core-api Documentation

int ipc_addid(struct ipc_ids * ids, struct kern_ipc_perm * new, int limit)
add an ipc identifier

Parameters
struct ipc_ids * ids ipc identifier set

struct kern_ipc_perm * new new ipc permission set

int limit limit for the number of used ids

Description
Add an entry‘new’to the ipc ids idr. The permissions object is initialised and the
first free entry is set up and the index assigned is returned. The ‘new’entry is
returned in a locked state on success.

On failure the entry is not locked and a negative err-code is returned. The caller
must use ipc_rcu_putref() to free the identifier.

Called with writer ipc_ids.rwsem held.

int ipcget_new(struct ipc_namespace * ns, struct ipc_ids * ids, const struct
ipc_ops * ops, struct ipc_params * params)

create a new ipc object

Parameters
struct ipc_namespace * ns ipc namespace

struct ipc_ids * ids ipc identifier set

const struct ipc_ops * ops the actual creation routine to call

struct ipc_params * params its parameters

Description
This routine is called by sys_msgget, sys_semget() and sys_shmget() when the key
is IPC_PRIVATE.

int ipc_check_perms(struct ipc_namespace * ns, struct kern_ipc_perm
* ipcp, const struct ipc_ops * ops, struct ipc_params
* params)

check security and permissions for an ipc object

Parameters
struct ipc_namespace * ns ipc namespace

struct kern_ipc_perm * ipcp ipc permission set

const struct ipc_ops * ops the actual security routine to call

struct ipc_params * params its parameters

Description
This routine is called by sys_msgget(), sys_semget() and sys_shmget() when the
key is not IPC_PRIVATE and that key already exists in the ds IDR.

On success, the ipc id is returned.

It is called with ipc_ids.rwsem and ipcp->lock held.

70 Chapter 1. Core utilities

Linux Core-api Documentation

int ipcget_public(struct ipc_namespace * ns, struct ipc_ids * ids, const
struct ipc_ops * ops, struct ipc_params * params)

get an ipc object or create a new one

Parameters
struct ipc_namespace * ns ipc namespace

struct ipc_ids * ids ipc identifier set

const struct ipc_ops * ops the actual creation routine to call

struct ipc_params * params its parameters

Description
This routine is called by sys_msgget, sys_semget() and sys_shmget() when the key
is not IPC_PRIVATE. It adds a new entry if the key is not found and does some
permission / security checkings if the key is found.

On success, the ipc id is returned.

void ipc_kht_remove(struct ipc_ids * ids, struct kern_ipc_perm * ipcp)
remove an ipc from the key hashtable

Parameters
struct ipc_ids * ids ipc identifier set

struct kern_ipc_perm * ipcp ipc perm structure containing the key to remove

Description
ipc_ids.rwsem (as a writer) and the spinlock for this ID are held before this function
is called, and remain locked on the exit.

void ipc_rmid(struct ipc_ids * ids, struct kern_ipc_perm * ipcp)
remove an ipc identifier

Parameters
struct ipc_ids * ids ipc identifier set

struct kern_ipc_perm * ipcp ipc perm structure containing the identifier to re-
move

Description
ipc_ids.rwsem (as a writer) and the spinlock for this ID are held before this function
is called, and remain locked on the exit.

void ipc_set_key_private(struct ipc_ids * ids, struct kern_ipc_perm * ipcp)
switch the key of an existing ipc to IPC_PRIVATE

Parameters
struct ipc_ids * ids ipc identifier set

struct kern_ipc_perm * ipcp ipc perm structure containing the key to modify

Description
ipc_ids.rwsem (as a writer) and the spinlock for this ID are held before this function
is called, and remain locked on the exit.

1.1. The Linux Kernel API 71

Linux Core-api Documentation

int ipcperms(struct ipc_namespace * ns, struct kern_ipc_perm * ipcp,
short flag)

check ipc permissions

Parameters
struct ipc_namespace * ns ipc namespace

struct kern_ipc_perm * ipcp ipc permission set

short flag desired permission set

Description
Check user, group, other permissions for access to ipc resources. return 0 if al-
lowed

flag will most probably be 0 or S_...UGO from <linux/stat.h>

void kernel_to_ipc64_perm(struct kern_ipc_perm * in, struct ipc64_perm
* out)

convert kernel ipc permissions to user

Parameters
struct kern_ipc_perm * in kernel permissions

struct ipc64_perm * out new style ipc permissions

Description
Turn the kernel object in into a set of permissions descriptions for returning to
userspace (out).
void ipc64_perm_to_ipc_perm(struct ipc64_perm * in, struct ipc_perm

* out)
convert new ipc permissions to old

Parameters
struct ipc64_perm * in new style ipc permissions

struct ipc_perm * out old style ipc permissions

Description
Turn the new style permissions object in into a compatibility object and store it
into the out pointer.
struct kern_ipc_perm * ipc_obtain_object_idr(struct ipc_ids * ids, int id)

Parameters
struct ipc_ids * ids ipc identifier set

int id ipc id to look for

Description
Look for an id in the ipc ids idr and return associated ipc object.

Call inside the RCU critical section. The ipc object is not locked on exit.

struct kern_ipc_perm * ipc_obtain_object_check(struct ipc_ids * ids,
int id)

72 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
struct ipc_ids * ids ipc identifier set

int id ipc id to look for

Description
Similar to ipc_obtain_object_idr() but also checks the ipc object sequence
number.

Call inside the RCU critical section. The ipc object is not locked on exit.

int ipcget(struct ipc_namespace * ns, struct ipc_ids * ids, const struct
ipc_ops * ops, struct ipc_params * params)

Common sys_*get() code

Parameters
struct ipc_namespace * ns namespace

struct ipc_ids * ids ipc identifier set

const struct ipc_ops * ops operations to be called on ipc object creation, per-
mission checks and further checks

struct ipc_params * params the parameters needed by the previous opera-
tions.

Description
Common routine called by sys_msgget(), sys_semget() and sys_shmget().

int ipc_update_perm(struct ipc64_perm * in, struct kern_ipc_perm * out)
update the permissions of an ipc object

Parameters
struct ipc64_perm * in the permission given as input.

struct kern_ipc_perm * out the permission of the ipc to set.

struct kern_ipc_perm * ipcctl_obtain_check(struct ipc_namespace * ns,
struct ipc_ids * ids, int id,
int cmd, struct ipc64_perm
* perm, int extra_perm)

retrieve an ipc object and check permissions

Parameters
struct ipc_namespace * ns ipc namespace

struct ipc_ids * ids the table of ids where to look for the ipc

int id the id of the ipc to retrieve

int cmd the cmd to check

struct ipc64_perm * perm the permission to set

int extra_perm one extra permission parameter used by msq

Description

1.1. The Linux Kernel API 73

Linux Core-api Documentation

This function does some common audit and permissions check for some IPC_XXX
cmd and is called from semctl_down, shmctl_down and msgctl_down.

It:
• retrieves the ipc object with the given id in the given table.

• performs some audit and permission check, depending on the given cmd

• returns a pointer to the ipc object or otherwise, the corresponding error.

Call holding the both the rwsem and the rcu read lock.

int ipc_parse_version(int * cmd)
ipc call version

Parameters
int * cmd pointer to command

Description
Return IPC_64 for new style IPC and IPC_OLD for old style IPC. The cmd value is
turned from an encoding command and version into just the command code.

1.1.6 FIFO Buffer

kfifo interface

DECLARE_KFIFO_PTR(fifo, type)
macro to declare a fifo pointer object

Parameters
fifo name of the declared fifo

type type of the fifo elements

DECLARE_KFIFO(fifo, type, size)
macro to declare a fifo object

Parameters
fifo name of the declared fifo

type type of the fifo elements

size the number of elements in the fifo, this must be a power of 2

INIT_KFIFO(fifo)
Initialize a fifo declared by DECLARE_KFIFO

Parameters
fifo name of the declared fifo datatype

DEFINE_KFIFO(fifo, type, size)
macro to define and initialize a fifo

Parameters
fifo name of the declared fifo datatype

74 Chapter 1. Core utilities

Linux Core-api Documentation

type type of the fifo elements

size the number of elements in the fifo, this must be a power of 2

Note
the macro can be used for global and local fifo data type variables.

kfifo_initialized(fifo)
Check if the fifo is initialized

Parameters
fifo address of the fifo to check

Description
Return true if fifo is initialized, otherwise false. Assumes the fifo was 0 before.

kfifo_esize(fifo)
returns the size of the element managed by the fifo

Parameters
fifo address of the fifo to be used

kfifo_recsize(fifo)
returns the size of the record length field

Parameters
fifo address of the fifo to be used

kfifo_size(fifo)
returns the size of the fifo in elements

Parameters
fifo address of the fifo to be used

kfifo_reset(fifo)
removes the entire fifo content

Parameters
fifo address of the fifo to be used

Note
usage of kfifo_reset() is dangerous. It should be only called when the fifo is
exclusived locked or when it is secured that no other thread is accessing the fifo.

kfifo_reset_out(fifo)
skip fifo content

Parameters
fifo address of the fifo to be used

Note
The usage of kfifo_reset_out() is safe until it will be only called from the reader
thread and there is only one concurrent reader. Otherwise it is dangerous and
must be handled in the same way as kfifo_reset().

1.1. The Linux Kernel API 75

Linux Core-api Documentation

kfifo_len(fifo)
returns the number of used elements in the fifo

Parameters
fifo address of the fifo to be used

kfifo_is_empty(fifo)
returns true if the fifo is empty

Parameters
fifo address of the fifo to be used

kfifo_is_empty_spinlocked(fifo, lock)
returns true if the fifo is empty using a spinlock for locking

Parameters
fifo address of the fifo to be used

lock spinlock to be used for locking

kfifo_is_empty_spinlocked_noirqsave(fifo, lock)
returns true if the fifo is empty using a spinlock for locking, doesn’t disable
interrupts

Parameters
fifo address of the fifo to be used

lock spinlock to be used for locking

kfifo_is_full(fifo)
returns true if the fifo is full

Parameters
fifo address of the fifo to be used

kfifo_avail(fifo)
returns the number of unused elements in the fifo

Parameters
fifo address of the fifo to be used

kfifo_skip(fifo)
skip output data

Parameters
fifo address of the fifo to be used

kfifo_peek_len(fifo)
gets the size of the next fifo record

Parameters
fifo address of the fifo to be used

Description
This function returns the size of the next fifo record in number of bytes.

76 Chapter 1. Core utilities

Linux Core-api Documentation

kfifo_alloc(fifo, size, gfp_mask)
dynamically allocates a new fifo buffer

Parameters
fifo pointer to the fifo

size the number of elements in the fifo, this must be a power of 2

gfp_mask get_free_pages mask, passed to kmalloc()

Description
This macro dynamically allocates a new fifo buffer.

The number of elements will be rounded-up to a power of 2. The fifo will be release
with kfifo_free(). Return 0 if no error, otherwise an error code.

kfifo_free(fifo)
frees the fifo

Parameters
fifo the fifo to be freed

kfifo_init(fifo, buffer, size)
initialize a fifo using a preallocated buffer

Parameters
fifo the fifo to assign the buffer

buffer the preallocated buffer to be used

size the size of the internal buffer, this have to be a power of 2

Description
This macro initializes a fifo using a preallocated buffer.

The number of elements will be rounded-up to a power of 2. Return 0 if no error,
otherwise an error code.

kfifo_put(fifo, val)
put data into the fifo

Parameters
fifo address of the fifo to be used

val the data to be added

Description
This macro copies the given value into the fifo. It returns 0 if the fifo was full.
Otherwise it returns the number processed elements.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_get(fifo, val)
get data from the fifo

Parameters

1.1. The Linux Kernel API 77

Linux Core-api Documentation

fifo address of the fifo to be used

val address where to store the data

Description
This macro reads the data from the fifo. It returns 0 if the fifo was empty. Other-
wise it returns the number processed elements.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_peek(fifo, val)
get data from the fifo without removing

Parameters
fifo address of the fifo to be used

val address where to store the data

Description
This reads the data from the fifo without removing it from the fifo. It returns 0 if
the fifo was empty. Otherwise it returns the number processed elements.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_in(fifo, buf, n)
put data into the fifo

Parameters
fifo address of the fifo to be used

buf the data to be added

n number of elements to be added

Description
This macro copies the given buffer into the fifo and returns the number of copied
elements.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_in_spinlocked(fifo, buf, n, lock)
put data into the fifo using a spinlock for locking

Parameters
fifo address of the fifo to be used

buf the data to be added

n number of elements to be added

lock pointer to the spinlock to use for locking

Description
This macro copies the given values buffer into the fifo and returns the number of
copied elements.

78 Chapter 1. Core utilities

Linux Core-api Documentation

kfifo_in_spinlocked_noirqsave(fifo, buf, n, lock)
put data into fifo using a spinlock for locking, don’t disable interrupts

Parameters
fifo address of the fifo to be used

buf the data to be added

n number of elements to be added

lock pointer to the spinlock to use for locking

Description
This is a variant of kfifo_in_spinlocked() but uses spin_lock/unlock() for locking
and doesn’t disable interrupts.
kfifo_out(fifo, buf, n)

get data from the fifo

Parameters
fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

Description
This macro get some data from the fifo and return the numbers of elements copied.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_out_spinlocked(fifo, buf, n, lock)
get data from the fifo using a spinlock for locking

Parameters
fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

lock pointer to the spinlock to use for locking

Description
This macro get the data from the fifo and return the numbers of elements copied.

kfifo_out_spinlocked_noirqsave(fifo, buf, n, lock)
get data from the fifo using a spinlock for locking, don’t disable interrupts

Parameters
fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

lock pointer to the spinlock to use for locking

1.1. The Linux Kernel API 79

Linux Core-api Documentation

Description
This is a variant of kfifo_out_spinlocked() which uses spin_lock/unlock() for
locking and doesn’t disable interrupts.
kfifo_from_user(fifo, from, len, copied)

puts some data from user space into the fifo

Parameters
fifo address of the fifo to be used

from pointer to the data to be added

len the length of the data to be added

copied pointer to output variable to store the number of copied bytes

Description
This macro copies at most len bytes from the from into the fifo, depending of the
available space and returns -EFAULT/0.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_to_user(fifo, to, len, copied)
copies data from the fifo into user space

Parameters
fifo address of the fifo to be used

to where the data must be copied

len the size of the destination buffer

copied pointer to output variable to store the number of copied bytes

Description
This macro copies at most len bytes from the fifo into the to buffer and returns
-EFAULT/0.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

kfifo_dma_in_prepare(fifo, sgl, nents, len)
setup a scatterlist for DMA input

Parameters
fifo address of the fifo to be used

sgl pointer to the scatterlist array

nents number of entries in the scatterlist array

len number of elements to transfer

Description
This macro fills a scatterlist for DMA input. It returns the number entries in the
scatterlist array.

80 Chapter 1. Core utilities

Linux Core-api Documentation

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macros.

kfifo_dma_in_finish(fifo, len)
finish a DMA IN operation

Parameters
fifo address of the fifo to be used

len number of bytes to received

Description
This macro finish a DMA IN operation. The in counter will be updated by the len
parameter. No error checking will be done.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macros.

kfifo_dma_out_prepare(fifo, sgl, nents, len)
setup a scatterlist for DMA output

Parameters
fifo address of the fifo to be used

sgl pointer to the scatterlist array

nents number of entries in the scatterlist array

len number of elements to transfer

Description
This macro fills a scatterlist for DMA output which at most len bytes to transfer. It
returns the number entries in the scatterlist array. A zero means there is no space
available and the scatterlist is not filled.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macros.

kfifo_dma_out_finish(fifo, len)
finish a DMA OUT operation

Parameters
fifo address of the fifo to be used

len number of bytes transferred

Description
This macro finish a DMA OUT operation. The out counter will be updated by the
len parameter. No error checking will be done.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macros.

kfifo_out_peek(fifo, buf, n)
gets some data from the fifo

Parameters

1.1. The Linux Kernel API 81

Linux Core-api Documentation

fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

Description
This macro get the data from the fifo and return the numbers of elements copied.
The data is not removed from the fifo.

Note that with only one concurrent reader and one concurrent writer, you don’t
need extra locking to use these macro.

1.1.7 relay interface support

Relay interface support is designed to provide an efficient mechanism for tools and
facilities to relay large amounts of data from kernel space to user space.

relay interface

int relay_buf_full(struct rchan_buf * buf)
boolean, is the channel buffer full?

Parameters
struct rchan_buf * buf channel buffer

Returns 1 if the buffer is full, 0 otherwise.

void relay_reset(struct rchan * chan)
reset the channel

Parameters
struct rchan * chan the channel

This has the effect of erasing all data from all channel buffers and restarting
the channel in its initial state. The buffers are not freed, so any mappings are
still in effect.

NOTE. Care should be taken that the channel isn’t actually being used by
anything when this call is made.

struct rchan * relay_open(const char * base_filename, struct dentry
* parent, size_t subbuf_size, size_t n_subbufs,
struct rchan_callbacks * cb, void * private_data)

create a new relay channel

Parameters
const char * base_filename base name of files to create, NULL for buffering

only

struct dentry * parent dentry of parent directory, NULL for root directory or
buffer

size_t subbuf_size size of sub-buffers

size_t n_subbufs number of sub-buffers

82 Chapter 1. Core utilities

Linux Core-api Documentation

struct rchan_callbacks * cb client callback functions

void * private_data user-defined data

Returns channel pointer if successful, NULL otherwise.

Creates a channel buffer for each cpu using the sizes and attributes spec-
ified. The created channel buffer files will be named base_filename0⋯
base_filenameN-1. File permissions will be S_IRUSR.

If opening a buffer (parent=NULL) that you later wish to register in a filesys-
tem, call relay_late_setup_files() once the parent dentry is available.

int relay_late_setup_files(struct rchan * chan, const char
* base_filename, struct dentry * parent)

triggers file creation

Parameters
struct rchan * chan channel to operate on

const char * base_filename base name of files to create

struct dentry * parent dentry of parent directory, NULL for root directory

Returns 0 if successful, non-zero otherwise.

Use to setup files for a previously buffer-only channel created by
relay_open() with a NULL parent dentry.

For example, this is useful for perfomring early tracing in kernel, before VFS
is up and then exposing the early results once the dentry is available.

size_t relay_switch_subbuf(struct rchan_buf * buf, size_t length)
switch to a new sub-buffer

Parameters
struct rchan_buf * buf channel buffer

size_t length size of current event

Returns either the length passed in or 0 if full.

Performs sub-buffer-switch tasks such as invoking callbacks, updating
padding counts, waking up readers, etc.

void relay_subbufs_consumed(struct rchan * chan, unsigned int cpu,
size_t subbufs_consumed)

update the buffer’s sub-buffers-consumed count
Parameters
struct rchan * chan the channel

unsigned int cpu the cpu associated with the channel buffer to update

size_t subbufs_consumed number of sub-buffers to add to current buf’s count
Adds to the channel buffer’s consumed sub-buffer count. subbufs_consumed
should be the number of sub-buffers newly consumed, not the total consumed.

NOTE. Kernel clients don’t need to call this function if the channel mode is
‘overwrite’.

1.1. The Linux Kernel API 83

Linux Core-api Documentation

void relay_close(struct rchan * chan)
close the channel

Parameters
struct rchan * chan the channel

Closes all channel buffers and frees the channel.

void relay_flush(struct rchan * chan)
close the channel

Parameters
struct rchan * chan the channel

Flushes all channel buffers, i.e. forces buffer switch.

int relay_mmap_buf(struct rchan_buf * buf, struct vm_area_struct * vma)
mmap channel buffer to process address space

Parameters
struct rchan_buf * buf relay channel buffer

struct vm_area_struct * vma vm_area_struct describingmemory to bemapped

Returns 0 if ok, negative on error

Caller should already have grabbed mmap_lock.

void * relay_alloc_buf(struct rchan_buf * buf, size_t * size)
allocate a channel buffer

Parameters
struct rchan_buf * buf the buffer struct

size_t * size total size of the buffer

Returns a pointer to the resulting buffer, NULL if unsuccessful. The passed in
size will get page aligned, if it isn’t already.

struct rchan_buf * relay_create_buf(struct rchan * chan)
allocate and initialize a channel buffer

Parameters
struct rchan * chan the relay channel

Returns channel buffer if successful, NULL otherwise.

void relay_destroy_channel(struct kref * kref)
free the channel struct

Parameters
struct kref * kref target kernel reference that contains the relay channel

Should only be called from kref_put().

void relay_destroy_buf(struct rchan_buf * buf)
destroy an rchan_buf struct and associated buffer

Parameters

84 Chapter 1. Core utilities

Linux Core-api Documentation

struct rchan_buf * buf the buffer struct

void relay_remove_buf(struct kref * kref)
remove a channel buffer

Parameters
struct kref * kref target kernel reference that contains the relay buffer

Removes the file from the filesystem, which also frees the rchan_buf_struct
and the channel buffer. Should only be called from kref_put().

int relay_buf_empty(struct rchan_buf * buf)
boolean, is the channel buffer empty?

Parameters
struct rchan_buf * buf channel buffer

Returns 1 if the buffer is empty, 0 otherwise.

void wakeup_readers(struct irq_work * work)
wake up readers waiting on a channel

Parameters
struct irq_work * work contains the channel buffer

This is the function used to defer reader waking

void __relay_reset(struct rchan_buf * buf, unsigned int init)
reset a channel buffer

Parameters
struct rchan_buf * buf the channel buffer

unsigned int init 1 if this is a first-time initialization

See relay_reset() for description of effect.

void relay_close_buf(struct rchan_buf * buf)
close a channel buffer

Parameters
struct rchan_buf * buf channel buffer

Marks the buffer finalized and restores the default callbacks. The channel
buffer and channel buffer data structure are then freed automatically when
the last reference is given up.

int relay_file_open(struct inode * inode, struct file * filp)
open file op for relay files

Parameters
struct inode * inode the inode

struct file * filp the file

Increments the channel buffer refcount.

int relay_file_mmap(struct file * filp, struct vm_area_struct * vma)
mmap file op for relay files

1.1. The Linux Kernel API 85

Linux Core-api Documentation

Parameters
struct file * filp the file

struct vm_area_struct * vma the vma describing what to map

Calls upon relay_mmap_buf() to map the file into user space.

__poll_t relay_file_poll(struct file * filp, poll_table * wait)
poll file op for relay files

Parameters
struct file * filp the file

poll_table * wait poll table

Poll implemention.

int relay_file_release(struct inode * inode, struct file * filp)
release file op for relay files

Parameters
struct inode * inode the inode

struct file * filp the file

Decrements the channel refcount, as the filesystem is no longer using it.

size_t relay_file_read_subbuf_avail(size_t read_pos, struct rchan_buf
* buf)

return bytes available in sub-buffer

Parameters
size_t read_pos file read position

struct rchan_buf * buf relay channel buffer

size_t relay_file_read_start_pos(struct rchan_buf * buf)
find the first available byte to read

Parameters
struct rchan_buf * buf relay channel buffer

If the read_pos is in the middle of padding, return the position of the first
actually available byte, otherwise return the original value.

size_t relay_file_read_end_pos(struct rchan_buf * buf, size_t read_pos,
size_t count)

return the new read position

Parameters
struct rchan_buf * buf relay channel buffer

size_t read_pos file read position

size_t count number of bytes to be read

86 Chapter 1. Core utilities

Linux Core-api Documentation

1.1.8 Module Support

Module Loading

int __request_module(bool wait, const char * fmt, ...)
try to load a kernel module

Parameters
bool wait wait (or not) for the operation to complete

const char * fmt printf style format string for the name of the module

... arguments as specified in the format string

Description
Load a module using the user mode module loader. The function returns zero on
success or a negative errno code or positive exit code from“modprobe”on failure.
Note that a successful module load does not mean the module did not then unload
and exit on an error of its own. Callers must check that the service they requested
is now available not blindly invoke it.

If module auto-loading support is disabled then this function simply returns -
ENOENT.

Inter Module support

Refer to the file kernel/module.c for more information.

1.1.9 Hardware Interfaces

Interrupt Handling

bool synchronize_hardirq(unsigned int irq)
wait for pending hard IRQ handlers (on other CPUs)

Parameters
unsigned int irq interrupt number to wait for

This function waits for any pending hard IRQ handlers for this interrupt to
complete before returning. If you use this function while holding a resource
the IRQ handler may need you will deadlock. It does not take associated
threaded handlers into account.

Do not use this for shutdown scenarios where you must be sure that all parts
(hardirq and threaded handler) have completed.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.

1.1. The Linux Kernel API 87

Linux Core-api Documentation

It does not check whether there is an interrupt in flight at the hardware
level, but not serviced yet, as this might deadlock when called with in-
terrupts disabled and the target CPU of the interrupt is the current CPU.

void synchronize_irq(unsigned int irq)
wait for pending IRQ handlers (on other CPUs)

Parameters
unsigned int irq interrupt number to wait for

This function waits for any pending IRQ handlers for this interrupt to com-
plete before returning. If you use this function while holding a resource the
IRQ handler may need you will deadlock.

Can only be called from preemptible code as it might sleep when an interrupt
thread is associated to irq.
It optionally makes sure (when the irq chip supports that method) that the
interrupt is not pending in any CPU and waiting for service.

int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify
* notify)

control notification of IRQ affinity changes

Parameters
unsigned int irq Interrupt for which to enable/disable notification

struct irq_affinity_notify * notify Context for notification, or NULL to dis-
able notification. Function pointers must be initialised; the other fields will
be initialised by this function.

Must be called in process context. Notification may only be enabled
after the IRQ is allocated and must be disabled before the IRQ is
freed using free_irq().

int irq_set_vcpu_affinity(unsigned int irq, void * vcpu_info)
Set vcpu affinity for the interrupt

Parameters
unsigned int irq interrupt number to set affinity

void * vcpu_info vCPU specific data or pointer to a percpu array of vCPU spe-
cific data for percpu_devid interrupts

This function uses the vCPU specific data to set the vCPU affinity
for an irq. The vCPU specific data is passed from outside, such
as KVM. One example code path is as below: KVM -> IOMMU ->
irq_set_vcpu_affinity().

void disable_irq_nosync(unsigned int irq)
disable an irq without waiting

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Disables and Enables are nested. Unlike
disable_irq(), this function does not ensure existing instances of the IRQ

88 Chapter 1. Core utilities

Linux Core-api Documentation

handler have completed before returning.

This function may be called from IRQ context.

void disable_irq(unsigned int irq)
disable an irq and wait for completion

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Enables and Disables are nested. This
function waits for any pending IRQ handlers for this interrupt to complete
before returning. If you use this function while holding a resource the IRQ
handler may need you will deadlock.

This function may be called - with care - from IRQ context.

bool disable_hardirq(unsigned int irq)
disables an irq and waits for hardirq completion

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Enables and Disables are nested. This
function waits for any pending hard IRQ handlers for this interrupt to com-
plete before returning. If you use this function while holding a resource the
hard IRQ handler may need you will deadlock.

When used to optimistically disable an interrupt from atomic context the re-
turn value must be checked.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.

void enable_irq(unsigned int irq)
enable handling of an irq

Parameters
unsigned int irq Interrupt to enable

Undoes the effect of one call to disable_irq(). If this matches the last dis-
able, processing of interrupts on this IRQ line is re-enabled.

This function may be called from IRQ context only when desc->irq_data.chip-
>bus_lock and desc->chip->bus_sync_unlock are NULL !

int irq_set_irq_wake(unsigned int irq, unsigned int on)
control irq power management wakeup

Parameters
unsigned int irq interrupt to control

unsigned int on enable/disable power management wakeup

1.1. The Linux Kernel API 89

Linux Core-api Documentation

Enable/disable power management wakeup mode, which is disabled by de-
fault. Enables and disables must match, just as they match for non-wakeup
mode support.

Wakeup mode lets this IRQ wake the system from sleep states like“suspend
to RAM”.

Note
irq enable/disable state is completely orthogonal to the enable/disable state

of irq wake. An irq can be disabled with disable_irq() and still wake the
system as long as the irq has wake enabled. If this does not hold, then the
underlying irq chip and the related driver need to be investigated.

void irq_wake_thread(unsigned int irq, void * dev_id)
wake the irq thread for the action identified by dev_id

Parameters
unsigned int irq Interrupt line

void * dev_id Device identity for which the thread should be woken

const void * free_irq(unsigned int irq, void * dev_id)
free an interrupt allocated with request_irq

Parameters
unsigned int irq Interrupt line to free

void * dev_id Device identity to free

Remove an interrupt handler. The handler is removed and if the interrupt
line is no longer in use by any driver it is disabled. On a shared IRQ the caller
must ensure the interrupt is disabled on the card it drives before calling this
function. The function does not return until any executing interrupts for this
IRQ have completed.

This function must not be called from interrupt context.

Returns the devname argument passed to request_irq.

int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char * devname, void * dev_id)

allocate an interrupt line

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs. Primary han-
dler for threaded interrupts If NULL and thread_fn != NULL the default pri-
mary handler is installed

irq_handler_t thread_fn Function called from the irq handler thread If NULL,
no irq thread is created

unsigned long irqflags Interrupt type flags

const char * devname An ascii name for the claiming device

90 Chapter 1. Core utilities

Linux Core-api Documentation

void * dev_id A cookie passed back to the handler function

This call allocates interrupt resources and enables the interrupt line and IRQ
handling. From the point this call is made your handler function may be in-
voked. Since your handler function must clear any interrupt the board raises,
you must take care both to initialise your hardware and to set up the interrupt
handler in the right order.

If you want to set up a threaded irq handler for your device then you need to
supply handler and thread_fn. handler is still called in hard interrupt con-
text and has to check whether the interrupt originates from the device. If yes
it needs to disable the interrupt on the device and return IRQ_WAKE_THREAD
which will wake up the handler thread and run thread_fn. This split handler
design is necessary to support shared interrupts.

Dev_id must be globally unique. Normally the address of the device data
structure is used as the cookie. Since the handler receives this value it makes
sense to use it.

If your interrupt is shared youmust pass a nonNULL dev_id as this is required
when freeing the interrupt.

Flags:

IRQF_SHARED Interrupt is shared IRQF_TRIGGER_* Specify active edge(s)
or level

int request_any_context_irq(unsigned int irq, irq_handler_t handler, un-
signed long flags, const char * name, void
* dev_id)

allocate an interrupt line

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs. Threaded
handler for threaded interrupts.

unsigned long flags Interrupt type flags

const char * name An ascii name for the claiming device

void * dev_id A cookie passed back to the handler function

This call allocates interrupt resources and enables the interrupt line and IRQ
handling. It selects either a hardirq or threaded handling method depending
on the context.

On failure, it returns a negative value. On success, it returns either
IRQC_IS_HARDIRQ or IRQC_IS_NESTED.

bool irq_percpu_is_enabled(unsigned int irq)
Check whether the per cpu irq is enabled

Parameters
unsigned int irq Linux irq number to check for

Description

1.1. The Linux Kernel API 91

Linux Core-api Documentation

Must be called from a non migratable context. Returns the enable state of a per
cpu interrupt on the current cpu.

void free_percpu_irq(unsigned int irq, void __percpu * dev_id)
free an interrupt allocated with request_percpu_irq

Parameters
unsigned int irq Interrupt line to free

void __percpu * dev_id Device identity to free

Remove a percpu interrupt handler. The handler is removed, but the inter-
rupt line is not disabled. This must be done on each CPU before calling this
function. The function does not return until any executing interrupts for this
IRQ have completed.

This function must not be called from interrupt context.

int __request_percpu_irq(unsigned int irq, irq_handler_t handler, un-
signed long flags, const char * devname, void
__percpu * dev_id)

allocate a percpu interrupt line

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs.

unsigned long flags Interrupt type flags (IRQF_TIMER only)

const char * devname An ascii name for the claiming device

void __percpu * dev_id A percpu cookie passed back to the handler function

This call allocates interrupt resources and enables the interrupt on the local
CPU. If the interrupt is supposed to be enabled on other CPUs, it has to be
done on each CPU using enable_percpu_irq().

Dev_id must be globally unique. It is a per-cpu variable, and the handler gets
called with the interrupted CPU’s instance of that variable.

int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
bool * state)

returns the irqchip state of a interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM

enum irqchip_irq_state which One of IRQCHIP_STATE_* the caller wants to
know about

bool * state a pointer to a boolean where the state is to be storeed

This call snapshots the internal irqchip state of an interrupt, returning into
state the bit corresponding to stage which
This function should be called with preemption disabled if the interrupt con-
troller has per-cpu registers.

92 Chapter 1. Core utilities

Linux Core-api Documentation

int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
bool val)

set the state of a forwarded interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM

enum irqchip_irq_state which State to be restored (one of IRQCHIP_STATE_*)

bool val Value corresponding to which
This call sets the internal irqchip state of an interrupt, depending on the value
of which.
This function should be called with preemption disabled if the interrupt con-
troller has per-cpu registers.

DMA Channels

int request_dma(unsigned int dmanr, const char * device_id)
request and reserve a system DMA channel

Parameters
unsigned int dmanr DMA channel number

const char * device_id reserving device ID string, used in /proc/dma

void free_dma(unsigned int dmanr)
free a reserved system DMA channel

Parameters
unsigned int dmanr DMA channel number

Resources Management

struct resource * request_resource_conflict(struct resource * root,
struct resource * new)

request and reserve an I/O or memory resource

Parameters
struct resource * root root resource descriptor

struct resource * new resource descriptor desired by caller

Description
Returns 0 for success, conflict resource on error.

int find_next_iomem_res(resource_size_t start, resource_size_t end,
unsigned long flags, unsigned long desc,
bool first_lvl, struct resource * res)

Parameters
resource_size_t start start address of the resource searched for

resource_size_t end end address of same resource

1.1. The Linux Kernel API 93

Linux Core-api Documentation

unsigned long flags flags which the resource must have

unsigned long desc descriptor the resource must have

bool first_lvl walk only the first level children, if set

struct resource * res return ptr, if resource found

Description
caller must specify start, end, flags, and desc (which may be
IORES_DESC_NONE).

If a resource is found, returns 0 and ***res is overwritten with the part of the
resource that’s within [**start..**end**]; if none is found, returns -ENODEV.
Returns -EINVAL for invalid parameters.

This function walks the whole tree and not just first level children unless first_lvl
is true.

int reallocate_resource(struct resource * root, struct resource * old, re-
source_size_t newsize, struct resource_constraint
* constraint)

allocate a slot in the resource tree given range & alignment. The resource
will be relocated if the new size cannot be reallocated in the current location.

Parameters
struct resource * root root resource descriptor

struct resource * old resource descriptor desired by caller

resource_size_t newsize new size of the resource descriptor

struct resource_constraint * constraint the size and alignment constraints
to be met.

struct resource * lookup_resource(struct resource * root, re-
source_size_t start)

find an existing resource by a resource start address

Parameters
struct resource * root root resource descriptor

resource_size_t start resource start address

Description
Returns a pointer to the resource if found, NULL otherwise

struct resource * insert_resource_conflict(struct resource * parent,
struct resource * new)

Inserts resource in the resource tree

Parameters
struct resource * parent parent of the new resource

struct resource * new new resource to insert

Description
Returns 0 on success, conflict resource if the resource can’t be inserted.

94 Chapter 1. Core utilities

Linux Core-api Documentation

This function is equivalent to request_resource_conflict when no conflict happens.
If a conflict happens, and the conflicting resources entirely fit within the range of
the new resource, then the new resource is inserted and the conflicting resources
become children of the new resource.

This function is intended for producers of resources, such as FW modules and bus
drivers.

void insert_resource_expand_to_fit(struct resource * root, struct re-
source * new)

Insert a resource into the resource tree

Parameters
struct resource * root root resource descriptor

struct resource * new new resource to insert

Description
Insert a resource into the resource tree, possibly expanding it in order to make it
encompass any conflicting resources.

resource_size_t resource_alignment(struct resource * res)
calculate resource’s alignment

Parameters
struct resource * res resource pointer

Description
Returns alignment on success, 0 (invalid alignment) on failure.

int release_mem_region_adjustable(struct resource * parent,
resource_size_t start, re-
source_size_t size)

release a previously reserved memory region

Parameters
struct resource * parent parent resource descriptor

resource_size_t start resource start address

resource_size_t size resource region size

Description
This interface is intended for memory hot-delete. The requested region is released
from a currently busy memory resource. The requested region must either match
exactly or fit into a single busy resource entry. In the latter case, the remaining
resource is adjusted accordingly. Existing children of the busy memory resource
must be immutable in the request.

Note
• Additional release conditions, such as overlapping region, can be supported
after they are confirmed as valid cases.

• When a busy memory resource gets split into two entries, the code assumes
that all children remain in the lower address entry for simplicity. Enhance
this logic when necessary.

1.1. The Linux Kernel API 95

Linux Core-api Documentation

int request_resource(struct resource * root, struct resource * new)
request and reserve an I/O or memory resource

Parameters
struct resource * root root resource descriptor

struct resource * new resource descriptor desired by caller

Description
Returns 0 for success, negative error code on error.

int release_resource(struct resource * old)
release a previously reserved resource

Parameters
struct resource * old resource pointer

int walk_iomem_res_desc(unsigned long desc, unsigned long flags,
u64 start, u64 end, void * arg, int (*func)(struct
resource *, void *))

Parameters
unsigned long desc I/O resource descriptor. Use IORES_DESC_NONE to skip

desc check.
unsigned long flags I/O resource flags

u64 start start addr

u64 end end addr

void * arg function argument for the callback func
int (*)(struct resource *, void *) func callback function that is called for

each qualifying resource area

Description
ranges. This walks through whole tree and not just first level children. All the
memory ranges which overlap start,end and also match flags and desc are valid
candidates.

NOTE
For a new descriptor search, define a new IORES_DESC in <linux/ioport.h> and
set it in ‘desc’of a target resource entry.
int region_intersects(resource_size_t start, size_t size, unsigned

long flags, unsigned long desc)
determine intersection of region with known resources

Parameters
resource_size_t start region start address

size_t size size of region

unsigned long flags flags of resource (in iomem_resource)

unsigned long desc descriptor of resource (in iomem_resource) or
IORES_DESC_NONE

96 Chapter 1. Core utilities

Linux Core-api Documentation

Description
Check if the specified region partially overlaps or fully eclipses a resource
identified by flags and desc (optional with IORES_DESC_NONE). Return RE-
GION_DISJOINT if the region does not overlapflags/desc, return REGION_MIXED
if the region overlaps flags/desc and another resource, and return RE-
GION_INTERSECTS if the region overlaps flags/desc and no other defined re-
source. Note that REGION_INTERSECTS is also returned in the case when the
specified region overlaps RAM and undefined memory holes.

region_intersect() is used by memory remapping functions to ensure the user is
not remapping RAM and is a vast speed up over walking through the resource
table page by page.

int allocate_resource(struct resource * root, struct resource * new,
resource_size_t size, resource_size_t min, re-
source_size_t max, resource_size_t align, re-
source_size_t (*alignf)(void *, const struct re-
source *, resource_size_t, resource_size_t), void
* alignf_data)

allocate empty slot in the resource tree given range & alignment. The re-
source will be reallocated with a new size if it was already allocated

Parameters
struct resource * root root resource descriptor

struct resource * new resource descriptor desired by caller

resource_size_t size requested resource region size

resource_size_t min minimum boundary to allocate

resource_size_t max maximum boundary to allocate

resource_size_t align alignment requested, in bytes

resource_size_t (*)(void *, const struct resource *, resource_size_t, resource_size_t) alignf
alignment function, optional, called if not NULL

void * alignf_data arbitrary data to pass to the alignf function
int insert_resource(struct resource * parent, struct resource * new)

Inserts a resource in the resource tree

Parameters
struct resource * parent parent of the new resource

struct resource * new new resource to insert

Description
Returns 0 on success, -EBUSY if the resource can’t be inserted.
This function is intended for producers of resources, such as FW modules and bus
drivers.

int remove_resource(struct resource * old)
Remove a resource in the resource tree

Parameters

1.1. The Linux Kernel API 97

Linux Core-api Documentation

struct resource * old resource to remove

Description
Returns 0 on success, -EINVAL if the resource is not valid.

This function removes a resource previously inserted by insert_resource() or
insert_resource_conflict(), and moves the children (if any) up to where they
were before. insert_resource() and insert_resource_conflict() insert a new
resource, and move any conflicting resources down to the children of the new
resource.

insert_resource(), insert_resource_conflict() and remove_resource() are
intended for producers of resources, such as FW modules and bus drivers.

int adjust_resource(struct resource * res, resource_size_t start, re-
source_size_t size)

modify a resource’s start and size
Parameters
struct resource * res resource to modify

resource_size_t start new start value

resource_size_t size new size

Description
Given an existing resource, change its start and size to match the arguments.
Returns 0 on success, -EBUSY if it can’t fit. Existing children of the resource are
assumed to be immutable.

struct resource * __request_region(struct resource * parent, re-
source_size_t start, resource_size_t n,
const char * name, int flags)

create a new busy resource region

Parameters
struct resource * parent parent resource descriptor

resource_size_t start resource start address

resource_size_t n resource region size

const char * name reserving caller’s ID string
int flags IO resource flags

void __release_region(struct resource * parent, resource_size_t start, re-
source_size_t n)

release a previously reserved resource region

Parameters
struct resource * parent parent resource descriptor

resource_size_t start resource start address

resource_size_t n resource region size

98 Chapter 1. Core utilities

Linux Core-api Documentation

Description
The described resource region must match a currently busy region.

int devm_request_resource(struct device * dev, struct resource * root,
struct resource * new)

request and reserve an I/O or memory resource

Parameters
struct device * dev device for which to request the resource

struct resource * root root of the resource tree from which to request the re-
source

struct resource * new descriptor of the resource to request

Description
This is a device-managed version of request_resource(). There is usually no
need to release resources requested by this function explicitly since that will
be taken care of when the device is unbound from its driver. If for some rea-
son the resource needs to be released explicitly, because of ordering issues for
example, drivers must call devm_release_resource() rather than the regular
release_resource().

When a conflict is detected between any existing resources and the newly re-
quested resource, an error message will be printed.

Returns 0 on success or a negative error code on failure.

void devm_release_resource(struct device * dev, struct resource * new)
release a previously requested resource

Parameters
struct device * dev device for which to release the resource

struct resource * new descriptor of the resource to release

Description
Releases a resource previously requested using devm_request_resource().

struct resource * devm_request_free_mem_region(struct device * dev,
struct resource * base,
unsigned long size)

find free region for device private memory

Parameters
struct device * dev device struct to bind the resource to

struct resource * base resource tree to look in

unsigned long size size in bytes of the device memory to add

Description
This function tries to find an empty range of physical address big enough to contain
the new resource, so that it can later be hotplugged as ZONE_DEVICE memory,
which in turn allocates struct pages.

1.1. The Linux Kernel API 99

Linux Core-api Documentation

MTRR Handling

int arch_phys_wc_add(unsigned long base, unsigned long size)
add a WC MTRR and handle errors if PAT is unavailable

Parameters
unsigned long base Physical base address

unsigned long size Size of region

Description
If PAT is available, this does nothing. If PAT is unavailable, it attempts to add a
WC MTRR covering size bytes starting at base and logs an error if this fails.

The called should provide a power of two size on an equivalent power of two bound-
ary.

Drivers must store the return value to pass to mtrr_del_wc_if_needed, but drivers
should not try to interpret that return value.

1.1.10 Security Framework

int security_init(void)
initializes the security framework

Parameters
void no arguments

Description
This should be called early in the kernel initialization sequence.

void security_add_hooks(struct security_hook_list * hooks, int count, char
* lsm)

Add a modules hooks to the hook lists.

Parameters
struct security_hook_list * hooks the hooks to add

int count the number of hooks to add

char * lsm the name of the security module

Description
Each LSM has to register its hooks with the infrastructure.

int lsm_cred_alloc(struct cred * cred, gfp_t gfp)
allocate a composite cred blob

Parameters
struct cred * cred the cred that needs a blob

gfp_t gfp allocation type

100 Chapter 1. Core utilities

Linux Core-api Documentation

Description
Allocate the cred blob for all the modules

Returns 0, or -ENOMEM if memory can’t be allocated.
void lsm_early_cred(struct cred * cred)

during initialization allocate a composite cred blob

Parameters
struct cred * cred the cred that needs a blob

Description
Allocate the cred blob for all the modules

int lsm_file_alloc(struct file * file)
allocate a composite file blob

Parameters
struct file * file the file that needs a blob

Description
Allocate the file blob for all the modules

Returns 0, or -ENOMEM if memory can’t be allocated.
int lsm_inode_alloc(struct inode * inode)

allocate a composite inode blob

Parameters
struct inode * inode the inode that needs a blob

Description
Allocate the inode blob for all the modules

Returns 0, or -ENOMEM if memory can’t be allocated.
int lsm_task_alloc(struct task_struct * task)

allocate a composite task blob

Parameters
struct task_struct * task the task that needs a blob

Description
Allocate the task blob for all the modules

Returns 0, or -ENOMEM if memory can’t be allocated.
int lsm_ipc_alloc(struct kern_ipc_perm * kip)

allocate a composite ipc blob

Parameters
struct kern_ipc_perm * kip the ipc that needs a blob

Description
Allocate the ipc blob for all the modules

1.1. The Linux Kernel API 101

Linux Core-api Documentation

Returns 0, or -ENOMEM if memory can’t be allocated.
int lsm_msg_msg_alloc(struct msg_msg * mp)

allocate a composite msg_msg blob

Parameters
struct msg_msg * mp the msg_msg that needs a blob

Description
Allocate the ipc blob for all the modules

Returns 0, or -ENOMEM if memory can’t be allocated.
void lsm_early_task(struct task_struct * task)

during initialization allocate a composite task blob

Parameters
struct task_struct * task the task that needs a blob

Description
Allocate the task blob for all the modules

struct dentry * securityfs_create_file(const char * name,
umode_t mode, struct dentry
* parent, void * data, const struct
file_operations * fops)

create a file in the securityfs filesystem

Parameters
const char * name a pointer to a string containing the name of the file to create.

umode_t mode the permission that the file should have

struct dentry * parent a pointer to the parent dentry for this file. This should
be a directory dentry if set. If this parameter is NULL, then the file will be
created in the root of the securityfs filesystem.

void * data a pointer to something that the caller will want to get to later on.
The inode.i_private pointer will point to this value on the open() call.

const struct file_operations * fops a pointer to a struct file_operations that
should be used for this file.

Description
This function creates a file in securityfs with the given name.
This function returns a pointer to a dentry if it succeeds. This pointer must be
passed to the securityfs_remove() function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here).
If an error occurs, the function will return the error value (via ERR_PTR).

If securityfs is not enabled in the kernel, the value -ENODEV is returned.

struct dentry * securityfs_create_dir(const char * name, struct dentry
* parent)

create a directory in the securityfs filesystem

102 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
const char * name a pointer to a string containing the name of the directory to

create.

struct dentry * parent a pointer to the parent dentry for this file. This should
be a directory dentry if set. If this parameter is NULL, then the directory will
be created in the root of the securityfs filesystem.

Description
This function creates a directory in securityfs with the given name.
This function returns a pointer to a dentry if it succeeds. This pointer must be
passed to the securityfs_remove() function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here).
If an error occurs, the function will return the error value (via ERR_PTR).

If securityfs is not enabled in the kernel, the value -ENODEV is returned.

struct dentry * securityfs_create_symlink(const char * name, struct
dentry * parent, const char
* target, const struct in-
ode_operations * iops)

create a symlink in the securityfs filesystem

Parameters
const char * name a pointer to a string containing the name of the symlink to

create.

struct dentry * parent a pointer to the parent dentry for the symlink. This
should be a directory dentry if set. If this parameter is NULL, then the direc-
tory will be created in the root of the securityfs filesystem.

const char * target a pointer to a string containing the name of the symlink’s
target. If this parameter is NULL, then the iops parameter needs to be setup
to handle .readlink and .get_link inode_operations.

const struct inode_operations * iops a pointer to the struct in-
ode_operations to use for the symlink. If this parameter is NULL, then
the default simple_symlink_inode operations will be used.

Description
This function creates a symlink in securityfs with the given name.
This function returns a pointer to a dentry if it succeeds. This pointer must be
passed to the securityfs_remove() function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here).
If an error occurs, the function will return the error value (via ERR_PTR).

If securityfs is not enabled in the kernel, the value -ENODEV is returned.

void securityfs_remove(struct dentry * dentry)
removes a file or directory from the securityfs filesystem

Parameters
struct dentry * dentry a pointer to a the dentry of the file or directory to be

removed.

1.1. The Linux Kernel API 103

Linux Core-api Documentation

Description
This function removes a file or directory in securityfs that was previously created
with a call to another securityfs function (like securityfs_create_file() or vari-
ants thereof.)

This function is required to be called in order for the file to be removed. No auto-
matic cleanup of files will happen when a module is removed; you are responsible
here.

1.1.11 Audit Interfaces

struct audit_buffer * audit_log_start(struct audit_context * ctx,
gfp_t gfp_mask, int type)

obtain an audit buffer

Parameters
struct audit_context * ctx audit_context (may be NULL)

gfp_t gfp_mask type of allocation

int type audit message type

Description
Returns audit_buffer pointer on success or NULL on error.

Obtain an audit buffer. This routine does locking to obtain the audit buffer, but
then no locking is required for calls to audit_log_*format. If the task (ctx) is a
task that is currently in a syscall, then the syscall is marked as auditable and an
audit record will be written at syscall exit. If there is no associated task, then task
context (ctx) should be NULL.

void audit_log_format(struct audit_buffer * ab, const char * fmt, ...)
format a message into the audit buffer.

Parameters
struct audit_buffer * ab audit_buffer

const char * fmt format string

... optional parameters matching fmt string
Description
All the work is done in audit_log_vformat.

void audit_log_end(struct audit_buffer * ab)
end one audit record

Parameters
struct audit_buffer * ab the audit_buffer

Description
We can not do a netlink send inside an irq context because it blocks (last arg,
flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a queue and

104 Chapter 1. Core utilities

Linux Core-api Documentation

a tasklet is scheduled to remove them from the queue outside the irq context. May
be called in any context.

void audit_log(struct audit_context * ctx, gfp_t gfp_mask, int type, const
char * fmt, ...)

Log an audit record

Parameters
struct audit_context * ctx audit context

gfp_t gfp_mask type of allocation

int type audit message type

const char * fmt format string to use

... variable parameters matching the format string

Description
This is a convenience function that calls audit_log_start, audit_log_vformat, and
audit_log_end. It may be called in any context.

int audit_alloc(struct task_struct * tsk)
allocate an audit context block for a task

Parameters
struct task_struct * tsk task

Description
Filter on the task information and allocate a per-task audit context if necessary.
Doing so turns on system call auditing for the specified task. This is called from
copy_process, so no lock is needed.

void __audit_free(struct task_struct * tsk)
free a per-task audit context

Parameters
struct task_struct * tsk task whose audit context block to free

Description
Called from copy_process and do_exit

void __audit_syscall_entry(int major, unsigned long a1, unsigned
long a2, unsigned long a3, unsigned long a4)

fill in an audit record at syscall entry

Parameters
int major major syscall type (function)

unsigned long a1 additional syscall register 1

unsigned long a2 additional syscall register 2

unsigned long a3 additional syscall register 3

unsigned long a4 additional syscall register 4

1.1. The Linux Kernel API 105

Linux Core-api Documentation

Description
Fill in audit context at syscall entry. This only happens if the audit context was
created when the task was created and the state or filters demand the audit con-
text be built. If the state from the per-task filter or from the per-syscall filter is
AUDIT_RECORD_CONTEXT, then the record will be written at syscall exit time
(otherwise, it will only be written if another part of the kernel requests that it be
written).

void __audit_syscall_exit(int success, long return_code)
deallocate audit context after a system call

Parameters
int success success value of the syscall

long return_code return value of the syscall

Description
Tear down after system call. If the audit context has been marked as auditable
(either because of the AUDIT_RECORD_CONTEXT state from filtering, or because
some other part of the kernel wrote an audit message), then write out the syscall
information. In call cases, free the names stored from getname().

struct filename * __audit_reusename(const __user char * uptr)
fill out filename with info from existing entry

Parameters
const __user char * uptr userland ptr to pathname

Description
Search the audit_names list for the current audit context. If there is an existing
entry with a matching “uptr”then return the filename associated with that au-
dit_name. If not, return NULL.

void __audit_getname(struct filename * name)
add a name to the list

Parameters
struct filename * name name to add

Description
Add a name to the list of audit names for this context. Called from
fs/namei.c:getname().

void __audit_inode(struct filename * name, const struct dentry * dentry, un-
signed int flags)

store the inode and device from a lookup

Parameters
struct filename * name name being audited

const struct dentry * dentry dentry being audited

unsigned int flags attributes for this particular entry

106 Chapter 1. Core utilities

Linux Core-api Documentation

int auditsc_get_stamp(struct audit_context * ctx, struct timespec64 * t, un-
signed int * serial)

get local copies of audit_context values

Parameters
struct audit_context * ctx audit_context for the task

struct timespec64 * t timespec64 to store time recorded in the audit_context

unsigned int * serial serial value that is recorded in the audit_context

Description
Also sets the context as auditable.

void __audit_mq_open(int oflag, umode_t mode, struct mq_attr * attr)
record audit data for a POSIX MQ open

Parameters
int oflag open flag

umode_t mode mode bits

struct mq_attr * attr queue attributes

void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned
int msg_prio, const struct timespec64
* abs_timeout)

record audit data for a POSIX MQ timed send/receive

Parameters
mqd_t mqdes MQ descriptor

size_t msg_len Message length

unsigned int msg_prio Message priority

const struct timespec64 * abs_timeout Message timeout in absolute time

void __audit_mq_notify(mqd_t mqdes, const struct sigevent * notification)
record audit data for a POSIX MQ notify

Parameters
mqd_t mqdes MQ descriptor

const struct sigevent * notification Notification event

void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr * mqstat)
record audit data for a POSIX MQ get/set attribute

Parameters
mqd_t mqdes MQ descriptor

struct mq_attr * mqstat MQ flags

void __audit_ipc_obj(struct kern_ipc_perm * ipcp)
record audit data for ipc object

Parameters

1.1. The Linux Kernel API 107

Linux Core-api Documentation

struct kern_ipc_perm * ipcp ipc permissions

void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid,
umode_t mode)

record audit data for new ipc permissions

Parameters
unsigned long qbytes msgq bytes

uid_t uid msgq user id

gid_t gid msgq group id

umode_t mode msgq mode (permissions)

Description
Called only after audit_ipc_obj().

int __audit_socketcall(int nargs, unsigned long * args)
record audit data for sys_socketcall

Parameters
int nargs number of args, which should not be more than AUDITSC_ARGS.

unsigned long * args args array

void __audit_fd_pair(int fd1, int fd2)
record audit data for pipe and socketpair

Parameters
int fd1 the first file descriptor

int fd2 the second file descriptor

int __audit_sockaddr(int len, void * a)
record audit data for sys_bind, sys_connect, sys_sendto

Parameters
int len data length in user space

void * a data address in kernel space

Description
Returns 0 for success or NULL context or < 0 on error.

int audit_signal_info_syscall(struct task_struct * t)
record signal info for syscalls

Parameters
struct task_struct * t task being signaled

Description
If the audit subsystem is being terminated, record the task (pid) and uid that is
doing that.

int __audit_log_bprm_fcaps(struct linux_binprm * bprm, const struct cred
* new, const struct cred * old)

store information about a loading bprm and relevant fcaps

108 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
struct linux_binprm * bprm pointer to the bprm being processed

const struct cred * new the proposed new credentials

const struct cred * old the old credentials

Description
Simply check if the proc already has the caps given by the file and if not store the
priv escalation info for later auditing at the end of the syscall

-Eric

void __audit_log_capset(const struct cred * new, const struct cred * old)
store information about the arguments to the capset syscall

Parameters
const struct cred * new the new credentials

const struct cred * old the old (current) credentials

Description
Record the arguments userspace sent to sys_capset for later printing by the audit
system if applicable

void audit_core_dumps(long signr)
record information about processes that end abnormally

Parameters
long signr signal value

Description
If a process ends with a core dump, something fishy is going on and we should
record the event for investigation.

void audit_seccomp(unsigned long syscall, long signr, int code)
record information about a seccomp action

Parameters
unsigned long syscall syscall number

long signr signal value

int code the seccomp action

Description
Record the information associated with a seccomp action. Event filtering for sec-
comp actions that are not to be logged is done in seccomp_log(). Therefore, this
function forces auditing independent of the audit_enabled and dummy context
state because seccomp actions should be logged even when audit is not in use.

int audit_rule_change(int type, int seq, void * data, size_t datasz)
apply all rules to the specified message type

Parameters

1.1. The Linux Kernel API 109

Linux Core-api Documentation

int type audit message type

int seq netlink audit message sequence (serial) number

void * data payload data

size_t datasz size of payload data

int audit_list_rules_send(struct sk_buff * request_skb, int seq)
list the audit rules

Parameters
struct sk_buff * request_skb skb of request we are replying to (used to target

the reply)

int seq netlink audit message sequence (serial) number

int parent_len(const char * path)
find the length of the parent portion of a pathname

Parameters
const char * path pathname of which to determine length

int audit_compare_dname_path(const struct qstr * dname, const char * path,
int parentlen)

compare given dentry name with last component in given path. Return of 0
indicates a match.

Parameters
const struct qstr * dname dentry name that we’re comparing
const char * path full pathname that we’re comparing
int parentlen length of the parent if known. Passing in AUDIT_NAME_FULL

here indicates that we must compute this value.

1.1.12 Accounting Framework

long sys_acct(const char __user * name)
enable/disable process accounting

Parameters
const char __user * name file name for accounting records or NULL to shut-

down accounting

Description
Returns 0 for success or negative errno values for failure.

sys_acct() is the only system call needed to implement process accounting. It
takes the name of the file where accounting records should be written. If the
filename is NULL, accounting will be shutdown.

void acct_collect(long exitcode, int group_dead)
collect accounting information into pacct_struct

Parameters

110 Chapter 1. Core utilities

Linux Core-api Documentation

long exitcode task exit code

int group_dead not 0, if this thread is the last one in the process.

void acct_process(void)

Parameters
void no arguments

Description
handles process accounting for an exiting task

1.1.13 Block Devices

void blk_queue_flag_set(unsigned int flag, struct request_queue * q)
atomically set a queue flag

Parameters
unsigned int flag flag to be set

struct request_queue * q request queue

void blk_queue_flag_clear(unsigned int flag, struct request_queue * q)
atomically clear a queue flag

Parameters
unsigned int flag flag to be cleared

struct request_queue * q request queue

bool blk_queue_flag_test_and_set(unsigned int flag, struct re-
quest_queue * q)

atomically test and set a queue flag

Parameters
unsigned int flag flag to be set

struct request_queue * q request queue

Description
Returns the previous value of flag - 0 if the flag was not set and 1 if the flag was
already set.

const char * blk_op_str(unsigned int op)
Return string XXX in the REQ_OP_XXX.

Parameters
unsigned int op REQ_OP_XXX.

Description
Centralize block layer function to convert REQ_OP_XXX into string format. Useful
in the debugging and tracing bio or request. For invalid REQ_OP_XXX it returns
string “UNKNOWN”.

1.1. The Linux Kernel API 111

Linux Core-api Documentation

void blk_sync_queue(struct request_queue * q)
cancel any pending callbacks on a queue

Parameters
struct request_queue * q the queue

Description
The block layer may perform asynchronous callback activity on a queue,
such as calling the unplug function after a timeout. A block device may
call blk_sync_queue to ensure that any such activity is cancelled, thus
allowing it to release resources that the callbacks might use. The caller
must already have made sure that its ->make_request_fn will not re-add
plugging prior to calling this function.

This function does not cancel any asynchronous activity arising out
of elevator or throttling code. That would require elevator_exit() and
blkcg_exit_queue() to be called with queue lock initialized.

void blk_set_pm_only(struct request_queue * q)
increment pm_only counter

Parameters
struct request_queue * q request queue pointer

void blk_cleanup_queue(struct request_queue * q)
shutdown a request queue

Parameters
struct request_queue * q request queue to shutdown

Description
Mark q DYING, drain all pending requests, mark q DEAD, destroy and put it. All
future requests will be failed immediately with -ENODEV.

struct request * blk_get_request(struct request_queue * q, unsigned
int op, blk_mq_req_flags_t flags)

allocate a request

Parameters
struct request_queue * q request queue to allocate a request for

unsigned int op operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.

blk_mq_req_flags_t flags BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.

blk_qc_t generic_make_request(struct bio * bio)
re-submit a bio to the block device layer for I/O

Parameters
struct bio * bio The bio describing the location in memory and on the device.

Description
This is a version of submit_bio() that shall only be used for I/O that is resubmitted
to lower level drivers by stacking block drivers. All file systems and other upper
level users of the block layer should use submit_bio() instead.

112 Chapter 1. Core utilities

Linux Core-api Documentation

blk_qc_t direct_make_request(struct bio * bio)
hand a buffer directly to its device driver for I/O

Parameters
struct bio * bio The bio describing the location in memory and on the device.

Description
This function behaves like generic_make_request(), but does not protect against
recursion. Must only be used if the called driver is known to be blk-mq based.

blk_qc_t submit_bio(struct bio * bio)
submit a bio to the block device layer for I/O

Parameters
struct bio * bio The struct bio which describes the I/O

Description
submit_bio() is used to submit I/O requests to block devices. It is passed a fully
set up struct bio that describes the I/O that needs to be done. The bio will be
send to the device described by the bi_disk and bi_partno fields.

The success/failure status of the request, along with notification of completion, is
delivered asynchronously through the ->bi_end_io() callback in bio. The bio must
NOT be touched by thecaller until ->bi_end_io() has been called.

blk_status_t blk_insert_cloned_request(struct request_queue * q, struct
request * rq)

Helper for stacking drivers to submit a request

Parameters
struct request_queue * q the queue to submit the request

struct request * rq the request being queued

unsigned int blk_rq_err_bytes(const struct request * rq)
determine number of bytes till the next failure boundary

Parameters
const struct request * rq request to examine

Description
A request could be merge of IOs which require different failure handling.
This function determines the number of bytes which can be failed from
the beginning of the request without crossing into area which need to
be retried further.

Return
The number of bytes to fail.

bool blk_update_request(struct request * req, blk_status_t error, unsigned
int nr_bytes)

Special helper function for request stacking drivers

Parameters

1.1. The Linux Kernel API 113

Linux Core-api Documentation

struct request * req the request being processed

blk_status_t error block status code

unsigned int nr_bytes number of bytes to complete req
Description

Ends I/O on a number of bytes attached to req, but doesn’t complete the
request structure even if req doesn’t have leftover. If req has leftover,
sets it up for the next range of segments.

This special helper function is only for request stacking drivers (e.g.
request-based dm) so that they can handle partial completion. Actual
device drivers should use blk_mq_end_request instead.

Passing the result of blk_rq_bytes() as nr_bytes guarantees false return
from this function.

Note
The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
blk_rq_bytes() and in blk_update_request().

Return
false - this request doesn’t have any more data true - this request has
more data

void rq_flush_dcache_pages(struct request * rq)
Helper function to flush all pages in a request

Parameters
struct request * rq the request to be flushed

Description
Flush all pages in rq.

int blk_lld_busy(struct request_queue * q)
Check if underlying low-level drivers of a device are busy

Parameters
struct request_queue * q the queue of the device being checked

Description
Check if underlying low-level drivers of a device are busy. If the drivers
want to export their busy state, they must set own exporting function
using blk_queue_lld_busy() first.

Basically, this function is used only by request stacking drivers to stop
dispatching requests to underlying devices when underlying devices are
busy. This behavior helps more I/O merging on the queue of the re-
quest stacking driver and prevents I/O throughput regression on burst
I/O load.

Return
0 - Not busy (The request stacking driver should dispatch request) 1 -
Busy (The request stacking driver should stop dispatching request)

114 Chapter 1. Core utilities

Linux Core-api Documentation

void blk_rq_unprep_clone(struct request * rq)
Helper function to free all bios in a cloned request

Parameters
struct request * rq the clone request to be cleaned up

Description
Free all bios in rq for a cloned request.

int blk_rq_prep_clone(struct request * rq, struct request * rq_src, struct
bio_set * bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio
*, struct bio *, void *), void * data)

Helper function to setup clone request

Parameters
struct request * rq the request to be setup

struct request * rq_src original request to be cloned

struct bio_set * bs bio_set that bios for clone are allocated from

gfp_t gfp_mask memory allocation mask for bio

int (*)(struct bio *, struct bio *, void *) bio_ctr setup function to be
called for each clone bio. Returns 0 for success, non 0 for failure.

void * data private data to be passed to bio_ctr
Description

Clones bios in rq_src to rq, and copies attributes of rq_src to rq. Also,
pages which the original bios are pointing to are not copied and the
cloned bios just point same pages. So cloned bios must be completed
before original bios, which means the caller must complete rq before
rq_src.

void blk_start_plug(struct blk_plug * plug)
initialize blk_plug and track it inside the task_struct

Parameters
struct blk_plug * plug The struct blk_plug that needs to be initialized

Description
blk_start_plug() indicates to the block layer an intent by the caller to
submit multiple I/O requests in a batch. The block layer may use this
hint to defer submitting I/Os from the caller until blk_finish_plug()
is called. However, the block layer may choose to submit requests
before a call to blk_finish_plug() if the number of queued I/Os ex-
ceeds BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
the task schedules (see below).

Tracking blk_plug inside the task_struct will help with auto-flushing the
pending I/O should the task end up blocking between blk_start_plug()
and blk_finish_plug(). This is important from a performance perspec-
tive, but also ensures that we don’t deadlock. For instance, if the task

1.1. The Linux Kernel API 115

Linux Core-api Documentation

is blocking for a memory allocation, memory reclaim could end up want-
ing to free a page belonging to that request that is currently residing in
our private plug. By flushing the pending I/O when the process goes to
sleep, we avoid this kind of deadlock.

void blk_finish_plug(struct blk_plug * plug)
mark the end of a batch of submitted I/O

Parameters
struct blk_plug * plug The struct blk_plug passed to blk_start_plug()

Description
Indicate that a batch of I/O submissions is complete. This function must be paired
with an initial call to blk_start_plug(). The intent is to allow the block layer to
optimize I/O submission. See the documentation for blk_start_plug() for more
information.

int blk_queue_enter(struct request_queue * q, blk_mq_req_flags_t flags)
try to increase q->q_usage_counter

Parameters
struct request_queue * q request queue pointer

blk_mq_req_flags_t flags BLK_MQ_REQ_NOWAIT and/or
BLK_MQ_REQ_PREEMPT

bool blk_attempt_plug_merge(struct request_queue * q, struct bio * bio,
unsigned int nr_segs, struct request
** same_queue_rq)

try to merge with current’s plugged list
Parameters
struct request_queue * q request_queue new bio is being queued at

struct bio * bio new bio being queued

unsigned int nr_segs number of segments in bio
struct request ** same_queue_rq pointer to struct request that gets filled

in when another request associated with q is found on the plug list (optional,
may be NULL)

Description
Determine whether bio being queued on q can be merged with a request on
current’s plugged list. Returns true if merge was successful, otherwise false.
Plugging coalesces IOs from the same issuer for the same purpose without going
through q->queue_lock. As such it’s more of an issuing mechanism than schedul-
ing, and the request, while may have elvpriv data, is not added on the elevator at
this point. In addition, we don’t have reliable access to the elevator outside queue
lock. Only check basic merging parameters without querying the elevator.

Caller must ensure !blk_queue_nomerges(q) beforehand.

116 Chapter 1. Core utilities

Linux Core-api Documentation

int blk_cloned_rq_check_limits(struct request_queue * q, struct request
* rq)

Helper function to check a cloned request for the new queue limits

Parameters
struct request_queue * q the queue

struct request * rq the request being checked

Description
rq may have been made based on weaker limitations of upper-level
queues in request stacking drivers, and it may violate the limitation of
q. Since the block layer and the underlying device driver trust rq after
it is inserted to q, it should be checked against q before the insertion
using this generic function.

Request stacking drivers like request-based dm may change the queue
limits when retrying requests on other queues. Those requests need to
be checked against the new queue limits again during dispatch.

int blk_rq_map_user_iov(struct request_queue * q, struct request * rq,
struct rq_map_data * map_data, const struct
iov_iter * iter, gfp_t gfp_mask)

map user data to a request, for passthrough requests

Parameters
struct request_queue * q request queue where request should be inserted

struct request * rq request to map data to

struct rq_map_data * map_data pointer to the rq_map_data holding pages (if
necessary)

const struct iov_iter * iter iovec iterator

gfp_t gfp_mask memory allocation flags

Description
Data will be mapped directly for zero copy I/O, if possible. Otherwise a
kernel bounce buffer is used.

Amatching blk_rq_unmap_user()must be issued at the end of I/O, while
still in process context.

Note
The mapped bio may need to be bounced through blk_queue_bounce()

before being submitted to the device, as pages mapped may be out of reach.
It’s the callers responsibility to make sure this happens. The original bio
must be passed back in to blk_rq_unmap_user() for proper unmapping.

int blk_rq_unmap_user(struct bio * bio)
unmap a request with user data

Parameters
struct bio * bio start of bio list

1.1. The Linux Kernel API 117

Linux Core-api Documentation

Description
Unmap a rq previously mapped by blk_rq_map_user(). The caller must
supply the original rq->bio from the blk_rq_map_user() return, since the
I/O completion may have changed rq->bio.

int blk_rq_map_kern(struct request_queue * q, struct request * rq, void
* kbuf, unsigned int len, gfp_t gfp_mask)

map kernel data to a request, for passthrough requests

Parameters
struct request_queue * q request queue where request should be inserted

struct request * rq request to fill

void * kbuf the kernel buffer

unsigned int len length of user data

gfp_t gfp_mask memory allocation flags

Description
Data will be mapped directly if possible. Otherwise a bounce buffer is
used. Can be called multiple times to append multiple buffers.

void __blk_release_queue(struct work_struct * work)
release a request queue

Parameters
struct work_struct * work pointer to the release_work member of the request

queue to be released

Description
This function is called when a block device is being unregistered. The
process of releasing a request queue starts with blk_cleanup_queue,
which set the appropriate flags and then calls blk_put_queue, that decre-
ments the reference counter of the request queue. Once the reference
counter of the request queue reaches zero, blk_release_queue is called
to release all allocated resources of the request queue.

void blk_unregister_queue(struct gendisk * disk)
counterpart of blk_register_queue()

Parameters
struct gendisk * disk Disk of which the request queue should be unregistered

from sysfs.

Note
the caller is responsible for guaranteeing that this function is called after
blk_register_queue() has finished.

void blk_set_default_limits(struct queue_limits * lim)
reset limits to default values

Parameters
struct queue_limits * lim the queue_limits structure to reset

118 Chapter 1. Core utilities

Linux Core-api Documentation

Description
Returns a queue_limit struct to its default state.

void blk_set_stacking_limits(struct queue_limits * lim)
set default limits for stacking devices

Parameters
struct queue_limits * lim the queue_limits structure to reset

Description
Returns a queue_limit struct to its default state. Should be used by stack-
ing drivers like DM that have no internal limits.

void blk_queue_bounce_limit(struct request_queue * q, u64 max_addr)
set bounce buffer limit for queue

Parameters
struct request_queue * q the request queue for the device

u64 max_addr the maximum address the device can handle

Description
Different hardware can have different requirements as to what pages it
can do I/O directly to. A low level driver can call blk_queue_bounce_limit
to have lower memory pages allocated as bounce buffers for doing I/O
to pages residing above max_addr.

void blk_queue_max_hw_sectors(struct request_queue * q, unsigned
int max_hw_sectors)

set max sectors for a request for this queue

Parameters
struct request_queue * q the request queue for the device

unsigned int max_hw_sectors max hardware sectors in the usual 512b unit

Description
Enables a low level driver to set a hard upper limit, max_hw_sectors, on
the size of requests. max_hw_sectors is set by the device driver based
upon the capabilities of the I/O controller.

max_dev_sectors is a hard limit imposed by the storage device for
READ/WRITE requests. It is set by the disk driver.

max_sectors is a soft limit imposed by the block layer for filesystem
type requests. This value can be overridden on a per-device basis in
/sys/block/<device>/queue/max_sectors_kb. The soft limit can not ex-
ceed max_hw_sectors.

void blk_queue_chunk_sectors(struct request_queue * q, unsigned
int chunk_sectors)

set size of the chunk for this queue

Parameters
struct request_queue * q the request queue for the device

1.1. The Linux Kernel API 119

Linux Core-api Documentation

unsigned int chunk_sectors chunk sectors in the usual 512b unit

Description
If a driver doesn’t want IOs to cross a given chunk size, it can set this
limit and prevent merging across chunks. Note that the chunk size must
currently be a power-of-2 in sectors. Also note that the block layer must
accept a page worth of data at any offset. So if the crossing of chunks
is a hard limitation in the driver, it must still be prepared to split single
page bios.

void blk_queue_max_discard_sectors(struct request_queue * q, unsigned
int max_discard_sectors)

set max sectors for a single discard

Parameters
struct request_queue * q the request queue for the device

unsigned int max_discard_sectors maximum number of sectors to discard

void blk_queue_max_write_same_sectors(struct request_queue
* q, unsigned
int max_write_same_sectors)

set max sectors for a single write same

Parameters
struct request_queue * q the request queue for the device

unsigned int max_write_same_sectors maximum number of sectors to write
per command

void blk_queue_max_write_zeroes_sectors(struct request_queue
* q, unsigned
int max_write_zeroes_sectors)

set max sectors for a single write zeroes

Parameters
struct request_queue * q the request queue for the device

unsigned int max_write_zeroes_sectors maximum number of sectors to write
per command

void blk_queue_max_zone_append_sectors(struct request_queue
* q, unsigned
int max_zone_append_sectors)

set max sectors for a single zone append

Parameters
struct request_queue * q the request queue for the device

unsigned int max_zone_append_sectors maximum number of sectors to write
per command

void blk_queue_max_segments(struct request_queue * q, unsigned
short max_segments)

set max hw segments for a request for this queue

Parameters

120 Chapter 1. Core utilities

Linux Core-api Documentation

struct request_queue * q the request queue for the device

unsigned short max_segments max number of segments

Description
Enables a low level driver to set an upper limit on the number of hw data
segments in a request.

void blk_queue_max_discard_segments(struct request_queue * q, unsigned
short max_segments)

set max segments for discard requests

Parameters
struct request_queue * q the request queue for the device

unsigned short max_segments max number of segments

Description
Enables a low level driver to set an upper limit on the number of seg-
ments in a discard request.

void blk_queue_max_segment_size(struct request_queue * q, unsigned
int max_size)

set max segment size for blk_rq_map_sg

Parameters
struct request_queue * q the request queue for the device

unsigned int max_size max size of segment in bytes

Description
Enables a low level driver to set an upper limit on the size of a coalesced
segment

void blk_queue_logical_block_size(struct request_queue * q, unsigned
int size)

set logical block size for the queue

Parameters
struct request_queue * q the request queue for the device

unsigned int size the logical block size, in bytes

Description
This should be set to the lowest possible block size that the storage de-
vice can address. The default of 512 covers most hardware.

void blk_queue_physical_block_size(struct request_queue * q, unsigned
int size)

set physical block size for the queue

Parameters
struct request_queue * q the request queue for the device

unsigned int size the physical block size, in bytes

Description

1.1. The Linux Kernel API 121

Linux Core-api Documentation

This should be set to the lowest possible sector size that the hardware
can operate on without reverting to read-modify-write operations.

void blk_queue_alignment_offset(struct request_queue * q, unsigned
int offset)

set physical block alignment offset

Parameters
struct request_queue * q the request queue for the device

unsigned int offset alignment offset in bytes

Description
Some devices are naturally misaligned to compensate for things like the
legacy DOS partition table 63-sector offset. Low-level drivers should call
this function for devices whose first sector is not naturally aligned.

void blk_limits_io_min(struct queue_limits * limits, unsigned int min)
set minimum request size for a device

Parameters
struct queue_limits * limits the queue limits

unsigned int min smallest I/O size in bytes

Description
Some devices have an internal block size bigger than the reported hard-
ware sector size. This function can be used to signal the smallest I/O the
device can perform without incurring a performance penalty.

void blk_queue_io_min(struct request_queue * q, unsigned int min)
set minimum request size for the queue

Parameters
struct request_queue * q the request queue for the device

unsigned int min smallest I/O size in bytes

Description
Storage devices may report a granularity or preferred minimum I/O size
which is the smallest request the device can perform without incurring
a performance penalty. For disk drives this is often the physical block
size. For RAID arrays it is often the stripe chunk size. A properly aligned
multiple of minimum_io_size is the preferred request size for workloads
where a high number of I/O operations is desired.

void blk_limits_io_opt(struct queue_limits * limits, unsigned int opt)
set optimal request size for a device

Parameters
struct queue_limits * limits the queue limits

unsigned int opt smallest I/O size in bytes

Description

122 Chapter 1. Core utilities

Linux Core-api Documentation

Storage devices may report an optimal I/O size, which is the device’s
preferred unit for sustained I/O. This is rarely reported for disk drives.
For RAID arrays it is usually the stripe width or the internal track size.
A properly aligned multiple of optimal_io_size is the preferred request
size for workloads where sustained throughput is desired.

void blk_queue_io_opt(struct request_queue * q, unsigned int opt)
set optimal request size for the queue

Parameters
struct request_queue * q the request queue for the device

unsigned int opt optimal request size in bytes

Description
Storage devices may report an optimal I/O size, which is the device’s
preferred unit for sustained I/O. This is rarely reported for disk drives.
For RAID arrays it is usually the stripe width or the internal track size.
A properly aligned multiple of optimal_io_size is the preferred request
size for workloads where sustained throughput is desired.

void blk_queue_stack_limits(struct request_queue * t, struct re-
quest_queue * b)

inherit underlying queue limits for stacked drivers

Parameters
struct request_queue * t the stacking driver (top)

struct request_queue * b the underlying device (bottom)

int blk_stack_limits(struct queue_limits * t, struct queue_limits * b, sec-
tor_t start)

adjust queue_limits for stacked devices

Parameters
struct queue_limits * t the stacking driver limits (top device)

struct queue_limits * b the underlying queue limits (bottom, component de-
vice)

sector_t start first data sector within component device

Description
This function is used by stacking drivers like MD and DM to ensure that
all component devices have compatible block sizes and alignments. The
stacking driver must provide a queue_limits struct (top) and then itera-
tively call the stacking function for all component (bottom) devices. The
stacking function will attempt to combine the values and ensure proper
alignment.

Returns 0 if the top and bottom queue_limits are compatible. The top
device’s block sizes and alignment offsets may be adjusted to ensure
alignment with the bottom device. If no compatible sizes and alignments
exist, -1 is returned and the resulting top queue_limits will have the mis-
aligned flag set to indicate that the alignment_offset is undefined.

1.1. The Linux Kernel API 123

Linux Core-api Documentation

int bdev_stack_limits(struct queue_limits * t, struct block_device * bdev,
sector_t start)

adjust queue limits for stacked drivers

Parameters
struct queue_limits * t the stacking driver limits (top device)

struct block_device * bdev the component block_device (bottom)

sector_t start first data sector within component device

Description
Merges queue limits for a top device and a block_device. Returns 0 if
alignment didn’t change. Returns -1 if adding the bottom device caused
misalignment.

void disk_stack_limits(struct gendisk * disk, struct block_device * bdev,
sector_t offset)

adjust queue limits for stacked drivers

Parameters
struct gendisk * disk MD/DM gendisk (top)

struct block_device * bdev the underlying block device (bottom)

sector_t offset offset to beginning of data within component device

Description
Merges the limits for a top level gendisk and a bottom level block_device.

void blk_queue_update_dma_pad(struct request_queue * q, unsigned
int mask)

update pad mask

Parameters
struct request_queue * q the request queue for the device

unsigned int mask pad mask

Description
Update dma pad mask.

Appending pad buffer to a request modifies the last entry of a scatter list such that
it includes the pad buffer.

void blk_queue_segment_boundary(struct request_queue * q, unsigned
long mask)

set boundary rules for segment merging

Parameters
struct request_queue * q the request queue for the device

unsigned long mask the memory boundary mask

void blk_queue_virt_boundary(struct request_queue * q, unsigned
long mask)

set boundary rules for bio merging

124 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
struct request_queue * q the request queue for the device

unsigned long mask the memory boundary mask

void blk_queue_dma_alignment(struct request_queue * q, int mask)
set dma length and memory alignment

Parameters
struct request_queue * q the request queue for the device

int mask alignment mask

Description
set required memory and length alignment for direct dma transactions.
this is used when building direct io requests for the queue.

void blk_queue_update_dma_alignment(struct request_queue * q,
int mask)

update dma length and memory alignment

Parameters
struct request_queue * q the request queue for the device

int mask alignment mask

Description
update required memory and length alignment for direct dma transac-
tions. If the requested alignment is larger than the current alignment,
then the current queue alignment is updated to the new value, otherwise
it is left alone. The design of this is to allow multiple objects (driver, de-
vice, transport etc) to set their respective alignments without having
them interfere.

void blk_set_queue_depth(struct request_queue * q, unsigned int depth)
tell the block layer about the device queue depth

Parameters
struct request_queue * q the request queue for the device

unsigned int depth queue depth

void blk_queue_write_cache(struct request_queue * q, bool wc, bool fua)
configure queue’s write cache

Parameters
struct request_queue * q the request queue for the device

bool wc write back cache on or off

bool fua device supports FUA writes, if true

Description
Tell the block layer about the write cache of q.

1.1. The Linux Kernel API 125

Linux Core-api Documentation

void blk_queue_required_elevator_features(struct request_queue * q,
unsigned int features)

Set a queue required elevator features

Parameters
struct request_queue * q the request queue for the target device

unsigned int features Required elevator features OR’ed together
Description
Tell the block layer that for the device controlled through q, only the only elevators
that can be used are those that implement at least the set of features specified by
features.
bool blk_queue_can_use_dma_map_merging(struct request_queue * q, struct

device * dev)
configure queue for merging segments.

Parameters
struct request_queue * q the request queue for the device

struct device * dev the device pointer for dma

Description
Tell the block layer about merging the segments by dma map of q.
void blk_execute_rq_nowait(struct request_queue * q, struct gendisk

* bd_disk, struct request * rq, int at_head,
rq_end_io_fn * done)

insert a request into queue for execution

Parameters
struct request_queue * q queue to insert the request in

struct gendisk * bd_disk matching gendisk

struct request * rq request to insert

int at_head insert request at head or tail of queue

rq_end_io_fn * done I/O completion handler

Description
Insert a fully prepared request at the back of the I/O scheduler queue
for execution. Don’t wait for completion.

Note
This function will invoke done directly if the queue is dead.

void blk_execute_rq(struct request_queue * q, struct gendisk * bd_disk,
struct request * rq, int at_head)

insert a request into queue for execution

Parameters
struct request_queue * q queue to insert the request in

struct gendisk * bd_disk matching gendisk

126 Chapter 1. Core utilities

Linux Core-api Documentation

struct request * rq request to insert

int at_head insert request at head or tail of queue

Description
Insert a fully prepared request at the back of the I/O scheduler queue
for execution and wait for completion.

int blkdev_issue_flush(struct block_device * bdev, gfp_t gfp_mask)
queue a flush

Parameters
struct block_device * bdev blockdev to issue flush for

gfp_t gfp_mask memory allocation flags (for bio_alloc)

Description
Issue a flush for the block device in question.

int blkdev_issue_discard(struct block_device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, unsigned
long flags)

queue a discard

Parameters
struct block_device * bdev blockdev to issue discard for

sector_t sector start sector

sector_t nr_sects number of sectors to discard

gfp_t gfp_mask memory allocation flags (for bio_alloc)

unsigned long flags BLKDEV_DISCARD_* flags to control behaviour

Description
Issue a discard request for the sectors in question.

int blkdev_issue_write_same(struct block_device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct
page * page)

queue a write same operation

Parameters
struct block_device * bdev target blockdev

sector_t sector start sector

sector_t nr_sects number of sectors to write

gfp_t gfp_mask memory allocation flags (for bio_alloc)

struct page * page page containing data

Description
Issue a write same request for the sectors in question.

1.1. The Linux Kernel API 127

Linux Core-api Documentation

int __blkdev_issue_zeroout(struct block_device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio
** biop, unsigned flags)

generate number of zero filed write bios

Parameters
struct block_device * bdev blockdev to issue

sector_t sector start sector

sector_t nr_sects number of sectors to write

gfp_t gfp_mask memory allocation flags (for bio_alloc)

struct bio ** biop pointer to anchor bio

unsigned flags controls detailed behavior

Description
Zero-fill a block range, either using hardware offload or by explicitly
writing zeroes to the device.

If a device is using logical block provisioning, the underlying space will
not be released if flags contains BLKDEV_ZERO_NOUNMAP.

If flags contains BLKDEV_ZERO_NOFALLBACK, the function will re-
turn -EOPNOTSUPP if no explicit hardware offload for zeroing is pro-
vided.

int blkdev_issue_zeroout(struct block_device * bdev, sector_t sector, sec-
tor_t nr_sects, gfp_t gfp_mask, unsigned flags)

zero-fill a block range

Parameters
struct block_device * bdev blockdev to write

sector_t sector start sector

sector_t nr_sects number of sectors to write

gfp_t gfp_mask memory allocation flags (for bio_alloc)

unsigned flags controls detailed behavior

Description
Zero-fill a block range, either using hardware offload or by explicitly
writing zeroes to the device. See __blkdev_issue_zeroout() for the
valid values for flags.

int blk_rq_count_integrity_sg(struct request_queue * q, struct bio * bio)
Count number of integrity scatterlist elements

Parameters
struct request_queue * q request queue

struct bio * bio bio with integrity metadata attached

Description

128 Chapter 1. Core utilities

Linux Core-api Documentation

Returns the number of elements required in a scatterlist corresponding to the
integrity metadata in a bio.

int blk_rq_map_integrity_sg(struct request_queue * q, struct bio * bio,
struct scatterlist * sglist)

Map integrity metadata into a scatterlist

Parameters
struct request_queue * q request queue

struct bio * bio bio with integrity metadata attached

struct scatterlist * sglist target scatterlist

Description
Map the integrity vectors in request into a scatterlist. The scatterlist must be big
enough to hold all elements. I.e. sized using blk_rq_count_integrity_sg().

int blk_integrity_compare(struct gendisk * gd1, struct gendisk * gd2)
Compare integrity profile of two disks

Parameters
struct gendisk * gd1 Disk to compare

struct gendisk * gd2 Disk to compare

Description
Meta-devices like DM and MD need to verify that all sub-devices use the same
integrity format before advertising to upper layers that they can send/receive in-
tegrity metadata. This function can be used to check whether two gendisk devices
have compatible integrity formats.

void blk_integrity_register(struct gendisk * disk, struct blk_integrity
* template)

Register a gendisk as being integrity-capable

Parameters
struct gendisk * disk struct gendisk pointer to make integrity-aware

struct blk_integrity * template block integrity profile to register

Description
When a device needs to advertise itself as being able to send/receive integrity
metadata it must use this function to register the capability with the block layer.
The template is a blk_integrity struct with values appropriate for the underlying
hardware. See Documentation/block/data-integrity.rst.

void blk_integrity_unregister(struct gendisk * disk)
Unregister block integrity profile

Parameters
struct gendisk * disk disk whose integrity profile to unregister

Description
This function unregisters the integrity capability from a block device.

1.1. The Linux Kernel API 129

Linux Core-api Documentation

int blk_trace_ioctl(struct block_device * bdev, unsigned cmd, char __user
* arg)

handle the ioctls associated with tracing

Parameters
struct block_device * bdev the block device

unsigned cmd the ioctl cmd

char __user * arg the argument data, if any

void blk_trace_shutdown(struct request_queue * q)
stop and cleanup trace structures

Parameters
struct request_queue * q the request queue associated with the device

void blk_add_trace_rq(struct request * rq, int error, unsigned int nr_bytes,
u32 what, u64 cgid)

Add a trace for a request oriented action

Parameters
struct request * rq the source request

int error return status to log

unsigned int nr_bytes number of completed bytes

u32 what the action

u64 cgid the cgroup info

Description
Records an action against a request. Will log the bio offset + size.

void blk_add_trace_bio(struct request_queue * q, struct bio * bio,
u32 what, int error)

Add a trace for a bio oriented action

Parameters
struct request_queue * q queue the io is for

struct bio * bio the source bio

u32 what the action

int error error, if any

Description
Records an action against a bio. Will log the bio offset + size.

void blk_add_trace_bio_remap(void * ignore, struct request_queue * q,
struct bio * bio, dev_t dev, sector_t from)

Add a trace for a bio-remap operation

Parameters
void * ignore trace callback data parameter (not used)

struct request_queue * q queue the io is for

130 Chapter 1. Core utilities

Linux Core-api Documentation

struct bio * bio the source bio

dev_t dev target device

sector_t from source sector

Description
Device mapper or raid target sometimes need to split a bio because it
spans a stripe (or similar). Add a trace for that action.

void blk_add_trace_rq_remap(void * ignore, struct request_queue * q,
struct request * rq, dev_t dev, sector_t from)

Add a trace for a request-remap operation

Parameters
void * ignore trace callback data parameter (not used)

struct request_queue * q queue the io is for

struct request * rq the source request

dev_t dev target device

sector_t from source sector

Description
Device mapper remaps request to other devices. Add a trace for that
action.

struct hd_struct * disk_get_part(struct gendisk * disk, int partno)
get partition

Parameters
struct gendisk * disk disk to look partition from

int partno partition number

Description
Look for partition partno from disk. If found, increment reference count and
return it.

Context
Don’t care.
Return
Pointer to the found partition on success, NULL if not found.

struct hd_struct * disk_map_sector_rcu(struct gendisk * disk, sec-
tor_t sector)

map sector to partition

Parameters
struct gendisk * disk gendisk of interest

sector_t sector sector to map

1.1. The Linux Kernel API 131

Linux Core-api Documentation

Description
Find out which partition sector maps to on disk. This is primarily used for stats
accounting.

Context
RCU read locked. The returned partition pointer is always valid because its ref-
count is grabbed except for part0, which lifetime is same with the disk.

Return
Found partition on success, part0 is returned if no partition matches or the
matched partition is being deleted.

int blk_mangle_minor(int minor)
scatter minor numbers apart

Parameters
int minor minor number to mangle

Description
Scatter consecutively allocatedminor number apart if MANGLE_DEVT is enabled.
Mangling twice gives the original value.

Return
Mangled value.

Context
Don’t care.
int blk_alloc_devt(struct hd_struct * part, dev_t * devt)

allocate a dev_t for a partition

Parameters
struct hd_struct * part partition to allocate dev_t for

dev_t * devt out parameter for resulting dev_t

Description
Allocate a dev_t for block device.

Return
0 on success, allocated dev_t is returned in *devt. -errno on failure.
Context
Might sleep.

void blk_free_devt(dev_t devt)
free a dev_t

Parameters
dev_t devt dev_t to free

Description
Free devt which was allocated using blk_alloc_devt().

132 Chapter 1. Core utilities

Linux Core-api Documentation

Context
Might sleep.

void __device_add_disk(struct device * parent, struct gendisk * disk,
const struct attribute_group ** groups,
bool register_queue)

add disk information to kernel list

Parameters
struct device * parent parent device for the disk

struct gendisk * disk per-device partitioning information

const struct attribute_group ** groups Additional per-device sysfs groups

bool register_queue register the queue if set to true

Description
This function registers the partitioning information in disk with the kernel.
FIXME: error handling

struct gendisk * get_gendisk(dev_t devt, int * partno)
get partitioning information for a given device

Parameters
dev_t devt device to get partitioning information for

int * partno returned partition index

Description
This function gets the structure containing partitioning information for the given
device devt.
void disk_replace_part_tbl(struct gendisk * disk, struct disk_part_tbl

* new_ptbl)
replace disk->part_tbl in RCU-safe way

Parameters
struct gendisk * disk disk to replace part_tbl for

struct disk_part_tbl * new_ptbl new part_tbl to install

Description
Replace disk->part_tbl with new_ptbl in RCU-safe way. The original ptbl is freed
using RCU callback.

LOCKING: Matching bd_mutex locked or the caller is the only user of disk.
int disk_expand_part_tbl(struct gendisk * disk, int partno)

expand disk->part_tbl

Parameters
struct gendisk * disk disk to expand part_tbl for

int partno expand such that this partno can fit in

1.1. The Linux Kernel API 133

Linux Core-api Documentation

Description
Expand disk->part_tbl such that partno can fit in. disk->part_tbl uses RCU to
allow unlocked dereferencing for stats and other stuff.

LOCKING: Matching bd_mutex locked or the caller is the only user of disk. Might
sleep.

Return
0 on success, -errno on failure.

void disk_block_events(struct gendisk * disk)
block and flush disk event checking

Parameters
struct gendisk * disk disk to block events for

Description
On return from this function, it is guaranteed that event checking isn’t in progress
and won’t happen until unblocked by disk_unblock_events(). Events blocking is
counted and the actual unblocking happens after thematching number of unblocks
are done.

Note that this intentionally does not block event checking from
disk_clear_events().

Context
Might sleep.

void disk_unblock_events(struct gendisk * disk)
unblock disk event checking

Parameters
struct gendisk * disk disk to unblock events for

Description
Undo disk_block_events(). When the block count reaches zero, it starts events
polling if configured.

Context
Don’t care. Safe to call from irq context.

void disk_flush_events(struct gendisk * disk, unsigned int mask)
schedule immediate event checking and flushing

Parameters
struct gendisk * disk disk to check and flush events for

unsigned int mask events to flush

Description
Schedule immediate event checking on disk if not blocked. Events in mask are
scheduled to be cleared from the driver. Note that this doesn’t clear the events
from disk->ev.

134 Chapter 1. Core utilities

Linux Core-api Documentation

Context
If mask is non-zero must be called with bdev->bd_mutex held.
unsigned int disk_clear_events(struct gendisk * disk, unsigned int mask)

synchronously check, clear and return pending events

Parameters
struct gendisk * disk disk to fetch and clear events from

unsigned int mask mask of events to be fetched and cleared

Description
Disk events are synchronously checked and pending events in mask are cleared
and returned. This ignores the block count.

Context
Might sleep.

void disk_part_iter_init(struct disk_part_iter * piter, struct gendisk
* disk, unsigned int flags)

initialize partition iterator

Parameters
struct disk_part_iter * piter iterator to initialize

struct gendisk * disk disk to iterate over

unsigned int flags DISK_PITER_* flags

Description
Initialize piter so that it iterates over partitions of disk.
Context
Don’t care.
struct hd_struct * disk_part_iter_next(struct disk_part_iter * piter)

proceed iterator to the next partition and return it

Parameters
struct disk_part_iter * piter iterator of interest

Description
Proceed piter to the next partition and return it.
Context
Don’t care.
void disk_part_iter_exit(struct disk_part_iter * piter)

finish up partition iteration

Parameters
struct disk_part_iter * piter iter of interest

1.1. The Linux Kernel API 135

Linux Core-api Documentation

Description
Called when iteration is over. Cleans up piter.
Context
Don’t care.
bool disk_has_partitions(struct gendisk * disk)

Parameters
struct gendisk * disk gendisk of interest

Description
Walk through the partition table and check if valid partition exists.

Context
Don’t care.
Return
True if the gendisk has at least one valid non-zero size partition. Otherwise false.

int register_blkdev(unsigned int major, const char * name)
register a new block device

Parameters
unsigned int major the requested major device number

[1..BLKDEV_MAJOR_MAX-1]. If major = 0, try to allocate any unused
major number.

const char * name the name of the new block device as a zero terminated string

Description
The name must be unique within the system.
The return value depends on the major input parameter:
• if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-
1] then the function returns zero on success, or a negative error code

• if any unused major number was requested with major = 0 param-
eter then the return value is the allocated major number in range
[1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise

See Documentation/admin-guide/devices.txt for the list of allocated major num-
bers.

struct block_device * bdget_disk(struct gendisk * disk, int partno)
do bdget() by gendisk and partition number

Parameters
struct gendisk * disk gendisk of interest

int partno partition number

Description
Find partition partno from disk, do bdget() on it.

136 Chapter 1. Core utilities

Linux Core-api Documentation

Context
Don’t care.
Return
Resulting block_device on success, NULL on failure.

1.1.14 Char devices

int register_chrdev_region(dev_t from, unsigned count, const char
* name)

register a range of device numbers

Parameters
dev_t from the first in the desired range of device numbers; must include the

major number.

unsigned count the number of consecutive device numbers required

const char * name the name of the device or driver.

Description
Return value is zero on success, a negative error code on failure.

int alloc_chrdev_region(dev_t * dev, unsigned baseminor, unsigned count,
const char * name)

register a range of char device numbers

Parameters
dev_t * dev output parameter for first assigned number

unsigned baseminor first of the requested range of minor numbers

unsigned count the number of minor numbers required

const char * name the name of the associated device or driver

Description
Allocates a range of char device numbers. The major number will be chosen dy-
namically, and returned (along with the first minor number) in dev. Returns zero
or a negative error code.

int __register_chrdev(unsigned int major, unsigned int baseminor, un-
signed int count, const char * name, const struct
file_operations * fops)

create and register a cdev occupying a range of minors

Parameters
unsigned int major major device number or 0 for dynamic allocation

unsigned int baseminor first of the requested range of minor numbers

unsigned int count the number of minor numbers required

const char * name name of this range of devices

1.1. The Linux Kernel API 137

Linux Core-api Documentation

const struct file_operations * fops file operations associated with this de-
vices

Description
Ifmajor == 0 this functions will dynamically allocate a major and return its num-
ber.

If major > 0 this function will attempt to reserve a device with the given major
number and will return zero on success.

Returns a -ve errno on failure.

The name of this device has nothing to do with the name of the device in /dev. It
only helps to keep track of the different owners of devices. If your module name
has only one type of devices it’s ok to use e.g. the name of the module here.
void unregister_chrdev_region(dev_t from, unsigned count)

unregister a range of device numbers

Parameters
dev_t from the first in the range of numbers to unregister

unsigned count the number of device numbers to unregister

Description
This function will unregister a range of count device numbers, starting with from.
The caller should normally be the one who allocated those numbers in the first
place⋯
void __unregister_chrdev(unsigned int major, unsigned int baseminor, un-

signed int count, const char * name)
unregister and destroy a cdev

Parameters
unsigned int major major device number

unsigned int baseminor first of the range of minor numbers

unsigned int count the number of minor numbers this cdev is occupying

const char * name name of this range of devices

Description
Unregister and destroy the cdev occupying the region described by major,
baseminor and count. This function undoes what __register_chrdev() did.
int cdev_add(struct cdev * p, dev_t dev, unsigned count)

add a char device to the system

Parameters
struct cdev * p the cdev structure for the device

dev_t dev the first device number for which this device is responsible

unsigned count the number of consecutive minor numbers corresponding to this
device

138 Chapter 1. Core utilities

Linux Core-api Documentation

Description
cdev_add() adds the device represented by p to the system, making it live imme-
diately. A negative error code is returned on failure.

void cdev_set_parent(struct cdev * p, struct kobject * kobj)
set the parent kobject for a char device

Parameters
struct cdev * p the cdev structure

struct kobject * kobj the kobject to take a reference to

Description
cdev_set_parent() sets a parent kobject which will be referenced appropriately
so the parent is not freed before the cdev. This should be called before cdev_add.

int cdev_device_add(struct cdev * cdev, struct device * dev)
add a char device and it’s corresponding struct device, linkink

Parameters
struct cdev * cdev the cdev structure

struct device * dev the device structure

Description
cdev_device_add() adds the char device represented by cdev to the system, just
as cdev_add does. It then adds dev to the system using device_add The dev_t for
the char device will be taken from the struct device which needs to be initialized
first. This helper function correctly takes a reference to the parent device so the
parent will not get released until all references to the cdev are released.

This helper uses dev->devt for the device number. If it is not set it will not add the
cdev and it will be equivalent to device_add.

This function should be used whenever the struct cdev and the struct device are
members of the same structure whose lifetime is managed by the struct device.

NOTE
Callers must assume that userspace was able to open the cdev and can call cdev
fops callbacks at any time, even if this function fails.

void cdev_device_del(struct cdev * cdev, struct device * dev)
inverse of cdev_device_add

Parameters
struct cdev * cdev the cdev structure

struct device * dev the device structure

Description
cdev_device_del() is a helper function to call cdev_del and device_del. It should
be used whenever cdev_device_add is used.

If dev->devt is not set it will not remove the cdev and will be equivalent to de-
vice_del.

1.1. The Linux Kernel API 139

Linux Core-api Documentation

NOTE
This guarantees that associated sysfs callbacks are not running or runnable, how-
ever any cdevs already open will remain and their fops will still be callable even
after this function returns.

void cdev_del(struct cdev * p)
remove a cdev from the system

Parameters
struct cdev * p the cdev structure to be removed

Description
cdev_del() removes p from the system, possibly freeing the structure itself.

NOTE
This guarantees that cdev device will no longer be able to be opened, however
any cdevs already open will remain and their fops will still be callable even after
cdev_del returns.

struct cdev * cdev_alloc(void)
allocate a cdev structure

Parameters
void no arguments

Description
Allocates and returns a cdev structure, or NULL on failure.

void cdev_init(struct cdev * cdev, const struct file_operations * fops)
initialize a cdev structure

Parameters
struct cdev * cdev the structure to initialize

const struct file_operations * fops the file_operations for this device

Description
Initializes cdev, remembering fops, making it ready to add to the system with
cdev_add().

1.1.15 Clock Framework

The clock framework defines programming interfaces to support software man-
agement of the system clock tree. This framework is widely used with System-On-
Chip (SOC) platforms to support power management and various devices which
may need custom clock rates. Note that these“clocks”don’t relate to timekeep-
ing or real time clocks (RTCs), each of which have separate frameworks. These
struct clk instances may be used to manage for example a 96 MHz signal that
is used to shift bits into and out of peripherals or busses, or otherwise trigger
synchronous state machine transitions in system hardware.

Power management is supported by explicit software clock gating: unused clocks
are disabled, so the system doesn’t waste power changing the state of transistors

140 Chapter 1. Core utilities

Linux Core-api Documentation

that aren’t in active use. On some systems this may be backed by hardware clock
gating, where clocks are gated without being disabled in software. Sections of
chips that are powered but not clocked may be able to retain their last state. This
low power state is often called a retention mode. This mode still incurs leakage
currents, especially with finer circuit geometries, but for CMOS circuits power is
mostly used by clocked state changes.

Power-aware drivers only enable their clocks when the device they manage is in
active use. Also, system sleep states often differ according to which clock domains
are active: while a“standby”state may allow wakeup from several active domains,
a“mem”(suspend-to-RAM) state may require a more wholesale shutdown of clocks
derived from higher speed PLLs and oscillators, limiting the number of possible
wakeup event sources. A driver’s suspendmethodmay need to be aware of system-
specific clock constraints on the target sleep state.

Some platforms support programmable clock generators. These can be used by
external chips of various kinds, such as other CPUs, multimedia codecs, and de-
vices with strict requirements for interface clocking.

struct clk_notifier
associate a clk with a notifier

Definition

struct clk_notifier {
struct clk *clk;
struct srcu_notifier_head notifier_head;
struct list_head node;

};

Members
clk struct clk * to associate the notifier with

notifier_head a blocking_notifier_head for this clk

node linked list pointers

Description
A list of struct clk_notifier is maintained by the notifier code. An entry is created
whenever code registers the first notifier on a particular clk. Future notifiers on
that clk are added to the notifier_head.
struct clk_notifier_data

rate data to pass to the notifier callback

Definition

struct clk_notifier_data {
struct clk *clk;
unsigned long old_rate;
unsigned long new_rate;

};

Members
clk struct clk * being changed

1.1. The Linux Kernel API 141

Linux Core-api Documentation

old_rate previous rate of this clk

new_rate new rate of this clk

Description
For a pre-notifier, old_rate is the clk’s rate before this rate change, and new_rate
is what the rate will be in the future. For a post-notifier, old_rate and new_rate are
both set to the clk’s current rate (this was done to optimize the implementation).

struct clk_bulk_data
Data used for bulk clk operations.

Definition

struct clk_bulk_data {
const char *id;
struct clk *clk;

};

Members
id clock consumer ID

clk struct clk * to store the associated clock

Description
The CLK APIs provide a series of clk_bulk_() API calls as a convenience to con-
sumers which require multiple clks. This structure is used to manage data for
these calls.

int clk_notifier_register(struct clk * clk, struct notifier_block * nb)
change notifier callback

Parameters
struct clk * clk clock whose rate we are interested in

struct notifier_block * nb notifier block with callback function pointer

Description
ProTip: debugging across notifier chains can be frustrating. Make sure that your
notifier callback function prints a nice big warning in case of failure.

int clk_notifier_unregister(struct clk * clk, struct notifier_block * nb)
change notifier callback

Parameters
struct clk * clk clock whose rate we are no longer interested in

struct notifier_block * nb notifier block which will be unregistered

long clk_get_accuracy(struct clk * clk)
obtain the clock accuracy in ppb (parts per billion) for a clock source.

Parameters
struct clk * clk clock source

142 Chapter 1. Core utilities

Linux Core-api Documentation

Description
This gets the clock source accuracy expressed in ppb. A perfect clock returns 0.

int clk_set_phase(struct clk * clk, int degrees)
adjust the phase shift of a clock signal

Parameters
struct clk * clk clock signal source

int degrees number of degrees the signal is shifted

Description
Shifts the phase of a clock signal by the specified degrees. Returns 0 on success,
-EERROR otherwise.

int clk_get_phase(struct clk * clk)
return the phase shift of a clock signal

Parameters
struct clk * clk clock signal source

Description
Returns the phase shift of a clock node in degrees, otherwise returns -EERROR.

int clk_set_duty_cycle(struct clk * clk, unsigned int num, unsigned
int den)

adjust the duty cycle ratio of a clock signal

Parameters
struct clk * clk clock signal source

unsigned int num numerator of the duty cycle ratio to be applied

unsigned int den denominator of the duty cycle ratio to be applied

Description
Adjust the duty cycle of a clock signal by the specified ratio. Returns 0 on success,
-EERROR otherwise.

int clk_get_scaled_duty_cycle(struct clk * clk, unsigned int scale)
return the duty cycle ratio of a clock signal

Parameters
struct clk * clk clock signal source

unsigned int scale scaling factor to be applied to represent the ratio as an in-
teger

Description
Returns the duty cycle ratio multiplied by the scale provided, otherwise returns
-EERROR.

bool clk_is_match(const struct clk * p, const struct clk * q)
check if two clk’s point to the same hardware clock

Parameters

1.1. The Linux Kernel API 143

Linux Core-api Documentation

const struct clk * p clk compared against q

const struct clk * q clk compared against p

Description
Returns true if the two struct clk pointers both point to the same hardware clock
node. Put differently, returns true if p and q share the same struct clk_core
object.

Returns false otherwise. Note that two NULL clks are treated as matching.

int clk_prepare(struct clk * clk)
prepare a clock source

Parameters
struct clk * clk clock source

Description
This prepares the clock source for use.

Must not be called from within atomic context.

void clk_unprepare(struct clk * clk)
undo preparation of a clock source

Parameters
struct clk * clk clock source

Description
This undoes a previously prepared clock. The caller must balance the number of
prepare and unprepare calls.

Must not be called from within atomic context.

struct clk * clk_get(struct device * dev, const char * id)
lookup and obtain a reference to a clock producer.

Parameters
struct device * dev device for clock “consumer”
const char * id clock consumer ID

Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR() condi-
tion containing errno. The implementation uses dev and id to determine the clock
consumer, and thereby the clock producer. (IOW, id may be identical strings, but
clk_get may return different clock producers depending on dev.)
Drivers must assume that the clock source is not enabled.

clk_get should not be called from within interrupt context.

int clk_bulk_get(struct device * dev, int num_clks, struct clk_bulk_data
* clks)

lookup and obtain a number of references to clock producer.

Parameters

144 Chapter 1. Core utilities

Linux Core-api Documentation

struct device * dev device for clock “consumer”
int num_clks the number of clk_bulk_data

struct clk_bulk_data * clks the clk_bulk_data table of consumer

Description
This helper function allows drivers to get several clk consumers in one operation.
If any of the clk cannot be acquired then any clks that were obtained will be freed
before returning to the caller.

Returns 0 if all clocks specified in clk_bulk_data table are obtained successfully,
or valid IS_ERR() condition containing errno. The implementation uses dev and
clk_bulk_data.id to determine the clock consumer, and thereby the clock pro-
ducer. The clock returned is stored in each clk_bulk_data.clk field.
Drivers must assume that the clock source is not enabled.

clk_bulk_get should not be called from within interrupt context.

int clk_bulk_get_all(struct device * dev, struct clk_bulk_data ** clks)
lookup and obtain all available references to clock producer.

Parameters
struct device * dev device for clock “consumer”
struct clk_bulk_data ** clks pointer to the clk_bulk_data table of consumer

Description
This helper function allows drivers to get all clk consumers in one operation. If
any of the clk cannot be acquired then any clks that were obtained will be freed
before returning to the caller.

Returns a positive value for the number of clocks obtained while the clock refer-
ences are stored in the clk_bulk_data table in clks field. Returns 0 if there’re
none and a negative value if something failed.

Drivers must assume that the clock source is not enabled.

clk_bulk_get should not be called from within interrupt context.

int clk_bulk_get_optional(struct device * dev, int num_clks, struct
clk_bulk_data * clks)

lookup and obtain a number of references to clock producer

Parameters
struct device * dev device for clock “consumer”
int num_clks the number of clk_bulk_data

struct clk_bulk_data * clks the clk_bulk_data table of consumer

Description
Behaves the same as clk_bulk_get() except where there is no clock producer. In
this case, instead of returning -ENOENT, the function returns 0 and NULL for a
clk for which a clock producer could not be determined.

1.1. The Linux Kernel API 145

Linux Core-api Documentation

int devm_clk_bulk_get(struct device * dev, int num_clks, struct
clk_bulk_data * clks)

managed get multiple clk consumers

Parameters
struct device * dev device for clock “consumer”
int num_clks the number of clk_bulk_data

struct clk_bulk_data * clks the clk_bulk_data table of consumer

Description
Return 0 on success, an errno on failure.

This helper function allows drivers to get several clk consumers in one operation
with management, the clks will automatically be freed when the device is unbound.

int devm_clk_bulk_get_optional(struct device * dev, int num_clks, struct
clk_bulk_data * clks)

managed get multiple optional consumer clocks

Parameters
struct device * dev device for clock “consumer”
int num_clks the number of clk_bulk_data

struct clk_bulk_data * clks pointer to the clk_bulk_data table of consumer

Description
Behaves the same as devm_clk_bulk_get() except where there is no clock pro-
ducer. In this case, instead of returning -ENOENT, the function returns NULL for
given clk. It is assumed all clocks in clk_bulk_data are optional.

Returns 0 if all clocks specified in clk_bulk_data table are obtained successfully or
for any clk there was no clk provider available, otherwise returns valid IS_ERR()
condition containing errno. The implementation uses dev and clk_bulk_data.id to
determine the clock consumer, and thereby the clock producer. The clock returned
is stored in each clk_bulk_data.clk field.
Drivers must assume that the clock source is not enabled.

clk_bulk_get should not be called from within interrupt context.

int devm_clk_bulk_get_all(struct device * dev, struct clk_bulk_data
** clks)

managed get multiple clk consumers

Parameters
struct device * dev device for clock “consumer”
struct clk_bulk_data ** clks pointer to the clk_bulk_data table of consumer

Description
Returns a positive value for the number of clocks obtained while the clock refer-
ences are stored in the clk_bulk_data table in clks field. Returns 0 if there’re
none and a negative value if something failed.

146 Chapter 1. Core utilities

Linux Core-api Documentation

This helper function allows drivers to get several clk consumers in one operation
with management, the clks will automatically be freed when the device is unbound.

struct clk * devm_clk_get(struct device * dev, const char * id)
lookup and obtain a managed reference to a clock producer.

Parameters
struct device * dev device for clock “consumer”
const char * id clock consumer ID

Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR() condi-
tion containing errno. The implementation uses dev and id to determine the clock
consumer, and thereby the clock producer. (IOW, id may be identical strings, but
clk_get may return different clock producers depending on dev.)
Drivers must assume that the clock source is not enabled.

devm_clk_get should not be called from within interrupt context.

The clock will automatically be freed when the device is unbound from the bus.

struct clk * devm_clk_get_optional(struct device * dev, const char * id)
lookup and obtain a managed reference to an optional clock producer.

Parameters
struct device * dev device for clock “consumer”
const char * id clock consumer ID

Description
Behaves the same as devm_clk_get() except where there is no clock producer. In
this case, instead of returning -ENOENT, the function returns NULL.

struct clk * devm_get_clk_from_child(struct device * dev, struct de-
vice_node * np, const char * con_id)

lookup and obtain a managed reference to a clock producer from child node.

Parameters
struct device * dev device for clock “consumer”
struct device_node * np pointer to clock consumer node

const char * con_id clock consumer ID

Description
This function parses the clocks, and uses them to look up the struct clk from the
registered list of clock providers by using np and con_id
The clock will automatically be freed when the device is unbound from the bus.

int clk_rate_exclusive_get(struct clk * clk)
get exclusivity over the rate control of a producer

Parameters

1.1. The Linux Kernel API 147

Linux Core-api Documentation

struct clk * clk clock source

Description
This function allows drivers to get exclusive control over the rate of a provider. It
prevents any other consumer to execute, even indirectly, opereation which could
alter the rate of the provider or cause glitches

If exlusivity is claimed more than once on clock, even by the same driver, the rate
effectively gets locked as exclusivity can’t be preempted.
Must not be called from within atomic context.

Returns success (0) or negative errno.

void clk_rate_exclusive_put(struct clk * clk)
release exclusivity over the rate control of a producer

Parameters
struct clk * clk clock source

Description
This function allows drivers to release the exclusivity it previously got from
clk_rate_exclusive_get()

The caller must balance the number of clk_rate_exclusive_get() and
clk_rate_exclusive_put() calls.

Must not be called from within atomic context.

int clk_enable(struct clk * clk)
inform the system when the clock source should be running.

Parameters
struct clk * clk clock source

Description
If the clock can not be enabled/disabled, this should return success.

May be called from atomic contexts.

Returns success (0) or negative errno.

int clk_bulk_enable(int num_clks, const struct clk_bulk_data * clks)
inform the system when the set of clks should be running.

Parameters
int num_clks the number of clk_bulk_data

const struct clk_bulk_data * clks the clk_bulk_data table of consumer

Description
May be called from atomic contexts.

Returns success (0) or negative errno.

void clk_disable(struct clk * clk)
inform the system when the clock source is no longer required.

148 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
struct clk * clk clock source

Description
Inform the system that a clock source is no longer required by a driver and may
be shut down.

May be called from atomic contexts.

Implementation detail: if the clock source is shared between multiple drivers,
clk_enable() calls must be balanced by the same number of clk_disable() calls
for the clock source to be disabled.

void clk_bulk_disable(int num_clks, const struct clk_bulk_data * clks)
inform the system when the set of clks is no longer required.

Parameters
int num_clks the number of clk_bulk_data

const struct clk_bulk_data * clks the clk_bulk_data table of consumer

Description
Inform the system that a set of clks is no longer required by a driver and may be
shut down.

May be called from atomic contexts.

Implementation detail: if the set of clks is shared between multiple
drivers, clk_bulk_enable() calls must be balanced by the same number of
clk_bulk_disable() calls for the clock source to be disabled.

unsigned long clk_get_rate(struct clk * clk)
obtain the current clock rate (in Hz) for a clock source. This is only valid once
the clock source has been enabled.

Parameters
struct clk * clk clock source

void clk_put(struct clk * clk)
“free”the clock source

Parameters
struct clk * clk clock source

Note
drivers must ensure that all clk_enable calls made on this clock source are bal-
anced by clk_disable calls prior to calling this function.

Description
clk_put should not be called from within interrupt context.

void clk_bulk_put(int num_clks, struct clk_bulk_data * clks)
“free”the clock source

Parameters

1.1. The Linux Kernel API 149

Linux Core-api Documentation

int num_clks the number of clk_bulk_data

struct clk_bulk_data * clks the clk_bulk_data table of consumer

Note
drivers must ensure that all clk_bulk_enable calls made on this clock source are
balanced by clk_bulk_disable calls prior to calling this function.

Description
clk_bulk_put should not be called from within interrupt context.

void clk_bulk_put_all(int num_clks, struct clk_bulk_data * clks)
“free”all the clock source

Parameters
int num_clks the number of clk_bulk_data

struct clk_bulk_data * clks the clk_bulk_data table of consumer

Note
drivers must ensure that all clk_bulk_enable calls made on this clock source are
balanced by clk_bulk_disable calls prior to calling this function.

Description
clk_bulk_put_all should not be called from within interrupt context.

void devm_clk_put(struct device * dev, struct clk * clk)
“free”a managed clock source

Parameters
struct device * dev device used to acquire the clock

struct clk * clk clock source acquired with devm_clk_get()

Note
drivers must ensure that all clk_enable calls made on this clock source are bal-
anced by clk_disable calls prior to calling this function.

Description
clk_put should not be called from within interrupt context.

long clk_round_rate(struct clk * clk, unsigned long rate)
adjust a rate to the exact rate a clock can provide

Parameters
struct clk * clk clock source

unsigned long rate desired clock rate in Hz

Description
This answers the question“if I were to pass rate to clk_set_rate(), what clock
rate would I end up with?”without changing the hardware in any way. In other
words:

rate = clk_round_rate(clk, r);

150 Chapter 1. Core utilities

Linux Core-api Documentation

and:

clk_set_rate(clk, r); rate = clk_get_rate(clk);

are equivalent except the former does not modify the clock hardware in any way.

Returns rounded clock rate in Hz, or negative errno.

int clk_set_rate(struct clk * clk, unsigned long rate)
set the clock rate for a clock source

Parameters
struct clk * clk clock source

unsigned long rate desired clock rate in Hz

Description
Updating the rate starts at the top-most affected clock and then walks the tree
down to the bottom-most clock that needs updating.

Returns success (0) or negative errno.

int clk_set_rate_exclusive(struct clk * clk, unsigned long rate)
set the clock rate and claim exclusivity over clock source

Parameters
struct clk * clk clock source

unsigned long rate desired clock rate in Hz

Description
This helper function allows drivers to atomically set the rate of a producer and
claim exclusivity over the rate control of the producer.

It is essentially a combination of clk_set_rate() and clk_rate_exclusite_get().
Caller must balance this call with a call to clk_rate_exclusive_put()

Returns success (0) or negative errno.

bool clk_has_parent(struct clk * clk, struct clk * parent)
check if a clock is a possible parent for another

Parameters
struct clk * clk clock source

struct clk * parent parent clock source

Description
This function can be used in drivers that need to check that a clock can be the
parent of another without actually changing the parent.

Returns true if parent is a possible parent for clk, false otherwise.
int clk_set_rate_range(struct clk * clk, unsigned long min, unsigned

long max)
set a rate range for a clock source

Parameters

1.1. The Linux Kernel API 151

Linux Core-api Documentation

struct clk * clk clock source

unsigned long min desired minimum clock rate in Hz, inclusive

unsigned long max desired maximum clock rate in Hz, inclusive

Description
Returns success (0) or negative errno.

int clk_set_min_rate(struct clk * clk, unsigned long rate)
set a minimum clock rate for a clock source

Parameters
struct clk * clk clock source

unsigned long rate desired minimum clock rate in Hz, inclusive

Description
Returns success (0) or negative errno.

int clk_set_max_rate(struct clk * clk, unsigned long rate)
set a maximum clock rate for a clock source

Parameters
struct clk * clk clock source

unsigned long rate desired maximum clock rate in Hz, inclusive

Description
Returns success (0) or negative errno.

int clk_set_parent(struct clk * clk, struct clk * parent)
set the parent clock source for this clock

Parameters
struct clk * clk clock source

struct clk * parent parent clock source

Description
Returns success (0) or negative errno.

struct clk * clk_get_parent(struct clk * clk)
get the parent clock source for this clock

Parameters
struct clk * clk clock source

Description
Returns struct clk corresponding to parent clock source, or valid IS_ERR() condi-
tion containing errno.

struct clk * clk_get_sys(const char * dev_id, const char * con_id)
get a clock based upon the device name

Parameters

152 Chapter 1. Core utilities

Linux Core-api Documentation

const char * dev_id device name

const char * con_id connection ID

Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR() condi-
tion containing errno. The implementation uses dev_id and con_id to determine
the clock consumer, and thereby the clock producer. In contrast to clk_get() this
function takes the device name instead of the device itself for identification.

Drivers must assume that the clock source is not enabled.

clk_get_sys should not be called from within interrupt context.

int clk_save_context(void)
save clock context for poweroff

Parameters
void no arguments

Description
Saves the context of the clock register for powerstates in which the contents of
the registers will be lost. Occurs deep within the suspend code so locking is not
necessary.

void clk_restore_context(void)
restore clock context after poweroff

Parameters
void no arguments

Description
This occurs with all clocks enabled. Occurs deep within the resume code so locking
is not necessary.

struct clk * clk_get_optional(struct device * dev, const char * id)
lookup and obtain a reference to an optional clock producer.

Parameters
struct device * dev device for clock “consumer”
const char * id clock consumer ID

Description
Behaves the same as clk_get() except where there is no clock producer. In this
case, instead of returning -ENOENT, the function returns NULL.

1.1. The Linux Kernel API 153

Linux Core-api Documentation

1.1.16 Synchronization Primitives

Read-Copy Update (RCU)

RCU_NONIDLE(a)
Indicate idle-loop code that needs RCU readers

Parameters
a Code that RCU needs to pay attention to.

Description
RCU read-side critical sections are forbidden in the inner idle loop, that is, between
the rcu_idle_enter() and the rcu_idle_exit() – RCU will happily ignore any
such read-side critical sections. However, things like powertop need tracepoints
in the inner idle loop.

This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) will
tell RCU that it needs to pay attention, invoke its argument (in this example, calling
the do_something_with_RCU() function), and then tell RCU to go back to ignoring
this CPU. It is permissible to nest RCU_NONIDLE() wrappers, but not indefinitely
(but the limit is on the order of a million or so, even on 32-bit systems). It is not
legal to block within RCU_NONIDLE(), nor is it permissible to transfer control either
into or out of RCU_NONIDLE()’s statement.
cond_resched_tasks_rcu_qs()

Report potential quiescent states to RCU

Parameters
Description
This macro resembles cond_resched(), except that it is defined to report potential
quiescent states to RCU-tasks even if the cond_resched() machinery were to be
shut off, as some advocate for PREEMPTION kernels.

RCU_LOCKDEP_WARN(c, s)
emit lockdep splat if specified condition is met

Parameters
c condition to check

s informative message

RCU_INITIALIZER(v)
statically initialize an RCU-protected global variable

Parameters
v The value to statically initialize with.

rcu_assign_pointer(p, v)
assign to RCU-protected pointer

Parameters
p pointer to assign to

v value to assign (publish)

154 Chapter 1. Core utilities

Linux Core-api Documentation

Description
Assigns the specified value to the specified RCU-protected pointer, ensuring that
any concurrent RCU readers will see any prior initialization.

Inserts memory barriers on architectures that require them (which is most of
them), and also prevents the compiler from reordering the code that initializes
the structure after the pointer assignment. More importantly, this call documents
which pointers will be dereferenced by RCU read-side code.

In some special cases, you may use RCU_INIT_POINTER() instead of
rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due to the fact
that it does not constrain either the CPU or the compiler. That said, using
RCU_INIT_POINTER() when you should have used rcu_assign_pointer() is a
very bad thing that results in impossible-to-diagnose memory corruption. So
please be careful. See the RCU_INIT_POINTER() comment header for details.

Note that rcu_assign_pointer() evaluates each of its arguments only once, ap-
pearances notwithstanding. One of the“extra”evaluations is in typeof() and the
other visible only to sparse (__CHECKER__), neither of which actually execute the
argument. As with most cppmacros, this execute-arguments-only-once property is
important, so please be careful when making changes to rcu_assign_pointer()
and the other macros that it invokes.

rcu_replace_pointer(rcu_ptr, ptr, c)
replace an RCU pointer, returning its old value

Parameters
rcu_ptr RCU pointer, whose old value is returned

ptr regular pointer

c the lockdep conditions under which the dereference will take place

Description
Perform a replacement, where rcu_ptr is an RCU-annotated pointer and c is the
lockdep argument that is passed to the rcu_dereference_protected() call used
to read that pointer. The old value of rcu_ptr is returned, and rcu_ptr is set to
ptr.
rcu_access_pointer(p)

fetch RCU pointer with no dereferencing

Parameters
p The pointer to read

Description
Return the value of the specified RCU-protected pointer, but omit the lockdep
checks for being in an RCU read-side critical section. This is useful when the value
of this pointer is accessed, but the pointer is not dereferenced, for example, when
testing an RCU-protected pointer against NULL. Although rcu_access_pointer()
may also be used in cases where update-side locks prevent the value of the pointer
from changing, you should instead use rcu_dereference_protected() for this use
case.

1.1. The Linux Kernel API 155

Linux Core-api Documentation

It is also permissible to use rcu_access_pointer() when read-side access to the
pointer was removed at least one grace period ago, as is the case in the context of
the RCU callback that is freeing up the data, or after a synchronize_rcu() returns.
This can be useful when tearing down multi-linked structures after a grace period
has elapsed.

rcu_dereference_check(p, c)
rcu_dereference with debug checking

Parameters
p The pointer to read, prior to dereferencing

c The conditions under which the dereference will take place

Description
Do an rcu_dereference(), but check that the conditions under which the deref-
erence will take place are correct. Typically the conditions indicate the various
locking conditions that should be held at that point. The check should return true
if the conditions are satisfied. An implicit check for being in an RCU read-side
critical section (rcu_read_lock()) is included.

For example:

bar = rcu_dereference_check(foo->bar, lockdep_is_held(foo->lock));

could be used to indicate to lockdep that foo->bar may only be dereferenced if
either rcu_read_lock() is held, or that the lock required to replace the bar struct
at foo->bar is held.

Note that the list of conditions may also include indications of when a lock need
not be held, for example during initialisation or destruction of the target struct:

bar = rcu_dereference_check(foo->bar, lockdep_is_held(foo->lock) ||
atomic_read(foo->usage) == 0);

Inserts memory barriers on architectures that require them (currently only the
Alpha), prevents the compiler from refetching (and from merging fetches), and,
more importantly, documents exactly which pointers are protected by RCU and
checks that the pointer is annotated as __rcu.

rcu_dereference_bh_check(p, c)
rcu_dereference_bh with debug checking

Parameters
p The pointer to read, prior to dereferencing

c The conditions under which the dereference will take place

Description
This is the RCU-bh counterpart to rcu_dereference_check().

rcu_dereference_sched_check(p, c)
rcu_dereference_sched with debug checking

Parameters
p The pointer to read, prior to dereferencing

156 Chapter 1. Core utilities

Linux Core-api Documentation

c The conditions under which the dereference will take place

Description
This is the RCU-sched counterpart to rcu_dereference_check().

rcu_dereference_protected(p, c)
fetch RCU pointer when updates prevented

Parameters
p The pointer to read, prior to dereferencing

c The conditions under which the dereference will take place

Description
Return the value of the specified RCU-protected pointer, but omit the
READ_ONCE(). This is useful in cases where update-side locks prevent the value
of the pointer from changing. Please note that this primitive does not prevent the
compiler from repeating this reference or combining it with other references, so
it should not be used without protection of appropriate locks.

This function is only for update-side use. Using this function when protected only
by rcu_read_lock() will result in infrequent but very ugly failures.

rcu_dereference(p)
fetch RCU-protected pointer for dereferencing

Parameters
p The pointer to read, prior to dereferencing

Description
This is a simple wrapper around rcu_dereference_check().

rcu_dereference_bh(p)
fetch an RCU-bh-protected pointer for dereferencing

Parameters
p The pointer to read, prior to dereferencing

Description
Makes rcu_dereference_check() do the dirty work.

rcu_dereference_sched(p)
fetch RCU-sched-protected pointer for dereferencing

Parameters
p The pointer to read, prior to dereferencing

Description
Makes rcu_dereference_check() do the dirty work.

rcu_pointer_handoff(p)
Hand off a pointer from RCU to other mechanism

Parameters
p The pointer to hand off

1.1. The Linux Kernel API 157

Linux Core-api Documentation

Description
This is simply an identity function, but it documents where a pointer is handed
off from RCU to some other synchronization mechanism, for example, reference
counting or locking. In C11, it would map to kill_dependency(). It could be used
as follows:

rcu_read_lock();
p = rcu_dereference(gp);
long_lived = is_long_lived(p);
if (long_lived) {

if (!atomic_inc_not_zero(p->refcnt))
long_lived = false;

else
p = rcu_pointer_handoff(p);

}
rcu_read_unlock();

void rcu_read_lock(void)
mark the beginning of an RCU read-side critical section

Parameters
void no arguments

Description
When synchronize_rcu() is invoked on one CPU while other CPUs are within RCU
read-side critical sections, then the synchronize_rcu() is guaranteed to block until
after all the other CPUs exit their critical sections. Similarly, if call_rcu() is invoked
on one CPUwhile other CPUs are within RCU read-side critical sections, invocation
of the corresponding RCU callback is deferred until after the all the other CPUs
exit their critical sections.

Note, however, that RCU callbacks are permitted to run concurrently with new
RCU read-side critical sections. One way that this can happen is via the following
sequence of events: (1) CPU 0 enters an RCU read-side critical section, (2) CPU
1 invokes call_rcu() to register an RCU callback, (3) CPU 0 exits the RCU read-
side critical section, (4) CPU 2 enters a RCU read-side critical section, (5) the
RCU callback is invoked. This is legal, because the RCU read-side critical section
that was running concurrently with the call_rcu() (and which therefore might be
referencing something that the corresponding RCU callback would free up) has
completed before the corresponding RCU callback is invoked.

RCU read-side critical sections may be nested. Any deferred actions will be de-
ferred until the outermost RCU read-side critical section completes.

You can avoid reading and understanding the next paragraph by following this
rule: don’t put anything in an rcu_read_lock() RCU read-side critical section
that would block in a !PREEMPTION kernel. But if you want the full story, read
on!

In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), it is
illegal to block while in an RCU read-side critical section. In preemptible RCU
implementations (PREEMPT_RCU) in CONFIG_PREEMPTION kernel builds, RCU
read-side critical sections may be preempted, but explicit blocking is illegal. Fi-
nally, in preemptible RCU implementations in real-time (with -rt patchset) kernel

158 Chapter 1. Core utilities

Linux Core-api Documentation

builds, RCU read-side critical sections may be preempted and they may also block,
but only when acquiring spinlocks that are subject to priority inheritance.

void rcu_read_unlock(void)
marks the end of an RCU read-side critical section.

Parameters
void no arguments

Description
In most situations, rcu_read_unlock() is immune from deadlock. However, in
kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() is responsible for
deboosting, which it does via rt_mutex_unlock(). Unfortunately, this function ac-
quires the scheduler’s runqueue and priority-inheritance spinlocks. This means
that deadlock could result if the caller of rcu_read_unlock() already holds one of
these locks or any lock that is ever acquired while holding them.

That said, RCU readers are never priority boosted unless they were pre-
empted. Therefore, one way to avoid deadlock is to make sure that preemp-
tion never happens within any RCU read-side critical section whose outermost
rcu_read_unlock() is called with one of rt_mutex_unlock()’s locks held. Such
preemption can be avoided in a number of ways, for example, by invoking pre-
empt_disable() before critical section’s outermost rcu_read_lock().
Given that the set of locks acquired by rt_mutex_unlock() might change at any
time, a somewhat more future-proofed approach is to make sure that that pre-
emption never happens within any RCU read-side critical section whose outermost
rcu_read_unlock() is called with irqs disabled. This approach relies on the fact
that rt_mutex_unlock() currently only acquires irq-disabled locks.

The second of these two approaches is best in most situations, however, the first
approach can also be useful, at least to those developers willing to keep abreast
of the set of locks acquired by rt_mutex_unlock().

See rcu_read_lock() for more information.

void rcu_read_lock_bh(void)
mark the beginning of an RCU-bh critical section

Parameters
void no arguments

Description
This is equivalent of rcu_read_lock(), but also disables softirqs. Note that any-
thing else that disables softirqs can also serve as an RCU read-side critical section.

Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() must oc-
cur in the same context, for example, it is illegal to invoke rcu_read_unlock_bh()
from one task if the matching rcu_read_lock_bh() was invoked from some other
task.

void rcu_read_lock_sched(void)
mark the beginning of a RCU-sched critical section

Parameters

1.1. The Linux Kernel API 159

Linux Core-api Documentation

void no arguments

Description
This is equivalent of rcu_read_lock(), but disables preemption. Read-side crit-
ical sections can also be introduced by anything else that disables preemption,
including local_irq_disable() and friends.

Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
must occur in the same context, for example, it is illegal to in-
voke rcu_read_unlock_sched() from process context if the matching
rcu_read_lock_sched() was invoked from an NMI handler.

RCU_INIT_POINTER(p, v)
initialize an RCU protected pointer

Parameters
p The pointer to be initialized.

v The value to initialized the pointer to.

Description
Initialize an RCU-protected pointer in special cases where readers do not need
ordering constraints on the CPU or the compiler. These special cases are:

1. This use of RCU_INIT_POINTER() is NULLing out the pointer or

2. The caller has taken whatever steps are required to prevent RCU readers
from concurrently accessing this pointer or

3. The referenced data structure has already been exposed to readers either at
compile time or via rcu_assign_pointer() and

a. You have not made any reader-visible changes to this structure since then
or

b. It is OK for readers accessing this structure from its new location to see
the old state of the structure. (For example, the changes were to sta-
tistical counters or to other state where exact synchronization is not re-
quired.)

Failure to follow these rules governing use of RCU_INIT_POINTER() will result
in impossible-to-diagnose memory corruption. As in the structures will look OK
in crash dumps, but any concurrent RCU readers might see pre-initialized val-
ues of the referenced data structure. So please be very careful how you use
RCU_INIT_POINTER()!!!

If you are creating an RCU-protected linked structure that is accessed
by a single external-to-structure RCU-protected pointer, then you may use
RCU_INIT_POINTER() to initialize the internal RCU-protected pointers, but you
must use rcu_assign_pointer() to initialize the external-to-structure pointer af-
ter you have completely initialized the reader-accessible portions of the linked
structure.

Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no order-
ing guarantees for either the CPU or the compiler.

160 Chapter 1. Core utilities

Linux Core-api Documentation

RCU_POINTER_INITIALIZER(p, v)
statically initialize an RCU protected pointer

Parameters
p The pointer to be initialized.

v The value to initialized the pointer to.

Description
GCC-style initialization for an RCU-protected pointer in a structure field.

kfree_rcu(ptr, rhf)
kfree an object after a grace period.

Parameters
ptr pointer to kfree

rhf the name of the struct rcu_head within the type of ptr.
Description
Many rcu callbacks functions just call kfree() on the base structure. These func-
tions are trivial, but their size adds up, and furthermore when they are used in a
kernel module, that module must invoke the high-latency rcu_barrier() function at
module-unload time.

The kfree_rcu() function handles this issue. Rather than encoding a function
address in the embedded rcu_head structure, kfree_rcu() instead encodes the
offset of the rcu_head structure within the base structure. Because the functions
are not allowed in the low-order 4096 bytes of kernel virtual memory, offsets up
to 4095 bytes can be accommodated. If the offset is larger than 4095 bytes, a
compile-time error will be generated in __kfree_rcu(). If this error is triggered,
you can either fall back to use of call_rcu() or rearrange the structure to position
the rcu_head structure into the first 4096 bytes.

Note that the allowable offset might decrease in the future, for example, to allow
something like kmem_cache_free_rcu().

The BUILD_BUG_ON check must not involve any function calls, hence the checks
are done in macros here.

void rcu_head_init(struct rcu_head * rhp)
Initialize rcu_head for rcu_head_after_call_rcu()

Parameters
struct rcu_head * rhp The rcu_head structure to initialize.

Description
If you intend to invoke rcu_head_after_call_rcu() to test whether a given
rcu_head structure has already been passed to call_rcu(), then you must
also invoke this rcu_head_init() function on it just after allocating that
structure. Calls to this function must not race with calls to call_rcu(),
rcu_head_after_call_rcu(), or callback invocation.

bool rcu_head_after_call_rcu(struct rcu_head * rhp, rcu_callback_t f)
Has this rcu_head been passed to call_rcu()?

1.1. The Linux Kernel API 161

Linux Core-api Documentation

Parameters
struct rcu_head * rhp The rcu_head structure to test.

rcu_callback_t f The function passed to call_rcu() along with rhp.
Description
Returns true if the rhp has been passed to call_rcu() with func, and false oth-
erwise. Emits a warning in any other case, including the case where rhp has
already been invoked after a grace period. Calls to this function must not race
with callback invocation. One way to avoid such races is to enclose the call to
rcu_head_after_call_rcu() in an RCU read-side critical section that includes a
read-side fetch of the pointer to the structure containing rhp.
int rcu_is_cpu_rrupt_from_idle(void)

see if ‘interrupted’from idle

Parameters
void no arguments

Description
If the current CPU is idle and running at a first-level (not nested) interrupt, or
directly, from idle, return true.

The caller must have at least disabled IRQs.

void rcu_idle_enter(void)
inform RCU that current CPU is entering idle

Parameters
void no arguments

Description
Enter idle mode, in other words, -leave- the mode in which RCU read-side criti-
cal sections can occur. (Though RCU read-side critical sections can occur in irq
handlers in idle, a possibility handled by irq_enter() and irq_exit().)

If you add or remove a call to rcu_idle_enter(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

noinstr void rcu_user_enter(void)
inform RCU that we are resuming userspace.

Parameters
void no arguments

Description
Enter RCU idle mode right before resuming userspace. No use of RCU is permit-
ted between this call and rcu_user_exit(). This way the CPU doesn’t need to
maintain the tick for RCUmaintenance purposes when the CPU runs in userspace.

If you add or remove a call to rcu_user_enter(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

noinstr void rcu_nmi_exit(void)
inform RCU of exit from NMI context

162 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
void no arguments

Description
If we are returning from the outermost NMI handler that interrupted an RCU-
idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting to let the RCU
grace-period handling know that the CPU is back to being RCU-idle.

If you add or remove a call to rcu_nmi_exit(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

void noinstr rcu_irq_exit(void)
inform RCU that current CPU is exiting irq towards idle

Parameters
void no arguments

Description
Exit from an interrupt handler, which might possibly result in entering idle mode,
in other words, leaving the mode in which read-side critical sections can occur.
The caller must have disabled interrupts.

This code assumes that the idle loop never does anything that might result in un-
balanced calls to irq_enter() and irq_exit(). If your architecture’s idle loop violates
this assumption, RCU will give you what you deserve, good and hard. But very in-
frequently and irreproducibly.

Use things like work queues to work around this limitation.

You have been warned.

If you add or remove a call to rcu_irq_exit(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

void rcu_irq_exit_preempt(void)
Inform RCU that current CPU is exiting irq towards in kernel preemption

Parameters
void no arguments

Description
Same as rcu_irq_exit() but has a sanity check that scheduling is safe from RCU
point of view. Invoked from return from interrupt before kernel preemption.

void rcu_irq_exit_check_preempt(void)
Validate that scheduling is possible

Parameters
void no arguments

void rcu_idle_exit(void)
inform RCU that current CPU is leaving idle

Parameters
void no arguments

1.1. The Linux Kernel API 163

Linux Core-api Documentation

Description
Exit idle mode, in other words, -enter- the mode in which RCU read-side critical
sections can occur.

If you add or remove a call to rcu_idle_exit(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

void noinstr rcu_user_exit(void)
inform RCU that we are exiting userspace.

Parameters
void no arguments

Description
Exit RCU idle mode while entering the kernel because it can run a RCU read side
critical section anytime.

If you add or remove a call to rcu_user_exit(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

void __rcu_irq_enter_check_tick(void)
Enable scheduler tick on CPU if RCU needs it.

Parameters
void no arguments

Description
The scheduler tick is not normally enabled when CPUs enter the kernel from
nohz_full userspace execution. After all, nohz_full userspace execution is an RCU
quiescent state and the time executing in the kernel is quite short. Except of
course when it isn’t. And it is not hard to cause a large system to spend tens
of seconds or even minutes looping in the kernel, which can cause a number of
problems, include RCU CPU stall warnings.

Therefore, if a nohz_full CPU fails to report a quiescent state in a timely manner,
the RCU grace-period kthread sets that CPU’s ->rcu_urgent_qs flag with the ex-
pectation that the next interrupt or exception will invoke this function, which will
turn on the scheduler tick, which will enable RCU to detect that CPU’s quiescent
states, for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
The tick will be disabled once a quiescent state is reported for this CPU.

Of course, in carefully tuned systems, there might never be an interrupt or ex-
ception. In that case, the RCU grace-period kthread will eventually cause one to
happen. However, in less carefully controlled environments, this function allows
RCU to get what it needs without creating otherwise useless interruptions.

noinstr void rcu_nmi_enter(void)
inform RCU of entry to NMI context

Parameters
void no arguments

Description

164 Chapter 1. Core utilities

Linux Core-api Documentation

If the CPU was idle from RCU’s viewpoint, update rdp->dynticks and rdp-
>dynticks_nmi_nesting to let the RCU grace-period handling know that the CPU
is active. This implementation permits nested NMIs, as long as the nesting level
does not overflow an int. (You will probably run out of stack space first.)

If you add or remove a call to rcu_nmi_enter(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

noinstr void rcu_irq_enter(void)
inform RCU that current CPU is entering irq away from idle

Parameters
void no arguments

Description
Enter an interrupt handler, which might possibly result in exiting idle mode, in
other words, entering the mode in which read-side critical sections can occur. The
caller must have disabled interrupts.

Note that the Linux kernel is fully capable of entering an interrupt handler that it
never exits, for example when doing upcalls to user mode! This code assumes that
the idle loop never does upcalls to user mode. If your architecture’s idle loop does
do upcalls to user mode (or does anything else that results in unbalanced calls to
the irq_enter() and irq_exit() functions), RCU will give you what you deserve, good
and hard. But very infrequently and irreproducibly.

Use things like work queues to work around this limitation.

You have been warned.

If you add or remove a call to rcu_irq_enter(), be sure to test with CON-
FIG_RCU_EQS_DEBUG=y.

bool rcu_is_watching(void)
see if RCU thinks that the current CPU is not idle

Parameters
void no arguments

Description
Return true if RCU is watching the running CPU, which means that this CPU can
safely enter RCU read-side critical sections. In other words, if the current CPU is
not in its idle loop or is in an interrupt or NMI handler, return true.

void call_rcu(struct rcu_head * head, rcu_callback_t func)
Queue an RCU callback for invocation after a grace period.

Parameters
struct rcu_head * head structure to be used for queueing the RCU updates.

rcu_callback_t func actual callback function to be invoked after the grace pe-
riod

Description
The callback function will be invoked some time after a full grace period elapses, in
other words after all pre-existing RCU read-side critical sections have completed.

1.1. The Linux Kernel API 165

Linux Core-api Documentation

However, the callback function might well execute concurrently with RCU read-
side critical sections that started after call_rcu() was invoked. RCU read-side criti-
cal sections are delimited by rcu_read_lock() and rcu_read_unlock(), and may
be nested. In addition, regions of code across which interrupts, preemption, or
softirqs have been disabled also serve as RCU read-side critical sections. This
includes hardware interrupt handlers, softirq handlers, and NMI handlers.

Note that all CPUs must agree that the grace period extended beyond all pre-
existing RCU read-side critical section. On systems with more than one CPU, this
means that when“func()”is invoked, each CPU is guaranteed to have executed a
full memory barrier since the end of its last RCU read-side critical section whose
beginning preceded the call to call_rcu(). It also means that each CPU executing
an RCU read-side critical section that continues beyond the start of“func()”must
have executed a memory barrier after the call_rcu() but before the beginning of
that RCU read-side critical section. Note that these guarantees include CPUs that
are offline, idle, or executing in user mode, as well as CPUs that are executing in
the kernel.

Furthermore, if CPU A invoked call_rcu() and CPU B invoked the resulting RCU
callback function“func()”, then both CPU A and CPU B are guaranteed to execute
a full memory barrier during the time interval between the call to call_rcu() and
the invocation of“func()”– even if CPU A and CPU B are the same CPU (but again
only if the system has more than one CPU).

struct kfree_rcu_bulk_data
single block to store kfree_rcu() pointers

Definition

struct kfree_rcu_bulk_data {
unsigned long nr_records;
void *records[KFREE_BULK_MAX_ENTR];
struct kfree_rcu_bulk_data *next;
struct rcu_head *head_free_debug;

};

Members
nr_records Number of active pointers in the array

records Array of the kfree_rcu() pointers

next Next bulk object in the block chain

head_free_debug For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is
set

struct kfree_rcu_cpu_work
single batch of kfree_rcu() requests

Definition

struct kfree_rcu_cpu_work {
struct rcu_work rcu_work;
struct rcu_head *head_free;
struct kfree_rcu_bulk_data *bhead_free;
struct kfree_rcu_cpu *krcp;

};

166 Chapter 1. Core utilities

Linux Core-api Documentation

Members
rcu_work Let queue_rcu_work() invoke workqueue handler after grace period

head_free List of kfree_rcu() objects waiting for a grace period

bhead_free Bulk-List of kfree_rcu() objects waiting for a grace period

krcp Pointer to kfree_rcu_cpu structure
struct kfree_rcu_cpu

batch up kfree_rcu() requests for RCU grace period

Definition

struct kfree_rcu_cpu {
struct rcu_head *head;
struct kfree_rcu_bulk_data *bhead;
struct kfree_rcu_bulk_data *bcached;
struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
spinlock_t lock;
struct delayed_work monitor_work;
bool monitor_todo;
bool initialized;
int count;

};

Members
head List of kfree_rcu() objects not yet waiting for a grace period

bhead Bulk-List of kfree_rcu() objects not yet waiting for a grace period

bcached Keeps at most one object for later reuse when build chain blocks

krw_arr Array of batches of kfree_rcu() objects waiting for a grace period

lock Synchronize access to this structure

monitor_work Promote head to head_free after KFREE_DRAIN_JIFFIES
monitor_todo Tracks whether a monitor_work delayed work is pending
initialized The lock and rcu_work fields have been initialized
Description
This is a per-CPU structure. The reason that it is not included in the rcu_data
structure is to permit this code to be extracted from the RCU files. Such extraction
could allow further optimization of the interactions with the slab allocators.

void synchronize_rcu(void)
wait until a grace period has elapsed.

Parameters
void no arguments

Description
Control will return to the caller some time after a full grace period has elapsed,
in other words after all currently executing RCU read-side critical sections have
completed. Note, however, that upon return from synchronize_rcu(), the caller

1.1. The Linux Kernel API 167

Linux Core-api Documentation

might well be executing concurrently with new RCU read-side critical sections
that began while synchronize_rcu() was waiting. RCU read-side critical sections
are delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
In addition, regions of code across which interrupts, preemption, or softirqs have
been disabled also serve as RCU read-side critical sections. This includes hard-
ware interrupt handlers, softirq handlers, and NMI handlers.

Note that this guarantee implies furthermemory-ordering guarantees. On systems
with more than one CPU, when synchronize_rcu() returns, each CPU is guaranteed
to have executed a full memory barrier since the end of its last RCU read-side crit-
ical section whose beginning preceded the call to synchronize_rcu(). In addition,
each CPU having an RCU read-side critical section that extends beyond the return
from synchronize_rcu() is guaranteed to have executed a full memory barrier after
the beginning of synchronize_rcu() and before the beginning of that RCU read-side
critical section. Note that these guarantees include CPUs that are offline, idle, or
executing in user mode, as well as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchronize_rcu(), which returned to its caller on
CPU B, then both CPU A and CPU B are guaranteed to have executed a full memory
barrier during the execution of synchronize_rcu() – even if CPU A and CPU B are
the same CPU (but again only if the system has more than one CPU).

unsigned long get_state_synchronize_rcu(void)
Snapshot current RCU state

Parameters
void no arguments

Description
Returns a cookie that is used by a later call to cond_synchronize_rcu() to determine
whether or not a full grace period has elapsed in the meantime.

void cond_synchronize_rcu(unsigned long oldstate)
Conditionally wait for an RCU grace period

Parameters
unsigned long oldstate return value from earlier call to

get_state_synchronize_rcu()

Description
If a full RCU grace period has elapsed since the earlier call to
get_state_synchronize_rcu(), just return. Otherwise, invoke synchronize_rcu() to
wait for a full grace period.

Yes, this function does not take counter wrap into account. But counter wrap is
harmless. If the counter wraps, we have waited for more than 2 billion grace
periods (and way more on a 64-bit system!), so waiting for one additional grace
period should be just fine.

void rcu_barrier(void)
Wait until all in-flight call_rcu() callbacks complete.

Parameters
void no arguments

168 Chapter 1. Core utilities

Linux Core-api Documentation

Description
Note that this primitive does not necessarily wait for an RCU grace period to com-
plete. For example, if there are no RCU callbacks queued anywhere in the system,
then rcu_barrier() is within its rights to return immediately, without waiting for
anything, much less an RCU grace period.

void synchronize_rcu_expedited(void)
Brute-force RCU grace period

Parameters
void no arguments

Description
Wait for an RCU grace period, but expedite it. The basic idea is to IPI all non-idle
non-nohz online CPUs. The IPI handler checks whether the CPU is in an RCU crit-
ical section, and if so, it sets a flag that causes the outermost rcu_read_unlock()
to report the quiescent state for RCU-preempt or asks the scheduler for help for
RCU-sched. On the other hand, if the CPU is not in an RCU read-side critical
section, the IPI handler reports the quiescent state immediately.

Although this is a great improvement over previous expedited implementations, it
is still unfriendly to real-time workloads, so is thus not recommended for any sort
of common-case code. In fact, if you are using synchronize_rcu_expedited() in
a loop, please restructure your code to batch your updates, and then use a single
synchronize_rcu() instead.

This has the same semantics as (but is more brutal than) synchronize_rcu().

bool rcu_read_lock_held_common(bool * ret)
might we be in RCU-sched read-side critical section?

Parameters
bool * ret Best guess answer if lockdep cannot be relied on

Description
Returns true if lockdep must be ignored, in which case *ret contains the best
guess described below. Otherwise returns false, in which case *ret tells the caller
nothing and the caller should instead consult lockdep.

If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an RCU-
sched read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
this assumes we are in an RCU-sched read-side critical section unless it can prove
otherwise. Note that disabling of preemption (including disabling irqs) counts
as an RCU-sched read-side critical section. This is useful for debug checks in
functions that required that they be called within an RCU-sched read-side critical
section.

Check debug_lockdep_rcu_enabled() to prevent false positives during boot and
while lockdep is disabled.

Note that if the CPU is in the idle loop from an RCU point of view (ie: that
we are in the section between rcu_idle_enter() and rcu_idle_exit()) then
rcu_read_lock_held() sets *ret to false even if the CPU did an rcu_read_lock().

1.1. The Linux Kernel API 169

Linux Core-api Documentation

The reason for this is that RCU ignores CPUs that are in such a section, consider-
ing these as in extended quiescent state, so such a CPU is effectively never in an
RCU read-side critical section regardless of what RCU primitives it invokes. This
state of affairs is required—we need to keep an RCU-free window in idle where the
CPUmay possibly enter into low power mode. This way we can notice an extended
quiescent state to other CPUs that started a grace period. Otherwise we would
delay any grace period as long as we run in the idle task.

Similarly, we avoid claiming an RCU read lock held if the current CPU is offline.

void rcu_expedite_gp(void)
Expedite future RCU grace periods

Parameters
void no arguments

Description
After a call to this function, future calls to synchronize_rcu() and friends act as the
corresponding synchronize_rcu_expedited() function had instead been called.

void rcu_unexpedite_gp(void)
Cancel prior rcu_expedite_gp() invocation

Parameters
void no arguments

Description
Undo a prior call to rcu_expedite_gp(). If all prior calls to rcu_expedite_gp() are
undone by a subsequent call to rcu_unexpedite_gp(), and if the rcu_expedited
sysfs/boot parameter is not set, then all subsequent calls to synchronize_rcu() and
friends will return to their normal non-expedited behavior.

int rcu_read_lock_held(void)
might we be in RCU read-side critical section?

Parameters
void no arguments

Description
If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-
side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes
we are in an RCU read-side critical section unless it can prove otherwise. This
is useful for debug checks in functions that require that they be called within an
RCU read-side critical section.

Checks debug_lockdep_rcu_enabled() to prevent false positives during boot and
while lockdep is disabled.

Note that rcu_read_lock() and the matching rcu_read_unlock() must occur in
the same context, for example, it is illegal to invoke rcu_read_unlock() in process
context if the matching rcu_read_lock() was invoked from within an irq handler.

Note that rcu_read_lock() is disallowed if the CPU is either idle or offline from
an RCU perspective, so check for those as well.

170 Chapter 1. Core utilities

Linux Core-api Documentation

int rcu_read_lock_bh_held(void)
might we be in RCU-bh read-side critical section?

Parameters
void no arguments

Description
Check for bottom half being disabled, which covers both the CONFIG_PROVE_RCU
and not cases. Note that if someone uses rcu_read_lock_bh(), but then later
enables BH, lockdep (if enabled) will show the situation. This is useful for debug
checks in functions that require that they be called within an RCU read-side critical
section.

Check debug_lockdep_rcu_enabled() to prevent false positives during boot.

Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or offline
from an RCU perspective, so check for those as well.

void wakeme_after_rcu(struct rcu_head * head)
Callback function to awaken a task after grace period

Parameters
struct rcu_head * head Pointer to rcu_head member within rcu_synchronize

structure

Description
Awaken the corresponding task now that a grace period has elapsed.

void init_rcu_head_on_stack(struct rcu_head * head)
initialize on-stack rcu_head for debugobjects

Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized

Description
This function informs debugobjects of a new rcu_head structure that has been al-
located as an auto variable on the stack. This function is not required for rcu_head
structures that are statically defined or that are dynamically allocated on the heap.
This function has no effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel
builds.

void destroy_rcu_head_on_stack(struct rcu_head * head)
destroy on-stack rcu_head for debugobjects

Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized

Description
This function informs debugobjects that an on-stack rcu_head structure is about to
go out of scope. As with init_rcu_head_on_stack(), this function is not required for
rcu_head structures that are statically defined or that are dynamically allocated
on the heap. Also as with init_rcu_head_on_stack(), this function has no effect for
!CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.

1.1. The Linux Kernel API 171

Linux Core-api Documentation

int srcu_read_lock_held(const struct srcu_struct * ssp)
might we be in SRCU read-side critical section?

Parameters
const struct srcu_struct * ssp The srcu_struct structure to check

Description
If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU
read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, this as-
sumes we are in an SRCU read-side critical section unless it can prove otherwise.

Checks debug_lockdep_rcu_enabled() to prevent false positives during boot and
while lockdep is disabled.

Note that SRCU is based on its own statemachine and it doesn’t relies on normal
RCU, it can be called from the CPU which is in the idle loop from an RCU point of
view or offline.

srcu_dereference_check(p, ssp, c)
fetch SRCU-protected pointer for later dereferencing

Parameters
p the pointer to fetch and protect for later dereferencing

ssp pointer to the srcu_struct, which is used to check that we really are in an
SRCU read-side critical section.

c condition to check for update-side use

Description
If PROVE_RCU is enabled, invoking this outside of an RCU read-side critical sec-
tion will result in an RCU-lockdep splat, unless c evaluates to 1. The c argument
will normally be a logical expression containing lockdep_is_held() calls.

srcu_dereference(p, ssp)
fetch SRCU-protected pointer for later dereferencing

Parameters
p the pointer to fetch and protect for later dereferencing

ssp pointer to the srcu_struct, which is used to check that we really are in an
SRCU read-side critical section.

Description
Makes rcu_dereference_check() do the dirty work. If PROVE_RCU is enabled,
invoking this outside of an RCU read-side critical section will result in an RCU-
lockdep splat.

srcu_dereference_notrace(p, ssp)
no tracing and no lockdep calls from here

Parameters
p the pointer to fetch and protect for later dereferencing

ssp pointer to the srcu_struct, which is used to check that we really are in an
SRCU read-side critical section.

172 Chapter 1. Core utilities

Linux Core-api Documentation

int srcu_read_lock(struct srcu_struct * ssp)
register a new reader for an SRCU-protected structure.

Parameters
struct srcu_struct * ssp srcu_struct in which to register the new reader.

Description
Enter an SRCU read-side critical section. Note that SRCU read-side critical
sections may be nested. However, it is illegal to call anything that waits on
an SRCU grace period for the same srcu_struct, whether directly or indirectly.
Please note that one way to indirectly wait on an SRCU grace period is to
acquire a mutex that is held elsewhere while calling synchronize_srcu() or
synchronize_srcu_expedited().

Note that srcu_read_lock() and the matching srcu_read_unlock() must occur
in the same context, for example, it is illegal to invoke srcu_read_unlock() in an
irq handler if the matching srcu_read_lock() was invoked in process context.

void srcu_read_unlock(struct srcu_struct * ssp, int idx)
unregister a old reader from an SRCU-protected structure.

Parameters
struct srcu_struct * ssp srcu_struct in which to unregister the old reader.

int idx return value from corresponding srcu_read_lock().

Description
Exit an SRCU read-side critical section.

void smp_mb__after_srcu_read_unlock(void)
ensure full ordering after srcu_read_unlock

Parameters
void no arguments

Description
Converts the preceding srcu_read_unlock into a two-way memory barrier.

Call this after srcu_read_unlock, to guarantee that all memory operations that oc-
cur after smp_mb__after_srcu_read_unlock will appear to happen after the preced-
ing srcu_read_unlock.

int init_srcu_struct(struct srcu_struct * ssp)
initialize a sleep-RCU structure

Parameters
struct srcu_struct * ssp structure to initialize.

Description
Must invoke this on a given srcu_struct before passing that srcu_struct to any other
function. Each srcu_struct represents a separate domain of SRCU protection.

bool srcu_readers_active(struct srcu_struct * ssp)
returns true if there are readers. and false otherwise

1.1. The Linux Kernel API 173

Linux Core-api Documentation

Parameters
struct srcu_struct * ssp which srcu_struct to count active readers (holding

srcu_read_lock).

Description
Note that this is not an atomic primitive, and can therefore suffer severe errors
when invoked on an active srcu_struct. That said, it can be useful as an error
check at cleanup time.

void cleanup_srcu_struct(struct srcu_struct * ssp)
deconstruct a sleep-RCU structure

Parameters
struct srcu_struct * ssp structure to clean up.

Description
Must invoke this after you are finished using a given srcu_struct that was initialized
via init_srcu_struct(), else you leak memory.

void call_srcu(struct srcu_struct * ssp, struct rcu_head * rhp,
rcu_callback_t func)

Queue a callback for invocation after an SRCU grace period

Parameters
struct srcu_struct * ssp srcu_struct in queue the callback

struct rcu_head * rhp structure to be used for queueing the SRCU callback.

rcu_callback_t func function to be invoked after the SRCU grace period

Description
The callback function will be invoked some time after a full SRCU grace period
elapses, in other words after all pre-existing SRCU read-side critical sections have
completed. However, the callback function might well execute concurrently with
other SRCU read-side critical sections that started after call_srcu() was in-
voked. SRCU read-side critical sections are delimited by srcu_read_lock() and
srcu_read_unlock(), and may be nested.

The callback will be invoked from process context, but must nevertheless be fast
and must not block.

void synchronize_srcu_expedited(struct srcu_struct * ssp)
Brute-force SRCU grace period

Parameters
struct srcu_struct * ssp srcu_struct with which to synchronize.

Description
Wait for an SRCU grace period to elapse, but be more aggressive about spinning
rather than blocking when waiting.

Note that synchronize_srcu_expedited() has the same deadlock and memory-
ordering properties as does synchronize_srcu().

174 Chapter 1. Core utilities

Linux Core-api Documentation

void synchronize_srcu(struct srcu_struct * ssp)
wait for prior SRCU read-side critical-section completion

Parameters
struct srcu_struct * ssp srcu_struct with which to synchronize.

Description
Wait for the count to drain to zero of both indexes. To avoid the possible starvation
of synchronize_srcu(), it waits for the count of the index=((->srcu_idx & 1) ^
1) to drain to zero at first, and then flip the srcu_idx and wait for the count of the
other index.

Can block; must be called from process context.

Note that it is illegal to call synchronize_srcu() from the corresponding SRCU
read-side critical section; doing so will result in deadlock. However, it is perfectly
legal to call synchronize_srcu() on one srcu_struct from some other srcu_struct’
s read-side critical section, as long as the resulting graph of srcu_structs is acyclic.

There are memory-ordering constraints implied by synchronize_srcu(). On sys-
tems with more than one CPU, when synchronize_srcu() returns, each CPU is
guaranteed to have executed a full memory barrier since the end of its last cor-
responding SRCU read-side critical section whose beginning preceded the call to
synchronize_srcu(). In addition, each CPU having an SRCU read-side critical
section that extends beyond the return from synchronize_srcu() is guaranteed
to have executed a full memory barrier after the beginning of synchronize_srcu()
and before the beginning of that SRCU read-side critical section. Note that these
guarantees include CPUs that are offline, idle, or executing in user mode, as well
as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchronize_srcu(), which returned to its caller
on CPU B, then both CPU A and CPU B are guaranteed to have executed a full
memory barrier during the execution of synchronize_srcu(). This guarantee ap-
plies even if CPU A and CPU B are the same CPU, but again only if the system has
more than one CPU.

Of course, these memory-ordering guarantees apply only when
synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are passed
the same srcu_struct structure.

If SRCU is likely idle, expedite the first request. This semantic was provided by
Classic SRCU, and is relied upon by its users, so TREE SRCU must also provide
it. Note that detecting idleness is heuristic and subject to both false positives and
negatives.

void srcu_barrier(struct srcu_struct * ssp)
Wait until all in-flight call_srcu() callbacks complete.

Parameters
struct srcu_struct * ssp srcu_struct on which to wait for in-flight callbacks.

unsigned long srcu_batches_completed(struct srcu_struct * ssp)
return batches completed.

Parameters

1.1. The Linux Kernel API 175

Linux Core-api Documentation

struct srcu_struct * ssp srcu_struct on which to report batch completion.

Description
Report the number of batches, correlated with, but not necessarily precisely the
same as, the number of grace periods that have elapsed.

void hlist_bl_del_rcu(struct hlist_bl_node * n)
deletes entry from hash list without re-initialization

Parameters
struct hlist_bl_node * n the element to delete from the hash list.

Note
hlist_bl_unhashed() on entry does not return true after this, the entry is in an
undefined state. It is useful for RCU based lockfree traversal.

Description
In particular, it means that we can not poison the forward pointers that may still
be used for walking the hash list.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_bl_add_head_rcu() or hlist_bl_del_rcu(), running on this same list.
However, it is perfectly legal to run concurrently with the _rcu list-traversal prim-
itives, such as hlist_bl_for_each_entry().

void hlist_bl_add_head_rcu(struct hlist_bl_node * n, struct hlist_bl_head
* h)

Parameters
struct hlist_bl_node * n the element to add to the hash list.

struct hlist_bl_head * h the list to add to.

Description
Adds the specified element to the specified hlist_bl, while permitting racing traver-
sals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_bl_add_head_rcu() or hlist_bl_del_rcu(), running on this same list.
However, it is perfectly legal to run concurrently with the _rcu list-traversal
primitives, such as hlist_bl_for_each_entry_rcu(), used to prevent memory-
consistency problems on Alpha CPUs. Regardless of the type of CPU, the list-
traversal primitive must be guarded by rcu_read_lock().

hlist_bl_for_each_entry_rcu(tpos, pos, head, member)
iterate over rcu list of given type

Parameters
tpos the type * to use as a loop cursor.

pos the struct hlist_bl_node to use as a loop cursor.

head the head for your list.

176 Chapter 1. Core utilities

Linux Core-api Documentation

member the name of the hlist_bl_node within the struct.

list_tail_rcu(head)
returns the prev pointer of the head of the list

Parameters
head the head of the list

Note
This should only be used with the list header, and even then only if list_del()
and similar primitives are not also used on the list header.

void list_add_rcu(struct list_head * new, struct list_head * head)
add a new entry to rcu-protected list

Parameters
struct list_head * new new entry to be added

struct list_head * head list head to add it after

Description
Insert a new entry after the specified head. This is good for implementing stacks.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
list_add_rcu() or list_del_rcu(), running on this same list. However, it is
perfectly legal to run concurrently with the _rcu list-traversal primitives, such as
list_for_each_entry_rcu().

void list_add_tail_rcu(struct list_head * new, struct list_head * head)
add a new entry to rcu-protected list

Parameters
struct list_head * new new entry to be added

struct list_head * head list head to add it before

Description
Insert a new entry before the specified head. This is useful for implementing
queues.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
list_add_tail_rcu() or list_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such
as list_for_each_entry_rcu().

void list_del_rcu(struct list_head * entry)
deletes entry from list without re-initialization

Parameters
struct list_head * entry the element to delete from the list.

Note

1.1. The Linux Kernel API 177

Linux Core-api Documentation

list_empty() on entry does not return true after this, the entry is in an undefined
state. It is useful for RCU based lockfree traversal.

Description
In particular, it means that we can not poison the forward pointers that may still
be used for walking the list.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
list_del_rcu() or list_add_rcu(), running on this same list. However, it is
perfectly legal to run concurrently with the _rcu list-traversal primitives, such as
list_for_each_entry_rcu().

Note that the caller is not permitted to immediately free the newly deleted entry.
Instead, either synchronize_rcu() or call_rcu() must be used to defer freeing until
an RCU grace period has elapsed.

void hlist_del_init_rcu(struct hlist_node * n)
deletes entry from hash list with re-initialization

Parameters
struct hlist_node * n the element to delete from the hash list.

Note
list_unhashed() on the node return true after this. It is useful for RCU based read
lockfree traversal if the writer side must know if the list entry is still hashed or
already unhashed.

Description
In particular, it means that we can not poison the forward pointers that may
still be used for walking the hash list and we can only zero the pprev pointer so
list_unhashed() will return true after this.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_add_head_rcu() or hlist_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such
as hlist_for_each_entry_rcu().

void list_replace_rcu(struct list_head * old, struct list_head * new)
replace old entry by new one

Parameters
struct list_head * old the element to be replaced

struct list_head * new the new element to insert

Description
The old entry will be replaced with the new entry atomically.
Note
old should not be empty.

178 Chapter 1. Core utilities

Linux Core-api Documentation

void __list_splice_init_rcu(struct list_head * list, struct list_head * prev,
struct list_head * next, void (*sync)(void))

join an RCU-protected list into an existing list.

Parameters
struct list_head * list the RCU-protected list to splice

struct list_head * prev points to the last element of the existing list

struct list_head * next points to the first element of the existing list

void (*)(void) sync synchronize_rcu, synchronize_rcu_expedited, ⋯
Description
The list pointed to by prev and next can be RCU-read traversed concurrently with
this function.

Note that this function blocks.

Important note: the caller must take whatever action is necessary to prevent any
other updates to the existing list. In principle, it is possible to modify the list
as soon as sync() begins execution. If this sort of thing becomes necessary, an
alternative version based on call_rcu() could be created. But only if -really- needed
– there is no shortage of RCU API members.

void list_splice_init_rcu(struct list_head * list, struct list_head * head,
void (*sync)(void))

splice an RCU-protected list into an existing list, designed for stacks.

Parameters
struct list_head * list the RCU-protected list to splice

struct list_head * head the place in the existing list to splice the first list into

void (*)(void) sync synchronize_rcu, synchronize_rcu_expedited, ⋯
void list_splice_tail_init_rcu(struct list_head * list, struct list_head

* head, void (*sync)(void))
splice an RCU-protected list into an existing list, designed for queues.

Parameters
struct list_head * list the RCU-protected list to splice

struct list_head * head the place in the existing list to splice the first list into

void (*)(void) sync synchronize_rcu, synchronize_rcu_expedited, ⋯
list_entry_rcu(ptr, type, member)

get the struct for this entry

Parameters
ptr the struct list_head pointer.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description

1.1. The Linux Kernel API 179

Linux Core-api Documentation

This primitive may safely run concurrently with the _rcu list-mutation primitives
such as list_add_rcu() as long as it’s guarded by rcu_read_lock().
list_first_or_null_rcu(ptr, type, member)

get the first element from a list

Parameters
ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description
Note that if the list is empty, it returns NULL.

This primitive may safely run concurrently with the _rcu list-mutation primitives
such as list_add_rcu() as long as it’s guarded by rcu_read_lock().
list_next_or_null_rcu(head, ptr, type, member)

get the first element from a list

Parameters
head the head for the list.

ptr the list head to take the next element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description
Note that if the ptr is at the end of the list, NULL is returned.

This primitive may safely run concurrently with the _rcu list-mutation primitives
such as list_add_rcu() as long as it’s guarded by rcu_read_lock().
list_for_each_entry_rcu(pos, head, member, cond)

iterate over rcu list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

cond optional lockdep expression if called from non-RCU protection.

Description
This list-traversal primitive may safely run concurrently with the _rcu list-mutation
primitives such as list_add_rcu() as long as the traversal is guarded by
rcu_read_lock().

list_entry_lockless(ptr, type, member)
get the struct for this entry

Parameters

180 Chapter 1. Core utilities

Linux Core-api Documentation

ptr the struct list_head pointer.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description
This primitive may safely run concurrently with the _rcu list-mutation primitives
such as list_add_rcu(), but requires some implicit RCU read-side guarding. One
example is running within a special exception-time environment where preemption
is disabled and where lockdep cannot be invoked. Another example is when items
are added to the list, but never deleted.

list_for_each_entry_lockless(pos, head, member)
iterate over rcu list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_struct within the struct.

Description
This primitive may safely run concurrently with the _rcu list-mutation primitives
such as list_add_rcu(), but requires some implicit RCU read-side guarding. One
example is running within a special exception-time environment where preemption
is disabled and where lockdep cannot be invoked. Another example is when items
are added to the list, but never deleted.

list_for_each_entry_continue_rcu(pos, head, member)
continue iteration over list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description
Continue to iterate over list of given type, continuing after the current position
which must have been in the list when the RCU read lock was taken. This would
typically require either that you obtained the node from a previous walk of the list
in the same RCU read-side critical section, or that you held some sort of non-RCU
reference (such as a reference count) to keep the node alive and in the list.

This iterator is similar to list_for_each_entry_from_rcu() except this starts af-
ter the given position and that one starts at the given position.

list_for_each_entry_from_rcu(pos, head, member)
iterate over a list from current point

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

1.1. The Linux Kernel API 181

Linux Core-api Documentation

member the name of the list_node within the struct.

Description
Iterate over the tail of a list starting from a given position, which must have been
in the list when the RCU read lock was taken. This would typically require either
that you obtained the node from a previous walk of the list in the same RCU read-
side critical section, or that you held some sort of non-RCU reference (such as a
reference count) to keep the node alive and in the list.

This iterator is similar to list_for_each_entry_continue_rcu() except this
starts from the given position and that one starts from the position after the given
position.

void hlist_del_rcu(struct hlist_node * n)
deletes entry from hash list without re-initialization

Parameters
struct hlist_node * n the element to delete from the hash list.

Note
list_unhashed() on entry does not return true after this, the entry is in an undefined
state. It is useful for RCU based lockfree traversal.

Description
In particular, it means that we can not poison the forward pointers that may still
be used for walking the hash list.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_add_head_rcu() or hlist_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such
as hlist_for_each_entry().

void hlist_replace_rcu(struct hlist_node * old, struct hlist_node * new)
replace old entry by new one

Parameters
struct hlist_node * old the element to be replaced

struct hlist_node * new the new element to insert

Description
The old entry will be replaced with the new entry atomically.
void hlists_swap_heads_rcu(struct hlist_head * left, struct hlist_head

* right)
swap the lists the hlist heads point to

Parameters
struct hlist_head * left The hlist head on the left

struct hlist_head * right The hlist head on the right

Description
The lists start out as [left][node1 ⋯] and The lists end up as [left][node2 ⋯]

182 Chapter 1. Core utilities

Linux Core-api Documentation

[right][node1 ⋯]
void hlist_add_head_rcu(struct hlist_node * n, struct hlist_head * h)

Parameters
struct hlist_node * n the element to add to the hash list.

struct hlist_head * h the list to add to.

Description
Adds the specified element to the specified hlist, while permitting racing traver-
sals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_add_head_rcu() or hlist_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such
as hlist_for_each_entry_rcu(), used to prevent memory-consistency problems
on Alpha CPUs. Regardless of the type of CPU, the list-traversal primitive must be
guarded by rcu_read_lock().

void hlist_add_tail_rcu(struct hlist_node * n, struct hlist_head * h)

Parameters
struct hlist_node * n the element to add to the hash list.

struct hlist_head * h the list to add to.

Description
Adds the specified element to the specified hlist, while permitting racing traver-
sals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_add_head_rcu() or hlist_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such
as hlist_for_each_entry_rcu(), used to prevent memory-consistency problems
on Alpha CPUs. Regardless of the type of CPU, the list-traversal primitive must be
guarded by rcu_read_lock().

void hlist_add_before_rcu(struct hlist_node * n, struct hlist_node * next)

Parameters
struct hlist_node * n the new element to add to the hash list.

struct hlist_node * next the existing element to add the new element before.

Description
Adds the specified element to the specified hlist before the specified node while
permitting racing traversals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_add_head_rcu() or hlist_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such

1.1. The Linux Kernel API 183

Linux Core-api Documentation

as hlist_for_each_entry_rcu(), used to prevent memory-consistency problems
on Alpha CPUs.

void hlist_add_behind_rcu(struct hlist_node * n, struct hlist_node * prev)

Parameters
struct hlist_node * n the new element to add to the hash list.

struct hlist_node * prev the existing element to add the new element after.

Description
Adds the specified element to the specified hlist after the specified node while
permitting racing traversals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_add_head_rcu() or hlist_del_rcu(), running on this same list. However,
it is perfectly legal to run concurrently with the _rcu list-traversal primitives, such
as hlist_for_each_entry_rcu(), used to prevent memory-consistency problems
on Alpha CPUs.

hlist_for_each_entry_rcu(pos, head, member, cond)
iterate over rcu list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the hlist_node within the struct.

cond optional lockdep expression if called from non-RCU protection.

Description
This list-traversal primitive may safely run concurrently with the _rcu list-mutation
primitives such as hlist_add_head_rcu() as long as the traversal is guarded by
rcu_read_lock().

hlist_for_each_entry_rcu_notrace(pos, head, member)
iterate over rcu list of given type (for tracing)

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the hlist_node within the struct.

Description
This list-traversal primitive may safely run concurrently with the _rcu list-mutation
primitives such as hlist_add_head_rcu() as long as the traversal is guarded by
rcu_read_lock().

This is the same as hlist_for_each_entry_rcu() except that it does not do any
RCU debugging or tracing.

184 Chapter 1. Core utilities

Linux Core-api Documentation

hlist_for_each_entry_rcu_bh(pos, head, member)
iterate over rcu list of given type

Parameters
pos the type * to use as a loop cursor.

head the head for your list.

member the name of the hlist_node within the struct.

Description
This list-traversal primitive may safely run concurrently with the _rcu list-mutation
primitives such as hlist_add_head_rcu() as long as the traversal is guarded by
rcu_read_lock().

hlist_for_each_entry_continue_rcu(pos, member)
iterate over a hlist continuing after current point

Parameters
pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

hlist_for_each_entry_continue_rcu_bh(pos, member)
iterate over a hlist continuing after current point

Parameters
pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

hlist_for_each_entry_from_rcu(pos, member)
iterate over a hlist continuing from current point

Parameters
pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

void hlist_nulls_del_init_rcu(struct hlist_nulls_node * n)
deletes entry from hash list with re-initialization

Parameters
struct hlist_nulls_node * n the element to delete from the hash list.

Note
hlist_nulls_unhashed() on the node return true after this. It is useful for RCU based
read lockfree traversal if the writer side must know if the list entry is still hashed
or already unhashed.

Description
In particular, it means that we can not poison the forward pointers that may
still be used for walking the hash list and we can only zero the pprev pointer so
list_unhashed() will return true after this.

1.1. The Linux Kernel API 185

Linux Core-api Documentation

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_nulls_add_head_rcu() or hlist_nulls_del_rcu(), running on this same
list. However, it is perfectly legal to run concurrently with the _rcu list-traversal
primitives, such as hlist_nulls_for_each_entry_rcu().

hlist_nulls_first_rcu(head)
returns the first element of the hash list.

Parameters
head the head of the list.

hlist_nulls_next_rcu(node)
returns the element of the list after node.

Parameters
node element of the list.

void hlist_nulls_del_rcu(struct hlist_nulls_node * n)
deletes entry from hash list without re-initialization

Parameters
struct hlist_nulls_node * n the element to delete from the hash list.

Note
hlist_nulls_unhashed() on entry does not return true after this, the entry is in an
undefined state. It is useful for RCU based lockfree traversal.

Description
In particular, it means that we can not poison the forward pointers that may still
be used for walking the hash list.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_nulls_add_head_rcu() or hlist_nulls_del_rcu(), running on this same
list. However, it is perfectly legal to run concurrently with the _rcu list-traversal
primitives, such as hlist_nulls_for_each_entry().

void hlist_nulls_add_head_rcu(struct hlist_nulls_node * n, struct
hlist_nulls_head * h)

Parameters
struct hlist_nulls_node * n the element to add to the hash list.

struct hlist_nulls_head * h the list to add to.

Description
Adds the specified element to the specified hlist_nulls, while permitting racing
traversals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_nulls_add_head_rcu() or hlist_nulls_del_rcu(), running on this same

186 Chapter 1. Core utilities

Linux Core-api Documentation

list. However, it is perfectly legal to run concurrently with the _rcu list-
traversal primitives, such as hlist_nulls_for_each_entry_rcu(), used to pre-
vent memory-consistency problems on Alpha CPUs. Regardless of the type of CPU,
the list-traversal primitive must be guarded by rcu_read_lock().

void hlist_nulls_add_tail_rcu(struct hlist_nulls_node * n, struct
hlist_nulls_head * h)

Parameters
struct hlist_nulls_node * n the element to add to the hash list.

struct hlist_nulls_head * h the list to add to.

Description
Adds the specified element to the specified hlist_nulls, while permitting racing
traversals.

The caller must take whatever precautions are necessary (such as holding ap-
propriate locks) to avoid racing with another list-mutation primitive, such as
hlist_nulls_add_head_rcu() or hlist_nulls_del_rcu(), running on this same
list. However, it is perfectly legal to run concurrently with the _rcu list-
traversal primitives, such as hlist_nulls_for_each_entry_rcu(), used to pre-
vent memory-consistency problems on Alpha CPUs. Regardless of the type of CPU,
the list-traversal primitive must be guarded by rcu_read_lock().

hlist_nulls_for_each_entry_rcu(tpos, pos, head, member)
iterate over rcu list of given type

Parameters
tpos the type * to use as a loop cursor.

pos the struct hlist_nulls_node to use as a loop cursor.

head the head of the list.

member the name of the hlist_nulls_node within the struct.

Description
The barrier() is needed to make sure compiler doesn’t cache first element [1], as
this loop can be restarted [2] [1] Documentation/core-api/atomic_ops.rst around
line 114 [2] Documentation/RCU/rculist_nulls.txt around line 146

hlist_nulls_for_each_entry_safe(tpos, pos, head, member)
iterate over list of given type safe against removal of list entry

Parameters
tpos the type * to use as a loop cursor.

pos the struct hlist_nulls_node to use as a loop cursor.

head the head of the list.

member the name of the hlist_nulls_node within the struct.

bool rcu_sync_is_idle(struct rcu_sync * rsp)
Are readers permitted to use their fastpaths?

Parameters

1.1. The Linux Kernel API 187

Linux Core-api Documentation

struct rcu_sync * rsp Pointer to rcu_sync structure to use for synchronization

Description
Returns true if readers are permitted to use their fastpaths. Must be invoked
within some flavor of RCU read-side critical section.

void rcu_sync_init(struct rcu_sync * rsp)
Initialize an rcu_sync structure

Parameters
struct rcu_sync * rsp Pointer to rcu_sync structure to be initialized

void rcu_sync_enter_start(struct rcu_sync * rsp)
Force readers onto slow path for multiple updates

Parameters
struct rcu_sync * rsp Pointer to rcu_sync structure to use for synchronization

Description
Must be called after rcu_sync_init() and before first use.

Ensures rcu_sync_is_idle() returns false and rcu_sync_{enter,exit}() pairs turn
into NO-OPs.

void rcu_sync_func(struct rcu_head * rhp)
Callback function managing reader access to fastpath

Parameters
struct rcu_head * rhp Pointer to rcu_head in rcu_sync structure to use for syn-

chronization

Description
This function is passed to call_rcu() function by rcu_sync_enter() and
rcu_sync_exit(), so that it is invoked after a grace period following the that in-
vocation of enter/exit.

If it is called by rcu_sync_enter() it signals that all the readers were switched
onto slow path.

If it is called by rcu_sync_exit() it takes action based on events that have
taken place in the meantime, so that closely spaced rcu_sync_enter() and
rcu_sync_exit() pairs need not wait for a grace period.

If another rcu_sync_enter() is invoked before the grace period ended, reset
state to allow the next rcu_sync_exit() to let the readers back onto their fast-
paths (after a grace period). If both another rcu_sync_enter() and its matching
rcu_sync_exit() are invoked before the grace period ended, re-invoke call_rcu()
on behalf of that rcu_sync_exit(). Otherwise, set all state back to idle so that
readers can again use their fastpaths.

void rcu_sync_enter(struct rcu_sync * rsp)
Force readers onto slowpath

Parameters
struct rcu_sync * rsp Pointer to rcu_sync structure to use for synchronization

188 Chapter 1. Core utilities

Linux Core-api Documentation

Description
This function is used by updaters who need readers to make use of a slow-
path during the update. After this function returns, all subsequent calls to
rcu_sync_is_idle() will return false, which tells readers to stay off their fast-
paths. A later call to rcu_sync_exit() re-enables reader slowpaths.

When called in isolation, rcu_sync_enter()must wait for a grace period, however,
closely spaced calls to rcu_sync_enter() can optimize away the grace-period wait
via a state machine implemented by rcu_sync_enter(), rcu_sync_exit(), and
rcu_sync_func().

void rcu_sync_exit(struct rcu_sync * rsp)
Allow readers back onto fast path after grace period

Parameters
struct rcu_sync * rsp Pointer to rcu_sync structure to use for synchronization

Description
This function is used by updaters who have completed, and can therefore now
allow readers to make use of their fastpaths after a grace period has elapsed. After
this grace period has completed, all subsequent calls to rcu_sync_is_idle() will
return true, which tells readers that they can once again use their fastpaths.

void rcu_sync_dtor(struct rcu_sync * rsp)
Clean up an rcu_sync structure

Parameters
struct rcu_sync * rsp Pointer to rcu_sync structure to be cleaned up

1.2 Concurrency Managed Workqueue (cmwq)

Date September, 2010
Author Tejun Heo <tj@kernel.org>
Author Florian Mickler <florian@mickler.org>

1.2.1 Introduction

There are many cases where an asynchronous process execution context is needed
and the workqueue (wq) API is themost commonly usedmechanism for such cases.

When such an asynchronous execution context is needed, a work item describing
which function to execute is put on a queue. An independent thread serves as the
asynchronous execution context. The queue is called workqueue and the thread
is called worker.

While there are work items on the workqueue the worker executes the functions
associated with the work items one after the other. When there is no work item left
on the workqueue the worker becomes idle. When a new work item gets queued,
the worker begins executing again.

1.2. Concurrency Managed Workqueue (cmwq) 189

mailto:tj@kernel.org
mailto:florian@mickler.org

Linux Core-api Documentation

1.2.2 Why cmwq?

In the original wq implementation, a multi threaded (MT) wq had one worker
thread per CPU and a single threaded (ST) wq had one worker thread system-
wide. A single MT wq needed to keep around the same number of workers as the
number of CPUs. The kernel grew a lot of MT wq users over the years and with
the number of CPU cores continuously rising, some systems saturated the default
32k PID space just booting up.

Although MT wq wasted a lot of resource, the level of concurrency provided was
unsatisfactory. The limitation was common to both ST andMTwq albeit less severe
onMT. Each wqmaintained its own separate worker pool. AnMT wq could provide
only one execution context per CPUwhile an STwq one for the whole system. Work
items had to compete for those very limited execution contexts leading to various
problems including proneness to deadlocks around the single execution context.

The tension between the provided level of concurrency and resource usage also
forced its users to make unnecessary tradeoffs like libata choosing to use ST wq for
polling PIOs and accepting an unnecessary limitation that no two polling PIOs can
progress at the same time. AsMTwq don’t providemuch better concurrency, users
which require higher level of concurrency, like async or fscache, had to implement
their own thread pool.

Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with focus
on the following goals.

• Maintain compatibility with the original workqueue API.

• Use per-CPU unified worker pools shared by all wq to provide flexible level
of concurrency on demand without wasting a lot of resource.

• Automatically regulate worker pool and level of concurrency so that the API
users don’t need to worry about such details.

1.2.3 The Design

In order to ease the asynchronous execution of functions a new abstraction, the
work item, is introduced.

A work item is a simple struct that holds a pointer to the function that is to be
executed asynchronously. Whenever a driver or subsystem wants a function to be
executed asynchronously it has to set up a work item pointing to that function and
queue that work item on a workqueue.

Special purpose threads, called worker threads, execute the functions off of the
queue, one after the other. If no work is queued, the worker threads become idle.
These worker threads are managed in so called worker-pools.

The cmwq design differentiates between the user-facing workqueues that subsys-
tems and drivers queue work items on and the backendmechanismwhichmanages
worker-pools and processes the queued work items.

There are two worker-pools, one for normal work items and the other for high pri-
ority ones, for each possible CPU and some extra worker-pools to serve work items
queued on unbound workqueues - the number of these backing pools is dynamic.

190 Chapter 1. Core utilities

Linux Core-api Documentation

Subsystems and drivers can create and queue work items through special
workqueue API functions as they see fit. They can influence some aspects of
the way the work items are executed by setting flags on the workqueue they are
putting the work item on. These flags include things like CPU locality, concurrency
limits, priority and more. To get a detailed overview refer to the API description
of alloc_workqueue() below.

When a work item is queued to a workqueue, the target worker-pool is determined
according to the queue parameters and workqueue attributes and appended on the
shared worklist of the worker-pool. For example, unless specifically overridden, a
work item of a bound workqueue will be queued on the worklist of either normal
or highpri worker-pool that is associated to the CPU the issuer is running on.

For any worker pool implementation, managing the concurrency level (how many
execution contexts are active) is an important issue. cmwq tries to keep the con-
currency at a minimal but sufficient level. Minimal to save resources and sufficient
in that the system is used at its full capacity.

Each worker-pool bound to an actual CPU implements concurrency management
by hooking into the scheduler. The worker-pool is notified whenever an active
worker wakes up or sleeps and keeps track of the number of the currently runnable
workers. Generally, work items are not expected to hog a CPU and consume many
cycles. That means maintaining just enough concurrency to prevent work process-
ing from stalling should be optimal. As long as there are one or more runnable
workers on the CPU, the worker-pool doesn’t start execution of a new work, but,
when the last running worker goes to sleep, it immediately schedules a newworker
so that the CPU doesn’t sit idle while there are pending work items. This allows
using a minimal number of workers without losing execution bandwidth.

Keeping idle workers around doesn’t cost other than the memory space for
kthreads, so cmwq holds onto idle ones for a while before killing them.

For unbound workqueues, the number of backing pools is dynamic. Unbound
workqueue can be assigned custom attributes using apply_workqueue_attrs()
and workqueue will automatically create backing worker pools matching the at-
tributes. The responsibility of regulating concurrency level is on the users. There
is also a flag to mark a bound wq to ignore the concurrency management. Please
refer to the API section for details.

Forward progress guarantee relies on that workers can be created when more
execution contexts are necessary, which in turn is guaranteed through the use of
rescue workers. All work items which might be used on code paths that handle
memory reclaim are required to be queued on wq’s that have a rescue-worker
reserved for execution under memory pressure. Else it is possible that the worker-
pool deadlocks waiting for execution contexts to free up.

1.2. Concurrency Managed Workqueue (cmwq) 191

Linux Core-api Documentation

1.2.4 Application Programming Interface (API)

alloc_workqueue() allocates a wq. The original create_*workqueue() functions
are deprecated and scheduled for removal. alloc_workqueue() takes three argu-
ments - @name, @flags and @max_active. @name is the name of the wq and also
used as the name of the rescuer thread if there is one.

A wq no longer manages execution resources but serves as a domain for forward
progress guarantee, flush and work item attributes. @flags and @max_active con-
trol how work items are assigned execution resources, scheduled and executed.

flags

WQ_UNBOUND Work items queued to an unbound wq are served by the special
worker-pools which host workers which are not bound to any specific CPU.
This makes the wq behave as a simple execution context provider without
concurrency management. The unbound worker-pools try to start execution
of work items as soon as possible. Unbound wq sacrifices locality but is useful
for the following cases.

• Wide fluctuation in the concurrency level requirement is expected and
using bound wq may end up creating large number of mostly unused
workers across different CPUs as the issuer hops through different CPUs.

• Long running CPU intensive workloads which can be better managed by
the system scheduler.

WQ_FREEZABLE A freezable wq participates in the freeze phase of the system sus-
pend operations. Work items on the wq are drained and no new work item
starts execution until thawed.

WQ_MEM_RECLAIM All wq which might be used in the memory reclaim pathsMUST
have this flag set. The wq is guaranteed to have at least one execution context
regardless of memory pressure.

WQ_HIGHPRI Work items of a highpri wq are queued to the highpri worker-pool
of the target cpu. Highpri worker-pools are served by worker threads with
elevated nice level.

Note that normal and highpri worker-pools don’t interact with each other.
Each maintains its separate pool of workers and implements concurrency
management among its workers.

WQ_CPU_INTENSIVE Work items of a CPU intensive wq do not contribute to the con-
currency level. In other words, runnable CPU intensive work items will not
prevent other work items in the same worker-pool from starting execution.
This is useful for bound work items which are expected to hog CPU cycles so
that their execution is regulated by the system scheduler.

Although CPU intensive work items don’t contribute to the concurrency level,
start of their executions is still regulated by the concurrencymanagement and
runnable non-CPU-intensive work items can delay execution of CPU intensive
work items.

This flag is meaningless for unbound wq.

192 Chapter 1. Core utilities

Linux Core-api Documentation

Note that the flag WQ_NON_REENTRANT no longer exists as all workqueues are now
non-reentrant - any work item is guaranteed to be executed by at most one worker
system-wide at any given time.

max_active

@max_active determines the maximum number of execution contexts per CPU
which can be assigned to the work items of a wq. For example, with @max_active
of 16, at most 16 work items of the wq can be executing at the same time per CPU.

Currently, for a bound wq, the maximum limit for @max_active is 512 and the de-
fault value used when 0 is specified is 256. For an unbound wq, the limit is higher
of 512 and 4 * num_possible_cpus(). These values are chosen sufficiently high
such that they are not the limiting factor while providing protection in runaway
cases.

The number of active work items of a wq is usually regulated by the users of the
wq, more specifically, by how many work items the users may queue at the same
time. Unless there is a specific need for throttling the number of active work items,
specifying ‘0’is recommended.
Some users depend on the strict execution ordering of ST wq. The combination
of @max_active of 1 and WQ_UNBOUND used to achieve this behavior. Work items
on such wq were always queued to the unbound worker-pools and only one work
item could be active at any given time thus achieving the same ordering property
as ST wq.

In the current implementation the above configuration only guarantees ST behav-
ior within a given NUMA node. Instead alloc_ordered_queue() should be used
to achieve system-wide ST behavior.

1.2.5 Example Execution Scenarios

The following example execution scenarios try to illustrate how cmwq behave un-
der different configurations.

Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU.
w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms
again before finishing. w1 and w2 burn CPU for 5ms then sleep for
10ms.

Ignoring all other tasks, works and processing overhead, and assuming simple
FIFO scheduling, the following is one highly simplified version of possible se-
quences of events with the original wq.

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 starts and burns CPU
25 w1 sleeps
35 w1 wakes up and finishes

(continues on next page)

1.2. Concurrency Managed Workqueue (cmwq) 193

Linux Core-api Documentation

(continued from previous page)
35 w2 starts and burns CPU
40 w2 sleeps
50 w2 wakes up and finishes

And with cmwq with @max_active >= 3,

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 starts and burns CPU
10 w1 sleeps
10 w2 starts and burns CPU
15 w2 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
25 w2 wakes up and finishes

If @max_active == 2,

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 starts and burns CPU
10 w1 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
20 w2 starts and burns CPU
25 w2 sleeps
35 w2 wakes up and finishes

Now, let’s assume w1 and w2 are queued to a different wq q1 which has
WQ_CPU_INTENSIVE set,

TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 and w2 start and burn CPU
10 w1 sleeps
15 w2 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
25 w2 wakes up and finishes

194 Chapter 1. Core utilities

Linux Core-api Documentation

1.2.6 Guidelines

• Do not forget to use WQ_MEM_RECLAIM if a wq may process work items which
are used during memory reclaim. Each wq with WQ_MEM_RECLAIM set has an
execution context reserved for it. If there is dependency amongmultiple work
items used during memory reclaim, they should be queued to separate wq
each with WQ_MEM_RECLAIM.

• Unless strict ordering is required, there is no need to use ST wq.

• Unless there is a specific need, using 0 for @max_active is recommended. In
most use cases, concurrency level usually stays well under the default limit.

• A wq serves as a domain for forward progress guarantee (WQ_MEM_RECLAIM,
flush and work item attributes. Work items which are not involved in memory
reclaim and don’t need to be flushed as a part of a group of work items, and
don’t require any special attribute, can use one of the system wq. There is
no difference in execution characteristics between using a dedicated wq and
a system wq.

• Unless work items are expected to consume a huge amount of CPU cycles,
using a bound wq is usually beneficial due to the increased level of locality in
wq operations and work item execution.

1.2.7 Debugging

Because the work functions are executed by generic worker threads there are a
few tricks needed to shed some light on misbehaving workqueue users.

Worker threads show up in the process list as:

root 5671 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/
↪→0:1]
root 5672 0.0 0.0 0 0 ? S 12:07 0:00 [kworker/
↪→1:2]
root 5673 0.0 0.0 0 0 ? S 12:12 0:00 [kworker/
↪→0:0]
root 5674 0.0 0.0 0 0 ? S 12:13 0:00 [kworker/
↪→1:0]

If kworkers are going crazy (using too much cpu), there are two types of possible
problems:

1. Something being scheduled in rapid succession

2. A single work item that consumes lots of cpu cycles

The first one can be tracked using tracing:

$ echo workqueue:workqueue_queue_work > /sys/kernel/debug/tracing/set_event
$ cat /sys/kernel/debug/tracing/trace_pipe > out.txt
(wait a few secs)
^C

If something is busy looping on work queueing, it would be dominating the output
and the offender can be determined with the work item function.

1.2. Concurrency Managed Workqueue (cmwq) 195

Linux Core-api Documentation

For the second type of problems it should be possible to just check the stack trace
of the offending worker thread.

$ cat /proc/THE_OFFENDING_KWORKER/stack

The work item’s function should be trivially visible in the stack trace.

1.2.8 Kernel Inline Documentations Reference

struct workqueue_attrs
A struct for workqueue attributes.

Definition

struct workqueue_attrs {
int nice;
cpumask_var_t cpumask;
bool no_numa;

};

Members
nice nice level

cpumask allowed CPUs

no_numa disable NUMA affinity

Unlike other fields, no_numa isn’t a property of a worker_pool. It only modifies
how apply_workqueue_attrs() select pools and thus doesn’t participate in
pool hash calculations or equality comparisons.

Description
This can be used to change attributes of an unbound workqueue.

work_pending(work)
Find out whether a work item is currently pending

Parameters
work The work item in question

delayed_work_pending(w)
Find out whether a delayable work item is currently pending

Parameters
w The work item in question

struct workqueue_struct * alloc_workqueue(const char * fmt, unsigned
int flags, int max_active, ...)

allocate a workqueue

Parameters
const char * fmt printf format for the name of the workqueue

unsigned int flags WQ_* flags

196 Chapter 1. Core utilities

Linux Core-api Documentation

int max_active max in-flight work items, 0 for default remaining args: args for
fmt

... variable arguments

Description
Allocate a workqueue with the specified parameters. For detailed information on
WQ_* flags, please refer to Documentation/core-api/workqueue.rst.

Return
Pointer to the allocated workqueue on success, NULL on failure.

alloc_ordered_workqueue(fmt, flags, args)
allocate an ordered workqueue

Parameters
fmt printf format for the name of the workqueue

flags WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaning-
ful)

args args for fmt
Description
Allocate an ordered workqueue. An ordered workqueue executes at most one work
item at any given time in the queued order. They are implemented as unbound
workqueues with max_active of one.
Return
Pointer to the allocated workqueue on success, NULL on failure.

bool queue_work(struct workqueue_struct * wq, struct work_struct * work)
queue work on a workqueue

Parameters
struct workqueue_struct * wq workqueue to use

struct work_struct * work work to queue

Description
Returns false if work was already on a queue, true otherwise.
We queue the work to the CPU on which it was submitted, but if the CPU dies it
can be processed by another CPU.

Memory-ordering properties: If it returns true, guarantees that all stores preced-
ing the call to queue_work() in the program order will be visible from the CPU
which will execute work by the time such work executes, e.g.,
{ x is initially 0 }

CPU0 CPU1

WRITE_ONCE(x, 1); [work is being executed] r0 = queue_work(wq,
work); r1 = READ_ONCE(x);

Forbids: r0 == true && r1 == 0

1.2. Concurrency Managed Workqueue (cmwq) 197

Linux Core-api Documentation

bool queue_delayed_work(struct workqueue_struct * wq, struct de-
layed_work * dwork, unsigned long delay)

queue work on a workqueue after delay

Parameters
struct workqueue_struct * wq workqueue to use

struct delayed_work * dwork delayable work to queue

unsigned long delay number of jiffies to wait before queueing

Description
Equivalent to queue_delayed_work_on() but tries to use the local CPU.

bool mod_delayed_work(struct workqueue_struct * wq, struct delayed_work
* dwork, unsigned long delay)

modify delay of or queue a delayed work

Parameters
struct workqueue_struct * wq workqueue to use

struct delayed_work * dwork work to queue

unsigned long delay number of jiffies to wait before queueing

Description
mod_delayed_work_on() on local CPU.

bool schedule_work_on(int cpu, struct work_struct * work)
put work task on a specific cpu

Parameters
int cpu cpu to put the work task on

struct work_struct * work job to be done

Description
This puts a job on a specific cpu

bool schedule_work(struct work_struct * work)
put work task in global workqueue

Parameters
struct work_struct * work job to be done

Description
Returns false if work was already on the kernel-global workqueue and true oth-
erwise.

This puts a job in the kernel-global workqueue if it was not already queued and
leaves it in the same position on the kernel-global workqueue otherwise.

Shares the same memory-ordering properties of queue_work(), cf. the DocBook
header of queue_work().

void flush_scheduled_work(void)
ensure that any scheduled work has run to completion.

198 Chapter 1. Core utilities

Linux Core-api Documentation

Parameters
void no arguments

Description
Forces execution of the kernel-global workqueue and blocks until its completion.

Think twice before calling this function! It’s very easy to get into trouble if you
don’t take great care. Either of the following situations will lead to deadlock:

One of the work items currently on the workqueue needs to acquire a
lock held by your code or its caller.

Your code is running in the context of a work routine.

They will be detected by lockdep when they occur, but the first might not occur
very often. It depends on what work items are on the workqueue and what locks
they need, which you have no control over.

In most situations flushing the entire workqueue is overkill; you merely need to
know that a particular work item isn’t queued and isn’t running. In such cases
you should use cancel_delayed_work_sync() or cancel_work_sync() instead.

bool schedule_delayed_work_on(int cpu, struct delayed_work * dwork, un-
signed long delay)

queue work in global workqueue on CPU after delay

Parameters
int cpu cpu to use

struct delayed_work * dwork job to be done

unsigned long delay number of jiffies to wait

Description
After waiting for a given time this puts a job in the kernel-global workqueue on
the specified CPU.

bool schedule_delayed_work(struct delayed_work * dwork, unsigned
long delay)

put work task in global workqueue after delay

Parameters
struct delayed_work * dwork job to be done

unsigned long delay number of jiffies to wait or 0 for immediate execution

Description
After waiting for a given time this puts a job in the kernel-global workqueue.

1.2. Concurrency Managed Workqueue (cmwq) 199

Linux Core-api Documentation

1.3 Message logging with printk

printk() is one of the most widely known functions in the Linux kernel. It’s the
standard tool we have for printing messages and usually the most basic way of
tracing and debugging. If you’re familiar with printf(3) you can tell printk() is
based on it, although it has some functional differences:

• printk() messages can specify a log level.

• the format string, while largely compatible with C99, doesn’t follow the exact
same specification. It has some extensions and a few limitations (no %n or
floating point conversion specifiers). See How to get printk format specifiers
right.

All printk() messages are printed to the kernel log buffer, which is a ring buffer
exported to userspace through /dev/kmsg. The usual way to read it is using dmesg.

printk() is typically used like this:

printk(KERN_INFO "Message: %s\n", arg);

where KERN_INFO is the log level (note that it’s concatenated to the format string,
the log level is not a separate argument). The available log levels are:

Name String Alias function
KERN_EMERG “0” pr_emerg()
KERN_ALERT “1” pr_alert()
KERN_CRIT “2” pr_crit()
KERN_ERR “3” pr_err()
KERN_WARNING “4” pr_warn()
KERN_NOTICE “5” pr_notice()
KERN_INFO “6” pr_info()
KERN_DEBUG “7” pr_debug() and pr_devel() if DEBUG is defined
KERN_DEFAULT “”
KERN_CONT “c” pr_cont()

The log level specifies the importance of a message. The kernel decides whether
to show the message immediately (printing it to the current console) depending
on its log level and the current console_loglevel (a kernel variable). If the message
priority is higher (lower log level value) than the console_loglevel the message will
be printed to the console.

If the log level is omitted, the message is printed with KERN_DEFAULT level.

You can check the current console_loglevel with:

$ cat /proc/sys/kernel/printk
4 4 1 7

The result shows the current, default, minimum and boot-time-default log levels.

To change the current console_loglevel simply write the the desired level to /proc/
sys/kernel/printk. For example, to print all messages to the console:

200 Chapter 1. Core utilities

Linux Core-api Documentation

echo 8 > /proc/sys/kernel/printk

Another way, using dmesg:

dmesg -n 5

sets the console_loglevel to print KERN_WARNING (4) or more severe messages
to console. See dmesg(1) for more information.

As an alternative to printk() you can use the pr_*() aliases for logging. This family
of macros embed the log level in the macro names. For example:

pr_info("Info message no. %d\n", msg_num);

prints a KERN_INFO message.

Besides being more concise than the equivalent printk() calls, they can use a com-
mon definition for the format string through the pr_fmt() macro. For instance,
defining this at the top of a source file (before any #include directive):

#define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__

would prefix every pr_*() message in that file with the module and function name
that originated the message.

For debugging purposes there are also two conditionally-compiled macros:
pr_debug() and pr_devel(), which are compiled-out unless DEBUG (or also
CONFIG_DYNAMIC_DEBUG in the case of pr_debug()) is defined.

1.3.1 Function reference

__visible int printk(const char * fmt, ...)
print a kernel message

Parameters
const char * fmt format string

... variable arguments

Description
This is printk(). It can be called from any context. We want it to work.

We try to grab the console_lock. If we succeed, it’s easy - we log the output and
call the console drivers. If we fail to get the semaphore, we place the output into
the log buffer and return. The current holder of the console_sem will notice the
new output in console_unlock(); and will send it to the consoles before releasing
the lock.

One effect of this deferred printing is that code which calls printk() and then
changes console_loglevel may break. This is because console_loglevel is inspected
when the actual printing occurs.

See also: printf(3)

See the vsnprintf() documentation for format string extensions over C99.

1.3. Message logging with printk 201

Linux Core-api Documentation

pr_fmt(fmt)
used by the pr_*() macros to generate the printk format string

Parameters
fmt format string passed from a pr_*() macro

Description
This macro can be used to generate a unified format string for pr_*() macros. A
common use is to prefix all pr_*() messages in a file with a common string. For
example, defining this at the top of a source file:

#define pr_fmt(fmt) KBUILD_MODNAME “: ”fmt
would prefix all pr_info, pr_emerg⋯messages in the file with the module name.
pr_emerg(fmt, ⋯)

Print an emergency-level message

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to
generate the format string.

pr_alert(fmt, ⋯)
Print an alert-level message

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to
generate the format string.

pr_crit(fmt, ⋯)
Print a critical-level message

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to
generate the format string.

pr_err(fmt, ⋯)
Print an error-level message

Parameters
fmt format string

202 Chapter 1. Core utilities

Linux Core-api Documentation

... arguments for the format string

Description
This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to
generate the format string.

pr_warn(fmt, ⋯)
Print a warning-level message

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt()
to generate the format string.

pr_notice(fmt, ⋯)
Print a notice-level message

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to
generate the format string.

pr_info(fmt, ⋯)
Print an info-level message

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to
generate the format string.

pr_cont(fmt, ⋯)
Continues a previous log message in the same line.

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_CONT loglevel. It should only be used
when continuing a log message with no newline (‘n’) enclosed. Otherwise it
defaults back to KERN_DEFAULT loglevel.

1.3. Message logging with printk 203

Linux Core-api Documentation

pr_devel(fmt, ⋯)
Print a debug-level message conditionally

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is defined.
Otherwise it does nothing.

It uses pr_fmt() to generate the format string.

pr_debug(fmt, ⋯)
Print a debug-level message conditionally

Parameters
fmt format string

... arguments for the format string

Description
This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is set.
Otherwise, if DEBUG is defined, it’s equivalent to a printk with KERN_DEBUG
loglevel. If DEBUG is not defined it does nothing.

It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses pr_fmt()
internally).

1.4 How to get printk format specifiers right

Author Randy Dunlap <rdunlap@infradead.org>
Author Andrew Murray <amurray@mpc-data.co.uk>

1.4.1 Integer types

If variable is of Type, use printk format specifier:
--

char %d or %x
unsigned char %u or %x
short int %d or %x
unsigned short int %u or %x
int %d or %x
unsigned int %u or %x
long %ld or %lx
unsigned long %lu or %lx
long long %lld or %llx
unsigned long long %llu or %llx
size_t %zu or %zx
ssize_t %zd or %zx
s8 %d or %x

(continues on next page)

204 Chapter 1. Core utilities

mailto:rdunlap@infradead.org
mailto:amurray@mpc-data.co.uk

Linux Core-api Documentation

(continued from previous page)
u8 %u or %x
s16 %d or %x
u16 %u or %x
s32 %d or %x
u32 %u or %x
s64 %lld or %llx
u64 %llu or %llx

If <type> is dependent on a config option for its size (e.g., sector_t, blkcnt_t) or
is architecture-dependent for its size (e.g., tcflag_t), use a format specifier of its
largest possible type and explicitly cast to it.

Example:

printk("test: sector number/total blocks: %llu/%llu\n",
(unsigned long long)sector, (unsigned long long)blockcount);

Reminder: sizeof() returns type size_t.

The kernel’s printf does not support %n. Floating point formats (%e, %f, %g, %a)
are also not recognized, for obvious reasons. Use of any unsupported specifier or
length qualifier results in a WARN and early return from vsnprintf().

1.4.2 Pointer types

A raw pointer value may be printed with %p which will hash the address before
printing. The kernel also supports extended specifiers for printing pointers of
different types.

Some of the extended specifiers print the data on the given address instead of
printing the address itself. In this case, the following error messages might be
printed instead of the unreachable information:

(null) data on plain NULL address
(efault) data on invalid address
(einval) invalid data on a valid address

Plain Pointers

%p abcdef12 or 00000000abcdef12

Pointers printed without a specifier extension (i.e unadorned %p) are hashed to
prevent leaking information about the kernel memory layout. This has the added
benefit of providing a unique identifier. On 64-bit machines the first 32 bits are
zeroed. The kernel will print (ptrval) until it gathers enough entropy. If you
really want the address see %px below.

1.4. How to get printk format specifiers right 205

Linux Core-api Documentation

Error Pointers

%pe -ENOSPC

For printing error pointers (i.e. a pointer for which IS_ERR() is true) as a symbolic
error name. Error values for which no symbolic name is known are printed in
decimal, while a non-ERR_PTR passed as the argument to %pe gets treated as
ordinary %p.

Symbols/Function Pointers

%pS versatile_init+0x0/0x110
%ps versatile_init
%pSR versatile_init+0x9/0x110

(with __builtin_extract_return_addr() translation)
%pB prev_fn_of_versatile_init+0x88/0x88

The S and s specifiers are used for printing a pointer in symbolic format. They
result in the symbol namewith (S) or without (s) offsets. If KALLSYMS are disabled
then the symbol address is printed instead.

The B specifier results in the symbol name with offsets and should be used when
printing stack backtraces. The specifier takes into consideration the effect of com-
piler optimisations which may occur when tail-calls are used and marked with the
noreturn GCC attribute.

Probed Pointers from BPF / tracing

%pks kernel string
%pus user string

The k and u specifiers are used for printing prior probedmemory from either kernel
memory (k) or user memory (u). The subsequent s specifier results in printing a
string. For direct use in regular vsnprintf() the (k) and (u) annotation is ignored,
however, when used out of BPF’s bpf_trace_printk(), for example, it reads the
memory it is pointing to without faulting.

Kernel Pointers

%pK 01234567 or 0123456789abcdef

For printing kernel pointers which should be hidden from unprivileged users. The
behaviour of %pK depends on the kptr_restrict sysctl - see Documentation/admin-
guide/sysctl/kernel.rst for more details.

206 Chapter 1. Core utilities

Linux Core-api Documentation

Unmodified Addresses

%px 01234567 or 0123456789abcdef

For printing pointers when you really want to print the address. Please consider
whether or not you are leaking sensitive information about the kernel memory
layout before printing pointers with %px. %px is functionally equivalent to %lx (or
%lu). %px is preferred because it is more uniquely grep’able. If in the future
we need to modify the way the kernel handles printing pointers we will be better
equipped to find the call sites.

Pointer Differences

%td 2560
%tx a00

For printing the pointer differences, use the %t modifier for ptrdiff_t.

Example:

printk("test: difference between pointers: %td\n", ptr2 - ptr1);

Struct Resources

%pr [mem 0x60000000-0x6fffffff flags 0x2200] or
[mem 0x0000000060000000-0x000000006fffffff flags 0x2200]

%pR [mem 0x60000000-0x6fffffff pref] or
[mem 0x0000000060000000-0x000000006fffffff pref]

For printing struct resources. The R and r specifiers result in a printed resource
with (R) or without (r) a decoded flags member.

Passed by reference.

Physical address types phys_addr_t

%pa[p] 0x01234567 or 0x0123456789abcdef

For printing a phys_addr_t type (and its derivatives, such as resource_size_t) which
can vary based on build options, regardless of the width of the CPU data path.

Passed by reference.

1.4. How to get printk format specifiers right 207

Linux Core-api Documentation

DMA address types dma_addr_t

%pad 0x01234567 or 0x0123456789abcdef

For printing a dma_addr_t type which can vary based on build options, regardless
of the width of the CPU data path.

Passed by reference.

Raw buffer as an escaped string

%*pE[achnops]

For printing raw buffer as an escaped string. For the following buffer:

1b 62 20 5c 43 07 22 90 0d 5d

A few examples show how the conversion would be done (excluding surrounding
quotes):

%*pE "\eb \C\a"\220\r]"
%*pEhp "\x1bb \C\x07"\x90\x0d]"
%*pEa "\e\142\040\\\103\a\042\220\r\135"

The conversion rules are applied according to an optional combination of flags (see
string_escape_mem() kernel documentation for the details):

• a - ESCAPE_ANY

• c - ESCAPE_SPECIAL

• h - ESCAPE_HEX

• n - ESCAPE_NULL

• o - ESCAPE_OCTAL

• p - ESCAPE_NP

• s - ESCAPE_SPACE

By default ESCAPE_ANY_NP is used.

ESCAPE_ANY_NP is the sane choice for many cases, in particularly for printing
SSIDs.

If field width is omitted then 1 byte only will be escaped.

208 Chapter 1. Core utilities

Linux Core-api Documentation

Raw buffer as a hex string

%*ph 00 01 02 ... 3f
%*phC 00:01:02: ... :3f
%*phD 00-01-02- ... -3f
%*phN 000102 ... 3f

For printing small buffers (up to 64 bytes long) as a hex string with a certain
separator. For larger buffers consider using print_hex_dump().

MAC/FDDI addresses

%pM 00:01:02:03:04:05
%pMR 05:04:03:02:01:00
%pMF 00-01-02-03-04-05
%pm 000102030405
%pmR 050403020100

For printing 6-byte MAC/FDDI addresses in hex notation. The M and m specifiers
result in a printed address with (M) or without (m) byte separators. The default
byte separator is the colon (:).

Where FDDI addresses are concerned the F specifier can be used after the M spec-
ifier to use dash (-) separators instead of the default separator.

For Bluetooth addresses the R specifier shall be used after the M specifier to use
reversed byte order suitable for visual interpretation of Bluetooth addresses which
are in the little endian order.

Passed by reference.

IPv4 addresses

%pI4 1.2.3.4
%pi4 001.002.003.004
%p[Ii]4[hnbl]

For printing IPv4 dot-separated decimal addresses. The I4 and i4 specifiers result
in a printed address with (i4) or without (I4) leading zeros.

The additional h, n, b, and l specifiers are used to specify host, network, big or little
endian order addresses respectively. Where no specifier is provided the default
network/big endian order is used.

Passed by reference.

1.4. How to get printk format specifiers right 209

Linux Core-api Documentation

IPv6 addresses

%pI6 0001:0002:0003:0004:0005:0006:0007:0008
%pi6 00010002000300040005000600070008
%pI6c 1:2:3:4:5:6:7:8

For printing IPv6 network-order 16-bit hex addresses. The I6 and i6 specifiers
result in a printed address with (I6) or without (i6) colon-separators. Leading
zeros are always used.

The additional c specifier can be used with the I specifier to print a compressed
IPv6 address as described by http://tools.ietf.org/html/rfc5952

Passed by reference.

IPv4/IPv6 addresses (generic, with port, flowinfo, scope)

%pIS 1.2.3.4 or 0001:0002:0003:0004:0005:0006:0007:0008
%piS 001.002.003.004 or 00010002000300040005000600070008
%pISc 1.2.3.4 or 1:2:3:4:5:6:7:8
%pISpc 1.2.3.4:12345 or [1:2:3:4:5:6:7:8]:12345
%p[Ii]S[pfschnbl]

For printing an IP address without the need to distinguish whether it’s of type
AF_INET or AF_INET6. A pointer to a valid struct sockaddr, specified through IS
or iS, can be passed to this format specifier.

The additional p, f, and s specifiers are used to specify port (IPv4, IPv6), flowinfo
(IPv6) and scope (IPv6). Ports have a : prefix, flowinfo a / and scope a %, each
followed by the actual value.

In case of an IPv6 address the compressed IPv6 address as described by http:
//tools.ietf.org/html/rfc5952 is being used if the additional specifier c is given. The
IPv6 address is surrounded by [,] in case of additional specifiers p, f or s as sug-
gested by https://tools.ietf.org/html/draft-ietf-6man-text-addr-representation-07

In case of IPv4 addresses, the additional h, n, b, and l specifiers can be used as
well and are ignored in case of an IPv6 address.

Passed by reference.

Further examples:

%pISfc 1.2.3.4 or [1:2:3:4:5:6:7:8]/123456789
%pISsc 1.2.3.4 or [1:2:3:4:5:6:7:8]%1234567890
%pISpfc 1.2.3.4:12345 or [1:2:3:4:5:6:7:8]:12345/123456789

210 Chapter 1. Core utilities

http://tools.ietf.org/html/rfc5952
http://tools.ietf.org/html/rfc5952
http://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/draft-ietf-6man-text-addr-representation-07

Linux Core-api Documentation

UUID/GUID addresses

%pUb 00010203-0405-0607-0809-0a0b0c0d0e0f
%pUB 00010203-0405-0607-0809-0A0B0C0D0E0F
%pUl 03020100-0504-0706-0809-0a0b0c0e0e0f
%pUL 03020100-0504-0706-0809-0A0B0C0E0E0F

For printing 16-byte UUID/GUIDs addresses. The additional l, L, b and B specifiers
are used to specify a little endian order in lower (l) or upper case (L) hex notation
- and big endian order in lower (b) or upper case (B) hex notation.

Where no additional specifiers are used the default big endian order with lower
case hex notation will be printed.

Passed by reference.

dentry names

%pd{,2,3,4}
%pD{,2,3,4}

For printing dentry name; if we race with d_move(), the name might be a mix of
old and new ones, but it won’t oops. %pd dentry is a safer equivalent of %s dentry-
>d_name.name we used to use, %pd<n> prints n last components. %pD does the
same thing for struct file.

Passed by reference.

block_device names

%pg sda, sda1 or loop0p1

For printing name of block_device pointers.

struct va_format

%pV

For printing struct va_format structures. These contain a format string and va_list
as follows:

struct va_format {
const char *fmt;
va_list *va;

};

Implements a “recursive vsnprintf”.
Do not use this feature without some mechanism to verify the correctness of the
format string and va_list arguments.

Passed by reference.

1.4. How to get printk format specifiers right 211

Linux Core-api Documentation

Device tree nodes

%pOF[fnpPcCF]

For printing device tree node structures. Default behaviour is equivalent to
%pOFf.

• f - device node full_name

• n - device node name

• p - device node phandle

• P - device node path spec (name + @unit)

• F - device node flags

• c - major compatible string

• C - full compatible string

The separator when using multiple arguments is ‘:’
Examples:

%pOF /foo/bar@0 - Node full name
%pOFf /foo/bar@0 - Same as above
%pOFfp /foo/bar@0:10 - Node full name + phandle
%pOFfcF /foo/bar@0:foo,device:--P- - Node full name +

major compatible string +
node flags

D - dynamic
d - detached
P - Populated
B - Populated bus

Passed by reference.

Fwnode handles

%pfw[fP]

For printing information on fwnode handles. The default is to print the full node
name, including the path. The modifiers are functionally equivalent to %pOF
above.

• f - full name of the node, including the path

• P - the name of the node including an address (if there is one)

Examples (ACPI):

%pfwf _SB.PCI0.CIO2.port@1.endpoint@0 - Full node name
%pfwP endpoint@0 - Node name

Examples (OF):

212 Chapter 1. Core utilities

Linux Core-api Documentation

%pfwf /ocp@68000000/i2c@48072000/camera@10/port/endpoint - Full name
%pfwP endpoint - Node name

Time and date

%pt[RT] YYYY-mm-ddTHH:MM:SS
%pt[RT]d YYYY-mm-dd
%pt[RT]t HH:MM:SS
%pt[RT][dt][r]

For printing date and time as represented by R struct rtc_time structure T
time64_t type

in human readable format.

By default year will be incremented by 1900 and month by 1. Use %pt[RT]r (raw)
to suppress this behaviour.

Passed by reference.

struct clk

%pC pll1
%pCn pll1

For printing struct clk structures. %pC and %pCn print the name of the clock
(Common Clock Framework) or a unique 32-bit ID (legacy clock framework).

Passed by reference.

bitmap and its derivatives such as cpumask and nodemask

%*pb 0779
%*pbl 0,3-6,8-10

For printing bitmap and its derivatives such as cpumask and nodemask, %*pb
outputs the bitmap with field width as the number of bits and %*pbl output the
bitmap as range list with field width as the number of bits.

Passed by reference.

Flags bitfields such as page flags, gfp_flags

%pGp referenced|uptodate|lru|active|private
%pGg GFP_USER|GFP_DMA32|GFP_NOWARN
%pGv read|exec|mayread|maywrite|mayexec|denywrite

For printing flags bitfields as a collection of symbolic constants that would con-
struct the value. The type of flags is given by the third character. Cur-
rently supported are [p]age flags, [v]ma_flags (both expect unsigned long *) and

1.4. How to get printk format specifiers right 213

Linux Core-api Documentation

[g]fp_flags (expects gfp_t *). The flag names and print order depends on the
particular type.

Note that this format should not be used directly in the TP_printk() part of a trace-
point. Instead, use the show_*_flags() functions from <trace/events/mmflags.h>.

Passed by reference.

Network device features

%pNF 0x000000000000c000

For printing netdev_features_t.

Passed by reference.

1.4.3 Thanks

If you add other %p extensions, please extend <lib/test_printf.c> with one or more
test cases, if at all feasible.

Thank you for your cooperation and attention.

1.5 Symbol Namespaces

The following document describes how to use Symbol Namespaces to struc-
ture the export surface of in-kernel symbols exported through the family of EX-
PORT_SYMBOL() macros.

1.5.1 1. Introduction

Symbol Namespaces have been introduced as a means to structure the export
surface of the in-kernel API. It allows subsystem maintainers to partition their ex-
ported symbols into separate namespaces. That is useful for documentation pur-
poses (think of the SUBSYSTEM_DEBUG namespace) as well as for limiting the
availability of a set of symbols for use in other parts of the kernel. As of today,
modules that make use of symbols exported into namespaces, are required to im-
port the namespace. Otherwise the kernel will, depending on its configuration,
reject loading the module or warn about a missing import.

214 Chapter 1. Core utilities

Linux Core-api Documentation

1.5.2 2. How to define Symbol Namespaces

Symbols can be exported into namespace using different methods. All of them
are changing the way EXPORT_SYMBOL and friends are instrumented to create
ksymtab entries.

1.5.3 2.1 Using the EXPORT_SYMBOL macros

In addition to the macros EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL(), that
allow exporting of kernel symbols to the kernel symbol table, variants of these
are available to export symbols into a certain namespace: EXPORT_SYMBOL_NS()
and EXPORT_SYMBOL_NS_GPL(). They take one additional argument: the names-
pace. Please note that due to macro expansion that argument needs to be a pre-
processor symbol. E.g. to export the symbol usb_stor_suspend into the namespace
USB_STORAGE, use:

EXPORT_SYMBOL_NS(usb_stor_suspend, USB_STORAGE);

The corresponding ksymtab entry struct kernel_symbol will have the member
namespace set accordingly. A symbol that is exported without a namespace will
refer to NULL. There is no default namespace if none is defined. modpost and
kernel/module.c make use the namespace at build time or module load time, re-
spectively.

1.5.4 2.2 Using the DEFAULT_SYMBOL_NAMESPACE define

Defining namespaces for all symbols of a subsystem can be very ver-
bose and may become hard to maintain. Therefore a default define (DE-
FAULT_SYMBOL_NAMESPACE) is been provided, that, if set, will become the de-
fault for all EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL() macro expansions
that do not specify a namespace.

There are multiple ways of specifying this define and it depends on the subsystem
and the maintainer’s preference, which one to use. The first option is to define
the default namespace in the Makefile of the subsystem. E.g. to export all symbols
defined in usb-common into the namespace USB_COMMON, add a line like this to
drivers/usb/common/Makefile:

ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE=USB_COMMON

That will affect all EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL() statements.
A symbol exported with EXPORT_SYMBOL_NS() while this definition is present,
will still be exported into the namespace that is passed as the namespace argument
as this argument has preference over a default symbol namespace.

A second option to define the default namespace is directly in the compilation unit
as preprocessor statement. The above example would then read:

#undef DEFAULT_SYMBOL_NAMESPACE
#define DEFAULT_SYMBOL_NAMESPACE USB_COMMON

1.5. Symbol Namespaces 215

Linux Core-api Documentation

within the corresponding compilation unit before any EXPORT_SYMBOL macro is
used.

1.5.5 3. How to use Symbols exported in Namespaces

In order to use symbols that are exported into namespaces, kernel modules need to
explicitly import these namespaces. Otherwise the kernel might reject to load the
module. The module code is required to use the macro MODULE_IMPORT_NS for
the namespaces it uses symbols from. E.g. a module using the usb_stor_suspend
symbol from above, needs to import the namespace USB_STORAGE using a state-
ment like:

MODULE_IMPORT_NS(USB_STORAGE);

This will create a modinfo tag in the module for each imported namespace. This
has the side effect, that the imported namespaces of a module can be inspected
with modinfo:

$ modinfo drivers/usb/storage/ums-karma.ko
[...]
import_ns: USB_STORAGE
[...]

It is advisable to add the MODULE_IMPORT_NS() statement close to other module
metadata definitions like MODULE_AUTHOR() or MODULE_LICENSE(). Refer to
section 5. for a way to create missing import statements automatically.

1.5.6 4. Loading Modules that use namespaced Symbols

At module loading time (e.g. insmod), the kernel will check each symbol refer-
enced from the module for its availability and whether the namespace it might be
exported to has been imported by the module. The default behaviour of the ker-
nel is to reject loading modules that don’t specify sufficient imports. An error
will be logged and loading will be failed with EINVAL. In order to allow loading of
modules that don’t satisfy this precondition, a configuration option is available:
Setting MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS=y will enable load-
ing regardless, but will emit a warning.

1.5.7 5. Automatically creating MODULE_IMPORT_NS statements

Missing namespaces imports can easily be detected at build time. In fact, modpost
will emit a warning if a module uses a symbol from a namespace without importing
it. MODULE_IMPORT_NS() statements will usually be added at a definite location
(along with other module meta data). To make the life of module authors (and sub-
system maintainers) easier, a script and make target is available to fixup missing
imports. Fixing missing imports can be done with:

$ make nsdeps

A typical scenario for module authors would be:

216 Chapter 1. Core utilities

Linux Core-api Documentation

- write code that depends on a symbol from a not imported namespace
- `make`
- notice the warning of modpost telling about a missing import
- run `make nsdeps` to add the import to the correct code location

For subsystem maintainers introducing a namespace, the steps are very similar.
Again, make nsdeps will eventually add the missing namespace imports for in-tree
modules:

- move or add symbols to a namespace (e.g. with EXPORT_SYMBOL_NS())
- `make` (preferably with an allmodconfig to cover all in-kernel

modules)
- notice the warning of modpost telling about a missing import
- run `make nsdeps` to add the import to the correct code location

You can also run nsdeps for external module builds. A typical usage is:

$ make -C <path_to_kernel_src> M=$PWD nsdeps

1.5. Symbol Namespaces 217

Linux Core-api Documentation

218 Chapter 1. Core utilities

CHAPTER

TWO

DATA STRUCTURES AND LOW-LEVEL UTILITIES

Library functionality that is used throughout the kernel.

2.1 Everything you never wanted to know about kob-
jects, ksets, and ktypes

Author Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Last updated December 19, 2007

Based on an original article by Jon Corbet for lwn.net written October 1, 2003 and
located at http://lwn.net/Articles/51437/

Part of the difficulty in understanding the driver model - and the kobject abstrac-
tion upon which it is built - is that there is no obvious starting place. Dealing with
kobjects requires understanding a few different types, all of which make reference
to each other. In an attempt to make things easier, we’ll take a multi-pass ap-
proach, starting with vague terms and adding detail as we go. To that end, here
are some quick definitions of some terms we will be working with.

• A kobject is an object of type struct kobject. Kobjects have a name and a
reference count. A kobject also has a parent pointer (allowing objects to be
arranged into hierarchies), a specific type, and, usually, a representation in
the sysfs virtual filesystem.

Kobjects are generally not interesting on their own; instead, they are usually
embedded within some other structure which contains the stuff the code is
really interested in.

No structure should EVER have more than one kobject embedded within it.
If it does, the reference counting for the object is sure to be messed up and
incorrect, and your code will be buggy. So do not do this.

• A ktype is the type of object that embeds a kobject. Every structure that em-
beds a kobject needs a corresponding ktype. The ktype controls what happens
to the kobject when it is created and destroyed.

• A kset is a group of kobjects. These kobjects can be of the same ktype or
belong to different ktypes. The kset is the basic container type for collections
of kobjects. Ksets contain their own kobjects, but you can safely ignore that
implementation detail as the kset core code handles this kobject automati-
cally.

219

mailto:gregkh@linuxfoundation.org
http://lwn.net/Articles/51437/

Linux Core-api Documentation

When you see a sysfs directory full of other directories, generally each of
those directories corresponds to a kobject in the same kset.

We’ll look at how to create andmanipulate all of these types. A bottom-up approach
will be taken, so we’ll go back to kobjects.

2.1.1 Embedding kobjects

It is rare for kernel code to create a standalone kobject, with one major exception
explained below. Instead, kobjects are used to control access to a larger, domain-
specific object. To this end, kobjects will be found embedded in other structures.
If you are used to thinking of things in object-oriented terms, kobjects can be
seen as a top-level, abstract class from which other classes are derived. A kobject
implements a set of capabilities which are not particularly useful by themselves,
but are nice to have in other objects. The C language does not allow for the direct
expression of inheritance, so other techniques - such as structure embedding -
must be used.

(As an aside, for those familiar with the kernel linked list implementation, this is
analogous as to how “list_head”structs are rarely useful on their own, but are
invariably found embedded in the larger objects of interest.)

So, for example, the UIO code in drivers/uio/uio.c has a structure that defines
the memory region associated with a uio device:

struct uio_map {
struct kobject kobj;
struct uio_mem *mem;

};

If you have a struct uio_map structure, finding its embedded kobject is just a mat-
ter of using the kobj member. Code that works with kobjects will often have the
opposite problem, however: given a struct kobject pointer, what is the pointer to
the containing structure? You must avoid tricks (such as assuming that the kob-
ject is at the beginning of the structure) and, instead, use the container_of() macro,
found in <linux/kernel.h>:

container_of(ptr, type, member)

where:

• ptr is the pointer to the embedded kobject,

• type is the type of the containing structure, and

• member is the name of the structure field to which pointer points.

The return value from container_of() is a pointer to the corresponding container
type. So, for example, a pointer kp to a struct kobject embedded within a struct
uio_map could be converted to a pointer to the containing uio_map structure
with:

struct uio_map *u_map = container_of(kp, struct uio_map, kobj);

220 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

For convenience, programmers often define a simple macro for back-casting kob-
ject pointers to the containing type. Exactly this happens in the earlier drivers/
uio/uio.c, as you can see here:

struct uio_map {
struct kobject kobj;
struct uio_mem *mem;

};

#define to_map(map) container_of(map, struct uio_map, kobj)

where the macro argument “map”is a pointer to the struct kobject in question.
That macro is subsequently invoked with:

struct uio_map *map = to_map(kobj);

2.1.2 Initialization of kobjects

Code which creates a kobject must, of course, initialize that object. Some of the
internal fields are setup with a (mandatory) call to kobject_init():

void kobject_init(struct kobject *kobj, struct kobj_type *ktype);

The ktype is required for a kobject to be created properly, as every kobject must
have an associated kobj_type. After calling kobject_init(), to register the kobject
with sysfs, the function kobject_add() must be called:

int kobject_add(struct kobject *kobj, struct kobject *parent,
const char *fmt, ...);

This sets up the parent of the kobject and the name for the kobject properly. If
the kobject is to be associated with a specific kset, kobj->kset must be assigned
before calling kobject_add(). If a kset is associated with a kobject, then the parent
for the kobject can be set to NULL in the call to kobject_add() and then the kobject’
s parent will be the kset itself.

As the name of the kobject is set when it is added to the kernel, the name of the
kobject should never be manipulated directly. If you must change the name of the
kobject, call kobject_rename():

int kobject_rename(struct kobject *kobj, const char *new_name);

kobject_rename() does not perform any locking or have a solid notion of what
names are valid so the caller must provide their own sanity checking and seri-
alization.

There is a function called kobject_set_name() but that is legacy cruft and is being
removed. If your code needs to call this function, it is incorrect and needs to be
fixed.

To properly access the name of the kobject, use the function kobject_name():

const char *kobject_name(const struct kobject * kobj);

2.1. Everything you never wanted to know about kobjects, ksets, and
ktypes

221

Linux Core-api Documentation

There is a helper function to both initialize and add the kobject to the kernel at
the same time, called surprisingly enough kobject_init_and_add():

int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,
struct kobject *parent, const char *fmt, ...);

The arguments are the same as the individual kobject_init() and kobject_add()
functions described above.

2.1.3 Uevents

After a kobject has been registered with the kobject core, you need to announce to
the world that it has been created. This can be done with a call to kobject_uevent():

int kobject_uevent(struct kobject *kobj, enum kobject_action action);

Use the KOBJ_ADD action for when the kobject is first added to the kernel. This
should be done only after any attributes or children of the kobject have been ini-
tialized properly, as userspace will instantly start to look for them when this call
happens.

When the kobject is removed from the kernel (details on how to do that are below),
the uevent for KOBJ_REMOVE will be automatically created by the kobject core,
so the caller does not have to worry about doing that by hand.

2.1.4 Reference counts

One of the key functions of a kobject is to serve as a reference counter for the object
in which it is embedded. As long as references to the object exist, the object (and
the code which supports it) must continue to exist. The low-level functions for
manipulating a kobject’s reference counts are:
struct kobject *kobject_get(struct kobject *kobj);
void kobject_put(struct kobject *kobj);

A successful call to kobject_get() will increment the kobject’s reference counter
and return the pointer to the kobject.

When a reference is released, the call to kobject_put() will decrement the reference
count and, possibly, free the object. Note that kobject_init() sets the reference
count to one, so the code which sets up the kobject will need to do a kobject_put()
eventually to release that reference.

Because kobjects are dynamic, they must not be declared statically or on the stack,
but instead, always allocated dynamically. Future versions of the kernel will con-
tain a run-time check for kobjects that are created statically and will warn the
developer of this improper usage.

If all that you want to use a kobject for is to provide a reference counter for your
structure, please use the struct kref instead; a kobject would be overkill. For more
information on how to use struct kref, please see the file Documentation/core-
api/kref.rst in the Linux kernel source tree.

222 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.1.5 Creating “simple”kobjects

Sometimes all that a developer wants is a way to create a simple directory in the
sysfs hierarchy, and not have to mess with the whole complication of ksets, show
and store functions, and other details. This is the one exception where a single
kobject should be created. To create such an entry, use the function:

struct kobject *kobject_create_and_add(const char *name, struct kobject␣
↪→*parent);

This function will create a kobject and place it in sysfs in the location underneath
the specified parent kobject. To create simple attributes associated with this kob-
ject, use:

int sysfs_create_file(struct kobject *kobj, const struct attribute *attr);

or:

int sysfs_create_group(struct kobject *kobj, const struct attribute_group␣
↪→*grp);

Both types of attributes used here, with a kobject that has been created with the
kobject_create_and_add(), can be of type kobj_attribute, so no special custom at-
tribute is needed to be created.

See the example module, samples/kobject/kobject-example.c for an implemen-
tation of a simple kobject and attributes.

2.1.6 ktypes and release methods

One important thing still missing from the discussion is what happens to a kobject
when its reference count reaches zero. The code which created the kobject gen-
erally does not know when that will happen; if it did, there would be little point
in using a kobject in the first place. Even predictable object lifecycles become
more complicated when sysfs is brought in as other portions of the kernel can get
a reference on any kobject that is registered in the system.

The end result is that a structure protected by a kobject cannot be freed before its
reference count goes to zero. The reference count is not under the direct control of
the code which created the kobject. So that code must be notified asynchronously
whenever the last reference to one of its kobjects goes away.

Once you registered your kobject via kobject_add(), you must never use kfree()
to free it directly. The only safe way is to use kobject_put(). It is good practice to
always use kobject_put() after kobject_init() to avoid errors creeping in.

This notification is done through a kobject’s release() method. Usually such a
method has a form like:

void my_object_release(struct kobject *kobj)
{

struct my_object *mine = container_of(kobj, struct my_object,␣
↪→kobj);

(continues on next page)

2.1. Everything you never wanted to know about kobjects, ksets, and
ktypes

223

Linux Core-api Documentation

(continued from previous page)
/* Perform any additional cleanup on this object, then... */
kfree(mine);

}

One important point cannot be overstated: every kobject must have a release()
method, and the kobject must persist (in a consistent state) until that method is
called. If these constraints are not met, the code is flawed. Note that the kernel
will warn you if you forget to provide a release() method. Do not try to get rid of
this warning by providing an “empty”release function.
If all your cleanup function needs to do is call kfree(), then you must create a
wrapper function which uses container_of() to upcast to the correct type (as shown
in the example above) and then calls kfree() on the overall structure.

Note, the name of the kobject is available in the release function, but it must NOT
be changed within this callback. Otherwise there will be a memory leak in the
kobject core, which makes people unhappy.

Interestingly, the release() method is not stored in the kobject itself; instead, it is
associated with the ktype. So let us introduce struct kobj_type:

struct kobj_type {
void (*release)(struct kobject *kobj);
const struct sysfs_ops *sysfs_ops;
struct attribute **default_attrs;
const struct attribute_group **default_groups;
const struct kobj_ns_type_operations *(*child_ns_type)(struct␣

↪→kobject *kobj);
const void *(*namespace)(struct kobject *kobj);
void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t␣

↪→*gid);
};

This structure is used to describe a particular type of kobject (or, more correctly,
of containing object). Every kobject needs to have an associated kobj_type struc-
ture; a pointer to that structure must be specified when you call kobject_init() or
kobject_init_and_add().

The release field in struct kobj_type is, of course, a pointer to the release() method
for this type of kobject. The other two fields (sysfs_ops and default_attrs) control
how objects of this type are represented in sysfs; they are beyond the scope of this
document.

The default_attrs pointer is a list of default attributes that will be automatically
created for any kobject that is registered with this ktype.

224 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.1.7 ksets

A kset is merely a collection of kobjects that want to be associated with each other.
There is no restriction that they be of the same ktype, but be very careful if they
are not.

A kset serves these functions:

• It serves as a bag containing a group of objects. A kset can be used by the
kernel to track “all block devices”or “all PCI device drivers.”

• A kset is also a subdirectory in sysfs, where the associated kobjects with the
kset can show up. Every kset contains a kobject which can be set up to be
the parent of other kobjects; the top-level directories of the sysfs hierarchy
are constructed in this way.

• Ksets can support the “hotplugging”of kobjects and influence how uevent
events are reported to user space.

In object-oriented terms, “kset”is the top-level container class; ksets contain
their own kobject, but that kobject is managed by the kset code and should not be
manipulated by any other user.

A kset keeps its children in a standard kernel linked list. Kobjects point back to
their containing kset via their kset field. In almost all cases, the kobjects belonging
to a kset have that kset (or, strictly, its embedded kobject) in their parent.

As a kset contains a kobject within it, it should always be dynamically created and
never declared statically or on the stack. To create a new kset use:

struct kset *kset_create_and_add(const char *name,
const struct kset_uevent_ops *uevent_ops,
struct kobject *parent_kobj);

When you are finished with the kset, call:

void kset_unregister(struct kset *k);

to destroy it. This removes the kset from sysfs and decrements its reference
count. When the reference count goes to zero, the kset will be released. Be-
cause other references to the kset may still exist, the release may happen after
kset_unregister() returns.

An example of using a kset can be seen in the samples/kobject/kset-example.c
file in the kernel tree.

If a kset wishes to control the uevent operations of the kobjects associated with it,
it can use the struct kset_uevent_ops to handle it:

struct kset_uevent_ops {
int (* const filter)(struct kset *kset, struct kobject *kobj);
const char *(* const name)(struct kset *kset, struct kobject␣

↪→*kobj);
int (* const uevent)(struct kset *kset, struct kobject *kobj,

struct kobj_uevent_env *env);
};

2.1. Everything you never wanted to know about kobjects, ksets, and
ktypes

225

Linux Core-api Documentation

The filter function allows a kset to prevent a uevent from being emitted to
userspace for a specific kobject. If the function returns 0, the uevent will not
be emitted.

The name function will be called to override the default name of the kset that the
uevent sends to userspace. By default, the name will be the same as the kset itself,
but this function, if present, can override that name.

The uevent function will be called when the uevent is about to be sent to userspace
to allow more environment variables to be added to the uevent.

One might ask how, exactly, a kobject is added to a kset, given that no functions
which perform that function have been presented. The answer is that this task
is handled by kobject_add(). When a kobject is passed to kobject_add(), its kset
member should point to the kset to which the kobject will belong. kobject_add()
will handle the rest.

If the kobject belonging to a kset has no parent kobject set, it will be added to the
kset’s directory. Not all members of a kset do necessarily live in the kset directory.
If an explicit parent kobject is assigned before the kobject is added, the kobject is
registered with the kset, but added below the parent kobject.

2.1.8 Kobject removal

After a kobject has been registered with the kobject core successfully, it must be
cleaned up when the code is finished with it. To do that, call kobject_put(). By
doing this, the kobject core will automatically clean up all of the memory allocated
by this kobject. If a KOBJ_ADD uevent has been sent for the object, a corresponding
KOBJ_REMOVE uevent will be sent, and any other sysfs housekeeping will be handled
for the caller properly.

If you need to do a two-stage delete of the kobject (say you are not allowed to sleep
when you need to destroy the object), then call kobject_del() which will unregister
the kobject from sysfs. This makes the kobject “invisible”, but it is not cleaned
up, and the reference count of the object is still the same. At a later time call
kobject_put() to finish the cleanup of the memory associated with the kobject.

kobject_del() can be used to drop the reference to the parent object, if circular ref-
erences are constructed. It is valid in some cases, that a parent objects references
a child. Circular references _must_ be broken with an explicit call to kobject_del(),
so that a release functions will be called, and the objects in the former circle re-
lease each other.

2.1.9 Example code to copy from

For amore complete example of using ksets and kobjects properly, see the example
programs samples/kobject/{kobject-example.c,kset-example.c}, which will
be built as loadable modules if you select CONFIG_SAMPLE_KOBJECT.

226 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.2 Adding reference counters (krefs) to kernel objects

Author Corey Minyard <minyard@acm.org>
Author Thomas Hellstrom <thellstrom@vmware.com>

A lot of this was lifted from Greg Kroah-Hartman’s 2004 OLS paper and presen-
tation on krefs, which can be found at:

• http://www.kroah.com/linux/talks/ols_2004_kref_paper/
Reprint-Kroah-Hartman-OLS2004.pdf

• http://www.kroah.com/linux/talks/ols_2004_kref_talk/

2.2.1 Introduction

krefs allow you to add reference counters to your objects. If you have objects that
are used in multiple places and passed around, and you don’t have refcounts, your
code is almost certainly broken. If you want refcounts, krefs are the way to go.

To use a kref, add one to your data structures like:

struct my_data
{

.

.
struct kref refcount;
.
.

};

The kref can occur anywhere within the data structure.

2.2.2 Initialization

You must initialize the kref after you allocate it. To do this, call kref_init as so:

struct my_data *data;

data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)

return -ENOMEM;
kref_init(&data->refcount);

This sets the refcount in the kref to 1.

2.2. Adding reference counters (krefs) to kernel objects 227

mailto:minyard@acm.org
mailto:thellstrom@vmware.com
http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
http://www.kroah.com/linux/talks/ols_2004_kref_paper/Reprint-Kroah-Hartman-OLS2004.pdf
http://www.kroah.com/linux/talks/ols_2004_kref_talk/

Linux Core-api Documentation

2.2.3 Kref rules

Once you have an initialized kref, you must follow the following rules:

1) If you make a non-temporary copy of a pointer, especially if it can be passed to
another thread of execution, you must increment the refcount with kref_get()
before passing it off:

kref_get(&data->refcount);

If you already have a valid pointer to a kref-ed structure (the refcount cannot
go to zero) you may do this without a lock.

2) When you are done with a pointer, you must call kref_put():

kref_put(&data->refcount, data_release);

If this is the last reference to the pointer, the release routine will be called.
If the code never tries to get a valid pointer to a kref-ed structure without
already holding a valid pointer, it is safe to do this without a lock.

3) If the code attempts to gain a reference to a kref-ed structure without already
holding a valid pointer, it must serialize access where a kref_put() cannot
occur during the kref_get(), and the structure must remain valid during the
kref_get().

For example, if you allocate some data and then pass it to another thread to pro-
cess:

void data_release(struct kref *ref)
{

struct my_data *data = container_of(ref, struct my_data, refcount);
kfree(data);

}

void more_data_handling(void *cb_data)
{

struct my_data *data = cb_data;
.
. do stuff with data here
.
kref_put(&data->refcount, data_release);

}

int my_data_handler(void)
{

int rv = 0;
struct my_data *data;
struct task_struct *task;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)

return -ENOMEM;
kref_init(&data->refcount);

kref_get(&data->refcount);
task = kthread_run(more_data_handling, data, "more_data_handling");
if (task == ERR_PTR(-ENOMEM)) {

(continues on next page)

228 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

(continued from previous page)
rv = -ENOMEM;
kref_put(&data->refcount, data_release);
goto out;

}

.

. do stuff with data here

.
out:

kref_put(&data->refcount, data_release);
return rv;

}

This way, it doesn’t matter what order the two threads handle the data, the
kref_put() handles knowing when the data is not referenced any more and releas-
ing it. The kref_get() does not require a lock, since we already have a valid pointer
that we own a refcount for. The put needs no lock because nothing tries to get the
data without already holding a pointer.

In the above example, kref_put() will be called 2 times in both success and error
paths. This is necessary because the reference count got incremented 2 times by
kref_init() and kref_get().

Note that the“before”in rule 1 is very important. You should never do something
like:

task = kthread_run(more_data_handling, data, "more_data_handling");
if (task == ERR_PTR(-ENOMEM)) {

rv = -ENOMEM;
goto out;

} else
/* BAD BAD BAD - get is after the handoff */
kref_get(&data->refcount);

Don’t assume you know what you are doing and use the above construct. First of
all, you may not know what you are doing. Second, you may know what you are
doing (there are some situations where locking is involved where the above may
be legal) but someone else who doesn’t know what they are doing may change
the code or copy the code. It’s bad style. Don’t do it.
There are some situations where you can optimize the gets and puts. For instance,
if you are done with an object and enqueuing it for something else or passing it off
to something else, there is no reason to do a get then a put:

/* Silly extra get and put */
kref_get(&obj->ref);
enqueue(obj);
kref_put(&obj->ref, obj_cleanup);

Just do the enqueue. A comment about this is always welcome:

enqueue(obj);
/* We are done with obj, so we pass our refcount off

to the queue. DON'T TOUCH obj AFTER HERE! */

2.2. Adding reference counters (krefs) to kernel objects 229

Linux Core-api Documentation

The last rule (rule 3) is the nastiest one to handle. Say, for instance, you have a
list of items that are each kref-ed, and you wish to get the first one. You can’t just
pull the first item off the list and kref_get() it. That violates rule 3 because you are
not already holding a valid pointer. You must add a mutex (or some other lock).
For instance:

static DEFINE_MUTEX(mutex);
static LIST_HEAD(q);
struct my_data
{

struct kref refcount;
struct list_head link;

};

static struct my_data *get_entry()
{

struct my_data *entry = NULL;
mutex_lock(&mutex);
if (!list_empty(&q)) {

entry = container_of(q.next, struct my_data, link);
kref_get(&entry->refcount);

}
mutex_unlock(&mutex);
return entry;

}

static void release_entry(struct kref *ref)
{

struct my_data *entry = container_of(ref, struct my_data,␣
↪→refcount);

list_del(&entry->link);
kfree(entry);

}

static void put_entry(struct my_data *entry)
{

mutex_lock(&mutex);
kref_put(&entry->refcount, release_entry);
mutex_unlock(&mutex);

}

The kref_put() return value is useful if you do not want to hold the lock during the
whole release operation. Say you didn’t want to call kfree() with the lock held in
the example above (since it is kind of pointless to do so). You could use kref_put()
as follows:

static void release_entry(struct kref *ref)
{

/* All work is done after the return from kref_put(). */
}

static void put_entry(struct my_data *entry)
{

mutex_lock(&mutex);
if (kref_put(&entry->refcount, release_entry)) {

(continues on next page)

230 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

(continued from previous page)
list_del(&entry->link);
mutex_unlock(&mutex);
kfree(entry);

} else
mutex_unlock(&mutex);

}

This is really more useful if you have to call other routines as part of the free
operations that could take a long time or might claim the same lock. Note that
doing everything in the release routine is still preferred as it is a little neater.

The above example could also be optimized using kref_get_unless_zero() in the
following way:

static struct my_data *get_entry()
{

struct my_data *entry = NULL;
mutex_lock(&mutex);
if (!list_empty(&q)) {

entry = container_of(q.next, struct my_data, link);
if (!kref_get_unless_zero(&entry->refcount))

entry = NULL;
}
mutex_unlock(&mutex);
return entry;

}

static void release_entry(struct kref *ref)
{

struct my_data *entry = container_of(ref, struct my_data,␣
↪→refcount);

mutex_lock(&mutex);
list_del(&entry->link);
mutex_unlock(&mutex);
kfree(entry);

}

static void put_entry(struct my_data *entry)
{

kref_put(&entry->refcount, release_entry);
}

Which is useful to remove the mutex lock around kref_put() in put_entry(), but it’
s important that kref_get_unless_zero is enclosed in the same critical section that
finds the entry in the lookup table, otherwise kref_get_unless_zero may reference
already freed memory. Note that it is illegal to use kref_get_unless_zero without
checking its return value. If you are sure (by already having a valid pointer) that
kref_get_unless_zero() will return true, then use kref_get() instead.

2.2. Adding reference counters (krefs) to kernel objects 231

Linux Core-api Documentation

2.2.4 Krefs and RCU

The function kref_get_unless_zero also makes it possible to use rcu locking for
lookups in the above example:

struct my_data
{

struct rcu_head rhead;
.
struct kref refcount;
.
.

};

static struct my_data *get_entry_rcu()
{

struct my_data *entry = NULL;
rcu_read_lock();
if (!list_empty(&q)) {

entry = container_of(q.next, struct my_data, link);
if (!kref_get_unless_zero(&entry->refcount))

entry = NULL;
}
rcu_read_unlock();
return entry;

}

static void release_entry_rcu(struct kref *ref)
{

struct my_data *entry = container_of(ref, struct my_data,␣
↪→refcount);

mutex_lock(&mutex);
list_del_rcu(&entry->link);
mutex_unlock(&mutex);
kfree_rcu(entry, rhead);

}

static void put_entry(struct my_data *entry)
{

kref_put(&entry->refcount, release_entry_rcu);
}

But note that the struct kref member needs to remain in valid memory for a rcu
grace period after release_entry_rcu was called. That can be accomplished by
using kfree_rcu(entry, rhead) as done above, or by calling synchronize_rcu() before
using kfree, but note that synchronize_rcu() may sleep for a substantial amount of
time.

232 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.3 Generic Associative Array Implementation

2.3.1 Overview

This associative array implementation is an object container with the following
properties:

1. Objects are opaque pointers. The implementation does not care where they
point (if anywhere) or what they point to (if anything).

Note: Pointers to objects _must_ be zero in the least significant bit.

2. Objects do not need to contain linkage blocks for use by the array. This per-
mits an object to be located in multiple arrays simultaneously. Rather, the
array is made up of metadata blocks that point to objects.

3. Objects require index keys to locate them within the array.

4. Index keys must be unique. Inserting an object with the same key as one
already in the array will replace the old object.

5. Index keys can be of any length and can be of different lengths.

6. Index keys should encode the length early on, before any variation due to
length is seen.

7. Index keys can include a hash to scatter objects throughout the array.

8. The array can iterated over. The objects will not necessarily come out in key
order.

9. The array can be iterated over while it is being modified, provided the RCU
readlock is being held by the iterator. Note, however, under these circum-
stances, some objects may be seen more than once. If this is a problem, the
iterator should lock against modification. Objects will not be missed, how-
ever, unless deleted.

10. Objects in the array can be looked up by means of their index key.

11. Objects can be looked up while the array is being modified, provided the RCU
readlock is being held by the thread doing the look up.

The implementation uses a tree of 16-pointer nodes internally that are indexed on
each level by nibbles from the index key in the same manner as in a radix tree.
To improve memory efficiency, shortcuts can be emplaced to skip over what would
otherwise be a series of single-occupancy nodes. Further, nodes pack leaf object
pointers into spare space in the node rather than making an extra branch until as
such time an object needs to be added to a full node.

2.3. Generic Associative Array Implementation 233

Linux Core-api Documentation

2.3.2 The Public API

The public API can be found in <linux/assoc_array.h>. The associative array is
rooted on the following structure:

struct assoc_array {
...

};

The code is selected by enabling CONFIG_ASSOCIATIVE_ARRAY with:

./script/config -e ASSOCIATIVE_ARRAY

Edit Script

The insertion and deletion functions produce an ‘edit script’that can later be
applied to effect the changes without risking ENOMEM. This retains the preallocated
metadata blocks that will be installed in the internal tree and keeps track of the
metadata blocks that will be removed from the tree when the script is applied.

This is also used to keep track of dead blocks and dead objects after the script
has been applied so that they can be freed later. The freeing is done after an RCU
grace period has passed - thus allowing access functions to proceed under the
RCU read lock.

The script appears as outside of the API as a pointer of the type:

struct assoc_array_edit;

There are two functions for dealing with the script:

1. Apply an edit script:

void assoc_array_apply_edit(struct assoc_array_edit *edit);

This will perform the edit functions, interpolating various write barriers to permit
accesses under the RCU read lock to continue. The edit script will then be passed
to call_rcu() to free it and any dead stuff it points to.

2. Cancel an edit script:

void assoc_array_cancel_edit(struct assoc_array_edit *edit);

This frees the edit script and all preallocated memory immediately. If this was for
insertion, the new object is _not_ released by this function, but must rather be
released by the caller.

These functions are guaranteed not to fail.

234 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Operations Table

Various functions take a table of operations:

struct assoc_array_ops {
...

};

This points to a number of methods, all of which need to be provided:

1. Get a chunk of index key from caller data:

unsigned long (*get_key_chunk)(const void *index_key, int level);

This should return a chunk of caller-supplied index key starting at the
bit position given by the level argument. The level argument will be
a multiple of ASSOC_ARRAY_KEY_CHUNK_SIZE and the function should return
ASSOC_ARRAY_KEY_CHUNK_SIZE bits. No error is possible.

2. Get a chunk of an object’s index key:
unsigned long (*get_object_key_chunk)(const void *object, int level);

As the previous function, but gets its data from an object in the array rather than
from a caller-supplied index key.

3. See if this is the object we’re looking for:
bool (*compare_object)(const void *object, const void *index_key);

Compare the object against an index key and return true if it matches and false
if it doesn’t.
4. Diff the index keys of two objects:

int (*diff_objects)(const void *object, const void *index_key);

Return the bit position at which the index key of the specified object differs from
the given index key or -1 if they are the same.

5. Free an object:

void (*free_object)(void *object);

Free the specified object. Note that this may be called an RCU grace period after
assoc_array_apply_edit() was called, so synchronize_rcu()may be necessary
on module unloading.

2.3. Generic Associative Array Implementation 235

Linux Core-api Documentation

Manipulation Functions

There are a number of functions for manipulating an associative array:

1. Initialise an associative array:

void assoc_array_init(struct assoc_array *array);

This initialises the base structure for an associative array. It can’t fail.
2. Insert/replace an object in an associative array:

struct assoc_array_edit *
assoc_array_insert(struct assoc_array *array,

const struct assoc_array_ops *ops,
const void *index_key,
void *object);

This inserts the given object into the array. Note that the least significant bit of
the pointer must be zero as it’s used to type-mark pointers internally.
If an object already exists for that key then it will be replaced with the new object
and the old one will be freed automatically.

The index_key argument should hold index key information and is passed to the
methods in the ops table when they are called.

This function makes no alteration to the array itself, but rather returns an edit
script that must be applied. -ENOMEM is returned in the case of an out-of-memory
error.

The caller should lock exclusively against other modifiers of the array.

3. Delete an object from an associative array:

struct assoc_array_edit *
assoc_array_delete(struct assoc_array *array,

const struct assoc_array_ops *ops,
const void *index_key);

This deletes an object that matches the specified data from the array.

The index_key argument should hold index key information and is passed to the
methods in the ops table when they are called.

This function makes no alteration to the array itself, but rather returns an edit
script that must be applied. -ENOMEM is returned in the case of an out-of-memory
error. NULL will be returned if the specified object is not found within the array.

The caller should lock exclusively against other modifiers of the array.

4. Delete all objects from an associative array:

struct assoc_array_edit *
assoc_array_clear(struct assoc_array *array,

const struct assoc_array_ops *ops);

This deletes all the objects from an associative array and leaves it completely
empty.

236 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

This function makes no alteration to the array itself, but rather returns an edit
script that must be applied. -ENOMEM is returned in the case of an out-of-memory
error.

The caller should lock exclusively against other modifiers of the array.

5. Destroy an associative array, deleting all objects:

void assoc_array_destroy(struct assoc_array *array,
const struct assoc_array_ops *ops);

This destroys the contents of the associative array and leaves it completely empty.
It is not permitted for another thread to be traversing the array under the RCU
read lock at the same time as this function is destroying it as no RCU deferral
is performed on memory release - something that would require memory to be
allocated.

The caller should lock exclusively against other modifiers and accessors of the
array.

6. Garbage collect an associative array:

int assoc_array_gc(struct assoc_array *array,
const struct assoc_array_ops *ops,
bool (*iterator)(void *object, void *iterator_

↪→data),
void *iterator_data);

This iterates over the objects in an associative array and passes each one to
iterator(). If iterator() returns true, the object is kept. If it returns false,
the object will be freed. If the iterator() function returns true, it must perform
any appropriate refcount incrementing on the object before returning.

The internal tree will be packed down if possible as part of the iteration to reduce
the number of nodes in it.

The iterator_data is passed directly to iterator() and is otherwise ignored by
the function.

The function will return 0 if successful and -ENOMEM if there wasn’t enoughmemory.
It is possible for other threads to iterate over or search the array under the RCU
read lock while this function is in progress. The caller should lock exclusively
against other modifiers of the array.

Access Functions

There are two functions for accessing an associative array:

1. Iterate over all the objects in an associative array:

int assoc_array_iterate(const struct assoc_array *array,
int (*iterator)(const void *object,

void *iterator_data),
void *iterator_data);

2.3. Generic Associative Array Implementation 237

Linux Core-api Documentation

This passes each object in the array to the iterator callback function.
iterator_data is private data for that function.

This may be used on an array at the same time as the array is being modified, pro-
vided the RCU read lock is held. Under such circumstances, it is possible for the
iteration function to see some objects twice. If this is a problem, then modification
should be locked against. The iteration algorithm should not, however, miss any
objects.

The function will return 0 if no objects were in the array or else it will return the
result of the last iterator function called. Iteration stops immediately if any call to
the iteration function results in a non-zero return.

2. Find an object in an associative array:

void *assoc_array_find(const struct assoc_array *array,
const struct assoc_array_ops *ops,
const void *index_key);

This walks through the array’s internal tree directly to the object specified by the
index key..

This may be used on an array at the same time as the array is being modified,
provided the RCU read lock is held.

The function will return the object if found (and set *_type to the object type) or
will return NULL if the object was not found.

Index Key Form

The index key can be of any form, but since the algorithms aren’t told how long the
key is, it is strongly recommended that the index key includes its length very early
on before any variation due to the length would have an effect on comparisons.

This will cause leaves with different length keys to scatter away from each other -
and those with the same length keys to cluster together.

It is also recommended that the index key begin with a hash of the rest of the key
to maximise scattering throughout keyspace.

The better the scattering, the wider and lower the internal tree will be.

Poor scattering isn’t too much of a problem as there are shortcuts and nodes can
contain mixtures of leaves and metadata pointers.

The index key is read in chunks of machine word. Each chunk is subdivided into
one nibble (4 bits) per level, so on a 32-bit CPU this is good for 8 levels and on a
64-bit CPU, 16 levels. Unless the scattering is really poor, it is unlikely that more
than one word of any particular index key will have to be used.

238 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.3.3 Internal Workings

The associative array data structure has an internal tree. This tree is constructed
of two types of metadata blocks: nodes and shortcuts.

A node is an array of slots. Each slot can contain one of four things:

• A NULL pointer, indicating that the slot is empty.

• A pointer to an object (a leaf).

• A pointer to a node at the next level.

• A pointer to a shortcut.

Basic Internal Tree Layout

Ignoring shortcuts for the moment, the nodes form a multilevel tree. The index
key space is strictly subdivided by the nodes in the tree and nodes occur on fixed
levels. For example:

Level: 0 1 2 3
=============== =============== =============== ===============

NODE D
NODE B NODE C +------>+---+

+------>+---+ +------>+---+ | | 0 |
NODE A | | 0 | | | 0 | | +---+
+---+ | +---+ | +---+ | : :
| 0 | | : : | : : | +---+
+---+ | +---+ | +---+ | | f |
| 1 |---+ | 3 |---+ | 7 |---+ +---+
+---+ +---+ +---+
: : : : | 8 |---+
+---+ +---+ +---+ | NODE E
| e |---+ | f | : : +------>+---+
+---+ | +---+ +---+ | 0 |
| f | | | f | +---+
+---+ | +---+ : :

| NODE F +---+
+------>+---+ | f |

| 0 | NODE G +---+
+---+ +------>+---+
: : | | 0 |
+---+ | +---+
| 6 |---+ : :
+---+ +---+
: : | f |
+---+ +---+
| f |
+---+

In the above example, there are 7 nodes (A-G), each with 16 slots (0-f). Assuming
no other meta data nodes in the tree, the key space is divided thusly:

KEY PREFIX NODE
========== ====

(continues on next page)

2.3. Generic Associative Array Implementation 239

Linux Core-api Documentation

(continued from previous page)
137* D
138* E
13[0-69-f]* C
1[0-24-f]* B
e6* G
e[0-57-f]* F
[02-df]* A

So, for instance, keys with the following example index keys will be found in the
appropriate nodes:

INDEX KEY PREFIX NODE
=============== ======= ====
13694892892489 13 C
13795289025897 137 D
13889dde88793 138 E
138bbb89003093 138 E
1394879524789 12 C
1458952489 1 B
9431809de993ba - A
b4542910809cd - A
e5284310def98 e F
e68428974237 e6 G
e7fffcbd443 e F
f3842239082 - A

To save memory, if a node can hold all the leaves in its portion of keyspace, then
the node will have all those leaves in it and will not have any metadata pointers -
even if some of those leaves would like to be in the same slot.

A node can contain a heterogeneous mix of leaves and metadata pointers. Meta-
data pointers must be in the slots that match their subdivisions of key space. The
leaves can be in any slot not occupied by a metadata pointer. It is guaranteed that
none of the leaves in a node will match a slot occupied by a metadata pointer. If
the metadata pointer is there, any leaf whose key matches the metadata key prefix
must be in the subtree that the metadata pointer points to.

In the above example list of index keys, node A will contain:

SLOT CONTENT INDEX KEY (PREFIX)
==== =============== ==================
1 PTR TO NODE B 1*
any LEAF 9431809de993ba
any LEAF b4542910809cd
e PTR TO NODE F e*
any LEAF f3842239082

and node B:

3 PTR TO NODE C 13*
any LEAF 1458952489

240 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Shortcuts

Shortcuts are metadata records that jump over a piece of keyspace. A shortcut is a
replacement for a series of single-occupancy nodes ascending through the levels.
Shortcuts exist to save memory and to speed up traversal.

It is possible for the root of the tree to be a shortcut - say, for example, the tree
contains at least 17 nodes all with key prefix 1111. The insertion algorithm will
insert a shortcut to skip over the 1111 keyspace in a single bound and get to the
fourth level where these actually become different.

Splitting And Collapsing Nodes

Each node has a maximum capacity of 16 leaves and metadata pointers. If the
insertion algorithm finds that it is trying to insert a 17th object into a node, that
node will be split such that at least two leaves that have a common key segment
at that level end up in a separate node rooted on that slot for that common key
segment.

If the leaves in a full node and the leaf that is being inserted are sufficiently similar,
then a shortcut will be inserted into the tree.

When the number of objects in the subtree rooted at a node falls to 16 or fewer,
then the subtree will be collapsed down to a single node - and this will ripple
towards the root if possible.

Non-Recursive Iteration

Each node and shortcut contains a back pointer to its parent and the number of
slot in that parent that points to it. None-recursive iteration uses these to proceed
rootwards through the tree, going to the parent node, slot N + 1 to make sure
progress is made without the need for a stack.

The backpointers, however, make simultaneous alteration and iteration tricky.

Simultaneous Alteration And Iteration

There are a number of cases to consider:

1. Simple insert/replace. This involves simply replacing a NULL or old matching
leaf pointer with the pointer to the new leaf after a barrier. The metadata
blocks don’t change otherwise. An old leaf won’t be freed until after the
RCU grace period.

2. Simple delete. This involves just clearing an old matching leaf. The metadata
blocks don’t change otherwise. The old leaf won’t be freed until after the
RCU grace period.

3. Insertion replacing part of a subtree that we haven’t yet entered. This may
involve replacement of part of that subtree - but that won’t affect the iteration
as we won’t have reached the pointer to it yet and the ancestry blocks are
not replaced (the layout of those does not change).

2.3. Generic Associative Array Implementation 241

Linux Core-api Documentation

4. Insertion replacing nodes that we’re actively processing. This isn’t a problem
as we’ve passed the anchoring pointer and won’t switch onto the new layout
until we follow the back pointers - at which point we’ve already examined the
leaves in the replaced node (we iterate over all the leaves in a node before
following any of its metadata pointers).

We might, however, re-see some leaves that have been split out into a new
branch that’s in a slot further along than we were at.

5. Insertion replacing nodes that we’re processing a dependent branch of. This
won’t affect us until we follow the back pointers. Similar to (4).

6. Deletion collapsing a branch under us. This doesn’t affect us because the
back pointers will get us back to the parent of the new node before we could
see the new node. The entire collapsed subtree is thrown away unchanged -
and will still be rooted on the same slot, so we shouldn’t process it a second
time as we’ll go back to slot + 1.

Note: Under some circumstances, we need to simultaneously change the parent
pointer and the parent slot pointer on a node (say, for example, we inserted another
node before it and moved it up a level). We cannot do this without locking against
a read - so we have to replace that node too.

However, when we’re changing a shortcut into a node this isn’t a problem as short-
cuts only have one slot and so the parent slot number isn’t used when traversing
backwards over one. This means that it’s okay to change the slot number first -
provided suitable barriers are used to make sure the parent slot number is read
after the back pointer.

Obsolete blocks and leaves are freed up after an RCU grace period has passed,
so as long as anyone doing walking or iteration holds the RCU read lock, the old
superstructure should not go away on them.

2.4 XArray

Author Matthew Wilcox

2.4.1 Overview

The XArray is an abstract data type which behaves like a very large array of point-
ers. It meets many of the same needs as a hash or a conventional resizable array.
Unlike a hash, it allows you to sensibly go to the next or previous entry in a cache-
efficient manner. In contrast to a resizable array, there is no need to copy data or
change MMU mappings in order to grow the array. It is more memory-efficient,
parallelisable and cache friendly than a doubly-linked list. It takes advantage of
RCU to perform lookups without locking.

The XArray implementation is efficient when the indices used are densely clus-
tered; hashing the object and using the hash as the index will not perform well.
The XArray is optimised for small indices, but still has good performance with large

242 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

indices. If your index can be larger than ULONG_MAX then the XArray is not the data
type for you. The most important user of the XArray is the page cache.

Normal pointers may be stored in the XArray directly. They must be 4-byte aligned,
which is true for any pointer returned from kmalloc() and alloc_page(). It isn’t
true for arbitrary user-space pointers, nor for function pointers. You can store
pointers to statically allocated objects, as long as those objects have an alignment
of at least 4.

You can also store integers between 0 and LONG_MAX in the XArray. You must first
convert it into an entry using xa_mk_value(). When you retrieve an entry from
the XArray, you can check whether it is a value entry by calling xa_is_value(),
and convert it back to an integer by calling xa_to_value().

Some users want to tag the pointers they store in the XArray. You can call
xa_tag_pointer() to create an entry with a tag, xa_untag_pointer() to turn
a tagged entry back into an untagged pointer and xa_pointer_tag() to retrieve
the tag of an entry. Tagged pointers use the same bits that are used to distinguish
value entries from normal pointers, so you must decide whether they want to store
value entries or tagged pointers in any particular XArray.

The XArray does not support storing IS_ERR() pointers as some conflict with value
entries or internal entries.

An unusual feature of the XArray is the ability to create entries which occupy a
range of indices. Once stored to, looking up any index in the range will return the
same entry as looking up any other index in the range. Storing to any index will
store to all of them. Multi-index entries can be explicitly split into smaller entries,
or storing NULL into any entry will cause the XArray to forget about the range.

2.4.2 Normal API

Start by initialising an XArray, either with DEFINE_XARRAY() for statically allocated
XArrays or xa_init() for dynamically allocated ones. A freshly-initialised XArray
contains a NULL pointer at every index.

You can then set entries using xa_store() and get entries using xa_load().
xa_store will overwrite any entry with the new entry and return the previous entry
stored at that index. You can use xa_erase() instead of calling xa_store() with
a NULL entry. There is no difference between an entry that has never been stored
to, one that has been erased and one that has most recently had NULL stored to it.

You can conditionally replace an entry at an index by using xa_cmpxchg(). Like
cmpxchg(), it will only succeed if the entry at that index has the ‘old’value. It
also returns the entry which was at that index; if it returns the same entry which
was passed as ‘old’, then xa_cmpxchg() succeeded.

If you want to only store a new entry to an index if the current entry at that index
is NULL, you can use xa_insert() which returns -EBUSY if the entry is not empty.

You can copy entries out of the XArray into a plain array by calling xa_extract().
Or you can iterate over the present entries in the XArray by calling xa_for_each(),
xa_for_each_start() or xa_for_each_range(). You may prefer to use
xa_find() or xa_find_after() to move to the next present entry in the XArray.

2.4. XArray 243

Linux Core-api Documentation

Calling xa_store_range() stores the same entry in a range of indices. If you do
this, some of the other operations will behave in a slightly odd way. For example,
marking the entry at one index may result in the entry being marked at some, but
not all of the other indices. Storing into one index may result in the entry retrieved
by some, but not all of the other indices changing.

Sometimes you need to ensure that a subsequent call to xa_store() will not need
to allocate memory. The xa_reserve() function will store a reserved entry at
the indicated index. Users of the normal API will see this entry as containing
NULL. If you do not need to use the reserved entry, you can call xa_release() to
remove the unused entry. If another user has stored to the entry in the meantime,
xa_release() will do nothing; if instead you want the entry to become NULL, you
should use xa_erase(). Using xa_insert() on a reserved entry will fail.

If all entries in the array are NULL, the xa_empty() function will return true.

Finally, you can remove all entries from an XArray by calling xa_destroy(). If
the XArray entries are pointers, you may wish to free the entries first. You can do
this by iterating over all present entries in the XArray using the xa_for_each()
iterator.

Search Marks

Each entry in the array has three bits associated with it called marks. Each mark
may be set or cleared independently of the others. You can iterate over marked
entries by using the xa_for_each_marked() iterator.

You can enquire whether a mark is set on an entry by using xa_get_mark(). If the
entry is not NULL, you can set a mark on it by using xa_set_mark() and remove the
mark from an entry by calling xa_clear_mark(). You can ask whether any entry
in the XArray has a particular mark set by calling xa_marked(). Erasing an entry
from the XArray causes all marks associated with that entry to be cleared.

Setting or clearing a mark on any index of a multi-index entry will affect all indices
covered by that entry. Querying the mark on any index will return the same result.

There is no way to iterate over entries which are not marked; the data structure
does not allow this to be implemented efficiently. There are not currently itera-
tors to search for logical combinations of bits (eg iterate over all entries which
have both XA_MARK_1 and XA_MARK_2 set, or iterate over all entries which have
XA_MARK_0 or XA_MARK_2 set). It would be possible to add these if a user arises.

Allocating XArrays

If you use DEFINE_XARRAY_ALLOC() to define the XArray, or initialise it by pass-
ing XA_FLAGS_ALLOC to xa_init_flags(), the XArray changes to track whether
entries are in use or not.

You can call xa_alloc() to store the entry at an unused index in the XArray. If
you need to modify the array from interrupt context, you can use xa_alloc_bh()
or xa_alloc_irq() to disable interrupts while allocating the ID.

Using xa_store(), xa_cmpxchg() or xa_insert()will alsomark the entry as being
allocated. Unlike a normal XArray, storing NULLwill mark the entry as being in use,

244 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

like xa_reserve(). To free an entry, use xa_erase() (or xa_release() if you only
want to free the entry if it’s NULL).
By default, the lowest free entry is allocated starting from 0. If you want to allo-
cate entries starting at 1, it is more efficient to use DEFINE_XARRAY_ALLOC1() or
XA_FLAGS_ALLOC1. If you want to allocate IDs up to a maximum, then wrap back
around to the lowest free ID, you can use xa_alloc_cyclic().

You cannot use XA_MARK_0 with an allocating XArray as this mark is used to track
whether an entry is free or not. The other marks are available for your use.

Memory allocation

The xa_store(), xa_cmpxchg(), xa_alloc(), xa_reserve() and xa_insert()
functions take a gfp_t parameter in case the XArray needs to allocate memory
to store this entry. If the entry is being deleted, no memory allocation needs to be
performed, and the GFP flags specified will be ignored.

It is possible for no memory to be allocatable, particularly if you pass a restrictive
set of GFP flags. In that case, the functions return a special value which can be
turned into an errno using xa_err(). If you don’t need to know exactly which
error occurred, using xa_is_err() is slightly more efficient.

Locking

When using the Normal API, you do not have to worry about locking. The XArray
uses RCU and an internal spinlock to synchronise access:

No lock needed:
• xa_empty()

• xa_marked()

Takes RCU read lock:
• xa_load()

• xa_for_each()

• xa_for_each_start()

• xa_for_each_range()

• xa_find()

• xa_find_after()

• xa_extract()

• xa_get_mark()

Takes xa_lock internally:
• xa_store()

• xa_store_bh()

• xa_store_irq()

2.4. XArray 245

Linux Core-api Documentation

• xa_insert()

• xa_insert_bh()

• xa_insert_irq()

• xa_erase()

• xa_erase_bh()

• xa_erase_irq()

• xa_cmpxchg()

• xa_cmpxchg_bh()

• xa_cmpxchg_irq()

• xa_store_range()

• xa_alloc()

• xa_alloc_bh()

• xa_alloc_irq()

• xa_reserve()

• xa_reserve_bh()

• xa_reserve_irq()

• xa_destroy()

• xa_set_mark()

• xa_clear_mark()

Assumes xa_lock held on entry:
• __xa_store()

• __xa_insert()

• __xa_erase()

• __xa_cmpxchg()

• __xa_alloc()

• __xa_set_mark()

• __xa_clear_mark()

If you want to take advantage of the lock to protect the data structures that you are
storing in the XArray, you can call xa_lock() before calling xa_load(), then take a
reference count on the object you have found before calling xa_unlock(). This will
prevent stores from removing the object from the array between looking up the
object and incrementing the refcount. You can also use RCU to avoid dereferencing
freed memory, but an explanation of that is beyond the scope of this document.

The XArray does not disable interrupts or softirqs while modifying the array. It is
safe to read the XArray from interrupt or softirq context as the RCU lock provides
enough protection.

246 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

If, for example, you want to store entries in the XArray in process context and then
erase them in softirq context, you can do that this way:

void foo_init(struct foo *foo)
{

xa_init_flags(&foo->array, XA_FLAGS_LOCK_BH);
}

int foo_store(struct foo *foo, unsigned long index, void *entry)
{

int err;

xa_lock_bh(&foo->array);
err = xa_err(__xa_store(&foo->array, index, entry, GFP_KERNEL));
if (!err)

foo->count++;
xa_unlock_bh(&foo->array);
return err;

}

/* foo_erase() is only called from softirq context */
void foo_erase(struct foo *foo, unsigned long index)
{

xa_lock(&foo->array);
__xa_erase(&foo->array, index);
foo->count--;
xa_unlock(&foo->array);

}

If you are going to modify the XArray from interrupt or softirq context, you need
to initialise the array using xa_init_flags(), passing XA_FLAGS_LOCK_IRQ or
XA_FLAGS_LOCK_BH.

The above example also shows a common pattern of wanting to extend the cover-
age of the xa_lock on the store side to protect some statistics associated with the
array.

Sharing the XArray with interrupt context is also possible, either using
xa_lock_irqsave() in both the interrupt handler and process context, or
xa_lock_irq() in process context and xa_lock() in the interrupt handler. Some
of the more common patterns have helper functions such as xa_store_bh(),
xa_store_irq(), xa_erase_bh(), xa_erase_irq(), xa_cmpxchg_bh() and
xa_cmpxchg_irq().

Sometimes you need to protect access to the XArray with a mutex because that
lock sits above another mutex in the locking hierarchy. That does not entitle you
to use functions like __xa_erase() without taking the xa_lock; the xa_lock is used
for lockdep validation and will be used for other purposes in the future.

The __xa_set_mark() and __xa_clear_mark() functions are also available for sit-
uations where you look up an entry and want to atomically set or clear a mark. It
may be more efficient to use the advanced API in this case, as it will save you from
walking the tree twice.

2.4. XArray 247

Linux Core-api Documentation

2.4.3 Advanced API

The advanced API offers more flexibility and better performance at the cost of an
interface which can be harder to use and has fewer safeguards. No locking is
done for you by the advanced API, and you are required to use the xa_lock while
modifying the array. You can choose whether to use the xa_lock or the RCU lock
while doing read-only operations on the array. You can mix advanced and normal
operations on the same array; indeed the normal API is implemented in terms
of the advanced API. The advanced API is only available to modules with a GPL-
compatible license.

The advanced API is based around the xa_state. This is an opaque data struc-
ture which you declare on the stack using the XA_STATE() macro. This macro
initialises the xa_state ready to start walking around the XArray. It is used as a
cursor to maintain the position in the XArray and let you compose various opera-
tions together without having to restart from the top every time.

The xa_state is also used to store errors. You can call xas_error() to retrieve
the error. All operations check whether the xa_state is in an error state before
proceeding, so there’s no need for you to check for an error after each call; you
can make multiple calls in succession and only check at a convenient point. The
only errors currently generated by the XArray code itself are ENOMEM and EINVAL,
but it supports arbitrary errors in case you want to call xas_set_err() yourself.

If the xa_state is holding an ENOMEM error, calling xas_nomem() will attempt to
allocate more memory using the specified gfp flags and cache it in the xa_state for
the next attempt. The idea is that you take the xa_lock, attempt the operation and
drop the lock. The operation attempts to allocate memory while holding the lock,
but it is more likely to fail. Once you have dropped the lock, xas_nomem() can
try harder to allocate more memory. It will return true if it is worth retrying the
operation (i.e. that there was a memory error and more memory was allocated).
If it has previously allocated memory, and that memory wasn’t used, and there is
no error (or some error that isn’t ENOMEM), then it will free the memory previously
allocated.

Internal Entries

The XArray reserves some entries for its own purposes. These are never exposed
through the normal API, but when using the advanced API, it’s possible to see
them. Usually the best way to handle them is to pass them to xas_retry(), and
retry the operation if it returns true.

248 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

NameTest Usage
Nodexa_is_node()An XArray node. May be visible when using a multi-index xa_state.
Sib-
ling

xa_is_sibling()A non-canonical entry for a multi-index entry. The value indicates
which slot in this node has the canonical entry.

Retryxa_is_retry()This entry is currently being modified by a thread which has the
xa_lock. The node containing this entry may be freed at the end of
this RCU period. You should restart the lookup from the head of
the array.

Zero xa_is_zero()Zero entries appear as NULL through the Normal API, but occupy
an entry in the XArray which can be used to reserve the index for
future use. This is used by allocating XArrays for allocated entries
which are NULL.

Other internal entries may be added in the future. As far as possible, they will be
handled by xas_retry().

Additional functionality

The xas_create_range() function allocates all the necessary memory to store
every entry in a range. It will set ENOMEM in the xa_state if it cannot allocate
memory.

You can use xas_init_marks() to reset the marks on an entry to their de-
fault state. This is usually all marks clear, unless the XArray is marked with
XA_FLAGS_TRACK_FREE, in which case mark 0 is set and all other marks are clear.
Replacing one entry with another using xas_store() will not reset the marks on
that entry; if you want the marks reset, you should do that explicitly.

The xas_load() will walk the xa_state as close to the entry as it can. If you know
the xa_state has already been walked to the entry and need to check that the entry
hasn’t changed, you can use xas_reload() to save a function call.
If you need to move to a different index in the XArray, call xas_set(). This resets
the cursor to the top of the tree, which will generally make the next operation
walk the cursor to the desired spot in the tree. If you want to move to the next or
previous index, call xas_next() or xas_prev(). Setting the index does not walk
the cursor around the array so does not require a lock to be held, while moving to
the next or previous index does.

You can search for the next present entry using xas_find(). This is the equivalent
of both xa_find() and xa_find_after(); if the cursor has beenwalked to an entry,
then it will find the next entry after the one currently referenced. If not, it will
return the entry at the index of the xa_state. Using xas_next_entry() to move
to the next present entry instead of xas_find() will save a function call in the
majority of cases at the expense of emitting more inline code.

The xas_find_marked() function is similar. If the xa_state has not been walked,
it will return the entry at the index of the xa_state, if it is marked. Otherwise, it
will return the first marked entry after the entry referenced by the xa_state. The
xas_next_marked() function is the equivalent of xas_next_entry().

When iterating over a range of the XArray using xas_for_each() or
xas_for_each_marked(), it may be necessary to temporarily stop the iteration.

2.4. XArray 249

Linux Core-api Documentation

The xas_pause() function exists for this purpose. After you have done the neces-
sary work and wish to resume, the xa_state is in an appropriate state to continue
the iteration after the entry you last processed. If you have interrupts disabled
while iterating, then it is good manners to pause the iteration and reenable inter-
rupts every XA_CHECK_SCHED entries.

The xas_get_mark(), xas_set_mark() and xas_clear_mark() functions require
the xa_state cursor to have been moved to the appropriate location in the XArray;
they will do nothing if you have called xas_pause() or xas_set() immediately
before.

You can call xas_set_update() to have a callback function called each time the
XArray updates a node. This is used by the page cache workingset code tomaintain
its list of nodes which contain only shadow entries.

Multi-Index Entries

The XArray has the ability to tie multiple indices together so that operations on one
index affect all indices. For example, storing into any index will change the value of
the entry retrieved from any index. Setting or clearing a mark on any index will set
or clear the mark on every index that is tied together. The current implementation
only allows tying ranges which are aligned powers of two together; eg indices 64-
127 may be tied together, but 2-6 may not be. This may save substantial quantities
of memory; for example tying 512 entries together will save over 4kB.

You can create a multi-index entry by using XA_STATE_ORDER() or
xas_set_order() followed by a call to xas_store(). Calling xas_load() with a
multi-index xa_state will walk the xa_state to the right location in the tree, but the
return value is not meaningful, potentially being an internal entry or NULL even
when there is an entry stored within the range. Calling xas_find_conflict()
will return the first entry within the range or NULL if there are no entries in the
range. The xas_for_each_conflict() iterator will iterate over every entry which
overlaps the specified range.

If xas_load() encounters a multi-index entry, the xa_index in the xa_state will not
be changed. When iterating over an XArray or calling xas_find(), if the initial
index is in the middle of a multi-index entry, it will not be altered. Subsequent
calls or iterations will move the index to the first index in the range. Each entry
will only be returned once, no matter how many indices it occupies.

Using xas_next() or xas_prev() with a multi-index xa_state is not supported.
Using either of these functions on a multi-index entry will reveal sibling entries;
these should be skipped over by the caller.

Storing NULL into any index of a multi-index entry will set the entry at every index
to NULL and dissolve the tie. Splitting a multi-index entry into entries occupying
smaller ranges is not yet supported.

250 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.4.4 Functions and structures

void * xa_mk_value(unsigned long v)
Create an XArray entry from an integer.

Parameters
unsigned long v Value to store in XArray.

Context
Any context.

Return
An entry suitable for storing in the XArray.

unsigned long xa_to_value(const void * entry)
Get value stored in an XArray entry.

Parameters
const void * entry XArray entry.

Context
Any context.

Return
The value stored in the XArray entry.

bool xa_is_value(const void * entry)
Determine if an entry is a value.

Parameters
const void * entry XArray entry.

Context
Any context.

Return
True if the entry is a value, false if it is a pointer.

void * xa_tag_pointer(void * p, unsigned long tag)
Create an XArray entry for a tagged pointer.

Parameters
void * p Plain pointer.

unsigned long tag Tag value (0, 1 or 3).

Description
If the user of the XArray prefers, they can tag their pointers instead of storing
value entries. Three tags are available (0, 1 and 3). These are distinct from the
xa_mark_t as they are not replicated up through the array and cannot be searched
for.

Context

2.4. XArray 251

Linux Core-api Documentation

Any context.

Return
An XArray entry.

void * xa_untag_pointer(void * entry)
Turn an XArray entry into a plain pointer.

Parameters
void * entry XArray entry.

Description
If you have stored a tagged pointer in the XArray, call this function to get the
untagged version of the pointer.

Context
Any context.

Return
A pointer.

unsigned int xa_pointer_tag(void * entry)
Get the tag stored in an XArray entry.

Parameters
void * entry XArray entry.

Description
If you have stored a tagged pointer in the XArray, call this function to get the tag
of that pointer.

Context
Any context.

Return
A tag.

bool xa_is_zero(const void * entry)
Is the entry a zero entry?

Parameters
const void * entry Entry retrieved from the XArray

Description
The normal API will return NULL as the contents of a slot containing a zero entry.
You can only see zero entries by using the advanced API.

Return
true if the entry is a zero entry.

bool xa_is_err(const void * entry)
Report whether an XArray operation returned an error

Parameters

252 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

const void * entry Result from calling an XArray function

Description
If an XArray operation cannot complete an operation, it will return a special value
indicating an error. This function tells you whether an error occurred; xa_err()
tells you which error occurred.

Context
Any context.

Return
true if the entry indicates an error.

int xa_err(void * entry)
Turn an XArray result into an errno.

Parameters
void * entry Result from calling an XArray function.

Description
If an XArray operation cannot complete an operation, it will return a special pointer
value which encodes an errno. This function extracts the errno from the pointer
value, or returns 0 if the pointer does not represent an errno.

Context
Any context.

Return
A negative errno or 0.

struct xa_limit
Represents a range of IDs.

Definition

struct xa_limit {
u32 max;
u32 min;

};

Members
max The maximum ID to allocate (inclusive).

min The lowest ID to allocate (inclusive).

Description
This structure is used either directly or via the XA_LIMIT() macro to communicate
the range of IDs that are valid for allocation. Two common ranges are predefined
for you: * xa_limit_32b - [0 - UINT_MAX] * xa_limit_31b - [0 - INT_MAX]

struct xarray
The anchor of the XArray.

Definition

2.4. XArray 253

Linux Core-api Documentation

struct xarray {
spinlock_t xa_lock;

};

Members
xa_lock Lock that protects the contents of the XArray.

Description
To use the xarray, define it statically or embed it in your data structure. It is a very
small data structure, so it does not usually make sense to allocate it separately
and keep a pointer to it in your data structure.

You may use the xa_lock to protect your own data structures as well.

DEFINE_XARRAY_FLAGS(name, flags)
Define an XArray with custom flags.

Parameters
name A string that names your XArray.

flags XA_FLAG values.

Description
This is intended for file scope definitions of XArrays. It declares and initialises
an empty XArray with the chosen name and flags. It is equivalent to calling
xa_init_flags() on the array, but it does the initialisation at compiletime instead
of runtime.

DEFINE_XARRAY(name)
Define an XArray.

Parameters
name A string that names your XArray.

Description
This is intended for file scope definitions of XArrays. It declares and initialises an
empty XArray with the chosen name. It is equivalent to calling xa_init() on the
array, but it does the initialisation at compiletime instead of runtime.

DEFINE_XARRAY_ALLOC(name)
Define an XArray which allocates IDs starting at 0.

Parameters
name A string that names your XArray.

Description
This is intended for file scope definitions of allocating XArrays. See also
DEFINE_XARRAY().

DEFINE_XARRAY_ALLOC1(name)
Define an XArray which allocates IDs starting at 1.

Parameters

254 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

name A string that names your XArray.

Description
This is intended for file scope definitions of allocating XArrays. See also
DEFINE_XARRAY().

void xa_init_flags(struct xarray * xa, gfp_t flags)
Initialise an empty XArray with flags.

Parameters
struct xarray * xa XArray.

gfp_t flags XA_FLAG values.

Description
If you need to initialise an XArray with special flags (eg you need to take the lock
from interrupt context), use this function instead of xa_init().

Context
Any context.

void xa_init(struct xarray * xa)
Initialise an empty XArray.

Parameters
struct xarray * xa XArray.

Description
An empty XArray is full of NULL entries.

Context
Any context.

bool xa_empty(const struct xarray * xa)
Determine if an array has any present entries.

Parameters
const struct xarray * xa XArray.

Context
Any context.

Return
true if the array contains only NULL pointers.

bool xa_marked(const struct xarray * xa, xa_mark_t mark)
Inquire whether any entry in this array has a mark set

Parameters
const struct xarray * xa Array

xa_mark_t mark Mark value

2.4. XArray 255

Linux Core-api Documentation

Context
Any context.

Return
true if any entry has this mark set.

xa_for_each_range(xa, index, entry, start, last)
Iterate over a portion of an XArray.

Parameters
xa XArray.

index Index of entry.
entry Entry retrieved from array.

start First index to retrieve from array.

last Last index to retrieve from array.

Description
During the iteration, entry will have the value of the entry stored in xa at index.
You may modify index during the iteration if you want to skip or reprocess indices.
It is safe to modify the array during the iteration. At the end of the iteration, entry
will be set to NULL and index will have a value less than or equal to max.
xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have to
handle your own locking with xas_for_each(), and if you have to unlock after
each iteration, it will also end up being O(n.log(n)). xa_for_each_range() will
spin if it hits a retry entry; if you intend to see retry entries, you should use the
xas_for_each() iterator instead. The xas_for_each() iterator will expand into
more inline code than xa_for_each_range().

Context
Any context. Takes and releases the RCU lock.

xa_for_each_start(xa, index, entry, start)
Iterate over a portion of an XArray.

Parameters
xa XArray.

index Index of entry.
entry Entry retrieved from array.

start First index to retrieve from array.

Description
During the iteration, entry will have the value of the entry stored in xa at index.
You may modify index during the iteration if you want to skip or reprocess indices.
It is safe to modify the array during the iteration. At the end of the iteration, entry
will be set to NULL and index will have a value less than or equal to max.
xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have to
handle your own locking with xas_for_each(), and if you have to unlock after

256 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

each iteration, it will also end up being O(n.log(n)). xa_for_each_start() will
spin if it hits a retry entry; if you intend to see retry entries, you should use the
xas_for_each() iterator instead. The xas_for_each() iterator will expand into
more inline code than xa_for_each_start().

Context
Any context. Takes and releases the RCU lock.

xa_for_each(xa, index, entry)
Iterate over present entries in an XArray.

Parameters
xa XArray.

index Index of entry.
entry Entry retrieved from array.

Description
During the iteration, entry will have the value of the entry stored in xa at index.
You may modify index during the iteration if you want to skip or reprocess indices.
It is safe to modify the array during the iteration. At the end of the iteration, entry
will be set to NULL and index will have a value less than or equal to max.
xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have to handle
your own locking with xas_for_each(), and if you have to unlock after each it-
eration, it will also end up being O(n.log(n)). xa_for_each() will spin if it hits a
retry entry; if you intend to see retry entries, you should use the xas_for_each()
iterator instead. The xas_for_each() iterator will expand into more inline code
than xa_for_each().

Context
Any context. Takes and releases the RCU lock.

xa_for_each_marked(xa, index, entry, filter)
Iterate over marked entries in an XArray.

Parameters
xa XArray.

index Index of entry.
entry Entry retrieved from array.

filter Selection criterion.

Description
During the iteration, entry will have the value of the entry stored in xa at index.
The iteration will skip all entries in the array which do not match filter. You may
modify index during the iteration if you want to skip or reprocess indices. It is
safe to modify the array during the iteration. At the end of the iteration, entry will
be set to NULL and index will have a value less than or equal to max.
xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). You
have to handle your own locking with xas_for_each(), and if you have to unlock
after each iteration, it will also end up being O(n.log(n)). xa_for_each_marked()

2.4. XArray 257

Linux Core-api Documentation

will spin if it hits a retry entry; if you intend to see retry entries, you should use the
xas_for_each_marked() iterator instead. The xas_for_each_marked() iterator
will expand into more inline code than xa_for_each_marked().

Context
Any context. Takes and releases the RCU lock.

void * xa_store_bh(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
This function is like calling xa_store() except it disables softirqs while holding
the array lock.

Context
Any context. Takes and releases the xa_lock while disabling softirqs.

Return
The old entry at this index or xa_err() if an error happened.

void * xa_store_irq(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
This function is like calling xa_store() except it disables interrupts while holding
the array lock.

Context
Process context. Takes and releases the xa_lock while disabling interrupts.

Return
The old entry at this index or xa_err() if an error happened.

void * xa_erase_bh(struct xarray * xa, unsigned long index)
Erase this entry from the XArray.

258 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

Description
After this function returns, loading from index will return NULL. If the index is part
of a multi-index entry, all indices will be erased and none of the entries will be part
of a multi-index entry.

Context
Any context. Takes and releases the xa_lock while disabling softirqs.

Return
The entry which used to be at this index.

void * xa_erase_irq(struct xarray * xa, unsigned long index)
Erase this entry from the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

Description
After this function returns, loading from index will return NULL. If the index is part
of a multi-index entry, all indices will be erased and none of the entries will be part
of a multi-index entry.

Context
Process context. Takes and releases the xa_lock while disabling interrupts.

Return
The entry which used to be at this index.

void * xa_cmpxchg(struct xarray * xa, unsigned long index, void * old, void
* entry, gfp_t gfp)

Conditionally replace an entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * old Old value to test against.

void * entry New value to place in array.

gfp_t gfp Memory allocation flags.

Description
If the entry at index is the same as old, replace it with entry. If the return value
is equal to old, then the exchange was successful.
Context

2.4. XArray 259

Linux Core-api Documentation

Any context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
The old value at this index or xa_err() if an error happened.

void * xa_cmpxchg_bh(struct xarray * xa, unsigned long index, void * old,
void * entry, gfp_t gfp)

Conditionally replace an entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * old Old value to test against.

void * entry New value to place in array.

gfp_t gfp Memory allocation flags.

Description
This function is like calling xa_cmpxchg() except it disables softirqs while holding
the array lock.

Context
Any context. Takes and releases the xa_lock while disabling softirqs. May sleep if
the gfp flags permit.
Return
The old value at this index or xa_err() if an error happened.

void * xa_cmpxchg_irq(struct xarray * xa, unsigned long index, void * old,
void * entry, gfp_t gfp)

Conditionally replace an entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * old Old value to test against.

void * entry New value to place in array.

gfp_t gfp Memory allocation flags.

Description
This function is like calling xa_cmpxchg() except it disables interrupts while hold-
ing the array lock.

Context
Process context. Takes and releases the xa_lock while disabling interrupts. May
sleep if the gfp flags permit.
Return
The old value at this index or xa_err() if an error happened.

260 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

int xa_insert(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray unless another entry is already present.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
Inserting a NULL entry will store a reserved entry (like xa_reserve()) if no entry
is present. Inserting will fail if a reserved entry is present, even though loading
from this index will return NULL.

Context
Any context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
0 if the store succeeded. -EBUSY if another entry was present. -ENOMEM if
memory could not be allocated.

int xa_insert_bh(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray unless another entry is already present.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
Inserting a NULL entry will store a reserved entry (like xa_reserve()) if no entry
is present. Inserting will fail if a reserved entry is present, even though loading
from this index will return NULL.

Context
Any context. Takes and releases the xa_lock while disabling softirqs. May sleep if
the gfp flags permit.
Return
0 if the store succeeded. -EBUSY if another entry was present. -ENOMEM if
memory could not be allocated.

int xa_insert_irq(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray unless another entry is already present.

Parameters

2.4. XArray 261

Linux Core-api Documentation

struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
Inserting a NULL entry will store a reserved entry (like xa_reserve()) if no entry
is present. Inserting will fail if a reserved entry is present, even though loading
from this index will return NULL.

Context
Process context. Takes and releases the xa_lock while disabling interrupts. May
sleep if the gfp flags permit.
Return
0 if the store succeeded. -EBUSY if another entry was present. -ENOMEM if
memory could not be allocated.

int xa_alloc(struct xarray * xa, u32 * id, void * entry, struct xa_limit limit,
gfp_t gfp)

Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

void * entry New entry.

struct xa_limit limit Range of ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id.
Context
Any context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
0 on success, -ENOMEM if memory could not be allocated or -EBUSY if there are
no free entries in limit.
int xa_alloc_bh(struct xarray * xa, u32 * id, void * entry, struct

xa_limit limit, gfp_t gfp)
Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

262 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

void * entry New entry.

struct xa_limit limit Range of ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id.
Context
Any context. Takes and releases the xa_lock while disabling softirqs. May sleep if
the gfp flags permit.
Return
0 on success, -ENOMEM if memory could not be allocated or -EBUSY if there are
no free entries in limit.
int xa_alloc_irq(struct xarray * xa, u32 * id, void * entry, struct

xa_limit limit, gfp_t gfp)
Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

void * entry New entry.

struct xa_limit limit Range of ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id.
Context
Process context. Takes and releases the xa_lock while disabling interrupts. May
sleep if the gfp flags permit.
Return
0 on success, -ENOMEM if memory could not be allocated or -EBUSY if there are
no free entries in limit.
int xa_alloc_cyclic(struct xarray * xa, u32 * id, void * entry, struct

xa_limit limit, u32 * next, gfp_t gfp)
Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

2.4. XArray 263

Linux Core-api Documentation

void * entry New entry.

struct xa_limit limit Range of allocated ID.

u32 * next Pointer to next ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id. The search for an empty entry will start at next and
will wrap around if necessary.

Context
Any context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
0 if the allocation succeeded without wrapping. 1 if the allocation succeeded after
wrapping, -ENOMEM if memory could not be allocated or -EBUSY if there are no
free entries in limit.
int xa_alloc_cyclic_bh(struct xarray * xa, u32 * id, void * entry, struct

xa_limit limit, u32 * next, gfp_t gfp)
Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

void * entry New entry.

struct xa_limit limit Range of allocated ID.

u32 * next Pointer to next ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id. The search for an empty entry will start at next and
will wrap around if necessary.

Context
Any context. Takes and releases the xa_lock while disabling softirqs. May sleep if
the gfp flags permit.
Return
0 if the allocation succeeded without wrapping. 1 if the allocation succeeded after
wrapping, -ENOMEM if memory could not be allocated or -EBUSY if there are no
free entries in limit.

264 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

int xa_alloc_cyclic_irq(struct xarray * xa, u32 * id, void * entry, struct
xa_limit limit, u32 * next, gfp_t gfp)

Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

void * entry New entry.

struct xa_limit limit Range of allocated ID.

u32 * next Pointer to next ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id. The search for an empty entry will start at next and
will wrap around if necessary.

Context
Process context. Takes and releases the xa_lock while disabling interrupts. May
sleep if the gfp flags permit.
Return
0 if the allocation succeeded without wrapping. 1 if the allocation succeeded after
wrapping, -ENOMEM if memory could not be allocated or -EBUSY if there are no
free entries in limit.
int xa_reserve(struct xarray * xa, unsigned long index, gfp_t gfp)

Reserve this index in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

gfp_t gfp Memory allocation flags.

Description
Ensures there is somewhere to store an entry at index in the array. If there is al-
ready something stored at index, this function does nothing. If there was nothing
there, the entry is marked as reserved. Loading from a reserved entry returns a
NULL pointer.

If you do not use the entry that you have reserved, call xa_release() or
xa_erase() to free any unnecessary memory.

Context
Any context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
0 if the reservation succeeded or -ENOMEM if it failed.

2.4. XArray 265

Linux Core-api Documentation

int xa_reserve_bh(struct xarray * xa, unsigned long index, gfp_t gfp)
Reserve this index in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

gfp_t gfp Memory allocation flags.

Description
A softirq-disabling version of xa_reserve().

Context
Any context. Takes and releases the xa_lock while disabling softirqs.

Return
0 if the reservation succeeded or -ENOMEM if it failed.

int xa_reserve_irq(struct xarray * xa, unsigned long index, gfp_t gfp)
Reserve this index in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

gfp_t gfp Memory allocation flags.

Description
An interrupt-disabling version of xa_reserve().

Context
Process context. Takes and releases the xa_lock while disabling interrupts.

Return
0 if the reservation succeeded or -ENOMEM if it failed.

void xa_release(struct xarray * xa, unsigned long index)
Release a reserved entry.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

Description
After calling xa_reserve(), you can call this function to release the reservation.
If the entry at index has been stored to, this function will do nothing.
bool xa_is_sibling(const void * entry)

Is the entry a sibling entry?

Parameters
const void * entry Entry retrieved from the XArray

266 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Return
true if the entry is a sibling entry.

bool xa_is_retry(const void * entry)
Is the entry a retry entry?

Parameters
const void * entry Entry retrieved from the XArray

Return
true if the entry is a retry entry.

bool xa_is_advanced(const void * entry)
Is the entry only permitted for the advanced API?

Parameters
const void * entry Entry to be stored in the XArray.

Return
true if the entry cannot be stored by the normal API.

xa_update_node_t
Typedef: A callback function from the XArray.

Syntax
void xa_update_node_t (struct xa_node * node);

Parameters
struct xa_node * node The node which is being processed

Description
This function is called every time the XArray updates the count of present and
value entries in a node. It allows advanced users to maintain the private_list in
the node.

Context
The xa_lock is held and interrupts may be disabled. Implementations should not
drop the xa_lock, nor re-enable interrupts.

XA_STATE(name, array, index)
Declare an XArray operation state.

Parameters
name Name of this operation state (usually xas).

array Array to operate on.

index Initial index of interest.

Description
Declare and initialise an xa_state on the stack.

XA_STATE_ORDER(name, array, index, order)
Declare an XArray operation state.

2.4. XArray 267

Linux Core-api Documentation

Parameters
name Name of this operation state (usually xas).

array Array to operate on.

index Initial index of interest.

order Order of entry.

Description
Declare and initialise an xa_state on the stack. This variant of XA_STATE() allows
you to specify the ‘order’of the element you want to operate on.`
int xas_error(const struct xa_state * xas)

Return an errno stored in the xa_state.

Parameters
const struct xa_state * xas XArray operation state.

Return
0 if no error has been noted. A negative errno if one has.

void xas_set_err(struct xa_state * xas, long err)
Note an error in the xa_state.

Parameters
struct xa_state * xas XArray operation state.

long err Negative error number.

Description
Only call this function with a negative err; zero or positive errors will probably
not behave the way you think they should. If you want to clear the error from an
xa_state, use xas_reset().

bool xas_invalid(const struct xa_state * xas)
Is the xas in a retry or error state?

Parameters
const struct xa_state * xas XArray operation state.

Return
true if the xas cannot be used for operations.

bool xas_valid(const struct xa_state * xas)
Is the xas a valid cursor into the array?

Parameters
const struct xa_state * xas XArray operation state.

Return
true if the xas can be used for operations.

bool xas_is_node(const struct xa_state * xas)
Does the xas point to a node?

268 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Parameters
const struct xa_state * xas XArray operation state.

Return
true if the xas currently references a node.

void xas_reset(struct xa_state * xas)
Reset an XArray operation state.

Parameters
struct xa_state * xas XArray operation state.

Description
Resets the error or walk state of the xas so future walks of the array will start
from the root. Use this if you have dropped the xarray lock and want to reuse the
xa_state.

Context
Any context.

bool xas_retry(struct xa_state * xas, const void * entry)
Retry the operation if appropriate.

Parameters
struct xa_state * xas XArray operation state.

const void * entry Entry from xarray.

Description
The advanced functions may sometimes return an internal entry, such as a retry
entry or a zero entry. This function sets up the xas to restart the walk from the
head of the array if needed.

Context
Any context.

Return
true if the operation needs to be retried.

void * xas_reload(struct xa_state * xas)
Refetch an entry from the xarray.

Parameters
struct xa_state * xas XArray operation state.

Description
Use this function to check that a previously loaded entry still has the same value.
This is useful for the lockless pagecache lookup where we walk the array with only
the RCU lock to protect us, lock the page, then check that the page hasn’t moved
since we looked it up.

The caller guarantees that xas is still valid. If it may be in an error or restart state,
call xas_load() instead.

2.4. XArray 269

Linux Core-api Documentation

Return
The entry at this location in the xarray.

void xas_set(struct xa_state * xas, unsigned long index)
Set up XArray operation state for a different index.

Parameters
struct xa_state * xas XArray operation state.

unsigned long index New index into the XArray.

Description
Move the operation state to refer to a different index. This will have the effect of
starting a walk from the top; see xas_next() to move to an adjacent index.

void xas_set_order(struct xa_state * xas, unsigned long index, unsigned
int order)

Set up XArray operation state for a multislot entry.

Parameters
struct xa_state * xas XArray operation state.

unsigned long index Target of the operation.

unsigned int order Entry occupies 2^**order** indices.

void xas_set_update(struct xa_state * xas, xa_update_node_t update)
Set up XArray operation state for a callback.

Parameters
struct xa_state * xas XArray operation state.

xa_update_node_t update Function to call when updating a node.

Description
The XArray can notify a caller after it has updated an xa_node. This is advanced
functionality and is only needed by the page cache.

void * xas_next_entry(struct xa_state * xas, unsigned long max)
Advance iterator to next present entry.

Parameters
struct xa_state * xas XArray operation state.

unsigned long max Highest index to return.

Description
xas_next_entry() is an inline function to optimise xarray traversal for speed. It is
equivalent to calling xas_find(), and will call xas_find() for all the hard cases.

Return
The next present entry after the one currently referred to by xas.
void * xas_next_marked(struct xa_state * xas, unsigned long max,

xa_mark_t mark)
Advance iterator to next marked entry.

270 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Parameters
struct xa_state * xas XArray operation state.

unsigned long max Highest index to return.

xa_mark_t mark Mark to search for.

Description
xas_next_marked() is an inline function to optimise xarray traversal for speed. It
is equivalent to calling xas_find_marked(), and will call xas_find_marked() for
all the hard cases.

Return
The next marked entry after the one currently referred to by xas.
xas_for_each(xas, entry, max)

Iterate over a range of an XArray.

Parameters
xas XArray operation state.

entry Entry retrieved from the array.

max Maximum index to retrieve from array.

Description
The loop body will be executed for each entry present in the xarray between the
current xas position and max. entry will be set to the entry retrieved from the
xarray. It is safe to delete entries from the array in the loop body. You should hold
either the RCU lock or the xa_lock while iterating. If you need to drop the lock,
call xas_pause() first.

xas_for_each_marked(xas, entry, max, mark)
Iterate over a range of an XArray.

Parameters
xas XArray operation state.

entry Entry retrieved from the array.

max Maximum index to retrieve from array.

mark Mark to search for.

Description
The loop body will be executed for each marked entry in the xarray between the
current xas position and max. entry will be set to the entry retrieved from the
xarray. It is safe to delete entries from the array in the loop body. You should hold
either the RCU lock or the xa_lock while iterating. If you need to drop the lock,
call xas_pause() first.

xas_for_each_conflict(xas, entry)
Iterate over a range of an XArray.

Parameters
xas XArray operation state.

2.4. XArray 271

Linux Core-api Documentation

entry Entry retrieved from the array.

Description
The loop body will be executed for each entry in the XArray that lies within the
range specified by xas. If the loop completes successfully, any entries that lie in
this range will be replaced by entry. The caller may break out of the loop; if they
do so, the contents of the XArray will be unchanged. The operation may fail due to
an out of memory condition. The caller may also call xa_set_err() to exit the loop
while setting an error to record the reason.

void * xas_prev(struct xa_state * xas)
Move iterator to previous index.

Parameters
struct xa_state * xas XArray operation state.

Description
If the xas was in an error state, it will remain in an error state and this function
will return NULL. If the xas has never been walked, it will have the effect of calling
xas_load(). Otherwise one will be subtracted from the index and the state will
be walked to the correct location in the array for the next operation.

If the iterator was referencing index 0, this function wraps around to ULONG_MAX.

Return
The entry at the new index. This may be NULL or an internal entry.

void * xas_next(struct xa_state * xas)
Move state to next index.

Parameters
struct xa_state * xas XArray operation state.

Description
If the xas was in an error state, it will remain in an error state and this function
will return NULL. If the xas has never been walked, it will have the effect of calling
xas_load(). Otherwise one will be added to the index and the state will be walked
to the correct location in the array for the next operation.

If the iterator was referencing index ULONG_MAX, this function wraps around to 0.

Return
The entry at the new index. This may be NULL or an internal entry.

void * xas_load(struct xa_state * xas)
Load an entry from the XArray (advanced).

Parameters
struct xa_state * xas XArray operation state.

Description
Usually walks the xas to the appropriate state to load the entry stored at xa_index.
However, it will do nothing and return NULL if xas is in an error state. xas_load()
will never expand the tree.

272 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

If the xa_state is set up to operate on a multi-index entry, xas_load() may re-
turn NULL or an internal entry, even if there are entries present within the range
specified by xas.
Context
Any context. The caller should hold the xa_lock or the RCU lock.

Return
Usually an entry in the XArray, but see description for exceptions.

bool xas_nomem(struct xa_state * xas, gfp_t gfp)
Allocate memory if needed.

Parameters
struct xa_state * xas XArray operation state.

gfp_t gfp Memory allocation flags.

Description
If we need to add new nodes to the XArray, we try to allocate memory with
GFP_NOWAIT while holding the lock, which will usually succeed. If it fails, xas is
flagged as needing memory to continue. The caller should drop the lock and call
xas_nomem(). If xas_nomem() succeeds, the caller should retry the operation.

Forward progress is guaranteed as one node is allocated here and stored in the
xa_state where it will be found by xas_alloc(). More nodes will likely be found in
the slab allocator, but we do not tie them up here.

Return
true if memory was needed, and was successfully allocated.

void xas_free_nodes(struct xa_state * xas, struct xa_node * top)
Free this node and all nodes that it references

Parameters
struct xa_state * xas Array operation state.

struct xa_node * top Node to free

Description
This node has been removed from the tree. We must now free it and all of its
subnodes. There may be RCU walkers with references into the tree, so we must
replace all entries with retry markers.

void xas_create_range(struct xa_state * xas)
Ensure that stores to this range will succeed

Parameters
struct xa_state * xas XArray operation state.

Description
Creates all of the slots in the range covered by xas. Sets xas to create single-
index entries and positions it at the beginning of the range. This is for the benefit
of users which have not yet been converted to use multi-index entries.

2.4. XArray 273

Linux Core-api Documentation

void * xas_store(struct xa_state * xas, void * entry)
Store this entry in the XArray.

Parameters
struct xa_state * xas XArray operation state.

void * entry New entry.

Description
If xas is operating on a multi-index entry, the entry returned by this function is
essentially meaningless (it may be an internal entry or it may be NULL, even if
there are non-NULL entries at some of the indices covered by the range). This is
not a problem for any current users, and can be changed if needed.

Return
The old entry at this index.

bool xas_get_mark(const struct xa_state * xas, xa_mark_t mark)
Returns the state of this mark.

Parameters
const struct xa_state * xas XArray operation state.

xa_mark_t mark Mark number.

Return
true if the mark is set, false if the mark is clear or xas is in an error state.
void xas_set_mark(const struct xa_state * xas, xa_mark_t mark)

Sets the mark on this entry and its parents.

Parameters
const struct xa_state * xas XArray operation state.

xa_mark_t mark Mark number.

Description
Sets the specified mark on this entry, and walks up the tree setting it on all the
ancestor entries. Does nothing if xas has not been walked to an entry, or is in an
error state.

void xas_clear_mark(const struct xa_state * xas, xa_mark_t mark)
Clears the mark on this entry and its parents.

Parameters
const struct xa_state * xas XArray operation state.

xa_mark_t mark Mark number.

Description
Clears the specified mark on this entry, and walks back to the head attempting to
clear it on all the ancestor entries. Does nothing if xas has not been walked to an
entry, or is in an error state.

274 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

void xas_init_marks(const struct xa_state * xas)
Initialise all marks for the entry

Parameters
const struct xa_state * xas Array operations state.

Description
Initialise all marks for the entry specified by xas. If we’re tracking free entries
with a mark, we need to set it on all entries. All other marks are cleared.

This implementation is not as efficient as it could be; we may walk up the tree
multiple times.

void xas_pause(struct xa_state * xas)
Pause a walk to drop a lock.

Parameters
struct xa_state * xas XArray operation state.

Description
Some users need to pause a walk and drop the lock they’re holding in order to
yield to a higher priority thread or carry out an operation on an entry. Those users
should call this function before they drop the lock. It resets the xas to be suitable
for the next iteration of the loop after the user has reacquired the lock. If most
entries found during a walk require you to call xas_pause(), the xa_for_each()
iterator may be more appropriate.

Note that xas_pause() only works for forward iteration. If a user needs to pause
a reverse iteration, we will need a xas_pause_rev().

void * xas_find(struct xa_state * xas, unsigned long max)
Find the next present entry in the XArray.

Parameters
struct xa_state * xas XArray operation state.

unsigned long max Highest index to return.

Description
If the xas has not yet been walked to an entry, return the entry which has an index
>= xas.xa_index. If it has been walked, the entry currently being pointed at has
been processed, and so we move to the next entry.

If no entry is found and the array is smaller than max, the iterator is set to the
smallest index not yet in the array. This allows xas to be immediately passed to
xas_store().

Return
The entry, if found, otherwise NULL.

void * xas_find_marked(struct xa_state * xas, unsigned long max,
xa_mark_t mark)

Find the next marked entry in the XArray.

Parameters

2.4. XArray 275

Linux Core-api Documentation

struct xa_state * xas XArray operation state.

unsigned long max Highest index to return.

xa_mark_t mark Mark number to search for.

Description
If the xas has not yet been walked to an entry, return the marked entry which has
an index >= xas.xa_index. If it has been walked, the entry currently being pointed
at has been processed, and so we return the first marked entry with an index >
xas.xa_index.

If no marked entry is found and the array is smaller than max, xas is set to the
bounds state and xas->xa_index is set to the smallest index not yet in the array.
This allows xas to be immediately passed to xas_store().
If no entry is found before max is reached, xas is set to the restart state.
Return
The entry, if found, otherwise NULL.

void * xas_find_conflict(struct xa_state * xas)
Find the next present entry in a range.

Parameters
struct xa_state * xas XArray operation state.

Description
The xas describes both a range and a position within that range.
Context
Any context. Expects xa_lock to be held.

Return
The next entry in the range covered by xas or NULL.
void * xa_load(struct xarray * xa, unsigned long index)

Load an entry from an XArray.

Parameters
struct xarray * xa XArray.

unsigned long index index into array.

Context
Any context. Takes and releases the RCU lock.

Return
The entry at index in xa.
void * __xa_erase(struct xarray * xa, unsigned long index)

Erase this entry from the XArray while locked.

Parameters
struct xarray * xa XArray.

276 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

unsigned long index Index into array.

Description
After this function returns, loading from index will return NULL. If the index is part
of a multi-index entry, all indices will be erased and none of the entries will be part
of a multi-index entry.

Context
Any context. Expects xa_lock to be held on entry.

Return
The entry which used to be at this index.

void * xa_erase(struct xarray * xa, unsigned long index)
Erase this entry from the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

Description
After this function returns, loading from index will return NULL. If the index is part
of a multi-index entry, all indices will be erased and none of the entries will be part
of a multi-index entry.

Context
Any context. Takes and releases the xa_lock.

Return
The entry which used to be at this index.

void * __xa_store(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
You must already be holding the xa_lock when calling this function. It will drop
the lock if needed to allocate memory, and then reacquire it afterwards.

Context
Any context. Expects xa_lock to be held on entry. May release and reacquire
xa_lock if gfp flags permit.
Return

2.4. XArray 277

Linux Core-api Documentation

The old entry at this index or xa_err() if an error happened.

void * xa_store(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
After this function returns, loads from this index will return entry. Storing into
an existing multislot entry updates the entry of every index. The marks associated
with index are unaffected unless entry is NULL.
Context
Any context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
The old entry at this index on success, xa_err(-EINVAL) if entry cannot be stored
in an XArray, or xa_err(-ENOMEM) if memory allocation failed.

void * __xa_cmpxchg(struct xarray * xa, unsigned long index, void * old, void
* entry, gfp_t gfp)

Store this entry in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * old Old value to test against.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
You must already be holding the xa_lock when calling this function. It will drop
the lock if needed to allocate memory, and then reacquire it afterwards.

Context
Any context. Expects xa_lock to be held on entry. May release and reacquire
xa_lock if gfp flags permit.
Return
The old entry at this index or xa_err() if an error happened.

int __xa_insert(struct xarray * xa, unsigned long index, void * entry,
gfp_t gfp)

Store this entry in the XArray if no entry is present.

278 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Parameters
struct xarray * xa XArray.

unsigned long index Index into array.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
Inserting a NULL entry will store a reserved entry (like xa_reserve()) if no entry
is present. Inserting will fail if a reserved entry is present, even though loading
from this index will return NULL.

Context
Any context. Expects xa_lock to be held on entry. May release and reacquire
xa_lock if gfp flags permit.
Return
0 if the store succeeded. -EBUSY if another entry was present. -ENOMEM if
memory could not be allocated.

void * xa_store_range(struct xarray * xa, unsigned long first, unsigned
long last, void * entry, gfp_t gfp)

Store this entry at a range of indices in the XArray.

Parameters
struct xarray * xa XArray.

unsigned long first First index to affect.

unsigned long last Last index to affect.

void * entry New entry.

gfp_t gfp Memory allocation flags.

Description
After this function returns, loads from any index between first and last, inclusive
will return entry. Storing into an existing multislot entry updates the entry of
every index. The marks associated with index are unaffected unless entry is NULL.
Context
Process context. Takes and releases the xa_lock. May sleep if the gfp flags permit.
Return
NULL on success, xa_err(-EINVAL) if entry cannot be stored in an XArray, or
xa_err(-ENOMEM) if memory allocation failed.

int __xa_alloc(struct xarray * xa, u32 * id, void * entry, struct xa_limit limit,
gfp_t gfp)

Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

2.4. XArray 279

Linux Core-api Documentation

u32 * id Pointer to ID.

void * entry New entry.

struct xa_limit limit Range for allocated ID.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id.
Context
Any context. Expects xa_lock to be held on entry. May release and reacquire
xa_lock if gfp flags permit.
Return
0 on success, -ENOMEM if memory could not be allocated or -EBUSY if there are
no free entries in limit.
int __xa_alloc_cyclic(struct xarray * xa, u32 * id, void * entry, struct

xa_limit limit, u32 * next, gfp_t gfp)
Find somewhere to store this entry in the XArray.

Parameters
struct xarray * xa XArray.

u32 * id Pointer to ID.

void * entry New entry.

struct xa_limit limit Range of allocated ID.

u32 * next Pointer to next ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Finds an empty entry in xa between limit.min and limit.max, stores the index
into the id pointer, then stores the entry at that index. A concurrent lookup will
not see an uninitialised id. The search for an empty entry will start at next and
will wrap around if necessary.

Context
Any context. Expects xa_lock to be held on entry. May release and reacquire
xa_lock if gfp flags permit.
Return
0 if the allocation succeeded without wrapping. 1 if the allocation succeeded after
wrapping, -ENOMEM if memory could not be allocated or -EBUSY if there are no
free entries in limit.
void __xa_set_mark(struct xarray * xa, unsigned long index,

xa_mark_t mark)
Set this mark on this entry while locked.

280 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

xa_mark_t mark Mark number.

Description
Attempting to set a mark on a NULL entry does not succeed.

Context
Any context. Expects xa_lock to be held on entry.

void __xa_clear_mark(struct xarray * xa, unsigned long index,
xa_mark_t mark)

Clear this mark on this entry while locked.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

xa_mark_t mark Mark number.

Context
Any context. Expects xa_lock to be held on entry.

bool xa_get_mark(struct xarray * xa, unsigned long index, xa_mark_t mark)
Inquire whether this mark is set on this entry.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

xa_mark_t mark Mark number.

Description
This function uses the RCU read lock, so the result may be out of date by the time
it returns. If you need the result to be stable, use a lock.

Context
Any context. Takes and releases the RCU lock.

Return
True if the entry at index has this mark set, false if it doesn’t.
void xa_set_mark(struct xarray * xa, unsigned long index, xa_mark_t mark)

Set this mark on this entry.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

xa_mark_t mark Mark number.

2.4. XArray 281

Linux Core-api Documentation

Description
Attempting to set a mark on a NULL entry does not succeed.

Context
Process context. Takes and releases the xa_lock.

void xa_clear_mark(struct xarray * xa, unsigned long index,
xa_mark_t mark)

Clear this mark on this entry.

Parameters
struct xarray * xa XArray.

unsigned long index Index of entry.

xa_mark_t mark Mark number.

Description
Clearing a mark always succeeds.

Context
Process context. Takes and releases the xa_lock.

void * xa_find(struct xarray * xa, unsigned long * indexp, unsigned
long max, xa_mark_t filter)

Search the XArray for an entry.

Parameters
struct xarray * xa XArray.

unsigned long * indexp Pointer to an index.

unsigned long max Maximum index to search to.

xa_mark_t filter Selection criterion.

Description
Finds the entry in xa which matches the filter, and has the lowest index that is at
least indexp and no more than max. If an entry is found, indexp is updated to
be the index of the entry. This function is protected by the RCU read lock, so it
may not find entries which are being simultaneously added. It will not return an
XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().

Context
Any context. Takes and releases the RCU lock.

Return
The entry, if found, otherwise NULL.

void * xa_find_after(struct xarray * xa, unsigned long * indexp, unsigned
long max, xa_mark_t filter)

Search the XArray for a present entry.

Parameters
struct xarray * xa XArray.

282 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

unsigned long * indexp Pointer to an index.

unsigned long max Maximum index to search to.

xa_mark_t filter Selection criterion.

Description
Finds the entry in xa which matches the filter and has the lowest index that is
above indexp and no more than max. If an entry is found, indexp is updated
to be the index of the entry. This function is protected by the RCU read lock, so
it may miss entries which are being simultaneously added. It will not return an
XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().

Context
Any context. Takes and releases the RCU lock.

Return
The pointer, if found, otherwise NULL.

unsigned int xa_extract(struct xarray * xa, void ** dst, unsigned
long start, unsigned long max, unsigned int n,
xa_mark_t filter)

Copy selected entries from the XArray into a normal array.

Parameters
struct xarray * xa The source XArray to copy from.

void ** dst The buffer to copy entries into.

unsigned long start The first index in the XArray eligible to be selected.

unsigned long max The last index in the XArray eligible to be selected.

unsigned int n The maximum number of entries to copy.

xa_mark_t filter Selection criterion.

Description
Copies up to n entries that match filter from the XArray. The copied entries will
have indices between start and max, inclusive.
The filter may be an XArray mark value, in which case entries which are marked
with that mark will be copied. It may also be XA_PRESENT, in which case all entries
which are not NULL will be copied.

The entries returned may not represent a snapshot of the XArray at a moment
in time. For example, if another thread stores to index 5, then index 10, calling
xa_extract()may return the old contents of index 5 and the new contents of index
10. Indices not modified while this function is running will not be skipped.

If you need stronger guarantees, holding the xa_lock across calls to this function
will prevent concurrent modification.

Context
Any context. Takes and releases the RCU lock.

Return

2.4. XArray 283

Linux Core-api Documentation

The number of entries copied.

void xa_destroy(struct xarray * xa)
Free all internal data structures.

Parameters
struct xarray * xa XArray.

Description
After calling this function, the XArray is empty and has freed all memory allocated
for its internal data structures. You are responsible for freeing the objects refer-
enced by the XArray.

Context
Any context. Takes and releases the xa_lock, interrupt-safe.

2.5 ID Allocation

Author Matthew Wilcox

2.5.1 Overview

A common problem to solve is allocating identifiers (IDs); generally small num-
bers which identify a thing. Examples include file descriptors, process IDs, packet
identifiers in networking protocols, SCSI tags and device instance numbers. The
IDR and the IDA provide a reasonable solution to the problem to avoid everybody
inventing their own. The IDR provides the ability to map an ID to a pointer, while
the IDA provides only ID allocation, and as a result is much more memory-efficient.

2.5.2 IDR usage

Start by initialising an IDR, either with DEFINE_IDR() for statically allocated IDRs
or idr_init() for dynamically allocated IDRs.

You can call idr_alloc() to allocate an unused ID. Look up the pointer you asso-
ciated with the ID by calling idr_find() and free the ID by calling idr_remove().

If you need to change the pointer associated with an ID, you can call
idr_replace(). One common reason to do this is to reserve an ID by passing
a NULL pointer to the allocation function; initialise the object with the reserved ID
and finally insert the initialised object into the IDR.

Some users need to allocate IDs larger than INT_MAX. So far all of these users have
been content with a UINT_MAX limit, and they use idr_alloc_u32(). If you need
IDs that will not fit in a u32, we will work with you to address your needs.

If you need to allocate IDs sequentially, you can use idr_alloc_cyclic(). The
IDR becomes less efficient when dealing with larger IDs, so using this function
comes at a slight cost.

To perform an action on all pointers used by the IDR, you can either use the
callback-based idr_for_each() or the iterator-style idr_for_each_entry(). You

284 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

may need to use idr_for_each_entry_continue() to continue an iteration. You
can also use idr_get_next() if the iterator doesn’t fit your needs.
When you have finished using an IDR, you can call idr_destroy() to release the
memory used by the IDR. This will not free the objects pointed to from the IDR; if
you want to do that, use one of the iterators to do it.

You can use idr_is_empty() to find out whether there are any IDs currently allo-
cated.

If you need to take a lock while allocating a new ID from the IDR, you may need
to pass a restrictive set of GFP flags, which can lead to the IDR being unable to
allocate memory. To work around this, you can call idr_preload() before taking
the lock, and then idr_preload_end() after the allocation.

idr synchronization (stolen from radix-tree.h)

idr_find() is able to be called locklessly, using RCU. The caller must ensure calls
to this function are made within rcu_read_lock() regions. Other readers (lock-
free or otherwise) and modifications may be running concurrently.

It is still required that the caller manage the synchronization and lifetimes of the
items. So if RCU lock-free lookups are used, typically this would mean that the
items have their own locks, or are amenable to lock-free access; and that the items
are freed by RCU (or only freed after having been deleted from the idr tree and a
synchronize_rcu() grace period).

2.5.3 IDA usage

The IDA is an ID allocator which does not provide the ability to associate an ID with
a pointer. As such, it only needs to store one bit per ID, and so is more space effi-
cient than an IDR. To use an IDA, define it using DEFINE_IDA() (or embed a struct
ida in a data structure, then initialise it using ida_init()). To allocate a new ID,
call ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
To free an ID, call ida_free().

ida_destroy() can be used to dispose of an IDA without needing to free the in-
dividual IDs in it. You can use ida_is_empty() to find out whether the IDA has any
IDs currently allocated.

The IDA handles its own locking. It is safe to call any of the IDA functions without
synchronisation in your code.

IDs are currently limited to the range [0-INT_MAX]. If this is an awkward limita-
tion, it should be quite straightforward to raise the maximum.

2.5. ID Allocation 285

Linux Core-api Documentation

2.5.4 Functions and structures

IDR_INIT(name)
Initialise an IDR.

Parameters
name Name of IDR.

Description
A freshly-initialised IDR contains no IDs.

DEFINE_IDR(name)
Define a statically-allocated IDR.

Parameters
name Name of IDR.

Description
An IDR defined using this macro is ready for use with no additional initialisation
required. It contains no IDs.

unsigned int idr_get_cursor(const struct idr * idr)
Return the current position of the cyclic allocator

Parameters
const struct idr * idr idr handle

Description
The value returned is the value that will be next returned from
idr_alloc_cyclic() if it is free (otherwise the search will start from this
position).

void idr_set_cursor(struct idr * idr, unsigned int val)
Set the current position of the cyclic allocator

Parameters
struct idr * idr idr handle

unsigned int val new position

Description
The next call to idr_alloc_cyclic() will return val if it is free (otherwise the
search will start from this position).

void idr_init_base(struct idr * idr, int base)
Initialise an IDR.

Parameters
struct idr * idr IDR handle.

int base The base value for the IDR.

Description

286 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

This variation of idr_init() creates an IDR which will allocate IDs starting at
base.

void idr_init(struct idr * idr)
Initialise an IDR.

Parameters
struct idr * idr IDR handle.

Description
Initialise a dynamically allocated IDR. To initialise a statically allocated IDR, use
DEFINE_IDR().

bool idr_is_empty(const struct idr * idr)
Are there any IDs allocated?

Parameters
const struct idr * idr IDR handle.

Return
true if any IDs have been allocated from this IDR.

void idr_preload_end(void)
end preload section started with idr_preload()

Parameters
void no arguments

Description
Each idr_preload() should be matched with an invocation of this function. See
idr_preload() for details.

idr_for_each_entry(idr, entry, id)
Iterate over an IDR’s elements of a given type.

Parameters
idr IDR handle.

entry The type * to use as cursor

id Entry ID.

Description
entry and id do not need to be initialized before the loop, and after normal ter-
mination entry is left with the value NULL. This is convenient for a “not found”
value.

idr_for_each_entry_ul(idr, entry, tmp, id)
Iterate over an IDR’s elements of a given type.

Parameters
idr IDR handle.

entry The type * to use as cursor.

tmp A temporary placeholder for ID.

2.5. ID Allocation 287

Linux Core-api Documentation

id Entry ID.

Description
entry and id do not need to be initialized before the loop, and after normal ter-
mination entry is left with the value NULL. This is convenient for a “not found”
value.

idr_for_each_entry_continue(idr, entry, id)
Continue iteration over an IDR’s elements of a given type

Parameters
idr IDR handle.

entry The type * to use as a cursor.

id Entry ID.

Description
Continue to iterate over entries, continuing after the current position.

idr_for_each_entry_continue_ul(idr, entry, tmp, id)
Continue iteration over an IDR’s elements of a given type

Parameters
idr IDR handle.

entry The type * to use as a cursor.

tmp A temporary placeholder for ID.

id Entry ID.

Description
Continue to iterate over entries, continuing after the current position.

int ida_alloc(struct ida * ida, gfp_t gfp)
Allocate an unused ID.

Parameters
struct ida * ida IDA handle.

gfp_t gfp Memory allocation flags.

Description
Allocate an ID between 0 and INT_MAX, inclusive.

Context
Any context.

Return
The allocated ID, or -ENOMEM if memory could not be allocated, or -ENOSPC if there
are no free IDs.

int ida_alloc_min(struct ida * ida, unsigned int min, gfp_t gfp)
Allocate an unused ID.

Parameters

288 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

struct ida * ida IDA handle.

unsigned int min Lowest ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Allocate an ID between min and INT_MAX, inclusive.
Context
Any context.

Return
The allocated ID, or -ENOMEM if memory could not be allocated, or -ENOSPC if there
are no free IDs.

int ida_alloc_max(struct ida * ida, unsigned int max, gfp_t gfp)
Allocate an unused ID.

Parameters
struct ida * ida IDA handle.

unsigned int max Highest ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Allocate an ID between 0 and max, inclusive.
Context
Any context.

Return
The allocated ID, or -ENOMEM if memory could not be allocated, or -ENOSPC if there
are no free IDs.

int idr_alloc_u32(struct idr * idr, void * ptr, u32 * nextid, unsigned
long max, gfp_t gfp)

Allocate an ID.

Parameters
struct idr * idr IDR handle.

void * ptr Pointer to be associated with the new ID.

u32 * nextid Pointer to an ID.

unsigned long max The maximum ID to allocate (inclusive).

gfp_t gfp Memory allocation flags.

Description
Allocates an unused ID in the range specified by nextid andmax. Note thatmax
is inclusive whereas the end parameter to idr_alloc() is exclusive. The new ID
is assigned to nextid before the pointer is inserted into the IDR, so if nextid points

2.5. ID Allocation 289

Linux Core-api Documentation

into the object pointed to by ptr, a concurrent lookup will not find an uninitialised
ID.

The caller should provide their own locking to ensure that two concurrent modi-
fications to the IDR are not possible. Read-only accesses to the IDR may be done
under the RCU read lock or may exclude simultaneous writers.

Return
0 if an ID was allocated, -ENOMEM if memory allocation failed, or -ENOSPC if no
free IDs could be found. If an error occurred, nextid is unchanged.
int idr_alloc(struct idr * idr, void * ptr, int start, int end, gfp_t gfp)

Allocate an ID.

Parameters
struct idr * idr IDR handle.

void * ptr Pointer to be associated with the new ID.

int start The minimum ID (inclusive).

int end The maximum ID (exclusive).

gfp_t gfp Memory allocation flags.

Description
Allocates an unused ID in the range specified by start and end. If end is <= 0, it
is treated as one larger than INT_MAX. This allows callers to use start + N as end
as long as N is within integer range.

The caller should provide their own locking to ensure that two concurrent modi-
fications to the IDR are not possible. Read-only accesses to the IDR may be done
under the RCU read lock or may exclude simultaneous writers.

Return
The newly allocated ID, -ENOMEM if memory allocation failed, or -ENOSPC if no
free IDs could be found.

int idr_alloc_cyclic(struct idr * idr, void * ptr, int start, int end, gfp_t gfp)
Allocate an ID cyclically.

Parameters
struct idr * idr IDR handle.

void * ptr Pointer to be associated with the new ID.

int start The minimum ID (inclusive).

int end The maximum ID (exclusive).

gfp_t gfp Memory allocation flags.

Description
Allocates an unused ID in the range specified by nextid and end. If end is <= 0,
it is treated as one larger than INT_MAX. This allows callers to use start + N as
end as long as N is within integer range. The search for an unused ID will start at

290 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

the last ID allocated and will wrap around to start if no free IDs are found before
reaching end.
The caller should provide their own locking to ensure that two concurrent modi-
fications to the IDR are not possible. Read-only accesses to the IDR may be done
under the RCU read lock or may exclude simultaneous writers.

Return
The newly allocated ID, -ENOMEM if memory allocation failed, or -ENOSPC if no
free IDs could be found.

void * idr_remove(struct idr * idr, unsigned long id)
Remove an ID from the IDR.

Parameters
struct idr * idr IDR handle.

unsigned long id Pointer ID.

Description
Removes this ID from the IDR. If the ID was not previously in the IDR, this function
returns NULL.

Since this function modifies the IDR, the caller should provide their own locking
to ensure that concurrent modification of the same IDR is not possible.

Return
The pointer formerly associated with this ID.

void * idr_find(const struct idr * idr, unsigned long id)
Return pointer for given ID.

Parameters
const struct idr * idr IDR handle.

unsigned long id Pointer ID.

Description
Looks up the pointer associated with this ID. A NULL pointer may indicate that id
is not allocated or that the NULL pointer was associated with this ID.

This function can be called under rcu_read_lock(), given that the leaf pointers
lifetimes are correctly managed.

Return
The pointer associated with this ID.

int idr_for_each(const struct idr * idr, int (*fn)(int id, void *p, void *data),
void * data)

Iterate through all stored pointers.

Parameters
const struct idr * idr IDR handle.

int (*)(int id, void *p, void *data) fn Function to be called for each
pointer.

2.5. ID Allocation 291

Linux Core-api Documentation

void * data Data passed to callback function.

Description
The callback function will be called for each entry in idr, passing the ID, the entry
and data.
If fn returns anything other than 0, the iteration stops and that value is returned
from this function.

idr_for_each() can be called concurrently with idr_alloc() and idr_remove()
if protected by RCU. Newly added entries may not be seen and deleted entries
may be seen, but adding and removing entries will not cause other entries to be
skipped, nor spurious ones to be seen.

void * idr_get_next_ul(struct idr * idr, unsigned long * nextid)
Find next populated entry.

Parameters
struct idr * idr IDR handle.

unsigned long * nextid Pointer to an ID.

Description
Returns the next populated entry in the tree with an ID greater than or equal to
the value pointed to by nextid. On exit, nextid is updated to the ID of the found
value. To use in a loop, the value pointed to by nextid must be incremented by the
user.

void * idr_get_next(struct idr * idr, int * nextid)
Find next populated entry.

Parameters
struct idr * idr IDR handle.

int * nextid Pointer to an ID.

Description
Returns the next populated entry in the tree with an ID greater than or equal to
the value pointed to by nextid. On exit, nextid is updated to the ID of the found
value. To use in a loop, the value pointed to by nextid must be incremented by the
user.

void * idr_replace(struct idr * idr, void * ptr, unsigned long id)
replace pointer for given ID.

Parameters
struct idr * idr IDR handle.

void * ptr New pointer to associate with the ID.

unsigned long id ID to change.

Description
Replace the pointer registered with an ID and return the old value. This func-
tion can be called under the RCU read lock concurrently with idr_alloc() and
idr_remove() (as long as the ID being removed is not the one being replaced!).

292 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Return
the old value on success. -ENOENT indicates that id was not found. -EINVAL indi-
cates that ptr was not valid.
int ida_alloc_range(struct ida * ida, unsigned int min, unsigned int max,

gfp_t gfp)
Allocate an unused ID.

Parameters
struct ida * ida IDA handle.

unsigned int min Lowest ID to allocate.

unsigned int max Highest ID to allocate.

gfp_t gfp Memory allocation flags.

Description
Allocate an ID between min and max, inclusive. The allocated ID will not exceed
INT_MAX, even if max is larger.
Context
Any context.

Return
The allocated ID, or -ENOMEM if memory could not be allocated, or -ENOSPC if there
are no free IDs.

void ida_free(struct ida * ida, unsigned int id)
Release an allocated ID.

Parameters
struct ida * ida IDA handle.

unsigned int id Previously allocated ID.

Context
Any context.

void ida_destroy(struct ida * ida)
Free all IDs.

Parameters
struct ida * ida IDA handle.

Description
Calling this function frees all IDs and releases all resources used by an IDA. When
this call returns, the IDA is empty and can be reused or freed. If the IDA is already
empty, there is no need to call this function.

Context
Any context.

2.5. ID Allocation 293

Linux Core-api Documentation

2.6 Circular Buffers

Author David Howells <dhowells@redhat.com>
Author Paul E. McKenney <paulmck@linux.ibm.com>

Linux provides a number of features that can be used to implement circular buffer-
ing. There are two sets of such features:

(1) Convenience functions for determining information about power-of-2 sized
buffers.

(2) Memory barriers for when the producer and the consumer of objects in the
buffer don’t want to share a lock.

To use these facilities, as discussed below, there needs to be just one producer and
just one consumer. It is possible to handle multiple producers by serialising them,
and to handle multiple consumers by serialising them.

2.6.1 What is a circular buffer?

First of all, what is a circular buffer? A circular buffer is a buffer of fixed, finite
size into which there are two indices:

(1) A‘head’index - the point at which the producer inserts items into the buffer.
(2) A ‘tail’index - the point at which the consumer finds the next item in the

buffer.

Typically when the tail pointer is equal to the head pointer, the buffer is empty;
and the buffer is full when the head pointer is one less than the tail pointer.

The head index is incremented when items are added, and the tail index when
items are removed. The tail index should never jump the head index, and both
indices should be wrapped to 0 when they reach the end of the buffer, thus allowing
an infinite amount of data to flow through the buffer.

Typically, items will all be of the same unit size, but this isn’t strictly required to
use the techniques below. The indices can be increased by more than 1 if multiple
items or variable-sized items are to be included in the buffer, provided that neither
index overtakes the other. The implementer must be careful, however, as a region
more than one unit in size may wrap the end of the buffer and be broken into two
segments.

2.6.2 Measuring power-of-2 buffers

Calculation of the occupancy or the remaining capacity of an arbitrarily sized cir-
cular buffer would normally be a slow operation, requiring the use of a modulus
(divide) instruction. However, if the buffer is of a power-of-2 size, then a much
quicker bitwise-AND instruction can be used instead.

Linux provides a set of macros for handling power-of-2 circular buffers. These can
be made use of by:

294 Chapter 2. Data structures and low-level utilities

mailto:dhowells@redhat.com
mailto:paulmck@linux.ibm.com

Linux Core-api Documentation

#include <linux/circ_buf.h>

The macros are:

(1) Measure the remaining capacity of a buffer:

CIRC_SPACE(head_index, tail_index, buffer_size);

This returns the amount of space left in the buffer[1] into which items can be
inserted.

(2) Measure the maximum consecutive immediate space in a buffer:

CIRC_SPACE_TO_END(head_index, tail_index, buffer_size);

This returns the amount of consecutive space left in the buffer[1] into which
items can be immediately inserted without having to wrap back to the begin-
ning of the buffer.

(3) Measure the occupancy of a buffer:

CIRC_CNT(head_index, tail_index, buffer_size);

This returns the number of items currently occupying a buffer[2].

(4) Measure the non-wrapping occupancy of a buffer:

CIRC_CNT_TO_END(head_index, tail_index, buffer_size);

This returns the number of consecutive items[2] that can be extracted from
the buffer without having to wrap back to the beginning of the buffer.

Each of these macros will nominally return a value between 0 and buffer_size-1,
however:

(1) CIRC_SPACE*() are intended to be used in the producer. To the producer they
will return a lower bound as the producer controls the head index, but the
consumer may still be depleting the buffer on another CPU and moving the
tail index.

To the consumer it will show an upper bound as the producer may be busy
depleting the space.

(2) CIRC_CNT*() are intended to be used in the consumer. To the consumer they
will return a lower bound as the consumer controls the tail index, but the
producer may still be filling the buffer on another CPU and moving the head
index.

To the producer it will show an upper bound as the consumer may be busy
emptying the buffer.

(3) To a third party, the order in which the writes to the indices by the producer
and consumer become visible cannot be guaranteed as they are independent
and may be made on different CPUs - so the result in such a situation will
merely be a guess, and may even be negative.

2.6. Circular Buffers 295

Linux Core-api Documentation

2.6.3 Using memory barriers with circular buffers

By using memory barriers in conjunction with circular buffers, you can avoid the
need to:

(1) use a single lock to govern access to both ends of the buffer, thus allowing
the buffer to be filled and emptied at the same time; and

(2) use atomic counter operations.

There are two sides to this: the producer that fills the buffer, and the consumer
that empties it. Only one thing should be filling a buffer at any one time, and
only one thing should be emptying a buffer at any one time, but the two sides can
operate simultaneously.

The producer

The producer will look something like this:

spin_lock(&producer_lock);

unsigned long head = buffer->head;
/* The spin_unlock() and next spin_lock() provide needed ordering. */
unsigned long tail = READ_ONCE(buffer->tail);

if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
/* insert one item into the buffer */
struct item *item = buffer[head];

produce_item(item);

smp_store_release(buffer->head,
(head + 1) & (buffer->size - 1));

/* wake_up() will make sure that the head is committed before
* waking anyone up */

wake_up(consumer);
}

spin_unlock(&producer_lock);

This will instruct the CPU that the contents of the new item must be written before
the head index makes it available to the consumer and then instructs the CPU that
the revised head index must be written before the consumer is woken.

Note that wake_up() does not guarantee any sort of barrier unless something is
actually awakened. We therefore cannot rely on it for ordering. However, there is
always one element of the array left empty. Therefore, the producer must produce
two elements before it could possibly corrupt the element currently being read by
the consumer. Therefore, the unlock-lock pair between consecutive invocations
of the consumer provides the necessary ordering between the read of the index
indicating that the consumer has vacated a given element and the write by the
producer to that same element.

296 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

The Consumer

The consumer will look something like this:

spin_lock(&consumer_lock);

/* Read index before reading contents at that index. */
unsigned long head = smp_load_acquire(buffer->head);
unsigned long tail = buffer->tail;

if (CIRC_CNT(head, tail, buffer->size) >= 1) {

/* extract one item from the buffer */
struct item *item = buffer[tail];

consume_item(item);

/* Finish reading descriptor before incrementing tail. */
smp_store_release(buffer->tail,

(tail + 1) & (buffer->size - 1));
}

spin_unlock(&consumer_lock);

This will instruct the CPU to make sure the index is up to date before reading the
new item, and then it shall make sure the CPU has finished reading the item before
it writes the new tail pointer, which will erase the item.

Note the use of READ_ONCE() and smp_load_acquire() to read the opposition in-
dex. This prevents the compiler from discarding and reloading its cached value.
This isn’t strictly needed if you can be sure that the opposition index will _only_
be used the once. The smp_load_acquire() additionally forces the CPU to order
against subsequent memory references. Similarly, smp_store_release() is used in
both algorithms to write the thread’s index. This documents the fact that we are
writing to something that can be read concurrently, prevents the compiler from
tearing the store, and enforces ordering against previous accesses.

2.6.4 Further reading

See also Documentation/memory-barriers.txt for a description of Linux’s memory
barrier facilities.

2.7 Red-black Trees (rbtree) in Linux

Date January 18, 2007
Author Rob Landley <rob@landley.net>

2.7. Red-black Trees (rbtree) in Linux 297

mailto:rob@landley.net

Linux Core-api Documentation

2.7.1 What are red-black trees, and what are they for?

Red-black trees are a type of self-balancing binary search tree, used for stor-
ing sortable key/value data pairs. This differs from radix trees (which are
used to efficiently store sparse arrays and thus use long integer indexes to in-
sert/access/delete nodes) and hash tables (which are not kept sorted to be easily
traversed in order, and must be tuned for a specific size and hash function where
rbtrees scale gracefully storing arbitrary keys).

Red-black trees are similar to AVL trees, but provide faster real-time bounded
worst case performance for insertion and deletion (at most two rotations and three
rotations, respectively, to balance the tree), with slightly slower (but still O(log n))
lookup time.

To quote Linux Weekly News:

There are a number of red-black trees in use in the kernel. The deadline
and CFQ I/O schedulers employ rbtrees to track requests; the packet
CD/DVD driver does the same. The high-resolution timer code uses
an rbtree to organize outstanding timer requests. The ext3 filesys-
tem tracks directory entries in a red-black tree. Virtual memory areas
(VMAs) are tracked with red-black trees, as are epoll file descriptors,
cryptographic keys, and network packets in the “hierarchical token
bucket”scheduler.

This document covers use of the Linux rbtree implementation. For more informa-
tion on the nature and implementation of Red Black Trees, see:

Linux Weekly News article on red-black trees https://lwn.net/
Articles/184495/

Wikipedia entry on red-black trees https://en.wikipedia.org/wiki/
Red-black_tree

2.7.2 Linux implementation of red-black trees

Linux’s rbtree implementation lives in the file“lib/rbtree.c”. To use it,“#include
<linux/rbtree.h>”.
The Linux rbtree implementation is optimized for speed, and thus has one less
layer of indirection (and better cache locality) than more traditional tree imple-
mentations. Instead of using pointers to separate rb_node and data structures,
each instance of struct rb_node is embedded in the data structure it organizes.
And instead of using a comparison callback function pointer, users are expected
to write their own tree search and insert functions which call the provided rbtree
functions. Locking is also left up to the user of the rbtree code.

298 Chapter 2. Data structures and low-level utilities

https://lwn.net/Articles/184495/
https://lwn.net/Articles/184495/
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Red-black_tree

Linux Core-api Documentation

2.7.3 Creating a new rbtree

Data nodes in an rbtree tree are structures containing a struct rb_node member:

struct mytype {
struct rb_node node;
char *keystring;

};

When dealing with a pointer to the embedded struct rb_node, the containing data
structure may be accessed with the standard container_of() macro. In addition,
individual members may be accessed directly via rb_entry(node, type, member).

At the root of each rbtree is an rb_root structure, which is initialized to be empty
via:

struct rb_root mytree = RB_ROOT;

2.7.4 Searching for a value in an rbtree

Writing a search function for your tree is fairly straightforward: start at the root,
compare each value, and follow the left or right branch as necessary.

Example:

struct mytype *my_search(struct rb_root *root, char *string)
{

struct rb_node *node = root->rb_node;

while (node) {
struct mytype *data = container_of(node, struct mytype,␣

↪→node);
int result;

result = strcmp(string, data->keystring);

if (result < 0)
node = node->rb_left;

else if (result > 0)
node = node->rb_right;

else
return data;

}
return NULL;

}

2.7. Red-black Trees (rbtree) in Linux 299

Linux Core-api Documentation

2.7.5 Inserting data into an rbtree

Inserting data in the tree involves first searching for the place to insert the new
node, then inserting the node and rebalancing (“recoloring”) the tree.
The search for insertion differs from the previous search by finding the location of
the pointer on which to graft the new node. The new node also needs a link to its
parent node for rebalancing purposes.

Example:

int my_insert(struct rb_root *root, struct mytype *data)
{

struct rb_node **new = &(root->rb_node), *parent = NULL;

/* Figure out where to put new node */
while (*new) {

struct mytype *this = container_of(*new, struct mytype,␣
↪→node);

int result = strcmp(data->keystring, this->keystring);

parent = *new;
if (result < 0)

new = &((*new)->rb_left);
else if (result > 0)

new = &((*new)->rb_right);
else

return FALSE;
}

/* Add new node and rebalance tree. */
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);

return TRUE;
}

2.7.6 Removing or replacing existing data in an rbtree

To remove an existing node from a tree, call:

void rb_erase(struct rb_node *victim, struct rb_root *tree);

Example:

struct mytype *data = mysearch(&mytree, "walrus");

if (data) {
rb_erase(&data->node, &mytree);
myfree(data);

}

To replace an existing node in a tree with a new one with the same key, call:

void rb_replace_node(struct rb_node *old, struct rb_node *new,
struct rb_root *tree);

300 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Replacing a node this way does not re-sort the tree: If the new node doesn’t have
the same key as the old node, the rbtree will probably become corrupted.

2.7.7 Iterating through the elements stored in an rbtree (in sort
order)

Four functions are provided for iterating through an rbtree’s contents in sorted or-
der. These work on arbitrary trees, and should not need to be modified or wrapped
(except for locking purposes):

struct rb_node *rb_first(struct rb_root *tree);
struct rb_node *rb_last(struct rb_root *tree);
struct rb_node *rb_next(struct rb_node *node);
struct rb_node *rb_prev(struct rb_node *node);

To start iterating, call rb_first() or rb_last() with a pointer to the root of the tree,
which will return a pointer to the node structure contained in the first or last ele-
ment in the tree. To continue, fetch the next or previous node by calling rb_next()
or rb_prev() on the current node. This will return NULL when there are no more
nodes left.

The iterator functions return a pointer to the embedded struct rb_node, fromwhich
the containing data structure may be accessed with the container_of() macro, and
individual members may be accessed directly via rb_entry(node, type, member).

Example:

struct rb_node *node;
for (node = rb_first(&mytree); node; node = rb_next(node))

printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);

2.7.8 Cached rbtrees

Computing the leftmost (smallest) node is quite a common task for binary search
trees, such as for traversals or users relying on a the particular order for their
own logic. To this end, users can use‘struct rb_root_cached’to optimize O(logN)
rb_first() calls to a simple pointer fetch avoiding potentially expensive tree itera-
tions. This is done at negligible runtime overhead for maintanence; albeit larger
memory footprint.

Similar to the rb_root structure, cached rbtrees are initialized to be empty via:

struct rb_root_cached mytree = RB_ROOT_CACHED;

Cached rbtree is simply a regular rb_root with an extra pointer to cache the left-
most node. This allows rb_root_cached to exist wherever rb_root does, which per-
mits augmented trees to be supported as well as only a few extra interfaces:

struct rb_node *rb_first_cached(struct rb_root_cached *tree);
void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *,␣
↪→bool);
void rb_erase_cached(struct rb_node *node, struct rb_root_cached *);

2.7. Red-black Trees (rbtree) in Linux 301

Linux Core-api Documentation

Both insert and erase calls have their respective counterpart of augmented trees:

void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_
↪→cached *,

bool, struct rb_augment_callbacks *);
void rb_erase_augmented_cached(struct rb_node *, struct rb_root_cached *,

struct rb_augment_callbacks *);

2.7.9 Support for Augmented rbtrees

Augmented rbtree is an rbtree with “some”additional data stored in each node,
where the additional data for node N must be a function of the contents of all
nodes in the subtree rooted at N. This data can be used to augment some new
functionality to rbtree. Augmented rbtree is an optional feature built on top of
basic rbtree infrastructure. An rbtree user who wants this feature will have to call
the augmentation functions with the user provided augmentation callback when
inserting and erasing nodes.

C files implementing augmented rbtree manipulation must include
<linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that
linux/rbtree_augmented.h exposes some rbtree implementations details you
are not expected to rely on; please stick to the documented APIs there and do not
include <linux/rbtree_augmented.h> from header files either so as to minimize
chances of your users accidentally relying on such implementation details.

On insertion, the user must update the augmented information on the path leading
to the inserted node, then call rb_link_node() as usual and rb_augment_inserted()
instead of the usual rb_insert_color() call. If rb_augment_inserted() rebalances
the rbtree, it will callback into a user provided function to update the augmented
information on the affected subtrees.

When erasing a node, the user must call rb_erase_augmented() instead of
rb_erase(). rb_erase_augmented() calls back into user provided functions to up-
dated the augmented information on affected subtrees.

In both cases, the callbacks are provided through struct rb_augment_callbacks. 3
callbacks must be defined:

• A propagation callback, which updates the augmented value for a given node
and its ancestors, up to a given stop point (or NULL to update all the way to
the root).

• A copy callback, which copies the augmented value for a given subtree to a
newly assigned subtree root.

• A tree rotation callback, which copies the augmented value for a given sub-
tree to a newly assigned subtree root AND recomputes the augmented infor-
mation for the former subtree root.

The compiled code for rb_erase_augmented() may inline the propagation and copy
callbacks, which results in a large function, so each augmented rbtree user should
have a single rb_erase_augmented() call site in order to limit compiled code size.

302 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

Sample usage

Interval tree is an example of augmented rb tree. Reference - “Introduction to
Algorithms”by Cormen, Leiserson, Rivest and Stein. More details about interval
trees:

Classical rbtree has a single key and it cannot be directly used to store interval
ranges like [lo:hi] and do a quick lookup for any overlap with a new lo:hi or to find
whether there is an exact match for a new lo:hi.

However, rbtree can be augmented to store such interval ranges in a structured
way making it possible to do efficient lookup and exact match.

This “extra information”stored in each node is the maximum hi (max_hi) value
among all the nodes that are its descendants. This information can be maintained
at each node just be looking at the node and its immediate children. And this
will be used in O(log n) lookup for lowest match (lowest start address among all
possible matches) with something like:

struct interval_tree_node *
interval_tree_first_match(struct rb_root *root,

unsigned long start, unsigned long last)
{

struct interval_tree_node *node;

if (!root->rb_node)
return NULL;

node = rb_entry(root->rb_node, struct interval_tree_node, rb);

while (true) {
if (node->rb.rb_left) {

struct interval_tree_node *left =
rb_entry(node->rb.rb_left,

struct interval_tree_node, rb);
if (left->__subtree_last >= start) {

/*
* Some nodes in left subtree satisfy Cond2.
* Iterate to find the leftmost such node N.
* If it also satisfies Cond1, that's the␣

↪→match
* we are looking for. Otherwise, there is no
* matching interval as nodes to the right␣

↪→of N
* can't satisfy Cond1 either.
*/
node = left;
continue;

}
}
if (node->start <= last) { /* Cond1 */

if (node->last >= start) /* Cond2 */
return node; /* node is leftmost match */

if (node->rb.rb_right) {
node = rb_entry(node->rb.rb_right,

struct interval_tree_node, rb);
if (node->__subtree_last >= start)

continue;
(continues on next page)

2.7. Red-black Trees (rbtree) in Linux 303

Linux Core-api Documentation

(continued from previous page)
}

}
return NULL; /* No match */

}
}

Insertion/removal are defined using the following augmented callbacks:

static inline unsigned long
compute_subtree_last(struct interval_tree_node *node)
{

unsigned long max = node->last, subtree_last;
if (node->rb.rb_left) {

subtree_last = rb_entry(node->rb.rb_left,
struct interval_tree_node, rb)->__subtree_last;

if (max < subtree_last)
max = subtree_last;

}
if (node->rb.rb_right) {

subtree_last = rb_entry(node->rb.rb_right,
struct interval_tree_node, rb)->__subtree_last;

if (max < subtree_last)
max = subtree_last;

}
return max;

}

static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
{

while (rb != stop) {
struct interval_tree_node *node =

rb_entry(rb, struct interval_tree_node, rb);
unsigned long subtree_last = compute_subtree_last(node);
if (node->__subtree_last == subtree_last)

break;
node->__subtree_last = subtree_last;
rb = rb_parent(&node->rb);

}
}

static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
{

struct interval_tree_node *old =
rb_entry(rb_old, struct interval_tree_node, rb);

struct interval_tree_node *new =
rb_entry(rb_new, struct interval_tree_node, rb);

new->__subtree_last = old->__subtree_last;
}

static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
{

struct interval_tree_node *old =
rb_entry(rb_old, struct interval_tree_node, rb);

struct interval_tree_node *new =
rb_entry(rb_new, struct interval_tree_node, rb);

(continues on next page)

304 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

(continued from previous page)

new->__subtree_last = old->__subtree_last;
old->__subtree_last = compute_subtree_last(old);

}

static const struct rb_augment_callbacks augment_callbacks = {
augment_propagate, augment_copy, augment_rotate

};

void interval_tree_insert(struct interval_tree_node *node,
struct rb_root *root)

{
struct rb_node **link = &root->rb_node, *rb_parent = NULL;
unsigned long start = node->start, last = node->last;
struct interval_tree_node *parent;

while (*link) {
rb_parent = *link;
parent = rb_entry(rb_parent, struct interval_tree_node, rb);
if (parent->__subtree_last < last)

parent->__subtree_last = last;
if (start < parent->start)

link = &parent->rb.rb_left;
else

link = &parent->rb.rb_right;
}

node->__subtree_last = last;
rb_link_node(&node->rb, rb_parent, link);
rb_insert_augmented(&node->rb, root, &augment_callbacks);

}

void interval_tree_remove(struct interval_tree_node *node,
struct rb_root *root)

{
rb_erase_augmented(&node->rb, root, &augment_callbacks);

}

2.8 Generic radix trees/sparse arrays

Very simple and minimalistic, supporting arbitrary size entries up to PAGE_SIZE.

A genradix is defined with the type it will store, like so:

static GENRADIX(struct foo) foo_genradix;

The main operations are:

• genradix_init(radix) - initialize an empty genradix

• genradix_free(radix) - free all memory owned by the genradix and reinitialize
it

• genradix_ptr(radix, idx) - gets a pointer to the entry at idx, returning NULL
if that entry does not exist

2.8. Generic radix trees/sparse arrays 305

Linux Core-api Documentation

• genradix_ptr_alloc(radix, idx, gfp) - gets a pointer to an entry, allocating it if
necessary

• genradix_for_each(radix, iter, p) - iterate over each entry in a genradix

The radix tree allocates one page of entries at a time, so entries may exist that
were never explicitly allocated - they will be initialized to all zeroes.

Internally, a genradix is just a radix tree of pages, and indexing works in terms
of byte offsets. The wrappers in this header file use sizeof on the type the radix
contains to calculate a byte offset from the index - see __idx_to_offset.

2.8.1 generic radix tree functions

genradix_init(_radix)
initialize a genradix

Parameters
_radix genradix to initialize

Description
Does not fail

genradix_free(_radix)

Parameters
_radix the genradix to free

Description
After freeing, _radix will be reinitialized and empty
genradix_ptr(_radix, _idx)

get a pointer to a genradix entry

Parameters
_radix genradix to access

_idx index to fetch

Description
Returns a pointer to entry at _idx, or NULL if that entry does not exist.
genradix_ptr_alloc(_radix, _idx, _gfp)

get a pointer to a genradix entry, allocating it if necessary

Parameters
_radix genradix to access

_idx index to fetch

_gfp gfp mask

Description
Returns a pointer to entry at _idx, or NULL on allocation failure

306 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

genradix_iter_init(_radix, _idx)
initialize a genradix_iter

Parameters
_radix genradix that will be iterated over

_idx index to start iterating from

genradix_iter_peek(_iter, _radix)
get first entry at or above iterator’s current position

Parameters
_iter a genradix_iter

_radix genradix being iterated over

Description
If no more entries exist at or above _iter’s current position, returns NULL
genradix_for_each(_radix, _iter, _p)

iterate over entry in a genradix

Parameters
_radix genradix to iterate over

_iter a genradix_iter to track current position

_p pointer to genradix entry type

Description
On every iteration, _p will point to the current entry, and _iter.pos will be the
current entry’s index.
genradix_prealloc(_radix, _nr, _gfp)

preallocate entries in a generic radix tree

Parameters
_radix genradix to preallocate

_nr number of entries to preallocate

_gfp gfp mask

Description
Returns 0 on success, -ENOMEM on failure

2.8. Generic radix trees/sparse arrays 307

Linux Core-api Documentation

2.9 Generic bitfield packing and unpacking functions

2.9.1 Problem statement

Whenworking with hardware, one has to choose between several approaches of in-
terfacing with it. One can memory-map a pointer to a carefully crafted struct over
the hardware device’s memory region, and access its fields as struct members
(potentially declared as bitfields). But writing code this way would make it less
portable, due to potential endianness mismatches between the CPU and the hard-
ware device. Additionally, one has to pay close attention when translating register
definitions from the hardware documentation into bit field indices for the structs.
Also, some hardware (typically networking equipment) tends to group its register
fields in ways that violate any reasonable word boundaries (sometimes even 64 bit
ones). This creates the inconvenience of having to define“high”and“low”portions
of register fields within the struct. A more robust alternative to struct field defi-
nitions would be to extract the required fields by shifting the appropriate number
of bits. But this would still not protect from endianness mismatches, except if all
memory accesses were performed byte-by-byte. Also the code can easily get clut-
tered, and the high-level idea might get lost among the many bit shifts required.
Many drivers take the bit-shifting approach and then attempt to reduce the clut-
ter with tailored macros, but more often than not these macros take shortcuts that
still prevent the code from being truly portable.

2.9.2 The solution

This API deals with 2 basic operations:

• Packing a CPU-usable number into a memory buffer (with hardware con-
straints/quirks)

• Unpacking a memory buffer (which has hardware constraints/quirks) into a
CPU-usable number.

The API offers an abstraction over said hardware constraints and quirks, over CPU
endianness and therefore between possible mismatches between the two.

The basic unit of these API functions is the u64. From the CPU’s perspective, bit
63 always means bit offset 7 of byte 7, albeit only logically. The question is: where
do we lay this bit out in memory?

The following examples cover the memory layout of a packed u64 field. The byte
offsets in the packed buffer are always implicitly 0, 1, ⋯7. What the examples
show is where the logical bytes and bits sit.

1. Normally (no quirks), we would do it like this:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39␣
↪→38 37 36 35 34 33 32
7 6 5 4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7␣
↪→ 6 5 4 3 2 1 0
3 2 1 0

308 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

That is, the MSByte (7) of the CPU-usable u64 sits at memory offset 0, and the
LSByte (0) of the u64 sits at memory offset 7. This corresponds to what most folks
would regard to as“big endian”, where bit i corresponds to the number 2^i. This
is also referred to in the code comments as “logical”notation.
2. If QUIRK_MSB_ON_THE_RIGHT is set, we do it like this:

56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32␣
↪→33 34 35 36 37 38 39
7 6 5 4
24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0␣
↪→ 1 2 3 4 5 6 7
3 2 1 0

That is, QUIRK_MSB_ON_THE_RIGHT does not affect byte positioning, but inverts
bit offsets inside a byte.

3. If QUIRK_LITTLE_ENDIAN is set, we do it like this:

39 38 37 36 35 34 33 32 47 46 45 44 43 42 41 40 55 54 53 52 51 50 49 48 63␣
↪→62 61 60 59 58 57 56
4 5 6 7
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31␣
↪→30 29 28 27 26 25 24
0 1 2 3

Therefore, QUIRK_LITTLE_ENDIAN means that inside the memory region, every
byte from each 4-byte word is placed at its mirrored position compared to the
boundary of that word.

4. If QUIRK_MSB_ON_THE_RIGHT and QUIRK_LITTLE_ENDIAN are both set,
we do it like this:

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56␣
↪→57 58 59 60 61 62 63
4 5 6 7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24␣
↪→25 26 27 28 29 30 31
0 1 2 3

5. If just QUIRK_LSW32_IS_FIRST is set, we do it like this:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7␣
↪→ 6 5 4 3 2 1 0
3 2 1 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39␣
↪→38 37 36 35 34 33 32
7 6 5 4

In this case the 8 byte memory region is interpreted as follows: first 4 bytes cor-
respond to the least significant 4-byte word, next 4 bytes to the more significant
4-byte word.

6. If QUIRK_LSW32_IS_FIRST and QUIRK_MSB_ON_THE_RIGHT are set, we do
it like this:

2.9. Generic bitfield packing and unpacking functions 309

Linux Core-api Documentation

24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0␣
↪→ 1 2 3 4 5 6 7
3 2 1 0
56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32␣
↪→33 34 35 36 37 38 39
7 6 5 4

7. If QUIRK_LSW32_IS_FIRST and QUIRK_LITTLE_ENDIAN are set, it looks like
this:

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31␣
↪→30 29 28 27 26 25 24
0 1 2 3
39 38 37 36 35 34 33 32 47 46 45 44 43 42 41 40 55 54 53 52 51 50 49 48 63␣
↪→62 61 60 59 58 57 56
4 5 6 7

8. If QUIRK_LSW32_IS_FIRST, QUIRK_LITTLE_ENDIAN and
QUIRK_MSB_ON_THE_RIGHT are set, it looks like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24␣
↪→25 26 27 28 29 30 31
0 1 2 3
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56␣
↪→57 58 59 60 61 62 63
4 5 6 7

We always think of our offsets as if there were no quirk, and we translate them
afterwards, before accessing the memory region.

2.9.3 Intended use

Drivers that opt to use this API first need to identify which of the above 3 quirk
combinations (for a total of 8) match what the hardware documentation describes.
Then they should wrap the packing() function, creating a new xxx_packing() that
calls it using the proper QUIRK_* one-hot bits set.

The packing() function returns an int-encoded error code, which protects the pro-
grammer against incorrect API use. The errors are not expected to occur durring
runtime, therefore it is reasonable for xxx_packing() to return void and simply
swallow those errors. Optionally it can dump stack or print the error description.

2.10 ktime accessors

Device drivers can read the current time using ktime_get() and the many related
functions declared in linux/timekeeping.h. As a rule of thumb, using an accessor
with a shorter name is preferred over one with a longer name if both are equally
fit for a particular use case.

310 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

2.10.1 Basic ktime_t based interfaces

The recommended simplest form returns an opaque ktime_t, with variants that
return time for different clock references:

ktime_t ktime_get(void)
CLOCK_MONOTONIC

Useful for reliable timestamps and measuring short time intervals accurately.
Starts at system boot time but stops during suspend.

ktime_t ktime_get_boottime(void)
CLOCK_BOOTTIME

Like ktime_get(), but does not stop when suspended. This can be used e.g.
for key expiration times that need to be synchronized with other machines
across a suspend operation.

ktime_t ktime_get_real(void)
CLOCK_REALTIME

Returns the time in relative to the UNIX epoch starting in 1970 using the
Coordinated Universal Time (UTC), same as gettimeofday() user space. This
is used for all timestamps that need to persist across a reboot, like inode
times, but should be avoided for internal uses, since it can jump backwards
due to a leap second update, NTP adjustment settimeofday() operation from
user space.

ktime_t ktime_get_clocktai(void)

CLOCK_TAI

Like ktime_get_real(), but uses the International Atomic Time (TAI) refer-
ence instead of UTC to avoid jumping on leap second updates. This is rarely
useful in the kernel.

ktime_t ktime_get_raw(void)
CLOCK_MONOTONIC_RAW

Like ktime_get(), but runs at the same rate as the hardware clocksource
without (NTP) adjustments for clock drift. This is also rarely needed in the
kernel.

2.10.2 nanosecond, timespec64, and second output

For all of the above, there are variants that return the time in a different format
depending on what is required by the user:

u64 ktime_get_ns(void)
u64 ktime_get_boottime_ns(void)
u64 ktime_get_real_ns(void)
u64 ktime_get_clocktai_ns(void)
u64 ktime_get_raw_ns(void)

Same as the plain ktime_get functions, but returning a u64 number of
nanoseconds in the respective time reference, which may be more convenient
for some callers.

2.10. ktime accessors 311

Linux Core-api Documentation

void ktime_get_ts64(struct timespec64 *)
void ktime_get_boottime_ts64(struct timespec64 *)
void ktime_get_real_ts64(struct timespec64 *)
void ktime_get_clocktai_ts64(struct timespec64 *)
void ktime_get_raw_ts64(struct timespec64 *)

Same above, but returns the time in a‘struct timespec64’, split into seconds
and nanoseconds. This can avoid an extra division when printing the time,
or when passing it into an external interface that expects a ‘timespec’or
‘timeval’structure.

time64_t ktime_get_seconds(void)
time64_t ktime_get_boottime_seconds(void)
time64_t ktime_get_real_seconds(void)
time64_t ktime_get_clocktai_seconds(void)
time64_t ktime_get_raw_seconds(void)

Return a coarse-grained version of the time as a scalar time64_t. This avoids
accessing the clock hardware and rounds down the seconds to the full seconds
of the last timer tick using the respective reference.

2.10.3 Coarse and fast_ns access

Some additional variants exist for more specialized cases:

ktime_t ktime_get_coarse(void)
ktime_t ktime_get_coarse_boottime(void)
ktime_t ktime_get_coarse_real(void)
ktime_t ktime_get_coarse_clocktai(void)

u64 ktime_get_coarse_ns(void)
u64 ktime_get_coarse_boottime_ns(void)
u64 ktime_get_coarse_real_ns(void)
u64 ktime_get_coarse_clocktai_ns(void)

void ktime_get_coarse_ts64(struct timespec64 *)
void ktime_get_coarse_boottime_ts64(struct timespec64 *)
void ktime_get_coarse_real_ts64(struct timespec64 *)
void ktime_get_coarse_clocktai_ts64(struct timespec64 *)

These are quicker than the non-coarse versions, but less ac-
curate, corresponding to CLOCK_MONOTONIC_COARSE and
CLOCK_REALTIME_COARSE in user space, along with the equivalent
boottime/tai/raw timebase not available in user space.

The time returned here corresponds to the last timer tick, which may be as
much as 10ms in the past (for CONFIG_HZ=100), same as reading the‘jiffies’
variable. These are only useful when called in a fast path and one still expects
better than second accuracy, but can’t easily use ‘jiffies’, e.g. for inode
timestamps. Skipping the hardware clock access saves around 100 CPU cy-
cles on most modern machines with a reliable cycle counter, but up to several
microseconds on older hardware with an external clocksource.

u64 ktime_get_mono_fast_ns(void)
u64 ktime_get_raw_fast_ns(void)
u64 ktime_get_boot_fast_ns(void)

312 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

u64 ktime_get_real_fast_ns(void)
These variants are safe to call from any context, including from a non-
maskable interrupt (NMI) during a timekeeper update, and while we are en-
tering suspend with the clocksource powered down. This is useful in some
tracing or debugging code as well as machine check reporting, but most
drivers should never call them, since the time is allowed to jump under certain
conditions.

2.10.4 Deprecated time interfaces

Older kernels used some other interfaces that are now being phased out but may
appear in third-party drivers being ported here. In particular, all interfaces re-
turning a‘struct timeval’or‘struct timespec’have been replaced because the
tv_sec member overflows in year 2038 on 32-bit architectures. These are the rec-
ommended replacements:

void ktime_get_ts(struct timespec *)
Use ktime_get() or ktime_get_ts64() instead.

void do_gettimeofday(struct timeval *)
void getnstimeofday(struct timespec *)
void getnstimeofday64(struct timespec64 *)
void ktime_get_real_ts(struct timespec *)

ktime_get_real_ts64() is a direct replacement, but consider using
monotonic time (ktime_get_ts64()) and/or a ktime_t based interface
(ktime_get()/ktime_get_real()).

struct timespec current_kernel_time(void)
struct timespec64 current_kernel_time64(void)
struct timespec get_monotonic_coarse(void)
struct timespec64 get_monotonic_coarse64(void)

These are replaced by ktime_get_coarse_real_ts64() and
ktime_get_coarse_ts64(). However, A lot of code that wants coarse-
grained times can use the simple ‘jiffies’instead, while some drivers may
actually want the higher resolution accessors these days.

struct timespec getrawmonotonic(void)
struct timespec64 getrawmonotonic64(void)
struct timespec timekeeping_clocktai(void)
struct timespec64 timekeeping_clocktai64(void)
struct timespec get_monotonic_boottime(void)
struct timespec64 get_monotonic_boottime64(void)

These are replaced by ktime_get_raw()/ktime_get_raw_ts64(),
ktime_get_clocktai()/ktime_get_clocktai_ts64() as well as
ktime_get_boottime()/ktime_get_boottime_ts64(). However, if the
particular choice of clock source is not important for the user, consider
converting to ktime_get()/ktime_get_ts64() instead for consistency.

2.10. ktime accessors 313

Linux Core-api Documentation

2.11 The errseq_t datatype

An errseq_t is a way of recording errors in one place, and allowing any number of
“subscribers”to tell whether it has changed since a previous point where it was
sampled.

The initial use case for this is tracking errors for file synchronization syscalls
(fsync, fdatasync, msync and sync_file_range), but it may be usable in other sit-
uations.

It’s implemented as an unsigned 32-bit value. The low order bits are designated
to hold an error code (between 1 and MAX_ERRNO). The upper bits are used as a
counter. This is done with atomics instead of locking so that these functions can
be called from any context.

Note that there is a risk of collisions if new errors are being recorded frequently,
since we have so few bits to use as a counter.

To mitigate this, the bit between the error value and counter is used as a flag to
tell whether the value has been sampled since a new value was recorded. That
allows us to avoid bumping the counter if no one has sampled it since the last time
an error was recorded.

Thus we end up with a value that looks something like this:

31..13 12 11..0
counter SF errno

The general idea is for “watchers”to sample an errseq_t value and keep it as a
running cursor. That value can later be used to tell whether any new errors have
occurred since that sampling was done, and atomically record the state at the time
that it was checked. This allows us to record errors in one place, and then have a
number of“watchers”that can tell whether the value has changed since they last
checked it.

A new errseq_t should always be zeroed out. An errseq_t value of all zeroes is the
special (but common) case where there has never been an error. An all zero value
thus serves as the“epoch”if one wishes to know whether there has ever been an
error set since it was first initialized.

2.11.1 API usage

Let me tell you a story about a worker drone. Now, he’s a good worker overall,
but the company is a little⋯management heavy. He has to report to 77 supervisors
today, and tomorrow the“big boss”is coming in from out of town and he’s sure
to test the poor fellow too.

They’re all handing him work to do – so much he can’t keep track of who handed
him what, but that’s not really a big problem. The supervisors just want to know
when he’s finished all of the work they’ve handed him so far and whether he
made any mistakes since they last asked.

314 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

He might have made the mistake on work they didn’t actually hand him, but he
can’t keep track of things at that level of detail, all he can remember is the most
recent mistake that he made.

Here’s our worker_drone representation:
struct worker_drone {

errseq_t wd_err; /* for recording errors */
};

Every day, the worker_drone starts out with a blank slate:

struct worker_drone wd;

wd.wd_err = (errseq_t)0;

The supervisors come in and get an initial read for the day. They don’t care about
anything that happened before their watch begins:

struct supervisor {
errseq_t s_wd_err; /* private "cursor" for wd_err */
spinlock_t s_wd_err_lock; /* protects s_wd_err */

}

struct supervisor su;

su.s_wd_err = errseq_sample(&wd.wd_err);
spin_lock_init(&su.s_wd_err_lock);

Now they start handing him tasks to do. Every few minutes they ask him to finish
up all of the work they’ve handed him so far. Then they ask him whether he made
any mistakes on any of it:

spin_lock(&su.su_wd_err_lock);
err = errseq_check_and_advance(&wd.wd_err, &su.s_wd_err);
spin_unlock(&su.su_wd_err_lock);

Up to this point, that just keeps returning 0.

Now, the owners of this company are quite miserly and have given him substan-
dard equipment with which to do his job. Occasionally it glitches and he makes a
mistake. He sighs a heavy sigh, and marks it down:

errseq_set(&wd.wd_err, -EIO);

⋯and then gets back to work. The supervisors eventually poll again and they each
get the error when they next check. Subsequent calls will return 0, until another
error is recorded, at which point it’s reported to each of them once.

Note that the supervisors can’t tell how many mistakes he made, only whether
one was made since they last checked, and the latest value recorded.

Occasionally the big boss comes in for a spot check and asks the worker to do a one-
off job for him. He’s not really watching the worker full-time like the supervisors,
but he does need to knowwhether amistake occurredwhile his job was processing.

2.11. The errseq_t datatype 315

Linux Core-api Documentation

He can just sample the current errseq_t in the worker, and then use that to tell
whether an error has occurred later:

errseq_t since = errseq_sample(&wd.wd_err);
/* submit some work and wait for it to complete */
err = errseq_check(&wd.wd_err, since);

Since he’s just going to discard “since”after that point, he doesn’t need to
advance it here. He also doesn’t need any locking since it’s not usable by anyone
else.

2.11.2 Serializing errseq_t cursor updates

Note that the errseq_t API does not protect the errseq_t cursor during a
check_and_advance_operation. Only the canonical error code is handled atomi-
cally. In a situation where more than one task might be using the same errseq_t
cursor at the same time, it’s important to serialize updates to that cursor.
If that’s not done, then it’s possible for the cursor to go backward in which case
the same error could be reported more than once.

Because of this, it’s often advantageous to first do an errseq_check to see if any-
thing has changed, and only later do an errseq_check_and_advance after taking
the lock. e.g.:

if (errseq_check(&wd.wd_err, READ_ONCE(su.s_wd_err)) {
/* su.s_wd_err is protected by s_wd_err_lock */
spin_lock(&su.s_wd_err_lock);
err = errseq_check_and_advance(&wd.wd_err, &su.s_wd_err);
spin_unlock(&su.s_wd_err_lock);

}

That avoids the spinlock in the common case where nothing has changed since the
last time it was checked.

2.11.3 Functions

errseq_t errseq_set(errseq_t * eseq, int err)
set a errseq_t for later reporting

Parameters
errseq_t * eseq errseq_t field that should be set

int err error to set (must be between -1 and -MAX_ERRNO)

Description
This function sets the error in eseq, and increments the sequence counter if the
last sequence was sampled at some point in the past.

Any error set will always overwrite an existing error.

Return

316 Chapter 2. Data structures and low-level utilities

Linux Core-api Documentation

The previous value, primarily for debugging purposes. The return value should not
be used as a previously sampled value in later calls as it will not have the SEEN
flag set.

errseq_t errseq_sample(errseq_t * eseq)
Grab current errseq_t value.

Parameters
errseq_t * eseq Pointer to errseq_t to be sampled.

Description
This function allows callers to initialise their errseq_t variable. If the error has
been “seen”, new callers will not see an old error. If there is an unseen error in
eseq, the caller of this function will see it the next time it checks for an error.
Context
Any context.

Return
The current errseq value.

int errseq_check(errseq_t * eseq, errseq_t since)
Has an error occurred since a particular sample point?

Parameters
errseq_t * eseq Pointer to errseq_t value to be checked.

errseq_t since Previously-sampled errseq_t from which to check.

Description
Grab the value that eseq points to, and see if it has changed since the given value
was sampled. The since value is not advanced, so there is no need to mark the
value as seen.

Return
The latest error set in the errseq_t or 0 if it hasn’t changed.
int errseq_check_and_advance(errseq_t * eseq, errseq_t * since)

Check an errseq_t and advance to current value.

Parameters
errseq_t * eseq Pointer to value being checked and reported.

errseq_t * since Pointer to previously-sampled errseq_t to check against and
advance.

Description
Grab the eseq value, and see whether it matches the value that since points to. If
it does, then just return 0.

If it doesn’t, then the value has changed. Set the“seen”flag, and try to swap it
into place as the new eseq value. Then, set that value as the new “since”value,
and return whatever the error portion is set to.

2.11. The errseq_t datatype 317

Linux Core-api Documentation

Note that no locking is provided here for concurrent updates to the“since”value.
The caller must provide that if necessary. Because of this, callers may want to do
a lockless errseq_check before taking the lock and calling this.

Return
Negative errno if one has been stored, or 0 if no new error has occurred.

318 Chapter 2. Data structures and low-level utilities

CHAPTER

THREE

CONCURRENCY PRIMITIVES

How Linux keeps everything from happening at the same time. See /locking/index
for more related documentation.

3.1 Semantics and Behavior of Atomic and Bitmask Op-
erations

Author David S. Miller
This document is intended to serve as a guide to Linux port maintainers on how to
implement atomic counter, bitops, and spinlock interfaces properly.

3.1.1 Atomic Type And Operations

The atomic_t type should be defined as a signed integer and the atomic_long_t
type as a signed long integer. Also, they should be made opaque such that any
kind of cast to a normal C integer type will fail. Something like the following
should suffice:

typedef struct { int counter; } atomic_t;
typedef struct { long counter; } atomic_long_t;

Historically, counter has been declared volatile. This is now discouraged.
See Documentation/process/volatile-considered-harmful.rst for the complete ra-
tionale.

local_t is very similar to atomic_t. If the counter is per CPU and only updated by
one CPU, local_t is probably more appropriate. Please see Documentation/core-
api/local_ops.rst for the semantics of local_t.

The first operations to implement for atomic_t’s are the initializers and plain
writes.

#define ATOMIC_INIT(i) { (i) }
#define atomic_set(v, i) ((v)->counter = (i))

The first macro is used in definitions, such as:

static atomic_t my_counter = ATOMIC_INIT(1);

319

Linux Core-api Documentation

The initializer is atomic in that the return values of the atomic operations are
guaranteed to be correct reflecting the initialized value if the initializer is used
before runtime. If the initializer is used at runtime, a proper implicit or explicit
read memory barrier is needed before reading the value with atomic_read from
another thread.

As with all of the atomic_ interfaces, replace the leading atomic_ with
atomic_long_ to operate on atomic_long_t.

The second interface can be used at runtime, as in:

struct foo { atomic_t counter; };
...

struct foo *k;

k = kmalloc(sizeof(*k), GFP_KERNEL);
if (!k)

return -ENOMEM;
atomic_set(&k->counter, 0);

The setting is atomic in that the return values of the atomic operations by all
threads are guaranteed to be correct reflecting either the value that has been
set with this operation or set with another operation. A proper implicit or explicit
memory barrier is needed before the value set with the operation is guaranteed to
be readable with atomic_read from another thread.

Next, we have:

#define atomic_read(v) ((v)->counter)

which simply reads the counter value currently visible to the calling thread. The
read is atomic in that the return value is guaranteed to be one of the values ini-
tialized or modified with the interface operations if a proper implicit or explicit
memory barrier is used after possible runtime initialization by any other thread
and the value is modified only with the interface operations. atomic_read does
not guarantee that the runtime initialization by any other thread is visible yet, so
the user of the interface must take care of that with a proper implicit or explicit
memory barrier.

Warning: atomic_read() and atomic_set() DO NOT IMPLY BARRIERS!

Some architectures may choose to use the volatile keyword, barriers, or in-
line assembly to guarantee some degree of immediacy for atomic_read() and
atomic_set(). This is not uniformly guaranteed, and may change in the future,
so all users of atomic_t should treat atomic_read() and atomic_set() as simple C
statements that may be reordered or optimized away entirely by the compiler
or processor, and explicitly invoke the appropriate compiler and/or memory
barrier for each use case. Failure to do so will result in code that may sud-
denly break when used with different architectures or compiler optimizations,
or even changes in unrelated code which changes how the compiler optimizes
the section accessing atomic_t variables.

Properly aligned pointers, longs, ints, and chars (and unsigned equivalents) may

320 Chapter 3. Concurrency primitives

Linux Core-api Documentation

be atomically loaded from and stored to in the same sense as described for
atomic_read() and atomic_set(). The READ_ONCE() and WRITE_ONCE() macros
should be used to prevent the compiler from using optimizations that might oth-
erwise optimize accesses out of existence on the one hand, or that might create
unsolicited accesses on the other.

For example consider the following code:

while (a > 0)
do_something();

If the compiler can prove that do_something() does not store to the variable a, then
the compiler is within its rights transforming this to the following:

if (a > 0)
for (;;)

do_something();

If you don’t want the compiler to do this (and you probably don’t), then you should
use something like the following:

while (READ_ONCE(a) > 0)
do_something();

Alternatively, you could place a barrier() call in the loop.

For another example, consider the following code:

tmp_a = a;
do_something_with(tmp_a);
do_something_else_with(tmp_a);

If the compiler can prove that do_something_with() does not store to the variable a,
then the compiler is within its rights to manufacture an additional load as follows:

tmp_a = a;
do_something_with(tmp_a);
tmp_a = a;
do_something_else_with(tmp_a);

This could fatally confuse your code if it expected the same value to be passed to
do_something_with() and do_something_else_with().

The compiler would be likely to manufacture this additional load if
do_something_with() was an inline function that made very heavy use of registers:
reloading from variable a could save a flush to the stack and later reload. To
prevent the compiler from attacking your code in this manner, write the following:

tmp_a = READ_ONCE(a);
do_something_with(tmp_a);
do_something_else_with(tmp_a);

For a final example, consider the following code, assuming that the variable a is
set at boot time before the second CPU is brought online and never changed later,
so that memory barriers are not needed:

3.1. Semantics and Behavior of Atomic and Bitmask Operations 321

Linux Core-api Documentation

if (a)
b = 9;

else
b = 42;

The compiler is within its rights to manufacture an additional store by transform-
ing the above code into the following:

b = 42;
if (a)

b = 9;

This could come as a fatal surprise to other code running concurrently that ex-
pected b to never have the value 42 if a was zero. To prevent the compiler from
doing this, write something like:

if (a)
WRITE_ONCE(b, 9);

else
WRITE_ONCE(b, 42);

Don’t even -think- about doing this without proper use of memory barriers, locks,
or atomic operations if variable a can change at runtime!

Warning: READ_ONCE() OR WRITE_ONCE() DO NOT IMPLY A BARRIER!

Now, we move onto the atomic operation interfaces typically implemented with
the help of assembly code.

void atomic_add(int i, atomic_t *v);
void atomic_sub(int i, atomic_t *v);
void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);

These four routines add and subtract integral values to/from the given atomic_t
value. The first two routines pass explicit integers by which to make the adjust-
ment, whereas the latter two use an implicit adjustment value of “1”.
One very important aspect of these two routines is that they DO NOT require any
explicit memory barriers. They need only perform the atomic_t counter update in
an SMP safe manner.

Next, we have:

int atomic_inc_return(atomic_t *v);
int atomic_dec_return(atomic_t *v);

These routines add 1 and subtract 1, respectively, from the given atomic_t and
return the new counter value after the operation is performed.

Unlike the above routines, it is required that these primitives include explicit mem-
ory barriers that are performed before and after the operation. It must be done
such that all memory operations before and after the atomic operation calls are
strongly ordered with respect to the atomic operation itself.

322 Chapter 3. Concurrency primitives

Linux Core-api Documentation

For example, it should behave as if a smp_mb() call existed both before and after
the atomic operation.

If the atomic instructions used in an implementation provide explicit memory bar-
rier semantics which satisfy the above requirements, that is fine as well.

Let’s move on:
int atomic_add_return(int i, atomic_t *v);
int atomic_sub_return(int i, atomic_t *v);

These behave just like atomic_{inc,dec}_return() except that an explicit counter
adjustment is given instead of the implicit “1”. This means that like
atomic_{inc,dec}_return(), the memory barrier semantics are required.

Next:

int atomic_inc_and_test(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);

These two routines increment and decrement by 1, respectively, the given atomic
counter. They return a boolean indicating whether the resulting counter value was
zero or not.

Again, these primitives provide explicit memory barrier semantics around the
atomic operation:

int atomic_sub_and_test(int i, atomic_t *v);

This is identical to atomic_dec_and_test() except that an explicit decrement is
given instead of the implicit “1”. This primitive must provide explicit memory
barrier semantics around the operation:

int atomic_add_negative(int i, atomic_t *v);

The given increment is added to the given atomic counter value. A boolean is
return which indicates whether the resulting counter value is negative. This prim-
itive must provide explicit memory barrier semantics around the operation.

Then:

int atomic_xchg(atomic_t *v, int new);

This performs an atomic exchange operation on the atomic variable v, setting the
given new value. It returns the old value that the atomic variable v had just before
the operation.

atomic_xchg must provide explicit memory barriers around the operation.

int atomic_cmpxchg(atomic_t *v, int old, int new);

This performs an atomic compare exchange operation on the atomic value v, with
the given old and new values. Like all atomic_xxx operations, atomic_cmpxchg will
only satisfy its atomicity semantics as long as all other accesses of *v are performed
through atomic_xxx operations.

3.1. Semantics and Behavior of Atomic and Bitmask Operations 323

Linux Core-api Documentation

atomic_cmpxchg must provide explicit memory barriers around the operation, al-
though if the comparison fails then no memory ordering guarantees are required.

The semantics for atomic_cmpxchg are the same as those defined for‘cas’below.
Finally:

int atomic_add_unless(atomic_t *v, int a, int u);

If the atomic value v is not equal to u, this function adds a to v, and returns non
zero. If v is equal to u then it returns zero. This is done as an atomic operation.

atomic_add_unless must provide explicit memory barriers around the operation
unless it fails (returns 0).

atomic_inc_not_zero, equivalent to atomic_add_unless(v, 1, 0)

If a caller requires memory barrier semantics around an atomic_t operation which
does not return a value, a set of interfaces are defined which accomplish this:

void smp_mb__before_atomic(void);
void smp_mb__after_atomic(void);

Preceding a non-value-returning read-modify-write atomic operation with
smp_mb__before_atomic() and following it with smp_mb__after_atomic() provides
the same full ordering that is provided by value-returning read-modify-write
atomic operations.

For example, smp_mb__before_atomic() can be used like so:

obj->dead = 1;
smp_mb__before_atomic();
atomic_dec(&obj->ref_count);

It makes sure that all memory operations preceding the atomic_dec() call are
strongly ordered with respect to the atomic counter operation. In the above exam-
ple, it guarantees that the assignment of“1”to obj->dead will be globally visible
to other cpus before the atomic counter decrement.

Without the explicit smp_mb__before_atomic() call, the implementation could
legally allow the atomic counter update visible to other cpus before the“obj->dead
= 1;”assignment.
A missing memory barrier in the cases where they are required by the atomic_t
implementation above can have disastrous results. Here is an example, which
follows a pattern occurring frequently in the Linux kernel. It is the use of atomic
counters to implement reference counting, and it works such that once the counter
falls to zero it can be guaranteed that no other entity can be accessing the object:

static void obj_list_add(struct obj *obj, struct list_head *head)
{

obj->active = 1;
list_add(&obj->list, head);

}

static void obj_list_del(struct obj *obj)
{

(continues on next page)

324 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
list_del(&obj->list);
obj->active = 0;

}

static void obj_destroy(struct obj *obj)
{

BUG_ON(obj->active);
kfree(obj);

}

struct obj *obj_list_peek(struct list_head *head)
{

if (!list_empty(head)) {
struct obj *obj;

obj = list_entry(head->next, struct obj, list);
atomic_inc(&obj->refcnt);
return obj;

}
return NULL;

}

void obj_poke(void)
{

struct obj *obj;

spin_lock(&global_list_lock);
obj = obj_list_peek(&global_list);
spin_unlock(&global_list_lock);

if (obj) {
obj->ops->poke(obj);
if (atomic_dec_and_test(&obj->refcnt))

obj_destroy(obj);
}

}

void obj_timeout(struct obj *obj)
{

spin_lock(&global_list_lock);
obj_list_del(obj);
spin_unlock(&global_list_lock);

if (atomic_dec_and_test(&obj->refcnt))
obj_destroy(obj);

}

Note: This is a simplification of the ARP queue management in the generic neigh-
bour discover code of the networking. Olaf Kirch found a bug wrt. memory bar-
riers in kfree_skb() that exposed the atomic_t memory barrier requirements quite
clearly.

Given the above scheme, it must be the case that the obj->active update done
by the obj list deletion be visible to other processors before the atomic counter

3.1. Semantics and Behavior of Atomic and Bitmask Operations 325

Linux Core-api Documentation

decrement is performed.

Otherwise, the counter could fall to zero, yet obj->active would still be set, thus
triggering the assertion in obj_destroy(). The error sequence looks like this:

cpu 0 cpu 1
obj_poke() obj_timeout()
obj = obj_list_peek();
... gains ref to obj, refcnt=2

obj_list_del(obj);
obj->active = 0 ...
... visibility delayed ...
atomic_dec_and_test()
... refcnt drops to 1 ...

atomic_dec_and_test()
... refcount drops to 0 ...
obj_destroy()
BUG() triggers since obj->active
still seen as one

obj->active update visibility occurs

With the memory barrier semantics required of the atomic_t operations which re-
turn values, the above sequence of memory visibility can never happen. Specifi-
cally, in the above case the atomic_dec_and_test() counter decrement would not
become globally visible until the obj->active update does.

As a historical note, 32-bit Sparc used to only allow usage of 24-bits of its atomic_t
type. This was because it used 8 bits as a spinlock for SMP safety. Sparc32 lacked a
“compare and swap”type instruction. However, 32-bit Sparc has since been moved
over to a“hash table of spinlocks”scheme, that allows the full 32-bit counter to be
realized. Essentially, an array of spinlocks are indexed into based upon the address
of the atomic_t being operated on, and that lock protects the atomic operation.
Parisc uses the same scheme.

Another note is that the atomic_t operations returning values are extremely slow
on an old 386.

3.1.2 Atomic Bitmask

We will now cover the atomic bitmask operations. You will find that their SMP
and memory barrier semantics are similar in shape and scope to the atomic_t ops
above.

Native atomic bit operations are defined to operate on objects aligned to the size
of an “unsigned long”C data type, and are least of that size. The endianness of
the bits within each “unsigned long”are the native endianness of the cpu.
void set_bit(unsigned long nr, volatile unsigned long *addr);
void clear_bit(unsigned long nr, volatile unsigned long *addr);
void change_bit(unsigned long nr, volatile unsigned long *addr);

These routines set, clear, and change, respectively, the bit number indicated by
“nr”on the bit mask pointed to by “ADDR”.
They must execute atomically, yet there are no implicit memory barrier semantics
required of these interfaces.

326 Chapter 3. Concurrency primitives

Linux Core-api Documentation

int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);

Like the above, except that these routines return a boolean which indicates
whether the changed bit was set _BEFORE_ the atomic bit operation.

Warning: It is incredibly important that the value be a boolean, ie. “0”or
“1”. Do not try to be fancy and save a few instructions by declaring the above
to return“long”and just returning something like“old_val & mask”because
that will not work.

For one thing, this return value gets truncated to int in many code paths using
these interfaces, so on 64-bit if the bit is set in the upper 32-bits then testers will
never see that.

One great example of where this problem crops up are the thread_info flag oper-
ations. Routines such as test_and_set_ti_thread_flag() chop the return value into
an int. There are other places where things like this occur as well.

These routines, like the atomic_t counter operations returning values, must pro-
vide explicit memory barrier semantics around their execution. All memory oper-
ations before the atomic bit operation call must be made visible globally before
the atomic bit operation is made visible. Likewise, the atomic bit operation must
be visible globally before any subsequent memory operation is made visible. For
example:

obj->dead = 1;
if (test_and_set_bit(0, &obj->flags))

/* ... */;
obj->killed = 1;

The implementation of test_and_set_bit() must guarantee that “obj->dead
= 1;”is visible to cpus before the atomic memory operation done by
test_and_set_bit() becomes visible. Likewise, the atomic memory operation
done by test_and_set_bit() must become visible before “obj->killed = 1;”is
visible.

Finally there is the basic operation:

int test_bit(unsigned long nr, __const__ volatile unsigned long *addr);

Which returns a boolean indicating if bit “nr”is set in the bitmask pointed to by
“addr”.
If explicit memory barriers are required around {set,clear}_bit() (which do not
return a value, and thus does not need to provide memory barrier semantics), two
interfaces are provided:

void smp_mb__before_atomic(void);
void smp_mb__after_atomic(void);

They are used as follows, and are akin to their atomic_t operation brothers:

3.1. Semantics and Behavior of Atomic and Bitmask Operations 327

Linux Core-api Documentation

/* All memory operations before this call will
* be globally visible before the clear_bit().
*/

smp_mb__before_atomic();
clear_bit(...);

/* The clear_bit() will be visible before all
* subsequent memory operations.
*/
smp_mb__after_atomic();

There are two special bitops with lock barrier semantics (acquire/release, same as
spinlocks). These operate in the same way as their non-_lock/unlock postfixed vari-
ants, except that they are to provide acquire/release semantics, respectively. This
means they can be used for bit_spin_trylock and bit_spin_unlock type operations
without specifying any more barriers.

int test_and_set_bit_lock(unsigned long nr, unsigned long *addr);
void clear_bit_unlock(unsigned long nr, unsigned long *addr);
void __clear_bit_unlock(unsigned long nr, unsigned long *addr);

The __clear_bit_unlock version is non-atomic, however it still implements unlock
barrier semantics. This can be useful if the lock itself is protecting the other bits
in the word.

Finally, there are non-atomic versions of the bitmask operations provided. They
are used in contexts where some other higher-level SMP locking scheme is being
used to protect the bitmask, and thus less expensive non-atomic operations may
be used in the implementation. They have names similar to the above bitmask
operation interfaces, except that two underscores are prefixed to the interface
name.

void __set_bit(unsigned long nr, volatile unsigned long *addr);
void __clear_bit(unsigned long nr, volatile unsigned long *addr);
void __change_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr);

These non-atomic variants also do not require any special memory barrier seman-
tics.

The routines xchg() and cmpxchg() must provide the same exact memory-barrier
semantics as the atomic and bit operations returning values.

Note: If someone wants to use xchg(), cmpxchg() and their variants,
linux/atomic.h should be included rather than asm/cmpxchg.h, unless the code
is in arch/* and can take care of itself.

Spinlocks and rwlocks have memory barrier expectations as well. The rule to
follow is simple:

1) When acquiring a lock, the implementation must make it globally visible be-
fore any subsequent memory operation.

328 Chapter 3. Concurrency primitives

Linux Core-api Documentation

2) When releasing a lock, the implementationmust make it such that all previous
memory operations are globally visible before the lock release.

Which finally brings us to _atomic_dec_and_lock(). There is an architecture-
neutral version implemented in lib/dec_and_lock.c, but most platforms will wish
to optimize this in assembler.

int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock);

Atomically decrement the given counter, and if will drop to zero atomically acquire
the given spinlock and perform the decrement of the counter to zero. If it does not
drop to zero, do nothing with the spinlock.

It is actually pretty simple to get the memory barrier correct. Simply satisfy the
spinlock grab requirements, which is make sure the spinlock operation is globally
visible before any subsequent memory operation.

We can demonstrate this operation more clearly if we define an abstract atomic
operation:

long cas(long *mem, long old, long new);

“cas”stands for “compare and swap”. It atomically:
1) Compares “old”with the value currently at “mem”.
2) If they are equal, “new”is written to “mem”.
3) Regardless, the current value at “mem”is returned.

As an example usage, here is what an atomic counter update might look like:

void example_atomic_inc(long *counter)
{

long old, new, ret;

while (1) {
old = *counter;
new = old + 1;

ret = cas(counter, old, new);
if (ret == old)

break;
}

}

Let’s use cas() in order to build a pseudo-C atomic_dec_and_lock():
int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock)
{

long old, new, ret;
int went_to_zero;

went_to_zero = 0;
while (1) {

old = atomic_read(atomic);
new = old - 1;
if (new == 0) {

(continues on next page)

3.1. Semantics and Behavior of Atomic and Bitmask Operations 329

Linux Core-api Documentation

(continued from previous page)
went_to_zero = 1;
spin_lock(lock);

}
ret = cas(atomic, old, new);
if (ret == old)

break;
if (went_to_zero) {

spin_unlock(lock);
went_to_zero = 0;

}
}

return went_to_zero;
}

Now, as far as memory barriers go, as long as spin_lock() strictly orders all sub-
sequent memory operations (including the cas()) with respect to itself, things will
be fine.

Said another way, _atomic_dec_and_lock() must guarantee that a counter dropping
to zero is never made visible before the spinlock being acquired.

Note: Note that this also means that for the case where the counter is not drop-
ping to zero, there are no memory ordering requirements.

3.2 refcount_t API compared to atomic_t

• Introduction

• Relevant types of memory ordering

• Comparison of functions

– case 1) - non-“Read/Modify/Write”(RMW) ops
– case 2) - increment-based ops that return no value
– case 3) - decrement-based RMW ops that return no value

– case 4) - increment-based RMW ops that return a value

– case 5) - generic dec/sub decrement-based RMWops that return a value
– case 6) other decrement-based RMW ops that return a value

– case 7) - lock-based RMW

330 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.2.1 Introduction

The goal of refcount_t API is to provide a minimal API for implementing an object’
s reference counters. While a generic architecture-independent implementation
from lib/refcount.c uses atomic operations underneath, there are a number of dif-
ferences between some of the refcount_*() and atomic_*() functions with re-
gards to the memory ordering guarantees. This document outlines the differences
and provides respective examples in order to help maintainers validate their code
against the change in these memory ordering guarantees.

The terms used through this document try to follow the formal LKMM defined in
tools/memory-model/Documentation/explanation.txt.

memory-barriers.txt and atomic_t.txt provide more background to the memory or-
dering in general and for atomic operations specifically.

3.2.2 Relevant types of memory ordering

Note: The following section only covers some of the memory ordering types that
are relevant for the atomics and reference counters and used through this docu-
ment. For a much broader picture please consult memory-barriers.txt document.

In the absence of any memory ordering guarantees (i.e. fully unordered) atomics
& refcounters only provide atomicity and program order (po) relation (on the same
CPU). It guarantees that each atomic_*() and refcount_*() operation is atomic
and instructions are executed in program order on a single CPU. This is imple-
mented using READ_ONCE()/WRITE_ONCE() and compare-and-swap primitives.

A strong (full) memory ordering guarantees that all prior loads and stores (all po-
earlier instructions) on the same CPU are completed before any po-later instruc-
tion is executed on the same CPU. It also guarantees that all po-earlier stores on
the same CPU and all propagated stores from other CPUs must propagate to all
other CPUs before any po-later instruction is executed on the original CPU (A-
cumulative property). This is implemented using smp_mb().

A RELEASE memory ordering guarantees that all prior loads and stores (all po-
earlier instructions) on the same CPU are completed before the operation. It also
guarantees that all po-earlier stores on the same CPU and all propagated stores
from other CPUs must propagate to all other CPUs before the release operation
(A-cumulative property). This is implemented using smp_store_release().

An ACQUIRE memory ordering guarantees that all post loads and stores (all po-
later instructions) on the same CPU are completed after the acquire operation.
It also guarantees that all po-later stores on the same CPU must propagate to
all other CPUs after the acquire operation executes. This is implemented using
smp_acquire__after_ctrl_dep().

A control dependency (on success) for refcounters guarantees that if a reference
for an object was successfully obtained (reference counter increment or addition
happened, function returned true), then further stores are ordered against this
operation. Control dependency on stores are not implemented using any explicit

3.2. refcount_t API compared to atomic_t 331

Linux Core-api Documentation

barriers, but rely on CPU not to speculate on stores. This is only a single CPU
relation and provides no guarantees for other CPUs.

3.2.3 Comparison of functions

case 1) - non-“Read/Modify/Write”(RMW) ops

Function changes:

• atomic_set() –> refcount_set()

• atomic_read() –> refcount_read()

Memory ordering guarantee changes:

• none (both fully unordered)

case 2) - increment-based ops that return no value

Function changes:

• atomic_inc() –> refcount_inc()

• atomic_add() –> refcount_add()

Memory ordering guarantee changes:

• none (both fully unordered)

case 3) - decrement-based RMW ops that return no value

Function changes:

• atomic_dec() –> refcount_dec()

Memory ordering guarantee changes:

• fully unordered –> RELEASE ordering

case 4) - increment-based RMW ops that return a value

Function changes:

• atomic_inc_not_zero() –> refcount_inc_not_zero()

• no atomic counterpart –> refcount_add_not_zero()

Memory ordering guarantees changes:

• fully ordered –> control dependency on success for stores

Note: We really assume here that necessary ordering is provided as a result of
obtaining pointer to the object!

332 Chapter 3. Concurrency primitives

Linux Core-api Documentation

case 5) - generic dec/sub decrement-based RMW ops that return a value

Function changes:

• atomic_dec_and_test() –> refcount_dec_and_test()

• atomic_sub_and_test() –> refcount_sub_and_test()

Memory ordering guarantees changes:

• fully ordered –> RELEASE ordering + ACQUIRE ordering on success

case 6) other decrement-based RMW ops that return a value

Function changes:

• no atomic counterpart –> refcount_dec_if_one()

• atomic_add_unless(&var, -1, 1) –> refcount_dec_not_one(&var)

Memory ordering guarantees changes:

• fully ordered –> RELEASE ordering + control dependency

Note: atomic_add_unless() only provides full order on success.

case 7) - lock-based RMW

Function changes:

• atomic_dec_and_lock() –> refcount_dec_and_lock()

• atomic_dec_and_mutex_lock() –> refcount_dec_and_mutex_lock()

Memory ordering guarantees changes:

• fully ordered –> RELEASE ordering + control dependency + hold spin_lock()
on success

3.3 IRQs

3.3.1 What is an IRQ?

An IRQ is an interrupt request from a device. Currently they can come in over
a pin, or over a packet. Several devices may be connected to the same pin thus
sharing an IRQ.

An IRQ number is a kernel identifier used to talk about a hardware interrupt
source. Typically this is an index into the global irq_desc array, but except for
what linux/interrupt.h implements the details are architecture specific.

An IRQ number is an enumeration of the possible interrupt sources on a machine.
Typically what is enumerated is the number of input pins on all of the interrupt

3.3. IRQs 333

Linux Core-api Documentation

controller in the system. In the case of ISA what is enumerated are the 16 input
pins on the two i8259 interrupt controllers.

Architectures can assign additional meaning to the IRQ numbers, and are encour-
aged to in the case where there is any manual configuration of the hardware in-
volved. The ISA IRQs are a classic example of assigning this kind of additional
meaning.

3.3.2 SMP IRQ affinity

ChangeLog:
• Started by Ingo Molnar <mingo@redhat.com>

• Update by Max Krasnyansky <maxk@qualcomm.com>

/proc/irq/IRQ#/smp_affinity and /proc/irq/IRQ#/smp_affinity_list specify which
target CPUs are permitted for a given IRQ source. It’s a bitmask (smp_affinity)
or cpu list (smp_affinity_list) of allowed CPUs. It’s not allowed to turn off all
CPUs, and if an IRQ controller does not support IRQ affinity then the value will
not change from the default of all cpus.

/proc/irq/default_smp_affinity specifies default affinity mask that applies to all non-
active IRQs. Once IRQ is allocated/activated its affinity bitmask will be set to the
default mask. It can then be changed as described above. Default mask is 0xffffffff.

Here is an example of restricting IRQ44 (eth1) to CPU0-3 then restricting it to
CPU4-7 (this is an 8-CPU SMP box):

[root@moon 44]# cd /proc/irq/44
[root@moon 44]# cat smp_affinity
ffffffff

[root@moon 44]# echo 0f > smp_affinity
[root@moon 44]# cat smp_affinity
0000000f
[root@moon 44]# ping -f h
PING hell (195.4.7.3): 56 data bytes
...
--- hell ping statistics ---
6029 packets transmitted, 6027 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.1/0.4 ms
[root@moon 44]# cat /proc/interrupts | grep 'CPU\|44:'

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 ␣
↪→CPU6 CPU7
44: 1068 1785 1785 1783 0 0 ␣
↪→ 0 0 IO-APIC-level eth1

As can be seen from the line above IRQ44 was delivered only to the first four
processors (0-3). Now lets restrict that IRQ to CPU(4-7).

[root@moon 44]# echo f0 > smp_affinity
[root@moon 44]# cat smp_affinity
000000f0
[root@moon 44]# ping -f h
PING hell (195.4.7.3): 56 data bytes

(continues on next page)

334 Chapter 3. Concurrency primitives

mailto:mingo@redhat.com
mailto:maxk@qualcomm.com

Linux Core-api Documentation

(continued from previous page)
..
--- hell ping statistics ---
2779 packets transmitted, 2777 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.5/585.4 ms
[root@moon 44]# cat /proc/interrupts | 'CPU\|44:'

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 ␣
↪→CPU6 CPU7
44: 1068 1785 1785 1783 1784 1069 ␣
↪→ 1070 1069 IO-APIC-level eth1

This time around IRQ44 was delivered only to the last four processors. i.e counters
for the CPU0-3 did not change.

Here is an example of limiting that same irq (44) to cpus 1024 to 1031:

[root@moon 44]# echo 1024-1031 > smp_affinity_list
[root@moon 44]# cat smp_affinity_list
1024-1031

Note that to do this with a bitmask would require 32 bitmasks of zero to follow the
pertinent one.

3.3.3 The irq_domain interrupt number mapping library

The current design of the Linux kernel uses a single large number space where
each separate IRQ source is assigned a different number. This is simple when there
is only one interrupt controller, but in systems with multiple interrupt controllers
the kernel must ensure that each one gets assigned non-overlapping allocations
of Linux IRQ numbers.

The number of interrupt controllers registered as unique irqchips show a rising
tendency: for example subdrivers of different kinds such as GPIO controllers avoid
reimplementing identical callback mechanisms as the IRQ core system by mod-
elling their interrupt handlers as irqchips, i.e. in effect cascading interrupt con-
trollers.

Here the interrupt number loose all kind of correspondence to hardware interrupt
numbers: whereas in the past, IRQ numbers could be chosen so they matched the
hardware IRQ line into the root interrupt controller (i.e. the component actually
fireing the interrupt line to the CPU) nowadays this number is just a number.

For this reason we need a mechanism to separate controller-local interrupt num-
bers, called hardware irq’s, from Linux IRQ numbers.

The irq_alloc_desc*() and irq_free_desc*() APIs provide allocation of irq numbers,
but they don’t provide any support for reverse mapping of the controller-local IRQ
(hwirq) number into the Linux IRQ number space.

The irq_domain library adds mapping between hwirq and IRQ numbers on top
of the irq_alloc_desc*() API. An irq_domain to manage mapping is preferred over
interrupt controller drivers open coding their own reverse mapping scheme.

irq_domain also implements translation from an abstract irq_fwspec structure to
hwirq numbers (Device Tree and ACPI GSI so far), and can be easily extended to
support other IRQ topology data sources.

3.3. IRQs 335

Linux Core-api Documentation

irq_domain usage

An interrupt controller driver creates and registers an irq_domain by calling one of
the irq_domain_add_*() functions (each mapping method has a different allocator
function, more on that later). The function will return a pointer to the irq_domain
on success. The caller must provide the allocator function with an irq_domain_ops
structure.

In most cases, the irq_domain will begin empty without any mappings between
hwirq and IRQ numbers. Mappings are added to the irq_domain by calling
irq_create_mapping() which accepts the irq_domain and a hwirq number as ar-
guments. If a mapping for the hwirq doesn’t already exist then it will allocate a
new Linux irq_desc, associate it with the hwirq, and call the .map() callback so the
driver can perform any required hardware setup.

When an interrupt is received, irq_find_mapping() function should be used to find
the Linux IRQ number from the hwirq number.

The irq_create_mapping() function must be called atleast once before any call to
irq_find_mapping(), lest the descriptor will not be allocated.

If the driver has the Linux IRQ number or the irq_data pointer, and needs to know
the associated hwirq number (such as in the irq_chip callbacks) then it can be
directly obtained from irq_data->hwirq.

Types of irq_domain mappings

There are several mechanisms available for reverse mapping from hwirq to Linux
irq, and each mechanism uses a different allocation function. Which reverse map
type should be used depends on the use case. Each of the reverse map types are
described below:

Linear

irq_domain_add_linear()
irq_domain_create_linear()

The linear reverse map maintains a fixed size table indexed by the hwirq num-
ber. When a hwirq is mapped, an irq_desc is allocated for the hwirq, and the IRQ
number is stored in the table.

The Linear map is a good choice when the maximum number of hwirqs is fixed
and a relatively small number (~ < 256). The advantages of this map are fixed
time lookup for IRQ numbers, and irq_descs are only allocated for in-use IRQs.
The disadvantage is that the table must be as large as the largest possible hwirq
number.

irq_domain_add_linear() and irq_domain_create_linear() are functionally equiva-
lent, except for the first argument is different - the former accepts an Open
Firmware specific‘struct device_node’, while the latter accepts a more general
abstraction ‘struct fwnode_handle’.
The majority of drivers should use the linear map.

336 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Tree

irq_domain_add_tree()
irq_domain_create_tree()

The irq_domain maintains a radix tree map from hwirq numbers to Linux IRQs.
When an hwirq is mapped, an irq_desc is allocated and the hwirq is used as the
lookup key for the radix tree.

The tree map is a good choice if the hwirq number can be very large since it doesn’
t need to allocate a table as large as the largest hwirq number. The disadvantage
is that hwirq to IRQ number lookup is dependent on how many entries are in the
table.

irq_domain_add_tree() and irq_domain_create_tree() are functionally equivalent,
except for the first argument is different - the former accepts an Open Firmware
specific‘struct device_node’, while the latter accepts a more general abstraction
‘struct fwnode_handle’.
Very few drivers should need this mapping.

No Map

irq_domain_add_nomap()

The NoMapmapping is to be used when the hwirq number is programmable in the
hardware. In this case it is best to program the Linux IRQ number into the hard-
ware itself so that no mapping is required. Calling irq_create_direct_mapping()
will allocate a Linux IRQ number and call the .map() callback so that driver can
program the Linux IRQ number into the hardware.

Most drivers cannot use this mapping.

Legacy

irq_domain_add_simple()
irq_domain_add_legacy()
irq_domain_add_legacy_isa()

The Legacy mapping is a special case for drivers that already have a range of
irq_descs allocated for the hwirqs. It is used when the driver cannot be immedi-
ately converted to use the linear mapping. For example, many embedded system
board support files use a set of #defines for IRQ numbers that are passed to struct
device registrations. In that case the Linux IRQ numbers cannot be dynamically
assigned and the legacy mapping should be used.

The legacy map assumes a contiguous range of IRQ numbers has already been
allocated for the controller and that the IRQ number can be calculated by adding
a fixed offset to the hwirq number, and visa-versa. The disadvantage is that it
requires the interrupt controller to manage IRQ allocations and it requires an
irq_desc to be allocated for every hwirq, even if it is unused.

3.3. IRQs 337

Linux Core-api Documentation

The legacy map should only be used if fixed IRQ mappings must be supported. For
example, ISA controllers would use the legacy map for mapping Linux IRQs 0-15
so that existing ISA drivers get the correct IRQ numbers.

Most users of legacy mappings should use irq_domain_add_simple() which will use
a legacy domain only if an IRQ range is supplied by the system and will otherwise
use a linear domain mapping. The semantics of this call are such that if an IRQ
range is specified then descriptors will be allocated on-the-fly for it, and if no range
is specified it will fall through to irq_domain_add_linear() which means no irq de-
scriptors will be allocated.

A typical use case for simple domains is where an irqchip provider is supporting
both dynamic and static IRQ assignments.

In order to avoid ending up in a situation where a linear domain is used and no
descriptor gets allocated it is very important to make sure that the driver using
the simple domain call irq_create_mapping() before any irq_find_mapping() since
the latter will actually work for the static IRQ assignment case.

Hierarchy IRQ domain

On some architectures, there may be multiple interrupt controllers involved in
delivering an interrupt from the device to the target CPU. Let’s look at a typical
interrupt delivering path on x86 platforms:

Device --> IOAPIC -> Interrupt remapping Controller -> Local APIC -> CPU

There are three interrupt controllers involved:

1) IOAPIC controller

2) Interrupt remapping controller

3) Local APIC controller

To support such a hardware topology and make software architecture match
hardware architecture, an irq_domain data structure is built for each interrupt
controller and those irq_domains are organized into hierarchy. When build-
ing irq_domain hierarchy, the irq_domain near to the device is child and the
irq_domain near to CPU is parent. So a hierarchy structure as below will be built
for the example above:

CPU Vector irq_domain (root irq_domain to manage CPU vectors)
^
|

Interrupt Remapping irq_domain (manage irq_remapping entries)
^
|

IOAPIC irq_domain (manage IOAPIC delivery entries/pins)

There are four major interfaces to use hierarchy irq_domain:

1) irq_domain_alloc_irqs(): allocate IRQ descriptors and interrupt controller re-
lated resources to deliver these interrupts.

338 Chapter 3. Concurrency primitives

Linux Core-api Documentation

2) irq_domain_free_irqs(): free IRQ descriptors and interrupt controller related
resources associated with these interrupts.

3) irq_domain_activate_irq(): activate interrupt controller hardware to deliver
the interrupt.

4) irq_domain_deactivate_irq(): deactivate interrupt controller hardware to stop
delivering the interrupt.

Following changes are needed to support hierarchy irq_domain:

1) a new field ‘parent’is added to struct irq_domain; it’s used to maintain
irq_domain hierarchy information.

2) a new field ‘parent_data’is added to struct irq_data; it’s used to build
hierarchy irq_data to match hierarchy irq_domains. The irq_data is used to
store irq_domain pointer and hardware irq number.

3) new callbacks are added to struct irq_domain_ops to support hierarchy
irq_domain operations.

With support of hierarchy irq_domain and hierarchy irq_data ready, an irq_domain
structure is built for each interrupt controller, and an irq_data structure is allo-
cated for each irq_domain associated with an IRQ. Now we could go one step
further to support stacked(hierarchy) irq_chip. That is, an irq_chip is associated
with each irq_data along the hierarchy. A child irq_chip may implement a required
action by itself or by cooperating with its parent irq_chip.

With stacked irq_chip, interrupt controller driver only needs to deal with the hard-
ware managed by itself and may ask for services from its parent irq_chip when
needed. So we could achieve a much cleaner software architecture.

For an interrupt controller driver to support hierarchy irq_domain, it needs to:

1) Implement irq_domain_ops.alloc and irq_domain_ops.free

2) Optionally implement irq_domain_ops.activate and
irq_domain_ops.deactivate.

3) Optionally implement an irq_chip to manage the interrupt controller hard-
ware.

4) No need to implement irq_domain_ops.map and irq_domain_ops.unmap, they
are unused with hierarchy irq_domain.

Hierarchy irq_domain is in no way x86 specific, and is heavily used to support
other architectures, such as ARM, ARM64 etc.

Debugging

Most of the internals of the IRQ subsystem are exposed in debugfs by turning
CONFIG_GENERIC_IRQ_DEBUGFS on.

3.3. IRQs 339

Linux Core-api Documentation

3.3.4 IRQ-flags state tracing

Author started by Ingo Molnar <mingo@redhat.com>
The“irq-flags tracing”feature“traces”hardirq and softirq state, in that it gives
interested subsystems an opportunity to be notified of every hardirqs-off/hardirqs-
on, softirqs-off/softirqs-on event that happens in the kernel.

CONFIG_TRACE_IRQFLAGS_SUPPORT is needed for CON-
FIG_PROVE_SPIN_LOCKING and CONFIG_PROVE_RW_LOCKING to be
offered by the generic lock debugging code. Otherwise only CON-
FIG_PROVE_MUTEX_LOCKING and CONFIG_PROVE_RWSEM_LOCKING will
be offered on an architecture - these are locking APIs that are not used in IRQ
context. (the one exception for rwsems is worked around)

Architecture support for this is certainly not in the“trivial”category, because lots
of lowlevel assembly code deal with irq-flags state changes. But an architecture
can be irq-flags-tracing enabled in a rather straightforward and risk-free manner.

Architectures that want to support this need to do a couple of code-organizational
changes first:

• add and enable TRACE_IRQFLAGS_SUPPORT in their arch level Kconfig file

and then a couple of functional changes are needed as well to implement irq-flags-
tracing support:

• in lowlevel entry code add (build-conditional) calls to the
trace_hardirqs_off()/trace_hardirqs_on() functions. The lock validator
closely guards whether the ‘real’irq-flags matches the ‘virtual’irq-flags
state, and complains loudly (and turns itself off) if the two do not match.
Usually most of the time for arch support for irq-flags-tracing is spent in this
state: look at the lockdep complaint, try to figure out the assembly code we
did not cover yet, fix and repeat. Once the system has booted up and works
without a lockdep complaint in the irq-flags-tracing functions arch support
is complete.

• if the architecture has non-maskable interrupts then those need to be
excluded from the irq-tracing [and lock validation] mechanism via lock-
dep_off()/lockdep_on().

In general there is no risk from having an incomplete irq-flags-tracing implemen-
tation in an architecture: lockdep will detect that and will turn itself off. I.e. the
lock validator will still be reliable. There should be no crashes due to irq-tracing
bugs. (except if the assembly changes break other code by modifying conditions
or registers that shouldn’t be)

340 Chapter 3. Concurrency primitives

mailto:mingo@redhat.com

Linux Core-api Documentation

3.4 Semantics and Behavior of Local Atomic Operations

Author Mathieu Desnoyers
This document explains the purpose of the local atomic operations, how to imple-
ment them for any given architecture and shows how they can be used properly.
It also stresses on the precautions that must be taken when reading those local
variables across CPUs when the order of memory writes matters.

Note: Note that local_t based operations are not recommended for general ker-
nel use. Please use the this_cpu operations instead unless there is really a spe-
cial purpose. Most uses of local_t in the kernel have been replaced by this_cpu
operations. this_cpu operations combine the relocation with the local_t like se-
mantics in a single instruction and yield more compact and faster executing code.

3.4.1 Purpose of local atomic operations

Local atomic operations are meant to provide fast and highly reentrant per CPU
counters. They minimize the performance cost of standard atomic operations by
removing the LOCK prefix and memory barriers normally required to synchronize
across CPUs.

Having fast per CPU atomic counters is interesting in many cases: it does not
require disabling interrupts to protect from interrupt handlers and it permits co-
herent counters in NMI handlers. It is especially useful for tracing purposes and
for various performance monitoring counters.

Local atomic operations only guarantee variable modification atomicity wrt the
CPU which owns the data. Therefore, care must taken to make sure that only one
CPU writes to the local_t data. This is done by using per cpu data and making
sure that we modify it from within a preemption safe context. It is however per-
mitted to read local_t data from any CPU: it will then appear to be written out of
order wrt other memory writes by the owner CPU.

3.4.2 Implementation for a given architecture

It can be done by slightly modifying the standard atomic operations: only their
UP variant must be kept. It typically means removing LOCK prefix (on i386 and
x86_64) and any SMP synchronization barrier. If the architecture does not have a
different behavior between SMP and UP, including asm-generic/local.h in your
architecture’s local.h is sufficient.
The local_t type is defined as an opaque signed long by embedding an
atomic_long_t inside a structure. This is made so a cast from this type to a long
fails. The definition looks like:

typedef struct { atomic_long_t a; } local_t;

3.4. Semantics and Behavior of Local Atomic Operations 341

Linux Core-api Documentation

3.4.3 Rules to follow when using local atomic operations

• Variables touched by local ops must be per cpu variables.

• Only the CPU owner of these variables must write to them.

• This CPU can use local ops from any context (process, irq, softirq, nmi, ⋯) to
update its local_t variables.

• Preemption (or interrupts) must be disabled when using local ops in process
context to make sure the process won’t be migrated to a different CPU be-
tween getting the per-cpu variable and doing the actual local op.

• When using local ops in interrupt context, no special care must be taken on a
mainline kernel, since they will run on the local CPU with preemption already
disabled. I suggest, however, to explicitly disable preemption anyway tomake
sure it will still work correctly on -rt kernels.

• Reading the local cpu variable will provide the current copy of the variable.

• Reads of these variables can be done from any CPU, because updates to“long”
, aligned, variables are always atomic. Since no memory synchronization is
done by the writer CPU, an outdated copy of the variable can be read when
reading some other cpu’s variables.

3.4.4 How to use local atomic operations

#include <linux/percpu.h>
#include <asm/local.h>

static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);

3.4.5 Counting

Counting is done on all the bits of a signed long.

In preemptible context, use get_cpu_var() and put_cpu_var() around local
atomic operations: it makes sure that preemption is disabled around write access
to the per cpu variable. For instance:

local_inc(&get_cpu_var(counters));
put_cpu_var(counters);

If you are already in a preemption-safe context, you can use this_cpu_ptr() in-
stead:

local_inc(this_cpu_ptr(&counters));

342 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.4.6 Reading the counters

Those local counters can be read from foreign CPUs to sum the count. Note that
the data seen by local_read across CPUs must be considered to be out of order
relatively to other memory writes happening on the CPU that owns the data:

long sum = 0;
for_each_online_cpu(cpu)

sum += local_read(&per_cpu(counters, cpu));

If you want to use a remote local_read to synchronize access to a resource be-
tween CPUs, explicit smp_wmb() and smp_rmb() memory barriers must be used
respectively on the writer and the reader CPUs. It would be the case if you
use the local_t variable as a counter of bytes written in a buffer: there should
be a smp_wmb() between the buffer write and the counter increment and also a
smp_rmb() between the counter read and the buffer read.

Here is a sample module which implements a basic per cpu counter using local.h:

/* test-local.c
*
* Sample module for local.h usage.
*/

#include <asm/local.h>
#include <linux/module.h>
#include <linux/timer.h>

static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);

static struct timer_list test_timer;

/* IPI called on each CPU. */
static void test_each(void *info)
{

/* Increment the counter from a non preemptible context */
printk("Increment on cpu %d\n", smp_processor_id());
local_inc(this_cpu_ptr(&counters));

/* This is what incrementing the variable would look like within a
* preemptible context (it disables preemption) :
*
* local_inc(&get_cpu_var(counters));
* put_cpu_var(counters);
*/

}

static void do_test_timer(unsigned long data)
{

int cpu;

/* Increment the counters */
on_each_cpu(test_each, NULL, 1);
/* Read all the counters */
printk("Counters read from CPU %d\n", smp_processor_id());

(continues on next page)

3.4. Semantics and Behavior of Local Atomic Operations 343

Linux Core-api Documentation

(continued from previous page)
for_each_online_cpu(cpu) {

printk("Read : CPU %d, count %ld\n", cpu,
local_read(&per_cpu(counters, cpu)));

}
mod_timer(&test_timer, jiffies + 1000);

}

static int __init test_init(void)
{

/* initialize the timer that will increment the counter */
timer_setup(&test_timer, do_test_timer, 0);
mod_timer(&test_timer, jiffies + 1);

return 0;
}

static void __exit test_exit(void)
{

del_timer_sync(&test_timer);
}

module_init(test_init);
module_exit(test_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mathieu Desnoyers");
MODULE_DESCRIPTION("Local Atomic Ops");

3.5 The padata parallel execution mechanism

Date May 2020
Padata is a mechanism by which the kernel can farm jobs out to be done in parallel
on multiple CPUs while optionally retaining their ordering.

It was originally developed for IPsec, which needs to perform encryption and de-
cryption on large numbers of packets without reordering those packets. This is
currently the sole consumer of padata’s serialized job support.
Padata also supports multithreaded jobs, splitting up the job evenly while load
balancing and coordinating between threads.

3.5.1 Running Serialized Jobs

Initializing

The first step in using padata to run serialized jobs is to set up a padata_instance
structure for overall control of how jobs are to be run:

#include <linux/padata.h>

struct padata_instance *padata_alloc_possible(const char *name);

344 Chapter 3. Concurrency primitives

Linux Core-api Documentation

‘name’simply identifies the instance.
There are functions for enabling and disabling the instance:

int padata_start(struct padata_instance *pinst);
void padata_stop(struct padata_instance *pinst);

These functions are setting or clearing the“PADATA_INIT”flag; if that flag is not
set, other functions will refuse to work. padata_start() returns zero on success
(flag set) or -EINVAL if the padata cpumask contains no active CPU (flag not set).
padata_stop() clears the flag and blocks until the padata instance is unused.

Finally, complete padata initialization by allocating a padata_shell:

struct padata_shell *padata_alloc_shell(struct padata_instance *pinst);

A padata_shell is used to submit a job to padata and allows a series of such jobs
to be serialized independently. A padata_instance may have one or more pa-
data_shells associated with it, each allowing a separate series of jobs.

Modifying cpumasks

The CPUs used to run jobs can be changed in two ways, programatically with
padata_set_cpumask() or via sysfs. The former is defined:

int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
cpumask_var_t cpumask);

Here cpumask_type is one of PADATA_CPU_PARALLEL or PADATA_CPU_SERIAL,
where a parallel cpumask describes which processors will be used to execute jobs
submitted to this instance in parallel and a serial cpumask defines which proces-
sors are allowed to be used as the serialization callback processor. cpumask spec-
ifies the new cpumask to use.

There may be sysfs files for an instance’s cpumasks. For example, pcrypt’s live in
/sys/kernel/pcrypt/<instance-name>. Within an instance’s directory there are two
files, parallel_cpumask and serial_cpumask, and either cpumask may be changed
by echoing a bitmask into the file, for example:

echo f > /sys/kernel/pcrypt/pencrypt/parallel_cpumask

Reading one of these files shows the user-supplied cpumask, which may be differ-
ent from the ‘usable’cpumask.
Padata maintains two pairs of cpumasks internally, the user-supplied cpumasks
and the‘usable’cpumasks. (Each pair consists of a parallel and a serial cpumask.)
The user-supplied cpumasks default to all possible CPUs on instance allocation and
may be changed as above. The usable cpumasks are always a subset of the user-
supplied cpumasks and contain only the online CPUs in the user-supplied masks;
these are the cpumasks padata actually uses. So it is legal to supply a cpumask
to padata that contains offline CPUs. Once an offline CPU in the user-supplied
cpumask comes online, padata is going to use it.

Changing the CPU masks are expensive operations, so it should not be done with
great frequency.

3.5. The padata parallel execution mechanism 345

Linux Core-api Documentation

Running A Job

Actually submitting work to the padata instance requires the creation of a pa-
data_priv structure, which represents one job:

struct padata_priv {
/* Other stuff here... */
void (*parallel)(struct padata_priv *padata);
void (*serial)(struct padata_priv *padata);

};

This structure will almost certainly be embedded within some larger structure
specific to the work to be done. Most of its fields are private to padata, but the
structure should be zeroed at initialisation time, and the parallel() and serial()
functions should be provided. Those functions will be called in the process of
getting the work done as we will see momentarily.

The submission of the job is done with:

int padata_do_parallel(struct padata_shell *ps,
struct padata_priv *padata, int *cb_cpu);

The ps and padata structures must be set up as described above; cb_cpu points to
the preferred CPU to be used for the final callback when the job is done; it must be
in the current instance’s CPU mask (if not the cb_cpu pointer is updated to point
to the CPU actually chosen). The return value from padata_do_parallel() is zero
on success, indicating that the job is in progress. -EBUSY means that somebody,
somewhere else is messing with the instance’s CPU mask, while -EINVAL is a
complaint about cb_cpu not being in the serial cpumask, no online CPUs in the
parallel or serial cpumasks, or a stopped instance.

Each job submitted to padata_do_parallel() will, in turn, be passed to exactly
one call to the above-mentioned parallel() function, on one CPU, so true parallelism
is achieved by submitting multiple jobs. parallel() runs with software interrupts
disabled and thus cannot sleep. The parallel() function gets the padata_priv struc-
ture pointer as its lone parameter; information about the actual work to be done
is probably obtained by using container_of() to find the enclosing structure.

Note that parallel() has no return value; the padata subsystem assumes that par-
allel() will take responsibility for the job from this point. The job need not be
completed during this call, but, if parallel() leaves work outstanding, it should be
prepared to be called again with a new job before the previous one completes.

Serializing Jobs

When a job does complete, parallel() (or whatever function actually finishes the
work) should inform padata of the fact with a call to:

void padata_do_serial(struct padata_priv *padata);

At some point in the future, padata_do_serial() will trigger a call to the serial()
function in the padata_priv structure. That call will happen on the CPU requested
in the initial call to padata_do_parallel(); it, too, is run with local software in-
terrupts disabled. Note that this call may be deferred for a while since the padata

346 Chapter 3. Concurrency primitives

Linux Core-api Documentation

code takes pains to ensure that jobs are completed in the order in which they were
submitted.

Destroying

Cleaning up a padata instance predictably involves calling the three free functions
that correspond to the allocation in reverse:

void padata_free_shell(struct padata_shell *ps);
void padata_stop(struct padata_instance *pinst);
void padata_free(struct padata_instance *pinst);

It is the user’s responsibility to ensure all outstanding jobs are complete before
any of the above are called.

3.5.2 Running Multithreaded Jobs

A multithreaded job has a main thread and zero or more helper threads, with the
main thread participating in the job and thenwaiting until all helpers have finished.
padata splits the job into units called chunks, where a chunk is a piece of the job
that one thread completes in one call to the thread function.

A user has to do three things to run a multithreaded job. First, describe the job
by defining a padata_mt_job structure, which is explained in the Interface section.
This includes a pointer to the thread function, which padata will call each time it
assigns a job chunk to a thread. Then, define the thread function, which accepts
three arguments, start, end, and arg, where the first two delimit the range that
the thread operates on and the last is a pointer to the job’s shared state, if any.
Prepare the shared state, which is typically allocated on the main thread’s stack.
Last, call padata_do_multithreaded(), which will return once the job is finished.

3.5.3 Interface

struct padata_priv
Represents one job

Definition

struct padata_priv {
struct list_head list;
struct parallel_data *pd;
int cb_cpu;
unsigned int seq_nr;
int info;
void (*parallel)(struct padata_priv *padata);
void (*serial)(struct padata_priv *padata);

};

Members
list List entry, to attach to the padata lists.

pd Pointer to the internal control structure.

3.5. The padata parallel execution mechanism 347

Linux Core-api Documentation

cb_cpu Callback cpu for serializatioon.

seq_nr Sequence number of the parallelized data object.

info Used to pass information from the parallel to the serial function.

parallel Parallel execution function.

serial Serial complete function.

struct padata_list
one per work type per CPU

Definition

struct padata_list {
struct list_head list;
spinlock_t lock;

};

Members
list List head.

lock List lock.

struct padata_serial_queue
The percpu padata serial queue

Definition

struct padata_serial_queue {
struct padata_list serial;
struct work_struct work;
struct parallel_data *pd;

};

Members
serial List to wait for serialization after reordering.

work work struct for serialization.

pd Backpointer to the internal control structure.

struct padata_parallel_queue
The percpu padata parallel queue

Definition

struct padata_parallel_queue {
struct padata_list reorder;
atomic_t num_obj;

};

Members
reorder List to wait for reordering after parallel processing.

num_obj Number of objects that are processed by this cpu.

struct padata_cpumask
The cpumasks for the parallel/serial workers

348 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Definition

struct padata_cpumask {
cpumask_var_t pcpu;
cpumask_var_t cbcpu;

};

Members
pcpu cpumask for the parallel workers.

cbcpu cpumask for the serial (callback) workers.

struct parallel_data
Internal control structure, covers everything that depends on the cpumask in
use.

Definition

struct parallel_data {
struct padata_shell *ps;
struct padata_parallel_queue __percpu *pqueue;
struct padata_serial_queue __percpu *squeue;
atomic_t refcnt;
unsigned int seq_nr;
unsigned int processed;
int cpu;
struct padata_cpumask cpumask;
struct work_struct reorder_work;
spinlock_t ____cacheline_aligned lock;

};

Members
ps padata_shell object.

pqueue percpu padata queues used for parallelization.

squeue percpu padata queues used for serialuzation.

refcnt Number of objects holding a reference on this parallel_data.

seq_nr Sequence number of the parallelized data object.

processed Number of already processed objects.

cpu Next CPU to be processed.

cpumask The cpumasks in use for parallel and serial workers.

reorder_work work struct for reordering.

lock Reorder lock.

struct padata_shell
Wrapper around struct parallel_data, its purpose is to allow the underlying
control structure to be replaced on the fly using RCU.

Definition

3.5. The padata parallel execution mechanism 349

Linux Core-api Documentation

struct padata_shell {
struct padata_instance *pinst;
struct parallel_data __rcu *pd;
struct parallel_data *opd;
struct list_head list;

};

Members
pinst padat instance.

pd Actual parallel_data structure which may be substituted on the fly.

opd Pointer to old pd to be freed by padata_replace.

list List entry in padata_instance list.

struct padata_mt_job
represents one multithreaded job

Definition

struct padata_mt_job {
void (*thread_fn)(unsigned long start, unsigned long end, void *arg);
void *fn_arg;
unsigned long start;
unsigned long size;
unsigned long align;
unsigned long min_chunk;
int max_threads;

};

Members
thread_fn Called for each chunk of work that a padata thread does.

fn_arg The thread function argument.

start The start of the job (units are job-specific).

size size of this node’s work (units are job-specific).
align Ranges passed to the thread function fall on this boundary, with the possible

exceptions of the beginning and end of the job.

min_chunk The minimum chunk size in job-specific units. This allows the client to
communicate the minimum amount of work that’s appropriate for one worker
thread to do at once.

max_threads Max threads to use for the job, actual number may be less depending
on task size and minimum chunk size.

struct padata_instance
The overall control structure.

Definition

struct padata_instance {
struct hlist_node cpu_online_node;
struct hlist_node cpu_dead_node;

(continues on next page)

350 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
struct workqueue_struct *parallel_wq;
struct workqueue_struct *serial_wq;
struct list_head pslist;
struct padata_cpumask cpumask;
struct padata_cpumask rcpumask;
struct kobject kobj;
struct mutex lock;
u8 flags;

#define PADATA_INIT 1;
#define PADATA_RESET 2;
#define PADATA_INVALID 4;
};

Members
cpu_online_node Linkage for CPU online callback.

cpu_dead_node Linkage for CPU offline callback.

parallel_wq The workqueue used for parallel work.

serial_wq The workqueue used for serial work.

pslist List of padata_shell objects attached to this instance.

cpumask User supplied cpumasks for parallel and serial works.

rcpumask Actual cpumasks based on user cpumask and cpu_online_mask.

kobj padata instance kernel object.

lock padata instance lock.

flags padata flags.

int padata_do_parallel(struct padata_shell * ps, struct padata_priv
* padata, int * cb_cpu)

padata parallelization function

Parameters
struct padata_shell * ps padatashell

struct padata_priv * padata object to be parallelized

int * cb_cpu pointer to the CPU that the serialization callback function should
run on. If it’s not in the serial cpumask of pinst (i.e. cpumask.cbcpu), this
function selects a fallback CPU and if none found, returns -EINVAL.

Description
The parallelization callback function will run with BHs off.

Note
Every object which is parallelized by padata_do_parallel must be seen by pa-
data_do_serial.

Return
0 on success or else negative error code.

3.5. The padata parallel execution mechanism 351

Linux Core-api Documentation

void padata_do_serial(struct padata_priv * padata)
padata serialization function

Parameters
struct padata_priv * padata object to be serialized.

Description
padata_do_serial must be called for every parallelized object. The serialization
callback function will run with BHs off.

void padata_do_multithreaded(struct padata_mt_job * job)
run a multithreaded job

Parameters
struct padata_mt_job * job Description of the job.

Description
See the definition of struct padata_mt_job for more details.

int padata_set_cpumask(struct padata_instance * pinst, int cpumask_type,
cpumask_var_t cpumask)

Sets specified by cpumask_type cpumask to the value equivalent to
cpumask.

Parameters
struct padata_instance * pinst padata instance

int cpumask_type PADATA_CPU_SERIAL or PADATA_CPU_PARALLEL corre-
sponding to parallel and serial cpumasks respectively.

cpumask_var_t cpumask the cpumask to use

Return
0 on success or negative error code

int padata_start(struct padata_instance * pinst)
start the parallel processing

Parameters
struct padata_instance * pinst padata instance to start

Return
0 on success or negative error code

void padata_stop(struct padata_instance * pinst)
stop the parallel processing

Parameters
struct padata_instance * pinst padata instance to stop

struct padata_instance * padata_alloc(const char * name, const struct
cpumask * pcpumask, const struct
cpumask * cbcpumask)

allocate and initialize a padata instance and specify cpumasks for serial and
parallel workers.

352 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Parameters
const char * name used to identify the instance

const struct cpumask * pcpumask cpumask that will be used for padata paral-
lelization

const struct cpumask * cbcpumask cpumask that will be used for padata seri-
alization

Return
new instance on success, NULL on error

struct padata_instance * padata_alloc_possible(const char * name)
Allocate and initialize padata instance. Use the cpu_possible_mask for serial
and parallel workers.

Parameters
const char * name used to identify the instance

Return
new instance on success, NULL on error

void padata_free(struct padata_instance * pinst)
free a padata instance

Parameters
struct padata_instance * pinst padata instance to free

struct padata_shell * padata_alloc_shell(struct padata_instance * pinst)
Allocate and initialize padata shell.

Parameters
struct padata_instance * pinst Parent padata_instance object.

Return
new shell on success, NULL on error

void padata_free_shell(struct padata_shell * ps)
free a padata shell

Parameters
struct padata_shell * ps padata shell to free

3.6 RCU concepts

3.6.1 Using RCU to Protect Read-Mostly Arrays

Although RCU is more commonly used to protect linked lists, it can also be used
to protect arrays. Three situations are as follows:

1. Hash Tables

2. Static Arrays

3.6. RCU concepts 353

Linux Core-api Documentation

3. Resizable Arrays

Each of these three situations involves an RCU-protected pointer to an array that
is separately indexed. It might be tempting to consider use of RCU to instead pro-
tect the index into an array, however, this use case is not supported. The problem
with RCU-protected indexes into arrays is that compilers can play way too many
optimization games with integers, which means that the rules governing handling
of these indexes are far more trouble than they are worth. If RCU-protected in-
dexes into arrays prove to be particularly valuable (which they have not thus far),
explicit cooperation from the compiler will be required to permit them to be safely
used.

That aside, each of the three RCU-protected pointer situations are described in
the following sections.

Situation 1: Hash Tables

Hash tables are often implemented as an array, where each array entry has a
linked-list hash chain. Each hash chain can be protected by RCU as described in
the listRCU.txt document. This approach also applies to other array-of-list situa-
tions, such as radix trees.

Situation 2: Static Arrays

Static arrays, where the data (rather than a pointer to the data) is located in each
array element, and where the array is never resized, have not been used with RCU.
Rik van Riel recommends using seqlock in this situation, which would also have
minimal read-side overhead as long as updates are rare.

Quick Quiz: Why is it so important that updates be rare when using seqlock?
Answer to Quick Quiz

Situation 3: Resizable Arrays

Use of RCU for resizable arrays is demonstrated by the grow_ary() function for-
merly used by the System V IPC code. The array is used to map from semaphore,
message-queue, and shared-memory IDs to the data structure that represents the
corresponding IPC construct. The grow_ary() function does not acquire any locks;
instead its caller must hold the ids->sem semaphore.

The grow_ary() function, shown below, does some limit checks, allocates a new
ipc_id_ary, copies the old to the new portion of the new, initializes the remainder
of the new, updates the ids->entries pointer to point to the new array, and invokes
ipc_rcu_putref() to free up the old array. Note that rcu_assign_pointer() is used
to update the ids->entries pointer, which includes any memory barriers required
on whatever architecture you are running on:

static int grow_ary(struct ipc_ids* ids, int newsize)
{

struct ipc_id_ary* new;
struct ipc_id_ary* old;

(continues on next page)

354 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
int i;
int size = ids->entries->size;

if(newsize > IPCMNI)
newsize = IPCMNI;

if(newsize <= size)
return newsize;

new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize +
sizeof(struct ipc_id_ary));

if(new == NULL)
return size;

new->size = newsize;
memcpy(new->p, ids->entries->p,

sizeof(struct kern_ipc_perm *)*size +
sizeof(struct ipc_id_ary));

for(i=size;i<newsize;i++) {
new->p[i] = NULL;

}
old = ids->entries;

/*
* Use rcu_assign_pointer() to make sure the memcpyed
* contents of the new array are visible before the new
* array becomes visible.
*/

rcu_assign_pointer(ids->entries, new);

ipc_rcu_putref(old);
return newsize;

}

The ipc_rcu_putref() function decrements the array’s reference count and then,
if the reference count has dropped to zero, uses call_rcu() to free the array after
a grace period has elapsed.

The array is traversed by the ipc_lock() function. This function indexes into the
array under the protection of rcu_read_lock(), using rcu_dereference() to pick
up the pointer to the array so that it may later safely be dereferenced – memory
barriers are required on the Alpha CPU. Since the size of the array is stored with
the array itself, there can be no array-size mismatches, so a simple check suffices.
The pointer to the structure corresponding to the desired IPC object is placed in
“out”, with NULL indicating a non-existent entry. After acquiring “out->lock”,
the“out->deleted”flag indicates whether the IPC object is in the process of being
deleted, and, if not, the pointer is returned:

struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)
{

struct kern_ipc_perm* out;
int lid = id % SEQ_MULTIPLIER;
struct ipc_id_ary* entries;

rcu_read_lock();
entries = rcu_dereference(ids->entries);
if(lid >= entries->size) {

(continues on next page)

3.6. RCU concepts 355

Linux Core-api Documentation

(continued from previous page)
rcu_read_unlock();
return NULL;

}
out = entries->p[lid];
if(out == NULL) {

rcu_read_unlock();
return NULL;

}
spin_lock(&out->lock);

/* ipc_rmid() may have already freed the ID while ipc_lock
* was spinning: here verify that the structure is still valid
*/

if (out->deleted) {
spin_unlock(&out->lock);
rcu_read_unlock();
return NULL;

}
return out;

}

Answer to Quick Quiz: Why is it so important that updates be rare when using
seqlock?

The reason that it is important that updates be rare when using seqlock is
that frequent updates can livelock readers. One way to avoid this problem is
to assign a seqlock for each array entry rather than to the entire array.

3.6.2 RCU and Unloadable Modules

[Originally published in LWN Jan. 14, 2007: http://lwn.net/Articles/217484/]

RCU (read-copy update) is a synchronization mechanism that can be thought of
as a replacement for read-writer locking (among other things), but with very low-
overhead readers that are immune to deadlock, priority inversion, and unbounded
latency. RCU read-side critical sections are delimited by rcu_read_lock() and
rcu_read_unlock(), which, in non-CONFIG_PREEMPT kernels, generate no code
whatsoever.

This means that RCU writers are unaware of the presence of concurrent readers,
so that RCU updates to shared data must be undertaken quite carefully, leaving
an old version of the data structure in place until all pre-existing readers have fin-
ished. These old versions are needed because such readers might hold a reference
to them. RCU updates can therefore be rather expensive, and RCU is thus best
suited for read-mostly situations.

How can an RCU writer possibly determine when all readers are finished, given
that readers might well leave absolutely no trace of their presence? There is a syn-
chronize_rcu() primitive that blocks until all pre-existing readers have completed.
An updater wishing to delete an element p from a linked list might do the following,
while holding an appropriate lock, of course:

356 Chapter 3. Concurrency primitives

http://lwn.net/Articles/217484/

Linux Core-api Documentation

list_del_rcu(p);
synchronize_rcu();
kfree(p);

But the above code cannot be used in IRQ context – the call_rcu() primitive must
be used instead. This primitive takes a pointer to an rcu_head struct placed within
the RCU-protected data structure and another pointer to a function that may be
invoked later to free that structure. Code to delete an element p from the linked
list from IRQ context might then be as follows:

list_del_rcu(p);
call_rcu(&p->rcu, p_callback);

Since call_rcu() never blocks, this code can safely be used fromwithin IRQ context.
The function p_callback() might be defined as follows:

static void p_callback(struct rcu_head *rp)
{

struct pstruct *p = container_of(rp, struct pstruct, rcu);

kfree(p);
}

Unloading Modules That Use call_rcu()

But what if p_callback is defined in an unloadable module?

If we unload the module while some RCU callbacks are pending, the CPUs exe-
cuting these callbacks are going to be severely disappointed when they are later
invoked, as fancifully depicted at http://lwn.net/images/ns/kernel/rcu-drop.jpg.

We could try placing a synchronize_rcu() in the module-exit code path, but this is
not sufficient. Although synchronize_rcu() does wait for a grace period to elapse,
it does not wait for the callbacks to complete.

One might be tempted to try several back-to-back synchronize_rcu() calls, but this
is still not guaranteed to work. If there is a very heavy RCU-callback load, then
some of the callbacks might be deferred in order to allow other processing to
proceed. Such deferral is required in realtime kernels in order to avoid excessive
scheduling latencies.

rcu_barrier()

We instead need the rcu_barrier() primitive. Rather than waiting for a grace pe-
riod to elapse, rcu_barrier() waits for all outstanding RCU callbacks to complete.
Please note that rcu_barrier() does not imply synchronize_rcu(), in particular, if
there are no RCU callbacks queued anywhere, rcu_barrier() is within its rights to
return immediately, without waiting for a grace period to elapse.

Pseudo-code using rcu_barrier() is as follows:

1. Prevent any new RCU callbacks from being posted.

2. Execute rcu_barrier().

3.6. RCU concepts 357

http://lwn.net/images/ns/kernel/rcu-drop.jpg

Linux Core-api Documentation

3. Allow the module to be unloaded.

There is also an srcu_barrier() function for SRCU, and you of course must
match the flavor of rcu_barrier() with that of call_rcu(). If your module uses mul-
tiple flavors of call_rcu(), then it must also use multiple flavors of rcu_barrier()
when unloading that module. For example, if it uses call_rcu(), call_srcu() on
srcu_struct_1, and call_srcu() on srcu_struct_2, then the following three lines of
code will be required when unloading:

1 rcu_barrier();
2 srcu_barrier(&srcu_struct_1);
3 srcu_barrier(&srcu_struct_2);

The rcutorture module makes use of rcu_barrier() in its exit function as follows:

1 static void
2 rcu_torture_cleanup(void)
3 {
4 int i;
5
6 fullstop = 1;
7 if (shuffler_task != NULL) {
8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task");
9 kthread_stop(shuffler_task);
10 }
11 shuffler_task = NULL;
12
13 if (writer_task != NULL) {
14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task");
15 kthread_stop(writer_task);
16 }
17 writer_task = NULL;
18
19 if (reader_tasks != NULL) {
20 for (i = 0; i < nrealreaders; i++) {
21 if (reader_tasks[i] != NULL) {
22 VERBOSE_PRINTK_STRING(
23 "Stopping rcu_torture_reader task");
24 kthread_stop(reader_tasks[i]);
25 }
26 reader_tasks[i] = NULL;
27 }
28 kfree(reader_tasks);
29 reader_tasks = NULL;
30 }
31 rcu_torture_current = NULL;
32
33 if (fakewriter_tasks != NULL) {
34 for (i = 0; i < nfakewriters; i++) {
35 if (fakewriter_tasks[i] != NULL) {
36 VERBOSE_PRINTK_STRING(
37 "Stopping rcu_torture_fakewriter task");
38 kthread_stop(fakewriter_tasks[i]);
39 }
40 fakewriter_tasks[i] = NULL;
41 }
42 kfree(fakewriter_tasks);

(continues on next page)

358 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
43 fakewriter_tasks = NULL;
44 }
45
46 if (stats_task != NULL) {
47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task");
48 kthread_stop(stats_task);
49 }
50 stats_task = NULL;
51
52 /* Wait for all RCU callbacks to fire. */
53 rcu_barrier();
54
55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
56
57 if (cur_ops->cleanup != NULL)
58 cur_ops->cleanup();
59 if (atomic_read(&n_rcu_torture_error))
60 rcu_torture_print_module_parms("End of test: FAILURE");
61 else
62 rcu_torture_print_module_parms("End of test: SUCCESS");
63 }

Line 6 sets a global variable that prevents any RCU callbacks from re-posting them-
selves. This will not be necessary in most cases, since RCU callbacks rarely include
calls to call_rcu(). However, the rcutorture module is an exception to this rule, and
therefore needs to set this global variable.

Lines 7-50 stop all the kernel tasks associated with the rcutorture module. There-
fore, once execution reaches line 53, no more rcutorture RCU callbacks will be
posted. The rcu_barrier() call on line 53 waits for any pre-existing callbacks to
complete.

Then lines 55-62 print status and do operation-specific cleanup, and then return,
permitting the module-unload operation to be completed.

Quick Quiz #1: Is there any other situation where rcu_barrier() might be re-
quired?

Answer to Quick Quiz #1

Your module might have additional complications. For example, if your module
invokes call_rcu() from timers, you will need to first cancel all the timers, and only
then invoke rcu_barrier() to wait for any remaining RCU callbacks to complete.

Of course, if you module uses call_rcu(), you will need to invoke rcu_barrier() be-
fore unloading. Similarly, if your module uses call_srcu(), you will need to in-
voke srcu_barrier() before unloading, and on the same srcu_struct structure.
If your module uses call_rcu() and call_srcu(), then you will need to invoke
rcu_barrier() and srcu_barrier().

3.6. RCU concepts 359

Linux Core-api Documentation

Implementing rcu_barrier()

Dipankar Sarma’s implementation of rcu_barrier() makes use of the fact that RCU
callbacks are never reordered once queued on one of the per-CPU queues. His
implementation queues an RCU callback on each of the per-CPU callback queues,
and then waits until they have all started executing, at which point, all earlier RCU
callbacks are guaranteed to have completed.

The original code for rcu_barrier() was as follows:

1 void rcu_barrier(void)
2 {
3 BUG_ON(in_interrupt());
4 /* Take cpucontrol mutex to protect against CPU hotplug */
5 mutex_lock(&rcu_barrier_mutex);
6 init_completion(&rcu_barrier_completion);
7 atomic_set(&rcu_barrier_cpu_count, 0);
8 on_each_cpu(rcu_barrier_func, NULL, 0, 1);
9 wait_for_completion(&rcu_barrier_completion);
10 mutex_unlock(&rcu_barrier_mutex);
11 }

Line 3 verifies that the caller is in process context, and lines 5 and 10 use
rcu_barrier_mutex to ensure that only one rcu_barrier() is using the global com-
pletion and counters at a time, which are initialized on lines 6 and 7. Line 8 causes
each CPU to invoke rcu_barrier_func(), which is shown below. Note that the final
“1”in on_each_cpu()’s argument list ensures that all the calls to rcu_barrier_func()
will have completed before on_each_cpu() returns. Line 9 then waits for the com-
pletion.

This code was rewritten in 2008 and several times thereafter, but this still gives
the general idea.

The rcu_barrier_func() runs on each CPU, where it invokes call_rcu() to post an
RCU callback, as follows:

1 static void rcu_barrier_func(void *notused)
2 {
3 int cpu = smp_processor_id();
4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
5 struct rcu_head *head;
6
7 head = &rdp->barrier;
8 atomic_inc(&rcu_barrier_cpu_count);
9 call_rcu(head, rcu_barrier_callback);
10 }

Lines 3 and 4 locate RCU’s internal per-CPU rcu_data structure, which contains
the struct rcu_head that needed for the later call to call_rcu(). Line 7 picks up
a pointer to this struct rcu_head, and line 8 increments a global counter. This
counter will later be decremented by the callback. Line 9 then registers the
rcu_barrier_callback() on the current CPU’s queue.
The rcu_barrier_callback() function simply atomically decrements the
rcu_barrier_cpu_count variable and finalizes the completion when it reaches
zero, as follows:

360 Chapter 3. Concurrency primitives

Linux Core-api Documentation

1 static void rcu_barrier_callback(struct rcu_head *notused)
2 {
3 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
4 complete(&rcu_barrier_completion);
5 }

Quick Quiz #2: What happens if CPU 0’s rcu_barrier_func() executes immedi-
ately (thus incrementing rcu_barrier_cpu_count to the value one), but the
other CPU’s rcu_barrier_func() invocations are delayed for a full grace pe-
riod? Couldn’t this result in rcu_barrier() returning prematurely?

Answer to Quick Quiz #2

The current rcu_barrier() implementation is more complex, due to the need to
avoid disturbing idle CPUs (especially on battery-powered systems) and the need
to minimally disturb non-idle CPUs in real-time systems. However, the code above
illustrates the concepts.

rcu_barrier() Summary

The rcu_barrier() primitive has seen relatively little use, since most code using
RCU is in the core kernel rather than in modules. However, if you are using RCU
from an unloadable module, you need to use rcu_barrier() so that your module may
be safely unloaded.

Answers to Quick Quizzes

Quick Quiz #1: Is there any other situation where rcu_barrier() might be re-
quired?

Answer: Interestingly enough, rcu_barrier() was not originally
implemented for module unloading. Nikita Danilov was using RCU in a
filesystem, which resulted in a similar situation at filesystem-unmount time.
Dipankar Sarma coded up rcu_barrier() in response, so that Nikita could
invoke it during the filesystem-unmount process.

Much later, yours truly hit the RCUmodule-unload problem when implement-
ing rcutorture, and found that rcu_barrier() solves this problem as well.

Back to Quick Quiz #1

Quick Quiz #2: What happens if CPU 0’s rcu_barrier_func() executes immedi-
ately (thus incrementing rcu_barrier_cpu_count to the value one), but the
other CPU’s rcu_barrier_func() invocations are delayed for a full grace pe-
riod? Couldn’t this result in rcu_barrier() returning prematurely?

Answer: This cannot happen. The reason is that on_each_cpu() has its last
argument, the wait flag, set to “1”. This flag is passed through to
smp_call_function() and further to smp_call_function_on_cpu(), causing
this latter to spin until the cross-CPU invocation of rcu_barrier_func() has
completed. This by itself would prevent a grace period from completing on
non-CONFIG_PREEMPT kernels, since each CPU must undergo a context
switch (or other quiescent state) before the grace period can complete.
However, this is of no use in CONFIG_PREEMPT kernels.

3.6. RCU concepts 361

Linux Core-api Documentation

Therefore, on_each_cpu() disables preemption across its call to
smp_call_function() and also across the local call to rcu_barrier_func().
This prevents the local CPU from context switching, again preventing
grace periods from completing. This means that all CPUs have executed
rcu_barrier_func() before the first rcu_barrier_callback() can possibly exe-
cute, in turn preventing rcu_barrier_cpu_count from prematurely reaching
zero.

Currently, -rt implementations of RCU keep but a single global queue for RCU
callbacks, and thus do not suffer from this problem. However, when the -
rt RCU eventually does have per-CPU callback queues, things will have to
change. One simple change is to add an rcu_read_lock() before line 8 of
rcu_barrier() and an rcu_read_unlock() after line 8 of this same function. If
you can think of a better change, please let me know!

Back to Quick Quiz #2

3.6.3 PROPER CARE AND FEEDING OF RETURN VALUES FROM
rcu_dereference()

Most of the time, you can use values from rcu_dereference() or one of the similar
primitives without worries. Dereferencing (prefix “*”), field selection (“->”),
assignment (“=”), address-of (“&”), addition and subtraction of constants, and
casts all work quite naturally and safely.

It is nevertheless possible to get into trouble with other operations. Follow these
rules to keep your RCU code working properly:

• You must use one of the rcu_dereference() family of primitives to load
an RCU-protected pointer, otherwise CONFIG_PROVE_RCU will complain.
Worse yet, your code can see random memory-corruption bugs due to
games that compilers and DEC Alpha can play. Without one of the
rcu_dereference() primitives, compilers can reload the value, and won’t
your code have fun with two different values for a single pointer! Without
rcu_dereference(), DEC Alpha can load a pointer, dereference that pointer,
and return data preceding initialization that preceded the store of the pointer.

In addition, the volatile cast in rcu_dereference() prevents the compiler
from deducing the resulting pointer value. Please see the section entitled
“EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH”for an example
where the compiler can in fact deduce the exact value of the pointer, and thus
cause misordering.

• You are only permitted to use rcu_dereference on pointer values. The com-
piler simply knows too much about integral values to trust it to carry depen-
dencies through integer operations. There are a very few exceptions, namely
that you can temporarily cast the pointer to uintptr_t in order to:

– Set bits and clear bits down in the must-be-zero low-order bits of that
pointer. This clearly means that the pointer must have alignment con-
straints, for example, this does -not- work in general for char* pointers.

– XOR bits to translate pointers, as is done in some classic buddy-allocator
algorithms.

362 Chapter 3. Concurrency primitives

Linux Core-api Documentation

It is important to cast the value back to pointer before doing much of anything
else with it.

• Avoid cancellation when using the“+”and“-”infix arithmetic operators. For
example, for a given variable“x”, avoid“(x-(uintptr_t)x)”for char* pointers.
The compiler is within its rights to substitute zero for this sort of expression,
so that subsequent accesses no longer depend on the rcu_dereference(),
again possibly resulting in bugs due to misordering.

Of course, if“p”is a pointer from rcu_dereference(), and“a”and“b”are
integers that happen to be equal, the expression“p+a-b”is safe because its
value still necessarily depends on the rcu_dereference(), thus maintaining
proper ordering.

• If you are using RCU to protect JITed functions, so that the “()”function-
invocation operator is applied to a value obtained (directly or indirectly) from
rcu_dereference(), you may need to interact directly with the hardware to
flush instruction caches. This issue arises on some systems when a newly
JITed function is using the same memory that was used by an earlier JITed
function.

• Do not use the results from relational operators (“==”,“!=”,“>”,“>=”
, “<”, or “<=”) when dereferencing. For example, the following (quite
strange) code is buggy:

int *p;
int *q;

...

p = rcu_dereference(gp)
q = &global_q;
q += p > &oom_p;
r1 = *q; /* BUGGY!!! */

As before, the reason this is buggy is that relational operators are often com-
piled using branches. And as before, although weak-memory machines such
as ARM or PowerPC do order stores after such branches, but can speculate
loads, which can again result in misordering bugs.

• Be very careful about comparing pointers obtained from rcu_dereference()
against non-NULL values. As Linus Torvalds explained, if the two pointers are
equal, the compiler could substitute the pointer you are comparing against
for the pointer obtained from rcu_dereference(). For example:

p = rcu_dereference(gp);
if (p == &default_struct)

do_default(p->a);

Because the compiler now knows that the value of“p”is exactly the address
of the variable “default_struct”, it is free to transform this code into the
following:

p = rcu_dereference(gp);
if (p == &default_struct)

do_default(default_struct.a);

3.6. RCU concepts 363

Linux Core-api Documentation

On ARM and Power hardware, the load from “default_struct.a”can now be
speculated, such that it might happen before the rcu_dereference(). This
could result in bugs due to misordering.

However, comparisons are OK in the following cases:

– The comparison was against the NULL pointer. If the compiler knows
that the pointer is NULL, you had better not be dereferencing it anyway.
If the comparison is non-equal, the compiler is none the wiser. Therefore,
it is safe to compare pointers from rcu_dereference() against NULL
pointers.

– The pointer is never dereferenced after being compared. Since there are
no subsequent dereferences, the compiler cannot use anything it learned
from the comparison to reorder the non-existent subsequent derefer-
ences. This sort of comparison occurs frequently when scanning RCU-
protected circular linked lists.

Note that if checks for being within an RCU read-side critical
section are not required and the pointer is never dereferenced,
rcu_access_pointer() should be used in place of rcu_dereference().

– The comparison is against a pointer that references memory that was
initialized “a long time ago.”The reason this is safe is that even if mis-
ordering occurs, the misordering will not affect the accesses that follow
the comparison. So exactly how long ago is “a long time ago”? Here
are some possibilities:

∗ Compile time.

∗ Boot time.

∗ Module-init time for module code.

∗ Prior to kthread creation for kthread code.

∗ During some prior acquisition of the lock that we now hold.

∗ Before mod_timer() time for a timer handler.

There aremany other possibilities involving the Linux kernel’s wide array
of primitives that cause code to be invoked at a later time.

– The pointer being compared against also came from rcu_dereference().
In this case, both pointers depend on one rcu_dereference() or another,
so you get proper ordering either way.

That said, this situation can make certain RCU usage bugs more likely
to happen. Which can be a good thing, at least if they happen during
testing. An example of such an RCU usage bug is shown in the section
titled “EXAMPLE OF AMPLIFIED RCU-USAGE BUG”.

– All of the accesses following the comparison are stores, so that a control
dependency preserves the needed ordering. That said, it is easy to get
control dependencies wrong. Please see the “CONTROL DEPENDEN-
CIES”section of Documentation/memory-barriers.txt for more details.

– The pointers are not equal -and- the compiler does not have enough in-
formation to deduce the value of the pointer. Note that the volatile cast

364 Chapter 3. Concurrency primitives

Linux Core-api Documentation

in rcu_dereference() will normally prevent the compiler from knowing
too much.

However, please note that if the compiler knows that the pointer takes on
only one of two values, a not-equal comparison will provide exactly the
information that the compiler needs to deduce the value of the pointer.

• Disable any value-speculation optimizations that your compiler might pro-
vide, especially if you are making use of feedback-based optimizations that
take data collected from prior runs. Such value-speculation optimizations
reorder operations by design.

There is one exception to this rule: Value-speculation optimizations that lever-
age the branch-prediction hardware are safe on strongly ordered systems
(such as x86), but not on weakly ordered systems (such as ARM or Power).
Choose your compiler command-line options wisely!

EXAMPLE OF AMPLIFIED RCU-USAGE BUG

Because updaters can run concurrently with RCU readers, RCU readers can see
stale and/or inconsistent values. If RCU readers need fresh or consistent values,
which they sometimes do, they need to take proper precautions. To see this, con-
sider the following code fragment:

struct foo {
int a;
int b;
int c;

};
struct foo *gp1;
struct foo *gp2;

void updater(void)
{

struct foo *p;

p = kmalloc(...);
if (p == NULL)

deal_with_it();
p->a = 42; /* Each field in its own cache line. */
p->b = 43;
p->c = 44;
rcu_assign_pointer(gp1, p);
p->b = 143;
p->c = 144;
rcu_assign_pointer(gp2, p);

}

void reader(void)
{

struct foo *p;
struct foo *q;
int r1, r2;

p = rcu_dereference(gp2);
(continues on next page)

3.6. RCU concepts 365

Linux Core-api Documentation

(continued from previous page)
if (p == NULL)

return;
r1 = p->b; /* Guaranteed to get 143. */
q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
if (p == q) {

/* The compiler decides that q->c is same as p->c. */
r2 = p->c; /* Could get 44 on weakly order system. */

}
do_something_with(r1, r2);

}

You might be surprised that the outcome (r1 == 143 && r2 == 44) is possible,
but you should not be. After all, the updater might have been invoked a second
time between the time reader() loaded into “r1”and the time that it loaded into
“r2”. The fact that this same result can occur due to some reordering from the
compiler and CPUs is beside the point.

But suppose that the reader needs a consistent view?

Then one approach is to use locking, for example, as follows:

struct foo {
int a;
int b;
int c;
spinlock_t lock;

};
struct foo *gp1;
struct foo *gp2;

void updater(void)
{

struct foo *p;

p = kmalloc(...);
if (p == NULL)

deal_with_it();
spin_lock(&p->lock);
p->a = 42; /* Each field in its own cache line. */
p->b = 43;
p->c = 44;
spin_unlock(&p->lock);
rcu_assign_pointer(gp1, p);
spin_lock(&p->lock);
p->b = 143;
p->c = 144;
spin_unlock(&p->lock);
rcu_assign_pointer(gp2, p);

}

void reader(void)
{

struct foo *p;
struct foo *q;
int r1, r2;

(continues on next page)

366 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
p = rcu_dereference(gp2);
if (p == NULL)

return;
spin_lock(&p->lock);
r1 = p->b; /* Guaranteed to get 143. */
q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
if (p == q) {

/* The compiler decides that q->c is same as p->c. */
r2 = p->c; /* Locking guarantees r2 == 144. */

}
spin_unlock(&p->lock);
do_something_with(r1, r2);

}

As always, use the right tool for the job!

EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH

If a pointer obtained from rcu_dereference() compares not-equal to some other
pointer, the compiler normally has no clue what the value of the first pointer might
be. This lack of knowledge prevents the compiler from carrying out optimizations
that otherwise might destroy the ordering guarantees that RCU depends on. And
the volatile cast in rcu_dereference() should prevent the compiler from guessing
the value.

But without rcu_dereference(), the compiler knows more than you might expect.
Consider the following code fragment:

struct foo {
int a;
int b;

};
static struct foo variable1;
static struct foo variable2;
static struct foo *gp = &variable1;

void updater(void)
{

initialize_foo(&variable2);
rcu_assign_pointer(gp, &variable2);
/*
* The above is the only store to gp in this translation unit,
* and the address of gp is not exported in any way.
*/

}

int reader(void)
{

struct foo *p;

p = gp;
barrier();
if (p == &variable1)

return p->a; /* Must be variable1.a. */
(continues on next page)

3.6. RCU concepts 367

Linux Core-api Documentation

(continued from previous page)
else

return p->b; /* Must be variable2.b. */
}

Because the compiler can see all stores to “gp”, it knows that the only possible
values of“gp”are“variable1”on the one hand and“variable2”on the other. The
comparison in reader() therefore tells the compiler the exact value of“p”even in the
not-equals case. This allows the compiler to make the return values independent
of the load from“gp”, in turn destroying the ordering between this load and the
loads of the return values. This can result in “p->b”returning pre-initialization
garbage values.

In short, rcu_dereference() is -not- optional when you are going to dereference
the resulting pointer.

WHICH MEMBER OF THE rcu_dereference() FAMILY SHOULD YOU USE?

First, please avoid using rcu_dereference_raw() and also please avoid using
rcu_dereference_check() and rcu_dereference_protected() with a second ar-
gument with a constant value of 1 (or true, for that matter). With that caution out
of the way, here is some guidance for which member of the rcu_dereference()
to use in various situations:

1. If the access needs to be within an RCU read-side critical section, use
rcu_dereference(). With the new consolidated RCU flavors, an RCU read-
side critical section is entered using rcu_read_lock(), anything that disables
bottom halves, anything that disables interrupts, or anything that disables
preemption.

2. If the access might be within an RCU read-side critical section on
the one hand, or protected by (say) my_lock on the other, use
rcu_dereference_check(), for example:

p1 = rcu_dereference_check(p->rcu_protected_pointer,
lockdep_is_held(&my_lock));

3. If the access might be within an RCU read-side critical section on the one
hand, or protected by either my_lock or your_lock on the other, again use
rcu_dereference_check(), for example:

p1 = rcu_dereference_check(p->rcu_protected_pointer,
lockdep_is_held(&my_lock) ||
lockdep_is_held(&your_lock));

4. If the access is on the update side, so that it is always protected by my_lock,
use rcu_dereference_protected():

p1 = rcu_dereference_protected(p->rcu_protected_pointer,
lockdep_is_held(&my_lock));

This can be extended to handle multiple locks as in #3 above, and both can
be extended to check other conditions as well.

368 Chapter 3. Concurrency primitives

Linux Core-api Documentation

5. If the protection is supplied by the caller, and is thus unknown to this code,
that is the rare case when rcu_dereference_raw() is appropriate. In addi-
tion, rcu_dereference_raw() might be appropriate when the lockdep expres-
sion would be excessively complex, except that a better approach in that case
might be to take a long hard look at your synchronization design. Still, there
are data-locking cases where any one of a very large number of locks or refer-
ence counters suffices to protect the pointer, so rcu_dereference_raw() does
have its place.

However, its place is probably quite a bit smaller than one might
expect given the number of uses in the current kernel. Ditto for
its synonym, rcu_dereference_check(⋯, 1), and its close relative,
rcu_dereference_protected(⋯, 1).

SPARSE CHECKING OF RCU-PROTECTED POINTERS

The sparse static-analysis tool checks for direct access to RCU-protected pointers,
which can result in “interesting”bugs due to compiler optimizations involving
invented loads and perhaps also load tearing. For example, suppose someone
mistakenly does something like this:

p = q->rcu_protected_pointer;
do_something_with(p->a);
do_something_else_with(p->b);

If register pressure is high, the compiler might optimize “p”out of existence,
transforming the code to something like this:

do_something_with(q->rcu_protected_pointer->a);
do_something_else_with(q->rcu_protected_pointer->b);

This could fatally disappoint your code if q->rcu_protected_pointer changed in the
meantime. Nor is this a theoretical problem: Exactly this sort of bug cost Paul E.
McKenney (and several of his innocent colleagues) a three-day weekend back in
the early 1990s.

Load tearing could of course result in dereferencing a mashup of a pair of pointers,
which also might fatally disappoint your code.

These problems could have been avoided simply by making the code instead read
as follows:

p = rcu_dereference(q->rcu_protected_pointer);
do_something_with(p->a);
do_something_else_with(p->b);

Unfortunately, these sorts of bugs can be extremely hard to spot during review.
This is where the sparse tool comes into play, along with the“__rcu”marker. If you
mark a pointer declaration, whether in a structure or as a formal parameter, with
“__rcu”, which tells sparse to complain if this pointer is accessed directly. It will
also cause sparse to complain if a pointer not marked with“__rcu”is accessed using
rcu_dereference() and friends. For example, ->rcu_protected_pointer might be
declared as follows:

3.6. RCU concepts 369

Linux Core-api Documentation

struct foo __rcu *rcu_protected_pointer;

Use of “__rcu”is opt-in. If you choose not to use it, then you should ignore the
sparse warnings.

3.6.4 What is RCU? – “Read, Copy, Update”

Please note that the “What is RCU?”LWN series is an excellent place to start
learning about RCU:

1. What is RCU, Fundamentally? http://lwn.net/Articles/262464/
2. What is RCU? Part 2: Usage http://lwn.net/Articles/263130/
3. RCU part 3: the RCU API http://lwn.net/Articles/264090/
4. The RCU API, 2010 Edition http://lwn.net/Articles/418853/

2010 Big API Table http://lwn.net/Articles/419086/
5. The RCU API, 2014 Edition http://lwn.net/Articles/609904/

2014 Big API Table http://lwn.net/Articles/609973/

What is RCU?

RCU is a synchronization mechanism that was added to the Linux kernel during
the 2.5 development effort that is optimized for read-mostly situations. Although
RCU is actually quite simple once you understand it, getting there can sometimes
be a challenge. Part of the problem is that most of the past descriptions of RCU
have been written with the mistaken assumption that there is “one true way”to
describe RCU. Instead, the experience has been that different people must take
different paths to arrive at an understanding of RCU. This document provides sev-
eral different paths, as follows:

1. RCU OVERVIEW

2. WHAT IS RCU’S CORE API?
3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?

4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?

5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?

6. ANALOGY WITH READER-WRITER LOCKING

7. FULL LIST OF RCU APIs

8. ANSWERS TO QUICK QUIZZES

People who prefer starting with a conceptual overview should focus on Section 1,
though most readers will profit by reading this section at some point. People who
prefer to start with an API that they can then experiment with should focus on
Section 2. People who prefer to start with example uses should focus on Sections
3 and 4. People who need to understand the RCU implementation should focus
on Section 5, then dive into the kernel source code. People who reason best by

370 Chapter 3. Concurrency primitives

http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://lwn.net/Articles/418853/
http://lwn.net/Articles/419086/
http://lwn.net/Articles/609904/
http://lwn.net/Articles/609973/

Linux Core-api Documentation

analogy should focus on Section 6. Section 7 serves as an index to the docbook
API documentation, and Section 8 is the traditional answer key.

So, start with the section that makes the most sense to you and your preferred
method of learning. If you need to know everything about everything, feel free to
read the whole thing – but if you are really that type of person, you have perused
the source code and will therefore never need this document anyway. ;-)

1. RCU OVERVIEW

The basic idea behind RCU is to split updates into“removal”and“reclamation”
phases. The removal phase removes references to data items within a data struc-
ture (possibly by replacing them with references to new versions of these data
items), and can run concurrently with readers. The reason that it is safe to run
the removal phase concurrently with readers is the semantics of modern CPUs
guarantee that readers will see either the old or the new version of the data struc-
ture rather than a partially updated reference. The reclamation phase does the
work of reclaiming (e.g., freeing) the data items removed from the data structure
during the removal phase. Because reclaiming data items can disrupt any readers
concurrently referencing those data items, the reclamation phase must not start
until readers no longer hold references to those data items.

Splitting the update into removal and reclamation phases permits the updater to
perform the removal phase immediately, and to defer the reclamation phase until
all readers active during the removal phase have completed, either by blocking
until they finish or by registering a callback that is invoked after they finish. Only
readers that are active during the removal phase need be considered, because any
reader starting after the removal phase will be unable to gain a reference to the
removed data items, and therefore cannot be disrupted by the reclamation phase.

So the typical RCU update sequence goes something like the following:

a. Remove pointers to a data structure, so that subsequent readers cannot gain
a reference to it.

b. Wait for all previous readers to complete their RCU read-side critical sections.

c. At this point, there cannot be any readers who hold references to the data
structure, so it now may safely be reclaimed (e.g., kfree()d).

Step (b) above is the key idea underlying RCU’s deferred destruction. The ability
to wait until all readers are done allows RCU readers to use much lighter-weight
synchronization, in some cases, absolutely no synchronization at all. In contrast, in
more conventional lock-based schemes, readers must use heavy-weight synchro-
nization in order to prevent an updater from deleting the data structure out from
under them. This is because lock-based updaters typically update data items in
place, and must therefore exclude readers. In contrast, RCU-based updaters typi-
cally take advantage of the fact that writes to single aligned pointers are atomic on
modern CPUs, allowing atomic insertion, removal, and replacement of data items
in a linked structure without disrupting readers. Concurrent RCU readers can
then continue accessing the old versions, and can dispense with the atomic oper-
ations, memory barriers, and communications cache misses that are so expensive
on present-day SMP computer systems, even in absence of lock contention.

3.6. RCU concepts 371

Linux Core-api Documentation

In the three-step procedure shown above, the updater is performing both the re-
moval and the reclamation step, but it is often helpful for an entirely different
thread to do the reclamation, as is in fact the case in the Linux kernel’s directory-
entry cache (dcache). Even if the same thread performs both the update step (step
(a) above) and the reclamation step (step (c) above), it is often helpful to think of
them separately. For example, RCU readers and updaters need not communicate
at all, but RCU provides implicit low-overhead communication between readers
and reclaimers, namely, in step (b) above.

So how the heck can a reclaimer tell when a reader is done, given that readers are
not doing any sort of synchronization operations??? Read on to learn about how
RCU’s API makes this easy.

2. WHAT IS RCU’S CORE API?

The core RCU API is quite small:

a. rcu_read_lock()

b. rcu_read_unlock()

c. synchronize_rcu() / call_rcu()

d. rcu_assign_pointer()

e. rcu_dereference()

There are many other members of the RCU API, but the rest can be expressed
in terms of these five, though most implementations instead express synchro-
nize_rcu() in terms of the call_rcu() callback API.

The five core RCU APIs are described below, the other 18 will be enumerated
later. See the kernel docbook documentation for more info, or look directly at the
function header comments.

rcu_read_lock()

void rcu_read_lock(void);

Used by a reader to inform the reclaimer that the reader is entering an
RCU read-side critical section. It is illegal to block while in an RCU read-
side critical section, though kernels built with CONFIG_PREEMPT_RCU
can preempt RCU read-side critical sections. Any RCU-protected data
structure accessed during an RCU read-side critical section is guaran-
teed to remain unreclaimed for the full duration of that critical section.
Reference counts may be used in conjunction with RCU to maintain
longer-term references to data structures.

372 Chapter 3. Concurrency primitives

Linux Core-api Documentation

rcu_read_unlock()

void rcu_read_unlock(void);

Used by a reader to inform the reclaimer that the reader is exiting an
RCU read-side critical section. Note that RCU read-side critical sections
may be nested and/or overlapping.

synchronize_rcu()

void synchronize_rcu(void);

Marks the end of updater code and the beginning of reclaimer code. It
does this by blocking until all pre-existing RCU read-side critical sec-
tions on all CPUs have completed. Note that synchronize_rcu() will not
necessarily wait for any subsequent RCU read-side critical sections to
complete. For example, consider the following sequence of events:

CPU 0 CPU 1 CPU 2
----------------- ------------------------- ---------------

1. rcu_read_lock()
2. enters synchronize_rcu()
3. rcu_read_lock()
4. rcu_read_unlock()
5. exits synchronize_rcu()
6. rcu_read_unlock()

To reiterate, synchronize_rcu() waits only for ongoing RCU read-side
critical sections to complete, not necessarily for any that begin after
synchronize_rcu() is invoked.

Of course, synchronize_rcu() does not necessarily return immediately
after the last pre-existing RCU read-side critical section completes. For
one thing, there might well be scheduling delays. For another thing,
many RCU implementations process requests in batches in order to im-
prove efficiencies, which can further delay synchronize_rcu().

Since synchronize_rcu() is the API that must figure out when readers are
done, its implementation is key to RCU. For RCU to be useful in all but
the most read-intensive situations, synchronize_rcu()’s overhead must
also be quite small.

The call_rcu() API is a callback form of synchronize_rcu(), and is de-
scribed in more detail in a later section. Instead of blocking, it registers
a function and argument which are invoked after all ongoing RCU read-
side critical sections have completed. This callback variant is particu-
larly useful in situations where it is illegal to block or where update-side
performance is critically important.

However, the call_rcu() API should not be used lightly, as use of the
synchronize_rcu() API generally results in simpler code. In addition, the
synchronize_rcu() API has the nice property of automatically limiting up-
date rate should grace periods be delayed. This property results in sys-
tem resilience in face of denial-of-service attacks. Code using call_rcu()

3.6. RCU concepts 373

Linux Core-api Documentation

should limit update rate in order to gain this same sort of resilience. See
checklist.txt for some approaches to limiting the update rate.

rcu_assign_pointer()

void rcu_assign_pointer(p, typeof(p) v);

Yes, rcu_assign_pointer() is implemented as a macro, though it would
be cool to be able to declare a function in this manner. (Compiler experts
will no doubt disagree.)

The updater uses this function to assign a new value to an RCU-protected
pointer, in order to safely communicate the change in value from the
updater to the reader. This macro does not evaluate to an rvalue, but it
does execute any memory-barrier instructions required for a given CPU
architecture.

Perhaps just as important, it serves to document (1) which pointers are
protected by RCU and (2) the point at which a given structure becomes
accessible to other CPUs. That said, rcu_assign_pointer() is most fre-
quently used indirectly, via the _rcu list-manipulation primitives such as
list_add_rcu().

rcu_dereference()

typeof(p) rcu_dereference(p);

Like rcu_assign_pointer(), rcu_dereference()must be implemented
as a macro.

The reader uses rcu_dereference() to fetch an RCU-protected pointer,
which returns a value that may then be safely dereferenced. Note that
rcu_dereference() does not actually dereference the pointer, instead,
it protects the pointer for later dereferencing. It also executes any
needed memory-barrier instructions for a given CPU architecture. Cur-
rently, only Alpha needs memory barriers within rcu_dereference() –
on other CPUs, it compiles to nothing, not even a compiler directive.

Common coding practice uses rcu_dereference() to copy an RCU-
protected pointer to a local variable, then dereferences this local vari-
able, for example as follows:

p = rcu_dereference(head.next);
return p->data;

However, in this case, one could just as easily combine these into one
statement:

return rcu_dereference(head.next)->data;

If you are going to be fetching multiple fields from the RCU-protected
structure, using the local variable is of course preferred. Repeated
rcu_dereference() calls look ugly, do not guarantee that the same

374 Chapter 3. Concurrency primitives

Linux Core-api Documentation

pointer will be returned if an update happened while in the critical sec-
tion, and incur unnecessary overhead on Alpha CPUs.

Note that the value returned by rcu_dereference() is valid only within
the enclosing RCU read-side critical section1. For example, the following
is not legal:

rcu_read_lock();
p = rcu_dereference(head.next);
rcu_read_unlock();
x = p->address; /* BUG!!! */
rcu_read_lock();
y = p->data; /* BUG!!! */
rcu_read_unlock();

Holding a reference from one RCU read-side critical section to another is
just as illegal as holding a reference from one lock-based critical section
to another! Similarly, using a reference outside of the critical section in
which it was acquired is just as illegal as doing so with normal locking.

As with rcu_assign_pointer(), an important function of
rcu_dereference() is to document which pointers are protected
by RCU, in particular, flagging a pointer that is subject to changing at
any time, including immediately after the rcu_dereference(). And,
again like rcu_assign_pointer(), rcu_dereference() is typically
used indirectly, via the _rcu list-manipulation primitives, such as
list_for_each_entry_rcu()2.

The following diagram shows how each API communicates among the reader, up-
dater, and reclaimer.

rcu_assign_pointer()
+--------+

+---------------------->| reader |---------+
| +--------+ |
| | |
| | | Protect:
| | | rcu_read_lock()
| | | rcu_read_unlock()
| rcu_dereference() | |
+---------+ | |
| updater |<----------------+ |
+---------+ V

(continues on next page)

1 The variant rcu_dereference_protected() can be used outside of an RCU read-side critical
section as long as the usage is protected by locks acquired by the update-side code. This vari-
ant avoids the lockdep warning that would happen when using (for example) rcu_dereference()
without rcu_read_lock() protection. Using rcu_dereference_protected() also has the ad-
vantage of permitting compiler optimizations that rcu_dereference() must prohibit. The
rcu_dereference_protected() variant takes a lockdep expression to indicate which locks must
be acquired by the caller. If the indicated protection is not provided, a lockdep splat is emitted.
See Documentation/RCU/Design/Requirements/Requirements.rst and the API’s code comments for
more details and example usage.

2 If the list_for_each_entry_rcu() instance might be used by update-side code as well as by
RCU readers, then an additional lockdep expression can be added to its list of arguments. For
example, given an additional“lock_is_held(&mylock)”argument, the RCU lockdep code would com-
plain only if this instance was invoked outside of an RCU read-side critical section and without the
protection of mylock.

3.6. RCU concepts 375

Linux Core-api Documentation

(continued from previous page)
| +-----------+
+----------------------------------->| reclaimer |

+-----------+
Defer:
synchronize_rcu() & call_rcu()

The RCU infrastructure observes the time sequence of rcu_read_lock(),
rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in order to de-
termine when (1) synchronize_rcu() invocations may return to their callers and
(2) call_rcu() callbacks may be invoked. Efficient implementations of the RCU in-
frastructure make heavy use of batching in order to amortize their overhead over
many uses of the corresponding APIs.

There are at least three flavors of RCU usage in the Linux kernel. The
diagram above shows the most common one. On the updater side, the
rcu_assign_pointer(), sychronize_rcu() and call_rcu() primitives used are the
same for all three flavors. However for protection (on the reader side), the primi-
tives used vary depending on the flavor:

a. rcu_read_lock() / rcu_read_unlock() rcu_dereference()

b. rcu_read_lock_bh() / rcu_read_unlock_bh() local_bh_disable() / lo-
cal_bh_enable() rcu_dereference_bh()

c. rcu_read_lock_sched() / rcu_read_unlock_sched() preempt_disable() / pre-
empt_enable() local_irq_save() / local_irq_restore() hardirq enter / hardirq
exit NMI enter / NMI exit rcu_dereference_sched()

These three flavors are used as follows:

a. RCU applied to normal data structures.

b. RCU applied to networking data structures that may be subjected to remote
denial-of-service attacks.

c. RCU applied to scheduler and interrupt/NMI-handler tasks.

Again, most uses will be of (a). The (b) and (c) cases are important for specialized
uses, but are relatively uncommon.

3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?

This section shows a simple use of the core RCU API to protect a global pointer
to a dynamically allocated structure. More-typical uses of RCU may be found in
listRCU.rst, arrayRCU.rst, and NMI-RCU.rst.

struct foo {
int a;
char b;
long c;

};
DEFINE_SPINLOCK(foo_mutex);

struct foo __rcu *gbl_foo;

(continues on next page)

376 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
/*
* Create a new struct foo that is the same as the one currently
* pointed to by gbl_foo, except that field "a" is replaced
* with "new_a". Points gbl_foo to the new structure, and
* frees up the old structure after a grace period.
*
* Uses rcu_assign_pointer() to ensure that concurrent readers
* see the initialized version of the new structure.
*
* Uses synchronize_rcu() to ensure that any readers that might
* have references to the old structure complete before freeing
* the old structure.
*/

void foo_update_a(int new_a)
{

struct foo *new_fp;
struct foo *old_fp;

new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_

↪→mutex));
*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
synchronize_rcu();
kfree(old_fp);

}

/*
* Return the value of field "a" of the current gbl_foo
* structure. Use rcu_read_lock() and rcu_read_unlock()
* to ensure that the structure does not get deleted out
* from under us, and use rcu_dereference() to ensure that
* we see the initialized version of the structure (important
* for DEC Alpha and for people reading the code).
*/

int foo_get_a(void)
{

int retval;

rcu_read_lock();
retval = rcu_dereference(gbl_foo)->a;
rcu_read_unlock();
return retval;

}

So, to sum up:

• Use rcu_read_lock() and rcu_read_unlock() to guard RCU read-side crit-
ical sections.

• Within an RCU read-side critical section, use rcu_dereference() to derefer-
ence RCU-protected pointers.

• Use some solid scheme (such as locks or semaphores) to keep concurrent

3.6. RCU concepts 377

Linux Core-api Documentation

updates from interfering with each other.

• Use rcu_assign_pointer() to update an RCU-protected pointer. This prim-
itive protects concurrent readers from the updater, not concurrent updates
from each other! You therefore still need to use locking (or something sim-
ilar) to keep concurrent rcu_assign_pointer() primitives from interfering
with each other.

• Use synchronize_rcu() after removing a data element from an RCU-protected
data structure, but before reclaiming/freeing the data element, in order to
wait for the completion of all RCU read-side critical sections that might be
referencing that data item.

See checklist.txt for additional rules to follow when using RCU. And again, more-
typical uses of RCU may be found in listRCU.rst, arrayRCU.rst, and NMI-RCU.rst.

4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?

In the example above, foo_update_a() blocks until a grace period elapses. This is
quite simple, but in some cases one cannot afford to wait so long – there might be
other high-priority work to be done.

In such cases, one uses call_rcu() rather than synchronize_rcu(). The call_rcu()
API is as follows:

void call_rcu(struct rcu_head * head,
void (*func)(struct rcu_head *head));

This function invokes func(head) after a grace period has elapsed. This invocation
might happen from either softirq or process context, so the function is not permit-
ted to block. The foo struct needs to have an rcu_head structure added, perhaps
as follows:

struct foo {
int a;
char b;
long c;
struct rcu_head rcu;

};

The foo_update_a() function might then be written as follows:

/*
* Create a new struct foo that is the same as the one currently
* pointed to by gbl_foo, except that field "a" is replaced
* with "new_a". Points gbl_foo to the new structure, and
* frees up the old structure after a grace period.
*
* Uses rcu_assign_pointer() to ensure that concurrent readers
* see the initialized version of the new structure.
*
* Uses call_rcu() to ensure that any readers that might have
* references to the old structure complete before freeing the
* old structure.
*/

(continues on next page)

378 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
void foo_update_a(int new_a)
{

struct foo *new_fp;
struct foo *old_fp;

new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_

↪→mutex));
*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
call_rcu(&old_fp->rcu, foo_reclaim);

}

The foo_reclaim() function might appear as follows:

void foo_reclaim(struct rcu_head *rp)
{

struct foo *fp = container_of(rp, struct foo, rcu);

foo_cleanup(fp->a);

kfree(fp);
}

The container_of() primitive is a macro that, given a pointer into a struct, the type
of the struct, and the pointed-to field within the struct, returns a pointer to the
beginning of the struct.

The use of call_rcu() permits the caller of foo_update_a() to immediately regain
control, without needing to worry further about the old version of the newly up-
dated element. It also clearly shows the RCU distinction between updater, namely
foo_update_a(), and reclaimer, namely foo_reclaim().

The summary of advice is the same as for the previous section, except that we are
now using call_rcu() rather than synchronize_rcu():

• Use call_rcu() after removing a data element from an RCU-protected data
structure in order to register a callback function that will be invoked after
the completion of all RCU read-side critical sections that might be referencing
that data item.

If the callback for call_rcu() is not doing anything more than calling kfree() on
the structure, you can use kfree_rcu() instead of call_rcu() to avoid having to
write your own callback:

kfree_rcu(old_fp, rcu);

Again, see checklist.txt for additional rules governing the use of RCU.

3.6. RCU concepts 379

Linux Core-api Documentation

5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?

One of the nice things about RCU is that it has extremely simple“toy”implemen-
tations that are a good first step towards understanding the production-quality
implementations in the Linux kernel. This section presents two such “toy”im-
plementations of RCU, one that is implemented in terms of familiar locking prim-
itives, and another that more closely resembles “classic”RCU. Both are way too
simple for real-world use, lacking both functionality and performance. However,
they are useful in getting a feel for how RCU works. See kernel/rcu/update.c for
a production-quality implementation, and see:

http://www.rdrop.com/users/paulmck/RCU

for papers describing the Linux kernel RCU implementation. The OLS’01 and OLS’
02 papers are a good introduction, and the dissertation provides more details on
the current implementation as of early 2004.

5A. “TOY”IMPLEMENTATION #1: LOCKING

This section presents a“toy”RCU implementation that is based on familiar locking
primitives. Its overhead makes it a non-starter for real-life use, as does its lack of
scalability. It is also unsuitable for realtime use, since it allows scheduling latency
to“bleed”from one read-side critical section to another. It also assumes recursive
reader-writer locks: If you try this with non-recursive locks, and you allow nested
rcu_read_lock() calls, you can deadlock.

However, it is probably the easiest implementation to relate to, so is a good starting
point.

It is extremely simple:

static DEFINE_RWLOCK(rcu_gp_mutex);

void rcu_read_lock(void)
{

read_lock(&rcu_gp_mutex);
}

void rcu_read_unlock(void)
{

read_unlock(&rcu_gp_mutex);
}

void synchronize_rcu(void)
{

write_lock(&rcu_gp_mutex);
smp_mb__after_spinlock();
write_unlock(&rcu_gp_mutex);

}

[You can ignore rcu_assign_pointer() and rcu_dereference() without missing
much. But here are simplified versions anyway. And whatever you do, don’t forget
about them when submitting patches making use of RCU!]:

380 Chapter 3. Concurrency primitives

http://www.rdrop.com/users/paulmck/RCU

Linux Core-api Documentation

#define rcu_assign_pointer(p, v) \
({ \

smp_store_release(&(p), (v)); \
})

#define rcu_dereference(p) \
({ \

typeof(p) _________p1 = READ_ONCE(p); \
(_________p1); \

})

The rcu_read_lock() and rcu_read_unlock() primitive read-acquire and re-
lease a global reader-writer lock. The synchronize_rcu() primitive write-acquires
this same lock, then releases it. This means that once synchronize_rcu() ex-
its, all RCU read-side critical sections that were in progress before synchro-
nize_rcu() was called are guaranteed to have completed – there is no way that
synchronize_rcu() would have been able to write-acquire the lock otherwise. The
smp_mb__after_spinlock() promotes synchronize_rcu() to a full memory barrier in
compliance with the “Memory-Barrier Guarantees”listed in:

Documentation/RCU/Design/Requirements/Requirements.rst

It is possible to nest rcu_read_lock(), since reader-writer locks may be recur-
sively acquired. Note also that rcu_read_lock() is immune from deadlock (an
important property of RCU). The reason for this is that the only thing that can
block rcu_read_lock() is a synchronize_rcu(). But synchronize_rcu() does not
acquire any locks while holding rcu_gp_mutex, so there can be no deadlock cycle.

Quick Quiz #1: Why is this argument naive? How could a deadlock occur when
using this algorithm in a real-world Linux kernel? How could this deadlock
be avoided?

Answers to Quick Quiz

5B. “TOY”EXAMPLE #2: CLASSIC RCU

This section presents a“toy”RCU implementation that is based on“classic RCU”
. It is also short on performance (but only for updates) and on features such as
hotplug CPU and the ability to run in CONFIG_PREEMPT kernels. The definitions
of rcu_dereference() and rcu_assign_pointer() are the same as those shown
in the preceding section, so they are omitted.

void rcu_read_lock(void) { }

void rcu_read_unlock(void) { }

void synchronize_rcu(void)
{

int cpu;

for_each_possible_cpu(cpu)
run_on(cpu);

}

3.6. RCU concepts 381

Linux Core-api Documentation

Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing. This
is the great strength of classic RCU in a non-preemptive kernel: read-side over-
head is precisely zero, at least on non-Alpha CPUs. And there is absolutely no way
that rcu_read_lock() can possibly participate in a deadlock cycle!

The implementation of synchronize_rcu() simply schedules itself on each CPU in
turn. The run_on() primitive can be implemented straightforwardly in terms of
the sched_setaffinity() primitive. Of course, a somewhat less “toy”implementa-
tion would restore the affinity upon completion rather than just leaving all tasks
running on the last CPU, but when I said “toy”, I meant toy!
So how the heck is this supposed to work???

Remember that it is illegal to block while in an RCU read-side critical section.
Therefore, if a given CPU executes a context switch, we know that it must have
completed all preceding RCU read-side critical sections. Once all CPUs have ex-
ecuted a context switch, then all preceding RCU read-side critical sections will
have completed.

So, suppose that we remove a data item from its structure and then invoke syn-
chronize_rcu(). Once synchronize_rcu() returns, we are guaranteed that there are
no RCU read-side critical sections holding a reference to that data item, so we can
safely reclaim it.

Quick Quiz #2: Give an example where Classic RCU’s read-side overhead is
negative.

Answers to Quick Quiz

Quick Quiz #3: If it is illegal to block in an RCU read-side critical section, what
the heck do you do in PREEMPT_RT, where normal spinlocks can block???

Answers to Quick Quiz

6. ANALOGY WITH READER-WRITER LOCKING

Although RCU can be used in many different ways, a very common use of RCU is
analogous to reader-writer locking. The following unified diff shows how closely
related RCU and reader-writer locking can be.

@@ -5,5 +5,5 @@ struct el {
int data;
/* Other data fields */

};
-rwlock_t listmutex;
+spinlock_t listmutex;
struct el head;

@@ -13,15 +14,15 @@
struct list_head *lp;
struct el *p;

- read_lock(&listmutex);
- list_for_each_entry(p, head, lp) {
+ rcu_read_lock();
+ list_for_each_entry_rcu(p, head, lp) {

(continues on next page)

382 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
if (p->key == key) {

*result = p->data;
- read_unlock(&listmutex);
+ rcu_read_unlock();

return 1;
}

}
- read_unlock(&listmutex);
+ rcu_read_unlock();

return 0;
}

@@ -29,15 +30,16 @@
{

struct el *p;

- write_lock(&listmutex);
+ spin_lock(&listmutex);

list_for_each_entry(p, head, lp) {
if (p->key == key) {

- list_del(&p->list);
- write_unlock(&listmutex);
+ list_del_rcu(&p->list);
+ spin_unlock(&listmutex);
+ synchronize_rcu();

kfree(p);
return 1;

}
}

- write_unlock(&listmutex);
+ spin_unlock(&listmutex);

return 0;
}

Or, for those who prefer a side-by-side listing:

1 struct el { 1 struct el {
2 struct list_head list; 2 struct list_head list;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 rwlock_t listmutex; 8 spinlock_t listmutex;
9 struct el head; 9 struct el head;

1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct list_head *lp; 3 struct list_head *lp;
4 struct el *p; 4 struct el *p;
5 5
6 read_lock(&listmutex); 6 rcu_read_lock();
7 list_for_each_entry(p, head, lp) { 7 list_for_each_entry_rcu(p,␣
↪→head, lp) {
8 if (p->key == key) { 8 if (p->key == key) {

(continues on next page)

3.6. RCU concepts 383

Linux Core-api Documentation

(continued from previous page)
9 *result = p->data; 9 *result = p->data;

10 read_unlock(&listmutex); 10 rcu_read_unlock();
11 return 1; 11 return 1;
12 } 12 }
13 } 13 }
14 read_unlock(&listmutex); 14 rcu_read_unlock();
15 return 0; 15 return 0;
16 } 16 }

1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head,␣
↪→lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->list); 8 list_del_rcu(&p->list);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);

10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }

Either way, the differences are quite small. Read-side locking moves to
rcu_read_lock() and rcu_read_unlock, update-side locking moves from a reader-
writer lock to a simple spinlock, and a synchronize_rcu() precedes the kfree().

However, there is one potential catch: the read-side and update-side critical sec-
tions can now run concurrently. In many cases, this will not be a problem, but it is
necessary to check carefully regardless. For example, if multiple independent list
updates must be seen as a single atomic update, converting to RCU will require
special care.

Also, the presence of synchronize_rcu() means that the RCU version of delete() can
now block. If this is a problem, there is a callback-based mechanism that never
blocks, namely call_rcu() or kfree_rcu(), that can be used in place of synchro-
nize_rcu().

7. FULL LIST OF RCU APIs

The RCU APIs are documented in docbook-format header comments in the Linux-
kernel source code, but it helps to have a full list of the APIs, since there does not
appear to be a way to categorize them in docbook. Here is the list, by category.

RCU list traversal:

list_entry_rcu
list_entry_lockless

(continues on next page)

384 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
list_first_entry_rcu
list_next_rcu
list_for_each_entry_rcu
list_for_each_entry_continue_rcu
list_for_each_entry_from_rcu
list_first_or_null_rcu
list_next_or_null_rcu
hlist_first_rcu
hlist_next_rcu
hlist_pprev_rcu
hlist_for_each_entry_rcu
hlist_for_each_entry_rcu_bh
hlist_for_each_entry_from_rcu
hlist_for_each_entry_continue_rcu
hlist_for_each_entry_continue_rcu_bh
hlist_nulls_first_rcu
hlist_nulls_for_each_entry_rcu
hlist_bl_first_rcu
hlist_bl_for_each_entry_rcu

RCU pointer/list update:

rcu_assign_pointer
list_add_rcu
list_add_tail_rcu
list_del_rcu
list_replace_rcu
hlist_add_behind_rcu
hlist_add_before_rcu
hlist_add_head_rcu
hlist_add_tail_rcu
hlist_del_rcu
hlist_del_init_rcu
hlist_replace_rcu
list_splice_init_rcu
list_splice_tail_init_rcu
hlist_nulls_del_init_rcu
hlist_nulls_del_rcu
hlist_nulls_add_head_rcu
hlist_bl_add_head_rcu
hlist_bl_del_init_rcu
hlist_bl_del_rcu
hlist_bl_set_first_rcu

RCU:

Critical sections Grace period Barrier

rcu_read_lock synchronize_net rcu_barrier
rcu_read_unlock synchronize_rcu
rcu_dereference synchronize_rcu_expedited
rcu_read_lock_held call_rcu
rcu_dereference_check kfree_rcu
rcu_dereference_protected

bh:

3.6. RCU concepts 385

Linux Core-api Documentation

Critical sections Grace period Barrier

rcu_read_lock_bh call_rcu rcu_barrier
rcu_read_unlock_bh synchronize_rcu
[local_bh_disable] synchronize_rcu_expedited
[and friends]
rcu_dereference_bh
rcu_dereference_bh_check
rcu_dereference_bh_protected
rcu_read_lock_bh_held

sched:

Critical sections Grace period Barrier

rcu_read_lock_sched call_rcu rcu_barrier
rcu_read_unlock_sched synchronize_rcu
[preempt_disable] synchronize_rcu_expedited
[and friends]
rcu_read_lock_sched_notrace
rcu_read_unlock_sched_notrace
rcu_dereference_sched
rcu_dereference_sched_check
rcu_dereference_sched_protected
rcu_read_lock_sched_held

SRCU:

Critical sections Grace period Barrier

srcu_read_lock call_srcu srcu_barrier
srcu_read_unlock synchronize_srcu
srcu_dereference synchronize_srcu_expedited
srcu_dereference_check
srcu_read_lock_held

SRCU: Initialization/cleanup:

DEFINE_SRCU
DEFINE_STATIC_SRCU
init_srcu_struct
cleanup_srcu_struct

All: lockdep-checked RCU-protected pointer access:

rcu_access_pointer
rcu_dereference_raw
RCU_LOCKDEP_WARN
rcu_sleep_check
RCU_NONIDLE

See the comment headers in the source code (or the docbook generated from them)
for more information.

However, given that there are no fewer than four families of RCU APIs in the Linux
kernel, how do you choose which one to use? The following list can be helpful:

386 Chapter 3. Concurrency primitives

Linux Core-api Documentation

a. Will readers need to block? If so, you need SRCU.

b. What about the -rt patchset? If readers would need to block in an non-rt
kernel, you need SRCU. If readers would block in a -rt kernel, but not in a
non-rt kernel, SRCU is not necessary. (The -rt patchset turns spinlocks into
sleeplocks, hence this distinction.)

c. Do you need to treat NMI handlers, hardirq handlers, and code segments
with preemption disabled (whether via preempt_disable(), local_irq_save(),
local_bh_disable(), or some other mechanism) as if they were explicit RCU
readers? If so, RCU-sched is the only choice that will work for you.

d. Do you need RCU grace periods to complete even in the face of softirq mo-
nopolization of one or more of the CPUs? For example, is your code subject
to network-based denial-of-service attacks? If so, you should disable softirq
across your readers, for example, by using rcu_read_lock_bh().

e. Is your workload too update-intensive for normal use of RCU,
but inappropriate for other synchronization mechanisms? If so,
consider SLAB_TYPESAFE_BY_RCU (which was originally named
SLAB_DESTROY_BY_RCU). But please be careful!

f. Do you need read-side critical sections that are respected even though they
are in the middle of the idle loop, during user-mode execution, or on an of-
flined CPU? If so, SRCU is the only choice that will work for you.

g. Otherwise, use RCU.

Of course, this all assumes that you have determined that RCU is in fact the right
tool for your job.

8. ANSWERS TO QUICK QUIZZES

Quick Quiz #1: Why is this argument naive? How could a deadlock occur when
using this algorithm in a real-world Linux kernel? [Referring to the lock-based
“toy”RCU algorithm.]

Answer: Consider the following sequence of events:
1. CPU 0 acquires some unrelated lock, call it“problematic_lock”, disabling
irq via spin_lock_irqsave().

2. CPU 1 enters synchronize_rcu(), write-acquiring rcu_gp_mutex.

3. CPU 0 enters rcu_read_lock(), but must wait because CPU 1 holds
rcu_gp_mutex.

4. CPU 1 is interrupted, and the irq handler attempts to acquire problem-
atic_lock.

The system is now deadlocked.

One way to avoid this deadlock is to use an approach like that of CON-
FIG_PREEMPT_RT, where all normal spinlocks become blocking locks, and
all irq handlers execute in the context of special tasks. In this case, in step 4
above, the irq handler would block, allowing CPU 1 to release rcu_gp_mutex,
avoiding the deadlock.

3.6. RCU concepts 387

Linux Core-api Documentation

Even in the absence of deadlock, this RCU implementation allows la-
tency to “bleed”from readers to other readers through synchronize_rcu().
To see this, consider task A in an RCU read-side critical section (thus
read-holding rcu_gp_mutex), task B blocked attempting to write-acquire
rcu_gp_mutex, and task C blocked in rcu_read_lock() attempting to
read_acquire rcu_gp_mutex. Task A’s RCU read-side latency is holding up
task C, albeit indirectly via task B.

Realtime RCU implementations therefore use a counter-based approach
where tasks in RCU read-side critical sections cannot be blocked by tasks
executing synchronize_rcu().

Back to Quick Quiz #1

Quick Quiz #2: Give an example where Classic RCU’s read-side overhead is
negative.

Answer: Imagine a single-CPU system with a non-CONFIG_PREEMPT kernel
where a routing table is used by process-context code, but can be updated
by irq-context code (for example, by an “ICMP REDIRECT”packet). The
usual way of handling this would be to have the process-context code dis-
able interrupts while searching the routing table. Use of RCU allows such
interrupt-disabling to be dispensed with. Thus, without RCU, you pay the
cost of disabling interrupts, and with RCU you don’t.
One can argue that the overhead of RCU in this case is negative with respect
to the single-CPU interrupt-disabling approach. Others might argue that the
overhead of RCU is merely zero, and that replacing the positive overhead of
the interrupt-disabling scheme with the zero-overhead RCU scheme does not
constitute negative overhead.

In real life, of course, things are more complex. But even the theoretical
possibility of negative overhead for a synchronization primitive is a bit unex-
pected. ;-)

Back to Quick Quiz #2

Quick Quiz #3: If it is illegal to block in an RCU read-side critical section, what
the heck do you do in PREEMPT_RT, where normal spinlocks can block???

Answer: Just as PREEMPT_RT permits preemption of spinlock critical sections, it
permits preemption of RCU read-side critical sections. It also permits spin-
locks blocking while in RCU read-side critical sections.

Why the apparent inconsistency? Because it is possible to use priority boost-
ing to keep the RCU grace periods short if need be (for example, if running
short of memory). In contrast, if blocking waiting for (say) network reception,
there is no way to know what should be boosted. Especially given that the
process we need to boost might well be a human being who just went out for
a pizza or something. And although a computer-operated cattle prod might
arouse serious interest, it might also provoke serious objections. Besides,
how does the computer know what pizza parlor the human being went to???

Back to Quick Quiz #3

ACKNOWLEDGEMENTS

388 Chapter 3. Concurrency primitives

Linux Core-api Documentation

My thanks to the people who helped make this human-readable, including Jon
Walpole, Josh Triplett, Serge Hallyn, Suzanne Wood, and Alan Stern.

For more information, see http://www.rdrop.com/users/paulmck/RCU.

3.6.5 RCU Concepts

The basic idea behind RCU (read-copy update) is to split destructive operations
into two parts, one that prevents anyone from seeing the data item being de-
stroyed, and one that actually carries out the destruction. A“grace period”must
elapse between the two parts, and this grace period must be long enough that any
readers accessing the item being deleted have since dropped their references. For
example, an RCU-protected deletion from a linked list would first remove the item
from the list, wait for a grace period to elapse, then free the element. See the
Documentation/RCU/listRCU.rst for more information on using RCU with linked
lists.

Frequently Asked Questions

• Why would anyone want to use RCU?

The advantage of RCU’s two-part approach is that RCU readers need not
acquire any locks, perform any atomic instructions, write to shared memory,
or (on CPUs other than Alpha) execute any memory barriers. The fact that
these operations are quite expensive on modern CPUs is what gives RCU its
performance advantages in read-mostly situations. The fact that RCU readers
need not acquire locks can also greatly simplify deadlock-avoidance code.

• How can the updater tell when a grace period has completed if the RCU read-
ers give no indication when they are done?

Just as with spinlocks, RCU readers are not permitted to block, switch to user-
mode execution, or enter the idle loop. Therefore, as soon as a CPU is seen
passing through any of these three states, we know that that CPU has exited
any previous RCU read-side critical sections. So, if we remove an item from
a linked list, and then wait until all CPUs have switched context, executed in
user mode, or executed in the idle loop, we can safely free up that item.

Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the same effect,
but require that the readers manipulate CPU-local counters. These counters
allow limited types of blocking within RCU read-side critical sections. SRCU
also uses CPU-local counters, and permits general blocking within RCU read-
side critical sections. These variants of RCU detect grace periods by sampling
these counters.

• If I am running on a uniprocessor kernel, which can only do one thing at a
time, why should I wait for a grace period?

See Documentation/RCU/UP.rst for more information.

• How can I see where RCU is currently used in the Linux kernel?

Search for“rcu_read_lock”,“rcu_read_unlock”,“call_rcu”,“rcu_read_lock_bh”
, “rcu_read_unlock_bh”, “srcu_read_lock”, “srcu_read_unlock”, “syn-

3.6. RCU concepts 389

http://www.rdrop.com/users/paulmck/RCU

Linux Core-api Documentation

chronize_rcu”,“synchronize_net”,“synchronize_srcu”, and the other RCU
primitives. Or grab one of the cscope databases from:

(http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html).

• What guidelines should I follow when writing code that uses RCU?

See the checklist.txt file in this directory.

• Why the name “RCU”?
“RCU”stands for“read-copy update”. Documentation/RCU/listRCU.rst has
more information on where this name came from, search for“read-copy up-
date”to find it.

• I hear that RCU is patented? What is with that?

Yes, it is. There are several known patents related to RCU, search for the
string “Patent”in Documentation/RCU/RTFP.txt to find them. Of these, one
was allowed to lapse by the assignee, and the others have been contributed
to the Linux kernel under GPL. There are now also LGPL implementations of
user-level RCU available (https://liburcu.org/).

• I hear that RCU needs work in order to support realtime kernels?

Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU ker-
nel configuration parameter.

• Where can I find more information on RCU?

See the Documentation/RCU/RTFP.txt file. Or point your browser at (http:
//www.rdrop.com/users/paulmck/RCU/).

3.6.6 Using RCU to Protect Read-Mostly Linked Lists

One of the best applications of RCU is to protect read-mostly linked lists (struct
list_head in list.h). One big advantage of this approach is that all of the required
memory barriers are included for you in the list macros. This document describes
several applications of RCU, with the best fits first.

Example 1: Read-mostly list: Deferred Destruction

A widely used usecase for RCU lists in the kernel is lockless iteration over all
processes in the system. task_struct::tasks represents the list node that links
all the processes. The list can be traversed in parallel to any list additions or
removals.

The traversal of the list is done using for_each_process() which is defined by the
2 macros:

#define next_task(p) \
list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ;)

The code traversing the list of all processes typically looks like:

390 Chapter 3. Concurrency primitives

http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
https://liburcu.org/
http://www.rdrop.com/users/paulmck/RCU/
http://www.rdrop.com/users/paulmck/RCU/

Linux Core-api Documentation

rcu_read_lock();
for_each_process(p) {

/* Do something with p */
}
rcu_read_unlock();

The simplified code for removing a process from a task list is:

void release_task(struct task_struct *p)
{

write_lock(&tasklist_lock);
list_del_rcu(&p->tasks);
write_unlock(&tasklist_lock);
call_rcu(&p->rcu, delayed_put_task_struct);

}

When a process exits, release_task() calls list_del_rcu(&p->tasks) under
tasklist_lock writer lock protection, to remove the task from the list of all
tasks. The tasklist_lock prevents concurrent list additions/removals from cor-
rupting the list. Readers using for_each_process() are not protected with the
tasklist_lock. To prevent readers from noticing changes in the list pointers, the
task_struct object is freed only after one or more grace periods elapse (with the
help of call_rcu()). This deferring of destruction ensures that any readers travers-
ing the list will see valid p->tasks.next pointers and deletion/freeing can happen
in parallel with traversal of the list. This pattern is also called an existence lock,
since RCU pins the object in memory until all existing readers finish.

Example 2: Read-Side Action Taken Outside of Lock: No In-Place Updates

The best applications are cases where, if reader-writer locking were used, the
read-side lock would be dropped before taking any action based on the results of
the search. The most celebrated example is the routing table. Because the routing
table is tracking the state of equipment outside of the computer, it will at times
contain stale data. Therefore, once the route has been computed, there is no need
to hold the routing table static during transmission of the packet. After all, you can
hold the routing table static all you want, but that won’t keep the external Internet
from changing, and it is the state of the external Internet that really matters. In
addition, routing entries are typically added or deleted, rather than being modified
in place.

A straightforward example of this use of RCU may be found in the system-
call auditing support. For example, a reader-writer locked implementation of
audit_filter_task() might be as follows:

static enum audit_state audit_filter_task(struct task_struct *tsk)
{

struct audit_entry *e;
enum audit_state state;

read_lock(&auditsc_lock);
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry(e, &audit_tsklist, list) {

if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
(continues on next page)

3.6. RCU concepts 391

Linux Core-api Documentation

(continued from previous page)
read_unlock(&auditsc_lock);
return state;

}
}
read_unlock(&auditsc_lock);
return AUDIT_BUILD_CONTEXT;

}

Here the list is searched under the lock, but the lock is dropped before the cor-
responding value is returned. By the time that this value is acted on, the list may
well have been modified. This makes sense, since if you are turning auditing off,
it is OK to audit a few extra system calls.

This means that RCU can be easily applied to the read side, as follows:

static enum audit_state audit_filter_task(struct task_struct *tsk)
{

struct audit_entry *e;
enum audit_state state;

rcu_read_lock();
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry_rcu(e, &audit_tsklist, list) {

if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
rcu_read_unlock();
return state;

}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;

}

The read_lock() and read_unlock() calls have become rcu_read_lock() and
rcu_read_unlock(), respectively, and the list_for_each_entry() has become
list_for_each_entry_rcu(). The _rcu() list-traversal primitives insert the read-
side memory barriers that are required on DEC Alpha CPUs.

The changes to the update side are also straightforward. A reader-writer lock
might be used as follows for deletion and insertion:

static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)

{
struct audit_entry *e;

write_lock(&auditsc_lock);
list_for_each_entry(e, list, list) {

if (!audit_compare_rule(rule, &e->rule)) {
list_del(&e->list);
write_unlock(&auditsc_lock);
return 0;

}
}
write_unlock(&auditsc_lock);
return -EFAULT; /* No matching rule */

(continues on next page)

392 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
}

static inline int audit_add_rule(struct audit_entry *entry,
struct list_head *list)

{
write_lock(&auditsc_lock);
if (entry->rule.flags & AUDIT_PREPEND) {

entry->rule.flags &= ~AUDIT_PREPEND;
list_add(&entry->list, list);

} else {
list_add_tail(&entry->list, list);

}
write_unlock(&auditsc_lock);
return 0;

}

Following are the RCU equivalents for these two functions:

static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)

{
struct audit_entry *e;

/* No need to use the _rcu iterator here, since this is the only
* deletion routine. */

list_for_each_entry(e, list, list) {
if (!audit_compare_rule(rule, &e->rule)) {

list_del_rcu(&e->list);
call_rcu(&e->rcu, audit_free_rule);
return 0;

}
}
return -EFAULT; /* No matching rule */

}

static inline int audit_add_rule(struct audit_entry *entry,
struct list_head *list)

{
if (entry->rule.flags & AUDIT_PREPEND) {

entry->rule.flags &= ~AUDIT_PREPEND;
list_add_rcu(&entry->list, list);

} else {
list_add_tail_rcu(&entry->list, list);

}
return 0;

}

Normally, the write_lock() and write_unlock() would be replaced by
a spin_lock() and a spin_unlock(). But in this case, all callers hold
audit_filter_mutex, so no additional locking is required. The auditsc_lock can
therefore be eliminated, since use of RCU eliminates the need for writers to ex-
clude readers.

The list_del(), list_add(), and list_add_tail() primitives have been re-
placed by list_del_rcu(), list_add_rcu(), and list_add_tail_rcu(). The
_rcu() list-manipulation primitives add memory barriers that are needed on

3.6. RCU concepts 393

Linux Core-api Documentation

weakly ordered CPUs (most of them!). The list_del_rcu() primitive omits the
pointer poisoning debug-assist code that would otherwise cause concurrent read-
ers to fail spectacularly.

So, when readers can tolerate stale data and when entries are either added or
deleted, without in-place modification, it is very easy to use RCU!

Example 3: Handling In-Place Updates

The system-call auditing code does not update auditing rules in place. However, if
it did, the reader-writer-locked code to do so might look as follows (assuming only
field_count is updated, otherwise, the added fields would need to be filled in):

static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
__u32 newaction,
__u32 newfield_count)

{
struct audit_entry *e;
struct audit_entry *ne;

write_lock(&auditsc_lock);
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry(e, list, list) {

if (!audit_compare_rule(rule, &e->rule)) {
e->rule.action = newaction;
e->rule.field_count = newfield_count;
write_unlock(&auditsc_lock);
return 0;

}
}
write_unlock(&auditsc_lock);
return -EFAULT; /* No matching rule */

}

The RCU version creates a copy, updates the copy, then replaces the old entry
with the newly updated entry. This sequence of actions, allowing concurrent reads
while making a copy to perform an update, is what gives RCU (read-copy update)
its name. The RCU code is as follows:

static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
__u32 newaction,
__u32 newfield_count)

{
struct audit_entry *e;
struct audit_entry *ne;

list_for_each_entry(e, list, list) {
if (!audit_compare_rule(rule, &e->rule)) {

ne = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (ne == NULL)

return -ENOMEM;
audit_copy_rule(&ne->rule, &e->rule);
ne->rule.action = newaction;

(continues on next page)

394 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
ne->rule.field_count = newfield_count;
list_replace_rcu(&e->list, &ne->list);
call_rcu(&e->rcu, audit_free_rule);
return 0;

}
}
return -EFAULT; /* No matching rule */

}

Again, this assumes that the caller holds audit_filter_mutex. Normally, the
writer lock would become a spinlock in this sort of code.

Another use of this pattern can be found in the openswitch driver’s connection
tracking table code in ct_limit_set(). The table holds connection tracking en-
tries and has a limit on the maximum entries. There is one such table per-zone
and hence one limit per zone. The zones are mapped to their limits through a
hashtable using an RCU-managed hlist for the hash chains. When a new limit is
set, a new limit object is allocated and ct_limit_set() is called to replace the old
limit object with the new one using list_replace_rcu(). The old limit object is
then freed after a grace period using kfree_rcu().

Example 4: Eliminating Stale Data

The auditing example above tolerates stale data, as do most algorithms that are
tracking external state. Because there is a delay from the time the external state
changes before Linux becomes aware of the change, additional RCU-induced stal-
eness is generally not a problem.

However, there are many examples where stale data cannot be tolerated. One
example in the Linux kernel is the System V IPC (see the shm_lock() function in
ipc/shm.c). This code checks a deleted flag under a per-entry spinlock, and, if the
deleted flag is set, pretends that the entry does not exist. For this to be helpful,
the search function must return holding the per-entry spinlock, as shm_lock() does
in fact do.

Quick Quiz: For the deleted-flag technique to be helpful, why is it necessary to
hold the per-entry lock while returning from the search function?

Answer to Quick Quiz

If the system-call audit module were to ever need to reject stale data, one way
to accomplish this would be to add a deleted flag and a lock spinlock to the au-
dit_entry structure, and modify audit_filter_task() as follows:

static enum audit_state audit_filter_task(struct task_struct *tsk)
{

struct audit_entry *e;
enum audit_state state;

rcu_read_lock();
list_for_each_entry_rcu(e, &audit_tsklist, list) {

if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
spin_lock(&e->lock);

(continues on next page)

3.6. RCU concepts 395

Linux Core-api Documentation

(continued from previous page)
if (e->deleted) {

spin_unlock(&e->lock);
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;

}
rcu_read_unlock();
return state;

}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;

}

Note that this example assumes that entries are only added and deleted. Addi-
tional mechanism is required to deal correctly with the update-in-place performed
by audit_upd_rule(). For one thing, audit_upd_rule() would need additional
memory barriers to ensure that the list_add_rcu() was really executed before
the list_del_rcu().

The audit_del_rule() function would need to set the deleted flag under the
spinlock as follows:

static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)

{
struct audit_entry *e;

/* No need to use the _rcu iterator here, since this
* is the only deletion routine. */

list_for_each_entry(e, list, list) {
if (!audit_compare_rule(rule, &e->rule)) {

spin_lock(&e->lock);
list_del_rcu(&e->list);
e->deleted = 1;
spin_unlock(&e->lock);
call_rcu(&e->rcu, audit_free_rule);
return 0;

}
}
return -EFAULT; /* No matching rule */

}

This too assumes that the caller holds audit_filter_mutex.

Example 5: Skipping Stale Objects

For some usecases, reader performance can be improved by skipping stale objects
during read-side list traversal if the object in concern is pending destruction after
one or more grace periods. One such example can be found in the timerfd subsys-
tem. When a CLOCK_REALTIME clock is reprogrammed - for example due to setting
of the system time, then all programmed timerfds that depend on this clock get
triggered and processes waiting on them to expire are woken up in advance of their
scheduled expiry. To facilitate this, all such timers are added to an RCU-managed
cancel_list when they are setup in timerfd_setup_cancel():

396 Chapter 3. Concurrency primitives

Linux Core-api Documentation

static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
{

spin_lock(&ctx->cancel_lock);
if ((ctx->clockid == CLOCK_REALTIME &&

(flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_
↪→SET)) {

if (!ctx->might_cancel) {
ctx->might_cancel = true;
spin_lock(&cancel_lock);
list_add_rcu(&ctx->clist, &cancel_list);
spin_unlock(&cancel_lock);

}
}
spin_unlock(&ctx->cancel_lock);

}

When a timerfd is freed (fd is closed), then the might_cancel flag of the timerfd
object is cleared, the object removed from the cancel_list and destroyed:

int timerfd_release(struct inode *inode, struct file *file)
{

struct timerfd_ctx *ctx = file->private_data;

spin_lock(&ctx->cancel_lock);
if (ctx->might_cancel) {

ctx->might_cancel = false;
spin_lock(&cancel_lock);
list_del_rcu(&ctx->clist);
spin_unlock(&cancel_lock);

}
spin_unlock(&ctx->cancel_lock);

hrtimer_cancel(&ctx->t.tmr);
kfree_rcu(ctx, rcu);
return 0;

}

If the CLOCK_REALTIME clock is set, for example by a time server, the hrtimer
framework calls timerfd_clock_was_set() which walks the cancel_list and
wakes up processes waiting on the timerfd. While iterating the cancel_list, the
might_cancel flag is consulted to skip stale objects:

void timerfd_clock_was_set(void)
{

struct timerfd_ctx *ctx;
unsigned long flags;

rcu_read_lock();
list_for_each_entry_rcu(ctx, &cancel_list, clist) {

if (!ctx->might_cancel)
continue;

spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ctx->moffs != ktime_mono_to_real(0)) {

ctx->moffs = KTIME_MAX;
ctx->ticks++;
wake_up_locked_poll(&ctx->wqh, EPOLLIN);

(continues on next page)

3.6. RCU concepts 397

Linux Core-api Documentation

(continued from previous page)
}
spin_unlock_irqrestore(&ctx->wqh.lock, flags);

}
rcu_read_unlock();

}

The key point here is, because RCU-traversal of the cancel_list happens while
objects are being added and removed to the list, sometimes the traversal can step
on an object that has been removed from the list. In this example, it is seen that
it is better to skip such objects using a flag.

Summary

Read-mostly list-based data structures that can tolerate stale data are the most
amenable to use of RCU. The simplest case is where entries are either added or
deleted from the data structure (or atomically modified in place), but non-atomic
in-place modifications can be handled by making a copy, updating the copy, then
replacing the original with the copy. If stale data cannot be tolerated, then a
deleted flag may be used in conjunction with a per-entry spinlock in order to allow
the search function to reject newly deleted data.

Answer to Quick Quiz: For the deleted-flag technique to be helpful, why is it
necessary to hold the per-entry lock while returning from the search function?

If the search function drops the per-entry lock before returning, then the
caller will be processing stale data in any case. If it is really OK to be pro-
cessing stale data, then you don’t need a deleted flag. If processing stale
data really is a problem, then you need to hold the per-entry lock across all
of the code that uses the value that was returned.

Back to Quick Quiz

3.6.7 Using RCU to Protect Dynamic NMI Handlers

Although RCU is usually used to protect read-mostly data structures, it is possible
to use RCU to provide dynamic non-maskable interrupt handlers, as well as dy-
namic irq handlers. This document describes how to do this, drawing loosely from
Zwane Mwaikambo’s NMI-timer work in“arch/x86/oprofile/nmi_timer_int.c”and
in “arch/x86/kernel/traps.c”.
The relevant pieces of code are listed below, each followed by a brief explanation:

static int dummy_nmi_callback(struct pt_regs *regs, int cpu)
{

return 0;
}

The dummy_nmi_callback() function is a“dummy”NMI handler that does nothing,
but returns zero, thus saying that it did nothing, allowing the NMI handler to take
the default machine-specific action:

398 Chapter 3. Concurrency primitives

Linux Core-api Documentation

static nmi_callback_t nmi_callback = dummy_nmi_callback;

This nmi_callback variable is a global function pointer to the current NMI handler:

void do_nmi(struct pt_regs * regs, long error_code)
{

int cpu;

nmi_enter();

cpu = smp_processor_id();
++nmi_count(cpu);

if (!rcu_dereference_sched(nmi_callback)(regs, cpu))
default_do_nmi(regs);

nmi_exit();
}

The do_nmi() function processes each NMI. It first disables preemption in the same
way that a hardware irq would, then increments the per-CPU count of NMIs. It
then invokes the NMI handler stored in the nmi_callback function pointer. If this
handler returns zero, do_nmi() invokes the default_do_nmi() function to handle a
machine-specific NMI. Finally, preemption is restored.

In theory, rcu_dereference_sched() is not needed, since this code runs only on
i386, which in theory does not need rcu_dereference_sched() anyway. However,
in practice it is a good documentation aid, particularly for anyone attempting to do
something similar on Alpha or on systems with aggressive optimizing compilers.

Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha,
given that the code referenced by the pointer is read-only?

Answer to Quick Quiz

Back to the discussion of NMI and RCU:

void set_nmi_callback(nmi_callback_t callback)
{

rcu_assign_pointer(nmi_callback, callback);
}

The set_nmi_callback() function registers an NMI handler. Note that any
data that is to be used by the callback must be initialized up -before- the
call to set_nmi_callback(). On architectures that do not order writes, the
rcu_assign_pointer() ensures that the NMI handler sees the initialized values:

void unset_nmi_callback(void)
{

rcu_assign_pointer(nmi_callback, dummy_nmi_callback);
}

This function unregisters an NMI handler, restoring the original
dummy_nmi_handler(). However, there may well be an NMI handler currently
executing on some other CPU. We therefore cannot free up any data structures
used by the old NMI handler until execution of it completes on all other CPUs.

3.6. RCU concepts 399

Linux Core-api Documentation

One way to accomplish this is via synchronize_rcu(), perhaps as follows:

unset_nmi_callback();
synchronize_rcu();
kfree(my_nmi_data);

This works because (as of v4.20) synchronize_rcu() blocks until all CPUs complete
any preemption-disabled segments of code that they were executing. Since NMI
handlers disable preemption, synchronize_rcu() is guaranteed not to return until
all ongoing NMI handlers exit. It is therefore safe to free up the handler’s data
as soon as synchronize_rcu() returns.

Important note: for this to work, the architecture in question must invoke
nmi_enter() and nmi_exit() on NMI entry and exit, respectively.

Answer to Quick Quiz: Why might the rcu_dereference_sched() be necessary
on Alpha, given that the code referenced by the pointer is read-only?

The caller to set_nmi_callback() might well have initialized some data
that is to be used by the new NMI handler. In this case, the
rcu_dereference_sched() would be needed, because otherwise a CPU that
received an NMI just after the new handler was set might see the pointer to
the new NMI handler, but the old pre-initialized version of the handler’s data.
This same sad story can happen on other CPUs when using a compiler with
aggressive pointer-value speculation optimizations.

More important, the rcu_dereference_sched() makes it clear to someone
reading the code that the pointer is being protected by RCU-sched.

3.6.8 RCU on Uniprocessor Systems

A common misconception is that, on UP systems, the call_rcu() primitive may im-
mediately invoke its function. The basis of this misconception is that since there
is only one CPU, it should not be necessary to wait for anything else to get done,
since there are no other CPUs for anything else to be happening on. Although this
approach will sort of work a surprising amount of the time, it is a very bad idea
in general. This document presents three examples that demonstrate exactly how
bad an idea this is.

Example 1: softirq Suicide

Suppose that an RCU-based algorithm scans a linked list containing elements A,
B, and C in process context, and can delete elements from this same list in softirq
context. Suppose that the process-context scan is referencing element B when it
is interrupted by softirq processing, which deletes element B, and then invokes
call_rcu() to free element B after a grace period.

Now, if call_rcu() were to directly invoke its arguments, then upon return from
softirq, the list scan would find itself referencing a newly freed element B. This
situation can greatly decrease the life expectancy of your kernel.

This same problem can occur if call_rcu() is invoked from a hardware interrupt
handler.

400 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Example 2: Function-Call Fatality

Of course, one could avert the suicide described in the preceding example by hav-
ing call_rcu() directly invoke its arguments only if it was called from process con-
text. However, this can fail in a similar manner.

Suppose that an RCU-based algorithm again scans a linked list containing ele-
ments A, B, and C in process contexts, but that it invokes a function on each ele-
ment as it is scanned. Suppose further that this function deletes element B from
the list, then passes it to call_rcu() for deferred freeing. This may be a bit uncon-
ventional, but it is perfectly legal RCU usage, since call_rcu() must wait for a grace
period to elapse. Therefore, in this case, allowing call_rcu() to immediately invoke
its arguments would cause it to fail to make the fundamental guarantee underlying
RCU, namely that call_rcu() defers invoking its arguments until all RCU read-side
critical sections currently executing have completed.

Quick Quiz #1: Why is it not legal to invoke synchronize_rcu() in this case?
Answers to Quick Quiz

Example 3: Death by Deadlock

Suppose that call_rcu() is invoked while holding a lock, and that the callback func-
tion must acquire this same lock. In this case, if call_rcu() were to directly invoke
the callback, the result would be self-deadlock.

In some cases, it would possible to restructure to code so that the call_rcu() is
delayed until after the lock is released. However, there are cases where this can
be quite ugly:

1. If a number of items need to be passed to call_rcu() within the same critical
section, then the code would need to create a list of them, then traverse the
list once the lock was released.

2. In some cases, the lock will be held across some kernel API, so that delaying
the call_rcu() until the lock is released requires that the data item be passed
up via a common API. It is far better to guarantee that callbacks are invoked
with no locks held than to have to modify such APIs to allow arbitrary data
items to be passed back up through them.

If call_rcu() directly invokes the callback, painful locking restrictions or API
changes would be required.

Quick Quiz #2: What locking restriction must RCU callbacks respect?
Answers to Quick Quiz

3.6. RCU concepts 401

Linux Core-api Documentation

Summary

Permitting call_rcu() to immediately invoke its arguments breaks RCU, even on a
UP system. So do not do it! Even on a UP system, the RCU infrastructure must
respect grace periods, and must invoke callbacks from a known environment in
which no locks are held.

Note that it is safe for synchronize_rcu() to return immediately on UP systems,
including PREEMPT SMP builds running on UP systems.

Quick Quiz #3: Why can’t synchronize_rcu() return immediately on UP systems
running preemptable RCU?

Answer to Quick Quiz #1: Why is it not legal to invoke synchronize_rcu() in this
case?

Because the calling function is scanning an RCU-protected linked list, and
is therefore within an RCU read-side critical section. Therefore, the called
function has been invoked within an RCU read-side critical section, and is
not permitted to block.

Answer to Quick Quiz #2: What locking restriction must RCU callbacks re-
spect?

Any lock that is acquired within an RCU callback must be acquired elsewhere
using an _bh variant of the spinlock primitive. For example, if “mylock”is
acquired by an RCU callback, then a process-context acquisition of this lock
must use something like spin_lock_bh() to acquire the lock. Please note that it
is also OK to use _irq variants of spinlocks, for example, spin_lock_irqsave().

If the process-context code were to simply use spin_lock(), then, since RCU
callbacks can be invoked from softirq context, the callback might be called
from a softirq that interrupted the process-context critical section. This would
result in self-deadlock.

This restriction might seem gratuitous, since very few RCU callbacks acquire
locks directly. However, a great many RCU callbacks do acquire locks indi-
rectly, for example, via the kfree() primitive.

Answer to Quick Quiz #3: Why can’t synchronize_rcu() return immediately on
UP systems running preemptable RCU?

Because some other task might have been preempted in the middle of an RCU
read-side critical section. If synchronize_rcu() simply immediately returned,
it would prematurely signal the end of the grace period, which would come
as a nasty shock to that other thread when it started running again.

402 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.6.9 A Tour Through TREE_RCU’s Grace-Period Memory Ordering

August 8, 2017

This article was contributed by Paul E. McKenney

Introduction

This document gives a rough visual overview of how Tree RCU’s grace-period
memory ordering guarantee is provided.

What Is Tree RCU’s Grace Period Memory Ordering Guarantee?

RCUgrace periods provide extremely strongmemory-ordering guarantees for non-
idle non-offline code. Any code that happens after the end of a given RCU grace
period is guaranteed to see the effects of all accesses prior to the beginning of that
grace period that are within RCU read-side critical sections. Similarly, any code
that happens before the beginning of a given RCU grace period is guaranteed to
see the effects of all accesses following the end of that grace period that are within
RCU read-side critical sections.

Note well that RCU-sched read-side critical sections include any region of code for
which preemption is disabled. Given that each individual machine instruction can
be thought of as an extremely small region of preemption-disabled code, one can
think of synchronize_rcu() as smp_mb() on steroids.

RCU updaters use this guarantee by splitting their updates into two phases, one of
which is executed before the grace period and the other of which is executed after
the grace period. In the most common use case, phase one removes an element
from a linked RCU-protected data structure, and phase two frees that element. For
this to work, any readers that have witnessed state prior to the phase-one update
(in the common case, removal) must not witness state following the phase-two
update (in the common case, freeing).

The RCU implementation provides this guarantee using a network of lock-based
critical sections, memory barriers, and per-CPU processing, as is described in the
following sections.

Tree RCU Grace Period Memory Ordering Building Blocks

The workhorse for RCU’s grace-period memory ordering is the
critical section for the rcu_node structure’s ->lock. These crit-
ical sections use helper functions for lock acquisition, including
raw_spin_lock_rcu_node(), raw_spin_lock_irq_rcu_node(), and
raw_spin_lock_irqsave_rcu_node(). Their lock-release counterparts are
raw_spin_unlock_rcu_node(), raw_spin_unlock_irq_rcu_node(), and
raw_spin_unlock_irqrestore_rcu_node(), respectively. For completeness,
a raw_spin_trylock_rcu_node() is also provided. The key point is that the
lock-acquisition functions, including raw_spin_trylock_rcu_node(), all invoke
smp_mb__after_unlock_lock() immediately after successful acquisition of the
lock.

3.6. RCU concepts 403

Linux Core-api Documentation

Therefore, for any given rcu_node structure, any access happening before one
of the above lock-release functions will be seen by all CPUs as happening before
any access happening after a later one of the above lock-acquisition functions.
Furthermore, any access happening before one of the above lock-release function
on any given CPU will be seen by all CPUs as happening before any access hap-
pening after a later one of the above lock-acquisition functions executing on that
same CPU, even if the lock-release and lock-acquisition functions are operating on
different rcu_node structures. Tree RCU uses these two ordering guarantees to
form an ordering network among all CPUs that were in any way involved in the
grace period, including any CPUs that came online or went offline during the grace
period in question.

The following litmus test exhibits the ordering effects of these lock-acquisition and
lock-release functions:

1 int x, y, z;
2
3 void task0(void)
4 {
5 raw_spin_lock_rcu_node(rnp);
6 WRITE_ONCE(x, 1);
7 r1 = READ_ONCE(y);
8 raw_spin_unlock_rcu_node(rnp);
9 }

10
11 void task1(void)
12 {
13 raw_spin_lock_rcu_node(rnp);
14 WRITE_ONCE(y, 1);
15 r2 = READ_ONCE(z);
16 raw_spin_unlock_rcu_node(rnp);
17 }
18
19 void task2(void)
20 {
21 WRITE_ONCE(z, 1);
22 smp_mb();
23 r3 = READ_ONCE(x);
24 }
25
26 WARN_ON(r1 == 0 && r2 == 0 && r3 == 0);

The WARN_ON() is evaluated at“the end of time”, after all changes have propagated
throughout the system. Without the smp_mb__after_unlock_lock() provided by
the acquisition functions, this WARN_ON() could trigger, for example on PowerPC.
The smp_mb__after_unlock_lock() invocations prevent this WARN_ON() from trig-
gering.

This approach must be extended to include idle CPUs, which need RCU’s grace-
periodmemory ordering guarantee to extend to any RCU read-side critical sections
preceding and following the current idle sojourn. This case is handled by calls to
the strongly ordered atomic_add_return() read-modify-write atomic operation
that is invoked within rcu_dynticks_eqs_enter() at idle-entry time and within
rcu_dynticks_eqs_exit() at idle-exit time. The grace-period kthread invokes
rcu_dynticks_snap() and rcu_dynticks_in_eqs_since() (both of which invoke
an atomic_add_return() of zero) to detect idle CPUs.

404 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Quick Quiz:
But what about CPUs that remain offline for the entire grace period?
Answer:
Such CPUs will be offline at the beginning of the grace period, so the grace
period won’t expect quiescent states from them. Races between grace-period
start and CPU-hotplug operations are mediated by the CPU’s leaf rcu_node
structure’s ->lock as described above.

The approach must be extended to handle one final case, that of waking a task
blocked in synchronize_rcu(). This task might be affinitied to a CPU that is not
yet aware that the grace period has ended, and thus might not yet be subject to
the grace period’s memory ordering. Therefore, there is an smp_mb() after the
return from wait_for_completion() in the synchronize_rcu() code path.

Quick Quiz:
What? Where??? I don’t see any smp_mb() after the return from
wait_for_completion()!!!
Answer:
That would be because I spotted the need for that smp_mb() during the creation
of this documentation, and it is therefore unlikely to hit mainline before v4.14.
Kudos to Lance Roy, Will Deacon, Peter Zijlstra, and Jonathan Cameron for ask-
ing questions that sensitized me to the rather elaborate sequence of events that
demonstrate the need for this memory barrier.

Tree RCU’s grace–period memory-ordering guarantees rely most heavily on the
rcu_node structure’s ->lock field, so much so that it is necessary to abbrevi-
ate this pattern in the diagrams in the next section. For example, consider the
rcu_prepare_for_idle() function shown below, which is one of several functions
that enforce ordering of newly arrived RCU callbacks against future grace periods:

1 static void rcu_prepare_for_idle(void)
2 {
3 bool needwake;
4 struct rcu_data *rdp;
5 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
6 struct rcu_node *rnp;
7 struct rcu_state *rsp;
8 int tne;
9

10 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
11 rcu_is_nocb_cpu(smp_processor_id()))
12 return;
13 tne = READ_ONCE(tick_nohz_active);
14 if (tne != rdtp->tick_nohz_enabled_snap) {
15 if (rcu_cpu_has_callbacks(NULL))
16 invoke_rcu_core();
17 rdtp->tick_nohz_enabled_snap = tne;
18 return;
19 }
20 if (!tne)
21 return;
22 if (rdtp->all_lazy &&

(continues on next page)

3.6. RCU concepts 405

Linux Core-api Documentation

(continued from previous page)
23 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
24 rdtp->all_lazy = false;
25 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
26 invoke_rcu_core();
27 return;
28 }
29 if (rdtp->last_accelerate == jiffies)
30 return;
31 rdtp->last_accelerate = jiffies;
32 for_each_rcu_flavor(rsp) {
33 rdp = this_cpu_ptr(rsp->rda);
34 if (rcu_segcblist_pend_cbs(&rdp->cblist))
35 continue;
36 rnp = rdp->mynode;
37 raw_spin_lock_rcu_node(rnp);
38 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
39 raw_spin_unlock_rcu_node(rnp);
40 if (needwake)
41 rcu_gp_kthread_wake(rsp);
42 }
43 }

But the only part of rcu_prepare_for_idle() that really matters for this discus-
sion are lines 37–39. We will therefore abbreviate this function as follows:

The box represents the rcu_node structure’s ->lock critical section, with the
double line on top representing the additional smp_mb__after_unlock_lock().

406 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Tree RCU Grace Period Memory Ordering Components

Tree RCU’s grace-period memory-ordering guarantee is provided by a number of
RCU components:

1. Callback Registry

2. Grace-Period Initialization

3. Self-Reported Quiescent States

4. Dynamic Tick Interface

5. CPU-Hotplug Interface

6. Forcing Quiescent States

7. Grace-Period Cleanup

8. Callback Invocation

Each of the following section looks at the corresponding component in detail.

Callback Registry

If RCU’s grace-period guarantee is to mean anything at all, any access that hap-
pens before a given invocation of call_rcu() must also happen before the corre-
sponding grace period. The implementation of this portion of RCU’s grace period
guarantee is shown in the following figure:

Because call_rcu() normally acts only on CPU-local state, it provides no order-
ing guarantees, either for itself or for phase one of the update (which again will
usually be removal of an element from an RCU-protected data structure). It simply
enqueues the rcu_head structure on a per-CPU list, which cannot become associ-
ated with a grace period until a later call to rcu_accelerate_cbs(), as shown in
the diagram above.

One set of code paths shown on the left invokes rcu_accelerate_cbs() via
note_gp_changes(), either directly from call_rcu() (if the current CPU is in-
undated with queued rcu_head structures) or more likely from an RCU_SOFTIRQ
handler. Another code path in the middle is taken only in kernels built
with CONFIG_RCU_FAST_NO_HZ=y, which invokes rcu_accelerate_cbs() via
rcu_prepare_for_idle(). The final code path on the right is taken only in ker-
nels built with CONFIG_HOTPLUG_CPU=y, which invokes rcu_accelerate_cbs() via
rcu_advance_cbs(), rcu_migrate_callbacks, rcutree_migrate_callbacks(),
and takedown_cpu(), which in turn is invoked on a surviving CPU after the outgo-
ing CPU has been completely offlined.

There are a few other code paths within grace-period processing that opportunis-
tically invoke rcu_accelerate_cbs(). However, either way, all of the CPU’s
recently queued rcu_head structures are associated with a future grace-period
number under the protection of the CPU’s lead rcu_node structure’s ->lock.
In all cases, there is full ordering against any prior critical section for that same
rcu_node structure’s ->lock, and also full ordering against any of the current
task’s or CPU’s prior critical sections for any rcu_node structure’s ->lock.

3.6. RCU concepts 407

Linux Core-api Documentation

408 Chapter 3. Concurrency primitives

Linux Core-api Documentation

The next section will show how this ordering ensures that any accesses prior to
the call_rcu() (particularly including phase one of the update) happen before
the start of the corresponding grace period.

Quick Quiz:
But what about synchronize_rcu()?
Answer:
The synchronize_rcu() passes call_rcu() to wait_rcu_gp(), which invokes
it. So either way, it eventually comes down to call_rcu().

Grace-Period Initialization

Grace-period initialization is carried out by the grace-period kernel thread, which
makes several passes over the rcu_node tree within the rcu_gp_init() function.
This means that showing the full flow of ordering through the grace-period compu-
tation will require duplicating this tree. If you find this confusing, please note that
the state of the rcu_node changes over time, just like Heraclitus’s river. However,
to keep the rcu_node river tractable, the grace-period kernel thread’s traversals
are presented in multiple parts, starting in this section with the various phases of
grace-period initialization.

The first ordering-related grace-period initialization action is to advance the
rcu_state structure’s ->gp_seq grace-period-number counter, as shown below:

The actual increment is carried out using smp_store_release(), which helps re-
ject false-positive RCUCPU stall detection. Note that only the root rcu_node struc-
ture is touched.

3.6. RCU concepts 409

Linux Core-api Documentation

The first pass through the rcu_node tree updates bitmasks based on CPUs having
come online or gone offline since the start of the previous grace period. In the
common case where the number of online CPUs for this rcu_node structure has
not transitioned to or from zero, this pass will scan only the leaf rcu_node struc-
tures. However, if the number of online CPUs for a given leaf rcu_node structure
has transitioned from zero, rcu_init_new_rnp() will be invoked for the first in-
coming CPU. Similarly, if the number of online CPUs for a given leaf rcu_node
structure has transitioned to zero, rcu_cleanup_dead_rnp() will be invoked for
the last outgoing CPU. The diagram below shows the path of ordering if the left-
most rcu_node structure onlines its first CPU and if the next rcu_node structure
has no online CPUs (or, alternatively if the leftmost rcu_node structure offlines its
last CPU and if the next rcu_node structure has no online CPUs).

The final rcu_gp_init() pass through the rcu_node tree traverses breadth-first,
setting each rcu_node structure’s ->gp_seq field to the newly advanced value
from the rcu_state structure, as shown in the following diagram.

This change will also cause each CPU’s next call to __note_gp_changes() to notice
that a new grace period has started, as described in the next section. But because
the grace-period kthread started the grace period at the root (with the advancing
of the rcu_state structure’s ->gp_seq field) before setting each leaf rcu_node
structure’s ->gp_seq field, each CPU’s observation of the start of the grace period
will happen after the actual start of the grace period.

410 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Quick Quiz:
But what about the CPU that started the grace period? Why wouldn’t it see the
start of the grace period right when it started that grace period?
Answer:
In some deep philosophical and overly anthromorphized sense, yes, the CPU
starting the grace period is immediately aware of having done so. However, if
we instead assume that RCU is not self-aware, then even the CPU starting the
grace period does not really become aware of the start of this grace period until
its first call to __note_gp_changes(). On the other hand, this CPU potentially
gets early notification because it invokes __note_gp_changes() during its last
rcu_gp_init() pass through its leaf rcu_node structure.

Self-Reported Quiescent States

When all entities that might block the grace period have reported quiescent states
(or as described in a later section, had quiescent states reported on their behalf),
the grace period can end. Online non-idle CPUs report their own quiescent states,
as shown in the following diagram:

This is for the last CPU to report a quiescent state, which signals the end of the
grace period. Earlier quiescent states would push up the rcu_node tree only until
they encountered an rcu_node structure that is waiting for additional quiescent
states. However, ordering is nevertheless preserved because some later quiescent
state will acquire that rcu_node structure’s ->lock.
Any number of events can lead up to a CPU invoking note_gp_changes (or alterna-
tively, directly invoking __note_gp_changes()), at which point that CPU will no-

3.6. RCU concepts 411

Linux Core-api Documentation

412 Chapter 3. Concurrency primitives

Linux Core-api Documentation

tice the start of a new grace period while holding its leaf rcu_node lock. Therefore,
all execution shown in this diagram happens after the start of the grace period.
In addition, this CPU will consider any RCU read-side critical section that started
before the invocation of __note_gp_changes() to have started before the grace
period, and thus a critical section that the grace period must wait on.

Quick Quiz:
But a RCU read-side critical section might have started after the beginning of
the grace period (the advancing of ->gp_seq from earlier), so why should the
grace period wait on such a critical section?
Answer:
It is indeed not necessary for the grace period to wait on such a critical section.
However, it is permissible to wait on it. And it is furthermore important to wait
on it, as this lazy approach is far more scalable than a “big bang”all-at-once
grace-period start could possibly be.

If the CPU does a context switch, a quiescent state will be noted by
rcu_note_context_switch() on the left. On the other hand, if the CPU takes
a scheduler-clock interrupt while executing in usermode, a quiescent state will be
noted by rcu_sched_clock_irq() on the right. Either way, the passage through
a quiescent state will be noted in a per-CPU variable.

The next time an RCU_SOFTIRQ handler executes on this CPU (for ex-
ample, after the next scheduler-clock interrupt), rcu_core() will invoke
rcu_check_quiescent_state(), which will notice the recorded quiescent state,
and invoke rcu_report_qs_rdp(). If rcu_report_qs_rdp() verifies that the
quiescent state really does apply to the current grace period, it invokes
rcu_report_rnp() which traverses up the rcu_node tree as shown at the bottom
of the diagram, clearing bits from each rcu_node structure’s ->qsmask field, and
propagating up the tree when the result is zero.

Note that traversal passes upwards out of a given rcu_node structure only if the
current CPU is reporting the last quiescent state for the subtree headed by that
rcu_node structure. A key point is that if a CPU’s traversal stops at a given
rcu_node structure, then there will be a later traversal by another CPU (or perhaps
the same one) that proceeds upwards from that point, and the rcu_node ->lock
guarantees that the first CPU’s quiescent state happens before the remainder of
the second CPU’s traversal. Applying this line of thought repeatedly shows that
all CPUs’quiescent states happen before the last CPU traverses through the root
rcu_node structure, the “last CPU”being the one that clears the last bit in the
root rcu_node structure’s ->qsmask field.

3.6. RCU concepts 413

Linux Core-api Documentation

Dynamic Tick Interface

Due to energy-efficiency considerations, RCU is forbidden from disturbing idle
CPUs. CPUs are therefore required to notify RCU when entering or leaving idle
state, which they do via fully ordered value-returning atomic operations on a per-
CPU variable. The ordering effects are as shown below:

The RCU grace-period kernel thread samples the per-CPU idleness variable while
holding the corresponding CPU’s leaf rcu_node structure’s ->lock. This means
that any RCU read-side critical sections that precede the idle period (the oval near
the top of the diagram above) will happen before the end of the current grace
period. Similarly, the beginning of the current grace period will happen before
any RCU read-side critical sections that follow the idle period (the oval near the
bottom of the diagram above).

Plumbing this into the full grace-period execution is described below.

414 Chapter 3. Concurrency primitives

Linux Core-api Documentation

CPU-Hotplug Interface

RCU is also forbidden from disturbing offline CPUs, which might well be powered
off and removed from the system completely. CPUs are therefore required to no-
tify RCU of their comings and goings as part of the corresponding CPU hotplug
operations. The ordering effects are shown below:

Because CPU hotplug operations are much less frequent than idle transitions, they
are heavier weight, and thus acquire the CPU’s leaf rcu_node structure’s ->lock
and update this structure’s ->qsmaskinitnext. The RCU grace-period kernel
thread samples this mask to detect CPUs having gone offline since the beginning
of this grace period.

3.6. RCU concepts 415

Linux Core-api Documentation

Plumbing this into the full grace-period execution is described below.

Forcing Quiescent States

As noted above, idle and offline CPUs cannot report their own quiescent states,
and therefore the grace-period kernel threadmust do the reporting on their behalf.
This process is called “forcing quiescent states”, it is repeated every few jiffies,
and its ordering effects are shown below:

Each pass of quiescent state forcing is guaranteed to traverse the leaf rcu_node
structures, and if there are no new quiescent states due to recently idled and/or
offlined CPUs, then only the leaves are traversed. However, if there is a newly
offlined CPU as illustrated on the left or a newly idled CPU as illustrated on the
right, the corresponding quiescent state will be driven up towards the root. As
with self-reported quiescent states, the upwards driving stops once it reaches an
rcu_node structure that has quiescent states outstanding from other CPUs.

Quick Quiz:
The leftmost drive to root stopped before it reached the root rcu_node structure,
which means that there are still CPUs subordinate to that structure on which the
current grace period is waiting. Given that, how is it possible that the rightmost
drive to root ended the grace period?
Answer:
Good analysis! It is in fact impossible in the absence of bugs in RCU. But this
diagram is complex enough as it is, so simplicity overrode accuracy. You can
think of it as poetic license, or you can think of it as misdirection that is resolved
in the stitched-together diagram.

416 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Grace-Period Cleanup

Grace-period cleanup first scans the rcu_node tree breadth-first advancing all the
->gp_seq fields, then it advances the rcu_state structure’s ->gp_seq field. The
ordering effects are shown below:

As indicated by the oval at the bottom of the diagram, once grace-period cleanup
is complete, the next grace period can begin.

Quick Quiz:
But when precisely does the grace period end?
Answer:
There is no useful single point at which the grace period can be said to end. The
earliest reasonable candidate is as soon as the last CPU has reported its quies-
cent state, but it may be some milliseconds before RCU becomes aware of this.
The latest reasonable candidate is once the rcu_state structure’s ->gp_seq
field has been updated, but it is quite possible that some CPUs have already
completed phase two of their updates by that time. In short, if you are going to
work with RCU, you need to learn to embrace uncertainty.

Callback Invocation

Once a given CPU’s leaf rcu_node structure’s ->gp_seq field has been updated,
that CPU can begin invoking its RCU callbacks that were waiting for this grace pe-
riod to end. These callbacks are identified by rcu_advance_cbs(), which is usually
invoked by __note_gp_changes(). As shown in the diagram below, this invoca-
tion can be triggered by the scheduling-clock interrupt (rcu_sched_clock_irq()
on the left) or by idle entry (rcu_cleanup_after_idle() on the right, but only
for kernels build with CONFIG_RCU_FAST_NO_HZ=y). Either way, RCU_SOFTIRQ is
raised, which results in rcu_do_batch() invoking the callbacks, which in turn al-
lows those callbacks to carry out (either directly or indirectly via wakeup) the
needed phase-two processing for each update.

Please note that callback invocation can also be prompted by any number of
corner-case code paths, for example, when a CPU notes that it has excessive num-
bers of callbacks queued. In all cases, the CPU acquires its leaf rcu_node struc-
ture’s ->lock before invoking callbacks, which preserves the required ordering
against the newly completed grace period.

However, if the callback function communicates to other CPUs, for example, doing
a wakeup, then it is that function’s responsibility to maintain ordering. For exam-
ple, if the callback function wakes up a task that runs on some other CPU, proper
ordering must in place in both the callback function and the task being awakened.
To see why this is important, consider the top half of the grace-period cleanup dia-
gram. The callback might be running on a CPU corresponding to the leftmost leaf
rcu_node structure, and awaken a task that is to run on a CPU corresponding to
the rightmost leaf rcu_node structure, and the grace-period kernel thread might
not yet have reached the rightmost leaf. In this case, the grace period’s memory
ordering might not yet have reached that CPU, so again the callback function and
the awakened task must supply proper ordering.

3.6. RCU concepts 417

Linux Core-api Documentation

418 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.6. RCU concepts 419

Linux Core-api Documentation

Putting It All Together

A stitched-together diagram is here:

Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks
of others.

3.6.10 A Tour Through TREE_RCU’s Expedited Grace Periods

Introduction

This document describes RCU’s expedited grace periods. Unlike RCU’s normal
grace periods, which accept long latencies to attain high efficiency and minimal
disturbance, expedited grace periods accept lower efficiency and significant dis-
turbance to attain shorter latencies.

There are two flavors of RCU (RCU-preempt and RCU-sched), with an earlier third
RCU-bh flavor having been implemented in terms of the other two. Each of the
two implementations is covered in its own section.

Expedited Grace Period Design

The expedited RCU grace periods cannot be accused of being subtle, given
that they for all intents and purposes hammer every CPU that has not yet
provided a quiescent state for the current expedited grace period. The
one saving grace is that the hammer has grown a bit smaller over time:
The old call to try_stop_cpus() has been replaced with a set of calls to
smp_call_function_single(), each of which results in an IPI to the target CPU.
The corresponding handler function checks the CPU’s state, motivating a faster
quiescent state where possible, and triggering a report of that quiescent state. As
always for RCU, once everything has spent some time in a quiescent state, the
expedited grace period has completed.

The details of the smp_call_function_single() handler’s operation depend on
the RCU flavor, as described in the following sections.

420 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.6. RCU concepts 421

Linux Core-api Documentation

RCU-preempt Expedited Grace Periods

CONFIG_PREEMPT=y kernels implement RCU-preempt. The overall flow of the han-
dling of a given CPU by an RCU-preempt expedited grace period is shown in the
following diagram:

The solid arrows denote direct action, for example, a function call. The dotted
arrows denote indirect action, for example, an IPI or a state that is reached after
some time.

If a given CPU is offline or idle, synchronize_rcu_expedited() will ignore it be-
cause idle and offline CPUs are already residing in quiescent states. Otherwise, the
expedited grace period will use smp_call_function_single() to send the CPU an
IPI, which is handled by rcu_exp_handler().

However, because this is preemptible RCU, rcu_exp_handler() can check to see
if the CPU is currently running in an RCU read-side critical section. If not, the
handler can immediately report a quiescent state. Otherwise, it sets flags so that
the outermost rcu_read_unlock() invocation will provide the needed quiescent-
state report. This flag-setting avoids the previous forced preemption of all CPUs
that might have RCU read-side critical sections. In addition, this flag-setting is
done so as to avoid increasing the overhead of the common-case fastpath through
the scheduler.

Again because this is preemptible RCU, an RCU read-side critical section can
be preempted. When that happens, RCU will enqueue the task, which will
the continue to block the current expedited grace period until it resumes
and finds its outermost rcu_read_unlock(). The CPU will report a quies-
cent state just after enqueuing the task because the CPU is no longer block-
ing the grace period. It is instead the preempted task doing the blocking.
The list of blocked tasks is managed by rcu_preempt_ctxt_queue(), which is
called from rcu_preempt_note_context_switch(), which in turn is called from
rcu_note_context_switch(), which in turn is called from the scheduler.

Quick Quiz:
Why not just have the expedited grace period check the state of all the CPUs?
After all, that would avoid all those real-time-unfriendly IPIs.
Answer:
Because we want the RCU read-side critical sections to run fast, which means
no memory barriers. Therefore, it is not possible to safely check the state
from some other CPU. And even if it was possible to safely check the state,
it would still be necessary to IPI the CPU to safely interact with the upcom-
ing rcu_read_unlock() invocation, which means that the remote state testing
would not help the worst-case latency that real-time applications care about.
One way to prevent your real-time application from getting hit with these IPIs
is to build your kernel with CONFIG_NO_HZ_FULL=y. RCU would then perceive
the CPU running your application as being idle, and it would be able to safely
detect that state without needing to IPI the CPU.

Please note that this is just the overall flow: Additional complications can arise
due to races with CPUs going idle or offline, among other things.

422 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.6. RCU concepts 423

Linux Core-api Documentation

RCU-sched Expedited Grace Periods

CONFIG_PREEMPT=n kernels implement RCU-sched. The overall flow of the han-
dling of a given CPU by an RCU-sched expedited grace period is shown in the
following diagram:

As with RCU-preempt, RCU-sched’s synchronize_rcu_expedited() ig-
nores offline and idle CPUs, again because they are in remotely detectable
quiescent states. However, because the rcu_read_lock_sched() and
rcu_read_unlock_sched() leave no trace of their invocation, in general it is
not possible to tell whether or not the current CPU is in an RCU read-side critical
section. The best that RCU-sched’s rcu_exp_handler() can do is to check for
idle, on the off-chance that the CPU went idle while the IPI was in flight. If the
CPU is idle, then rcu_exp_handler() reports the quiescent state.

Otherwise, the handler forces a future context switch by setting the
NEED_RESCHED flag of the current task’s thread flag and the CPU preempt
counter. At the time of the context switch, the CPU reports the quiescent state.
Should the CPU go offline first, it will report the quiescent state at that time.

Expedited Grace Period and CPU Hotplug

The expedited nature of expedited grace periods require a much tighter interac-
tion with CPU hotplug operations than is required for normal grace periods. In
addition, attempting to IPI offline CPUs will result in splats, but failing to IPI on-
line CPUs can result in too-short grace periods. Neither option is acceptable in
production kernels.

The interaction between expedited grace periods and CPU hotplug operations is
carried out at several levels:

1. The number of CPUs that have ever been online is tracked by the rcu_state
structure’s ->ncpus field. The rcu_state structure’s ->ncpus_snap field
tracks the number of CPUs that have ever been online at the beginning of an
RCU expedited grace period. Note that this number never decreases, at least
in the absence of a time machine.

2. The identities of the CPUs that have ever been online is tracked by the
rcu_node structure’s ->expmaskinitnext field. The rcu_node structure’s
->expmaskinit field tracks the identities of the CPUs that were online at
least once at the beginning of the most recent RCU expedited grace period.
The rcu_state structure’s ->ncpus and ->ncpus_snap fields are used to de-
tect when new CPUs have come online for the first time, that is, when the
rcu_node structure’s ->expmaskinitnext field has changed since the be-
ginning of the last RCU expedited grace period, which triggers an update of
each rcu_node structure’s ->expmaskinit field from its ->expmaskinitnext
field.

3. Each rcu_node structure’s ->expmaskinit field is used to initialize that struc-
ture’s ->expmask at the beginning of each RCU expedited grace period. This
means that only those CPUs that have been online at least once will be con-
sidered for a given grace period.

424 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.6. RCU concepts 425

Linux Core-api Documentation

4. Any CPU that goes offline will clear its bit in its leaf rcu_node structure’s
->qsmaskinitnext field, so any CPU with that bit clear can safely be ignored.
However, it is possible for a CPU coming online or going offline to have this
bit set for some time while cpu_online returns false.

5. For each non-idle CPU that RCU believes is currently online, the grace period
invokes smp_call_function_single(). If this succeeds, the CPU was fully
online. Failure indicates that the CPU is in the process of coming online or
going offline, in which case it is necessary to wait for a short time period and
try again. The purpose of this wait (or series of waits, as the case may be) is
to permit a concurrent CPU-hotplug operation to complete.

6. In the case of RCU-sched, one of the last acts of an outgoing CPU is to invoke
rcu_report_dead(), which reports a quiescent state for that CPU. However,
this is likely paranoia-induced redundancy.

Quick Quiz:
Why all the dancing around with multiple counters and masks tracking CPUs
that were once online? Why not just have a single set of masks tracking the
currently online CPUs and be done with it?
Answer:
Maintaining single set of masks tracking the online CPUs sounds easier, at least
until you try working out all the race conditions between grace-period initial-
ization and CPU-hotplug operations. For example, suppose initialization is pro-
gressing down the tree while a CPU-offline operation is progressing up the tree.
This situation can result in bits set at the top of the tree that have no coun-
terparts at the bottom of the tree. Those bits will never be cleared, which will
result in grace-period hangs. In short, that way lies madness, to say nothing of
a great many bugs, hangs, and deadlocks. In contrast, the current multi-mask
multi-counter scheme ensures that grace-period initialization will always see
consistent masks up and down the tree, which brings significant simplifications
over the single-mask method.
This is an instance of deferring work in order to avoid synchronization. Lazily
recording CPU-hotplug events at the beginning of the next grace period greatly
simplifies maintenance of the CPU-tracking bitmasks in the rcu_node tree.

Expedited Grace Period Refinements

Idle-CPU Checks

Each expedited grace period checks for idle CPUs when initially forming the
mask of CPUs to be IPIed and again just before IPIing a CPU (both checks are
carried out by sync_rcu_exp_select_cpus()). If the CPU is idle at any time
between those two times, the CPU will not be IPIed. Instead, the task push-
ing the grace period forward will include the idle CPUs in the mask passed to
rcu_report_exp_cpu_mult().

For RCU-sched, there is an additional check: If the IPI has interrupted the idle
loop, then rcu_exp_handler() invokes rcu_report_exp_rdp() to report the cor-
responding quiescent state.

426 Chapter 3. Concurrency primitives

http://www.cs.columbia.edu/~library/TR-repository/reports/reports-1992/cucs-039-92.ps.gz

Linux Core-api Documentation

For RCU-preempt, there is no specific check for idle in the IPI handler
(rcu_exp_handler()), but because RCU read-side critical sections are not per-
mitted within the idle loop, if rcu_exp_handler() sees that the CPU is within
RCU read-side critical section, the CPU cannot possibly be idle. Otherwise,
rcu_exp_handler() invokes rcu_report_exp_rdp() to report the corresponding
quiescent state, regardless of whether or not that quiescent state was due to the
CPU being idle.

In summary, RCU expedited grace periods check for idle when building the bitmask
of CPUs that must be IPIed, just before sending each IPI, and (either explicitly or
implicitly) within the IPI handler.

Batching via Sequence Counter

If each grace-period request was carried out separately, expedited grace peri-
ods would have abysmal scalability and problematic high-load characteristics. Be-
cause each grace-period operation can serve an unlimited number of updates, it
is important to batch requests, so that a single expedited grace-period operation
will cover all requests in the corresponding batch.

This batching is controlled by a sequence counter named ->expedited_sequence
in the rcu_state structure. This counter has an odd value when there is an expe-
dited grace period in progress and an even value otherwise, so that dividing the
counter value by two gives the number of completed grace periods. During any
given update request, the counter must transition from even to odd and then back
to even, thus indicating that a grace period has elapsed. Therefore, if the initial
value of the counter is s, the updater must wait until the counter reaches at least
the value (s+3)&~0x1. This counter is managed by the following access functions:

1. rcu_exp_gp_seq_start(), which marks the start of an expedited grace pe-
riod.

2. rcu_exp_gp_seq_end(), which marks the end of an expedited grace period.

3. rcu_exp_gp_seq_snap(), which obtains a snapshot of the counter.

4. rcu_exp_gp_seq_done(), which returns true if a full expedited grace period
has elapsed since the corresponding call to rcu_exp_gp_seq_snap().

Again, only one request in a given batch need actually carry out a grace-period
operation, which means there must be an efficient way to identify which of many
concurrent reqeusts will initiate the grace period, and that there be an efficient
way for the remaining requests to wait for that grace period to complete. However,
that is the topic of the next section.

3.6. RCU concepts 427

Linux Core-api Documentation

Funnel Locking and Wait/Wakeup

The natural way to sort out which of a batch of updaters will initiate the expe-
dited grace period is to use the rcu_node combining tree, as implemented by the
exp_funnel_lock() function. The first updater corresponding to a given grace
period arriving at a given rcu_node structure records its desired grace-period se-
quence number in the ->exp_seq_rq field and moves up to the next level in the
tree. Otherwise, if the ->exp_seq_rq field already contains the sequence num-
ber for the desired grace period or some later one, the updater blocks on one
of four wait queues in the ->exp_wq[] array, using the second-from-bottom and
third-from bottom bits as an index. An ->exp_lock field in the rcu_node structure
synchronizes access to these fields.

An empty rcu_node tree is shown in the following diagram, with the white cells
representing the ->exp_seq_rq field and the red cells representing the elements
of the ->exp_wq[] array.

The next diagram shows the situation after the arrival of Task A and Task B at the
leftmost and rightmost leaf rcu_node structures, respectively. The current value
of the rcu_state structure’s ->expedited_sequence field is zero, so adding three
and clearing the bottom bit results in the value two, which both tasks record in
the ->exp_seq_rq field of their respective rcu_node structures:

Each of Tasks A and B will move up to the root rcu_node structure. Suppose that
Task A wins, recording its desired grace-period sequence number and resulting in
the state shown below:

Task A now advances to initiate a new grace period, while Task B moves up to the
root rcu_node structure, and, seeing that its desired sequence number is already
recorded, blocks on ->exp_wq[1].

428 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Quick Quiz:
Why ->exp_wq[1]? Given that the value of these tasks’desired sequence number
is two, so shouldn’t they instead block on ->exp_wq[2]?
Answer:
No. Recall that the bottom bit of the desired sequence number indicates whether
or not a grace period is currently in progress. It is therefore necessary to shift
the sequence number right one bit position to obtain the number of the grace
period. This results in ->exp_wq[1].

If Tasks C and D also arrive at this point, they will compute the same desired grace-
period sequence number, and see that both leaf rcu_node structures already have
that value recorded. They will therefore block on their respective rcu_node struc-
tures’->exp_wq[1] fields, as shown below:

Task A now acquires the rcu_state structure’s ->exp_mutex and initiates the
grace period, which increments ->expedited_sequence. Therefore, if Tasks E
and F arrive, they will compute a desired sequence number of 4 and will record
this value as shown below:

Tasks E and F will propagate up the rcu_node combining tree, with Task F block-
ing on the root rcu_node structure and Task E wait for Task A to finish so that it
can start the next grace period. The resulting state is as shown below:

3.6. RCU concepts 429

Linux Core-api Documentation

Once the grace period completes, Task A starts waking up the tasks waiting for
this grace period to complete, increments the ->expedited_sequence, acquires
the ->exp_wake_mutex and then releases the ->exp_mutex. This results in the
following state:

Task E can then acquire ->exp_mutex and increment ->expedited_sequence to
the value three. If new tasks G and H arrive and moves up the combining tree at
the same time, the state will be as follows:

Note that three of the root rcu_node structure’s waitqueues are now occupied.
However, at some point, Task A will wake up the tasks blocked on the ->exp_wq
waitqueues, resulting in the following state:

Execution will continue with Tasks E and H completing their grace periods and
carrying out their wakeups.

Quick Quiz:
What happens if Task A takes so long to do its wakeups that Task E’s grace
period completes?
Answer:
Then Task E will block on the ->exp_wake_mutex, which will also prevent it from
releasing ->exp_mutex, which in turn will prevent the next grace period from
starting. This last is important in preventing overflow of the ->exp_wq[] array.

430 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Use of Workqueues

In earlier implementations, the task requesting the expedited grace period also
drove it to completion. This straightforward approach had the disadvantage of
needing to account for POSIX signals sent to user tasks, so more recent impleme-
mentations use the Linux kernel’s workqueues.
The requesting task still does counter snapshotting and funnel-lock processing,
but the task reaching the top of the funnel lock does a schedule_work() (from
_synchronize_rcu_expedited() so that a workqueue kthread does the actual
grace-period processing. Because workqueue kthreads do not accept POSIX sig-
nals, grace-period-wait processing need not allow for POSIX signals. In addi-
tion, this approach allows wakeups for the previous expedited grace period to
be overlapped with processing for the next expedited grace period. Because
there are only four sets of waitqueues, it is necessary to ensure that the previ-
ous grace period’s wakeups complete before the next grace period’s wakeups
start. This is handled by having the ->exp_mutex guard expedited grace-period
processing and the ->exp_wake_mutex guard wakeups. The key point is that the
->exp_mutex is not released until the first wakeup is complete, which means that
the ->exp_wake_mutex has already been acquired at that point. This approach
ensures that the previous grace period’s wakeups can be carried out while the
current grace period is in process, but that these wakeups will complete before
the next grace period starts. This means that only three waitqueues are required,
guaranteeing that the four that are provided are sufficient.

Stall Warnings

Expediting grace periods does nothing to speed things up when RCU readers take
too long, and therefore expedited grace periods check for stalls just as normal
grace periods do.

Quick Quiz:
But why not just let the normal grace-period machinery detect the stalls, given
that a given reader must block both normal and expedited grace periods?
Answer:
Because it is quite possible that at a given time there is no normal grace period
in progress, in which case the normal grace period cannot emit a stall warning.

The synchronize_sched_expedited_wait() function loops waiting for the expe-
dited grace period to end, but with a timeout set to the current RCU CPU stall-

3.6. RCU concepts 431

https://www.kernel.org/doc/Documentation/core-api/workqueue.rst

Linux Core-api Documentation

warning time. If this time is exceeded, any CPUs or rcu_node structures blocking
the current grace period are printed. Each stall warning results in another pass
through the loop, but the second and subsequent passes use longer stall times.

Mid-boot operation

The use of workqueues has the advantage that the expedited grace-period code
need not worry about POSIX signals. Unfortunately, it has the corresponding dis-
advantage that workqueues cannot be used until they are initialized, which does
not happen until some time after the scheduler spawns the first task. Given that
there are parts of the kernel that really do want to execute grace periods during
this mid-boot“dead zone”, expedited grace periods must do something else during
thie time.

What they do is to fall back to the old practice of requiring that the requesting task
drive the expedited grace period, as was the case before the use of workqueues.
However, the requesting task is only required to drive the grace period during
the mid-boot dead zone. Before mid-boot, a synchronous grace period is a no-op.
Some time after mid-boot, workqueues are used.

Non-expedited non-SRCU synchronous grace periods must also operate normally
during mid-boot. This is handled by causing non-expedited grace periods to take
the expedited code path during mid-boot.

The current code assumes that there are no POSIX signals during the mid-boot
dead zone. However, if an overwhelming need for POSIX signals somehow arises,
appropriate adjustments can be made to the expedited stall-warning code. One
such adjustment would reinstate the pre-workqueue stall-warning checks, but only
during the mid-boot dead zone.

With this refinement, synchronous grace periods can now be used from task con-
text pretty much any time during the life of the kernel. That is, aside from some
points in the suspend, hibernate, or shutdown code path.

Summary

Expedited grace periods use a sequence-number approach to promote batching, so
that a single grace-period operation can serve numerous requests. A funnel lock is
used to efficiently identify the one task out of a concurrent group that will request
the grace period. All members of the group will block on waitqueues provided in
the rcu_node structure. The actual grace-period processing is carried out by a
workqueue.

CPU-hotplug operations are noted lazily in order to prevent the need for tight
synchronization between expedited grace periods and CPU-hotplug operations.
The dyntick-idle counters are used to avoid sending IPIs to idle CPUs, at least in
the common case. RCU-preempt and RCU-sched use different IPI handlers and
different code to respond to the state changes carried out by those handlers, but
otherwise use common code.

Quiescent states are tracked using the rcu_node tree, and once all necessary qui-
escent states have been reported, all tasks waiting on this expedited grace period

432 Chapter 3. Concurrency primitives

Linux Core-api Documentation

are awakened. A pair of mutexes are used to allow one grace period’s wakeups
to proceed concurrently with the next grace period’s processing.
This combination of mechanisms allows expedited grace periods to run reason-
ably efficiently. However, for non-time-critical tasks, normal grace periods should
be used instead because their longer duration permits much higher degrees of
batching, and thus much lower per-request overheads.

3.6.11 A Tour Through RCU’s Requirements

Copyright IBM Corporation, 2015

Author: Paul E. McKenney

The initial version of this document appeared in the LWN on those articles: part
1, part 2, and part 3.

Introduction

Read-copy update (RCU) is a synchronization mechanism that is often used as a
replacement for reader-writer locking. RCU is unusual in that updaters do not
block readers, which means that RCU’s read-side primitives can be exceedingly
fast and scalable. In addition, updaters can make useful forward progress con-
currently with readers. However, all this concurrency between RCU readers and
updaters does raise the question of exactly what RCU readers are doing, which in
turn raises the question of exactly what RCU’s requirements are.
This document therefore summarizes RCU’s requirements, and can be thought of
as an informal, high-level specification for RCU. It is important to understand that
RCU’s specification is primarily empirical in nature; in fact, I learned aboutmany of
these requirements the hard way. This situation might cause some consternation,
however, not only has this learning process been a lot of fun, but it has also been
a great privilege to work with so many people willing to apply technologies in
interesting new ways.

All that aside, here are the categories of currently known RCU requirements:

1. Fundamental Requirements

2. Fundamental Non-Requirements

3. Parallelism Facts of Life

4. Quality-of-Implementation Requirements

5. Linux Kernel Complications

6. Software-Engineering Requirements

7. Other RCU Flavors

8. Possible Future Changes

This is followed by a summary, however, the answers to each quick quiz imme-
diately follows the quiz. Select the big white space with your mouse to see the
answer.

3.6. RCU concepts 433

https://lwn.net/
https://lwn.net/Articles/652156/
https://lwn.net/Articles/652156/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/653326/

Linux Core-api Documentation

Fundamental Requirements

RCU’s fundamental requirements are the closest thing RCU has to hard mathe-
matical requirements. These are:

1. Grace-Period Guarantee

2. Publish/Subscribe Guarantee

3. Memory-Barrier Guarantees

4. RCU Primitives Guaranteed to Execute Unconditionally

5. Guaranteed Read-to-Write Upgrade

Grace-Period Guarantee

RCU’s grace-period guarantee is unusual in being premeditated: Jack Slingwine
and I had this guarantee firmly in mind when we started work on RCU (then called
“rclock”) in the early 1990s. That said, the past two decades of experience with
RCU have produced a much more detailed understanding of this guarantee.

RCU’s grace-period guarantee allows updaters to wait for the completion of all pre-
existing RCU read-side critical sections. An RCU read-side critical section begins
with the marker rcu_read_lock() and ends with the marker rcu_read_unlock().
These markers may be nested, and RCU treats a nested set as one big RCU read-
side critical section. Production-quality implementations of rcu_read_lock() and
rcu_read_unlock() are extremely lightweight, and in fact have exactly zero over-
head in Linux kernels built for production use with CONFIG_PREEMPT=n.

This guarantee allows ordering to be enforced with extremely low overhead to
readers, for example:

1 int x, y;
2
3 void thread0(void)
4 {
5 rcu_read_lock();
6 r1 = READ_ONCE(x);
7 r2 = READ_ONCE(y);
8 rcu_read_unlock();
9 }

10
11 void thread1(void)
12 {
13 WRITE_ONCE(x, 1);
14 synchronize_rcu();
15 WRITE_ONCE(y, 1);
16 }

Because the synchronize_rcu() on line 14 waits for all pre-existing readers, any
instance of thread0() that loads a value of zero from x must complete before
thread1() stores to y, so that instance must also load a value of zero from y.
Similarly, any instance of thread0() that loads a value of one from y must have
started after the synchronize_rcu() started, and must therefore also load a value
of one from x. Therefore, the outcome:

434 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(r1 == 0 && r2 == 1)

cannot happen.

Quick Quiz:
Wait a minute! You said that updaters can make useful forward progress concur-
rently with readers, but pre-existing readers will block synchronize_rcu()!!!
Just who are you trying to fool???
Answer:
First, if updaters do not wish to be blocked by readers, they can use call_rcu()
or kfree_rcu(), which will be discussed later. Second, even when using
synchronize_rcu(), the other update-side code does run concurrently with
readers, whether pre-existing or not.

This scenario resembles one of the first uses of RCU in DYNIX/ptx, which managed
a distributed lock manager’s transition into a state suitable for handling recovery
from node failure, more or less as follows:

1 #define STATE_NORMAL 0
2 #define STATE_WANT_RECOVERY 1
3 #define STATE_RECOVERING 2
4 #define STATE_WANT_NORMAL 3
5
6 int state = STATE_NORMAL;
7
8 void do_something_dlm(void)
9 {

10 int state_snap;
11
12 rcu_read_lock();
13 state_snap = READ_ONCE(state);
14 if (state_snap == STATE_NORMAL)
15 do_something();
16 else
17 do_something_carefully();
18 rcu_read_unlock();
19 }
20
21 void start_recovery(void)
22 {
23 WRITE_ONCE(state, STATE_WANT_RECOVERY);
24 synchronize_rcu();
25 WRITE_ONCE(state, STATE_RECOVERING);
26 recovery();
27 WRITE_ONCE(state, STATE_WANT_NORMAL);
28 synchronize_rcu();
29 WRITE_ONCE(state, STATE_NORMAL);
30 }

The RCU read-side critical section in do_something_dlm() works with the
synchronize_rcu() in start_recovery() to guarantee that do_something()
never runs concurrently with recovery(), but with little or no synchronization
overhead in do_something_dlm().

3.6. RCU concepts 435

https://en.wikipedia.org/wiki/DYNIX

Linux Core-api Documentation

Quick Quiz:
Why is the synchronize_rcu() on line 28 needed?
Answer:
Without that extra grace period, memory reordering could result in
do_something_dlm() executing do_something() concurrently with the last bits
of recovery().

In order to avoid fatal problems such as deadlocks, an RCU read-side critical sec-
tion must not contain calls to synchronize_rcu(). Similarly, an RCU read-side
critical section must not contain anything that waits, directly or indirectly, on com-
pletion of an invocation of synchronize_rcu().

Although RCU’s grace-period guarantee is useful in and of itself, with quite a few
use cases, it would be good to be able to use RCU to coordinate read-side access
to linked data structures. For this, the grace-period guarantee is not sufficient, as
can be seen in function add_gp_buggy() below. We will look at the reader’s code
later, but in the meantime, just think of the reader as locklessly picking up the gp
pointer, and, if the value loaded is non-NULL, locklessly accessing the ->a and ->b
fields.

1 bool add_gp_buggy(int a, int b)
2 {
3 p = kmalloc(sizeof(*p), GFP_KERNEL);
4 if (!p)
5 return -ENOMEM;
6 spin_lock(&gp_lock);
7 if (rcu_access_pointer(gp)) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 p->a = a;
12 p->b = a;
13 gp = p; /* ORDERING BUG */
14 spin_unlock(&gp_lock);
15 return true;
16 }

The problem is that both the compiler and weakly ordered CPUs are within their
rights to reorder this code as follows:

1 bool add_gp_buggy_optimized(int a, int b)
2 {
3 p = kmalloc(sizeof(*p), GFP_KERNEL);
4 if (!p)
5 return -ENOMEM;
6 spin_lock(&gp_lock);
7 if (rcu_access_pointer(gp)) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 gp = p; /* ORDERING BUG */
12 p->a = a;
13 p->b = a;
14 spin_unlock(&gp_lock);

(continues on next page)

436 Chapter 3. Concurrency primitives

https://lwn.net/Articles/573497/
https://lwn.net/Articles/573497/

Linux Core-api Documentation

(continued from previous page)
15 return true;
16 }

If an RCU reader fetches gp just after add_gp_buggy_optimized executes line 11,
it will see garbage in the ->a and ->b fields. And this is but one of many ways in
which compiler and hardware optimizations could cause trouble. Therefore, we
clearly need some way to prevent the compiler and the CPU from reordering in
this manner, which brings us to the publish-subscribe guarantee discussed in the
next section.

Publish/Subscribe Guarantee

RCU’s publish-subscribe guarantee allows data to be inserted into a
linked data structure without disrupting RCU readers. The updater
uses rcu_assign_pointer() to insert the new data, and readers use
rcu_dereference() to access data, whether new or old. The following shows an
example of insertion:

1 bool add_gp(int a, int b)
2 {
3 p = kmalloc(sizeof(*p), GFP_KERNEL);
4 if (!p)
5 return -ENOMEM;
6 spin_lock(&gp_lock);
7 if (rcu_access_pointer(gp)) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 p->a = a;
12 p->b = a;
13 rcu_assign_pointer(gp, p);
14 spin_unlock(&gp_lock);
15 return true;
16 }

The rcu_assign_pointer() on line 13 is conceptually equivalent to a simple as-
signment statement, but also guarantees that its assignment will happen after the
two assignments in lines 11 and 12, similar to the C11 memory_order_release
store operation. It also prevents any number of“interesting”compiler optimiza-
tions, for example, the use of gp as a scratch location immediately preceding the
assignment.

Quick Quiz:
But rcu_assign_pointer() does nothing to prevent the two assignments to
p->a and p->b from being reordered. Can’t that also cause problems?
Answer:
No, it cannot. The readers cannot see either of these two fields until the as-
signment to gp, by which time both fields are fully initialized. So reordering the
assignments to p->a and p->b cannot possibly cause any problems.

It is tempting to assume that the reader need not do anything special to control

3.6. RCU concepts 437

Linux Core-api Documentation

its accesses to the RCU-protected data, as shown in do_something_gp_buggy()
below:

1 bool do_something_gp_buggy(void)
2 {
3 rcu_read_lock();
4 p = gp; /* OPTIMIZATIONS GALORE!!! */
5 if (p) {
6 do_something(p->a, p->b);
7 rcu_read_unlock();
8 return true;
9 }

10 rcu_read_unlock();
11 return false;
12 }

However, this temptation must be resisted because there are a surprisingly large
number of ways that the compiler (to say nothing of DEC Alpha CPUs) can trip
this code up. For but one example, if the compiler were short of registers, it might
choose to refetch from gp rather than keeping a separate copy in p as follows:

1 bool do_something_gp_buggy_optimized(void)
2 {
3 rcu_read_lock();
4 if (gp) { /* OPTIMIZATIONS GALORE!!! */
5 do_something(gp->a, gp->b);
6 rcu_read_unlock();
7 return true;
8 }
9 rcu_read_unlock();

10 return false;
11 }

If this function ran concurrently with a series of updates that replaced the current
structure with a new one, the fetches of gp->a and gp->b might well come from
two different structures, which could cause serious confusion. To prevent this
(and much else besides), do_something_gp() uses rcu_dereference() to fetch
from gp:

1 bool do_something_gp(void)
2 {
3 rcu_read_lock();
4 p = rcu_dereference(gp);
5 if (p) {
6 do_something(p->a, p->b);
7 rcu_read_unlock();
8 return true;
9 }

10 rcu_read_unlock();
11 return false;
12 }

The rcu_dereference() uses volatile casts and (for DEC Alpha) memory bar-
riers in the Linux kernel. Should a high-quality implementation of C11
``memory_order_consume` [PDF] <http://www.rdrop.com/users/paulmck/RCU/
consume.2015.07.13a.pdf>`__ ever appear, then rcu_dereference() could be im-

438 Chapter 3. Concurrency primitives

https://h71000.www7.hp.com/wizard/wiz_2637.html
http://www.rdrop.com/users/paulmck/RCU/consume.2015.07.13a.pdf
http://www.rdrop.com/users/paulmck/RCU/consume.2015.07.13a.pdf

Linux Core-api Documentation

plemented as a memory_order_consume load. Regardless of the exact implementa-
tion, a pointer fetched by rcu_dereference() may not be used outside of the out-
ermost RCU read-side critical section containing that rcu_dereference(), unless
protection of the corresponding data element has been passed from RCU to some
other synchronization mechanism, most commonly locking or reference counting.

In short, updaters use rcu_assign_pointer() and readers use
rcu_dereference(), and these two RCU API elements work together to en-
sure that readers have a consistent view of newly added data elements.

Of course, it is also necessary to remove elements from RCU-protected data struc-
tures, for example, using the following process:

1. Remove the data element from the enclosing structure.

2. Wait for all pre-existing RCU read-side critical sections to complete (because
only pre-existing readers can possibly have a reference to the newly removed
data element).

3. At this point, only the updater has a reference to the newly removed data
element, so it can safely reclaim the data element, for example, by passing it
to kfree().

This process is implemented by remove_gp_synchronous():

1 bool remove_gp_synchronous(void)
2 {
3 struct foo *p;
4
5 spin_lock(&gp_lock);
6 p = rcu_access_pointer(gp);
7 if (!p) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 rcu_assign_pointer(gp, NULL);
12 spin_unlock(&gp_lock);
13 synchronize_rcu();
14 kfree(p);
15 return true;
16 }

This function is straightforward, with line 13 waiting for a grace period before
line 14 frees the old data element. This waiting ensures that readers will reach
line 7 of do_something_gp() before the data element referenced by p is freed. The
rcu_access_pointer() on line 6 is similar to rcu_dereference(), except that:

1. The value returned by rcu_access_pointer() cannot be dereferenced. If
you want to access the value pointed to as well as the pointer itself, use
rcu_dereference() instead of rcu_access_pointer().

2. The call to rcu_access_pointer() need not be protected. In contrast,
rcu_dereference() must either be within an RCU read-side critical section
or in a code segment where the pointer cannot change, for example, in code
protected by the corresponding update-side lock.

3.6. RCU concepts 439

https://www.kernel.org/doc/Documentation/RCU/rcuref.txt

Linux Core-api Documentation

Quick Quiz:
Without the rcu_dereference() or the rcu_access_pointer(), what destruc-
tive optimizations might the compiler make use of?
Answer:
Let’s start with what happens to do_something_gp() if it fails to use
rcu_dereference(). It could reuse a value formerly fetched from this same
pointer. It could also fetch the pointer from gp in a byte-at-a-time manner,
resulting in load tearing, in turn resulting a bytewise mash-up of two distinct
pointer values. It might even use value-speculation optimizations, where it
makes a wrong guess, but by the time it gets around to checking the value,
an update has changed the pointer to match the wrong guess. Too bad about
any dereferences that returned pre-initialization garbage in the meantime! For
remove_gp_synchronous(), as long as all modifications to gp are carried out
while holding gp_lock, the above optimizations are harmless. However, sparse
will complain if you define gp with __rcu and then access it without using either
rcu_access_pointer() or rcu_dereference().

In short, RCU’s publish-subscribe guarantee is provided by the combination of
rcu_assign_pointer() and rcu_dereference(). This guarantee allows data ele-
ments to be safely added to RCU-protected linked data structures without disrupt-
ing RCU readers. This guarantee can be used in combination with the grace-period
guarantee to also allow data elements to be removed from RCU-protected linked
data structures, again without disrupting RCU readers.

This guarantee was only partially premeditated. DYNIX/ptx used an
explicit memory barrier for publication, but had nothing resembling
rcu_dereference() for subscription, nor did it have anything resembling the
smp_read_barrier_depends() that was later subsumed into rcu_dereference()
and later still into READ_ONCE(). The need for these operations made itself known
quite suddenly at a late-1990s meeting with the DEC Alpha architects, back in the
days when DEC was still a free-standing company. It took the Alpha architects
a good hour to convince me that any sort of barrier would ever be needed, and
it then took me a good two hours to convince them that their documentation
did not make this point clear. More recent work with the C and C++ standards
committees have provided much education on tricks and traps from the compiler.
In short, compilers were much less tricky in the early 1990s, but in 2015, don’t
even think about omitting rcu_dereference()!

Memory-Barrier Guarantees

The previous section’s simple linked-data-structure scenario clearly demonstrates
the need for RCU’s stringent memory-ordering guarantees on systems with more
than one CPU:

1. Each CPU that has an RCU read-side critical section that begins before
synchronize_rcu() starts is guaranteed to execute a full memory barrier
between the time that the RCU read-side critical section ends and the time
that synchronize_rcu() returns. Without this guarantee, a pre-existing RCU
read-side critical section might hold a reference to the newly removed struct
foo after the kfree() on line 14 of remove_gp_synchronous().

440 Chapter 3. Concurrency primitives

Linux Core-api Documentation

2. Each CPU that has an RCU read-side critical section that ends after
synchronize_rcu() returns is guaranteed to execute a full memory bar-
rier between the time that synchronize_rcu() begins and the time that
the RCU read-side critical section begins. Without this guarantee, a later
RCU read-side critical section running after the kfree() on line 14 of
remove_gp_synchronous() might later run do_something_gp() and find the
newly deleted struct foo.

3. If the task invoking synchronize_rcu() remains on a given CPU, then that
CPU is guaranteed to execute a full memory barrier sometime during the
execution of synchronize_rcu(). This guarantee ensures that the kfree()
on line 14 of remove_gp_synchronous() really does execute after the removal
on line 11.

4. If the task invoking synchronize_rcu() migrates among a group of CPUs
during that invocation, then each of the CPUs in that group is guar-
anteed to execute a full memory barrier sometime during the execution
of synchronize_rcu(). This guarantee also ensures that the kfree()
on line 14 of remove_gp_synchronous() really does execute after the re-
moval on line 11, but also in the case where the thread executing the
synchronize_rcu() migrates in the meantime.

Quick Quiz:
Given that multiple CPUs can start RCU read-side critical sections at any
time without any ordering whatsoever, how can RCU possibly tell whether or
not a given RCU read-side critical section starts before a given instance of
synchronize_rcu()?
Answer:
If RCU cannot tell whether or not a given RCU read-side critical section starts
before a given instance of synchronize_rcu(), then it must assume that the
RCU read-side critical section started first. In other words, a given instance of
synchronize_rcu() can avoid waiting on a given RCU read-side critical section
only if it can prove that synchronize_rcu() started first. A related question
is “When rcu_read_lock() doesn’t generate any code, why does it matter
how it relates to a grace period?”The answer is that it is not the relationship of
rcu_read_lock() itself that is important, but rather the relationship of the code
within the enclosed RCU read-side critical section to the code preceding and
following the grace period. If we take this viewpoint, then a given RCU read-side
critical section begins before a given grace period when some access preceding
the grace period observes the effect of some access within the critical section,
in which case none of the accesses within the critical section may observe the
effects of any access following the grace period.
As of late 2016, mathematical models of RCU take this viewpoint, for example,
see slides 62 and 63 of the 2016 LinuxCon EU presentation.

3.6. RCU concepts 441

http://www2.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf

Linux Core-api Documentation

Quick Quiz:
The first and second guarantees require unbelievably strict ordering! Are all
these memory barriers really required?
Answer:
Yes, they really are required. To see why the first guarantee is required, consider
the following sequence of events:
1. CPU 1: rcu_read_lock()
2. CPU 1: q = rcu_dereference(gp); /* Very likely to return p. */
3. CPU 0: list_del_rcu(p);
4. CPU 0: synchronize_rcu() starts.
5. CPU 1: do_something_with(q->a); /* No smp_mb(), so might happen

after kfree(). */
6. CPU 1: rcu_read_unlock()
7. CPU 0: synchronize_rcu() returns.
8. CPU 0: kfree(p);

Therefore, there absolutely must be a full memory barrier between the end of
the RCU read-side critical section and the end of the grace period.
The sequence of events demonstrating the necessity of the second rule is roughly
similar:
1. CPU 0: list_del_rcu(p);
2. CPU 0: synchronize_rcu() starts.
3. CPU 1: rcu_read_lock()
4. CPU 1: q = rcu_dereference(gp); /* Might return p if no memory

barrier. */
5. CPU 0: synchronize_rcu() returns.
6. CPU 0: kfree(p);
7. CPU 1: do_something_with(q->a); /* Boom!!! */
8. CPU 1: rcu_read_unlock()

And similarly, without a memory barrier between the beginning of the grace
period and the beginning of the RCU read-side critical section, CPU 1 might
end up accessing the freelist.
The“as if”rule of course applies, so that any implementation that acts as if the
appropriate memory barriers were in place is a correct implementation. That
said, it is much easier to fool yourself into believing that you have adhered to
the as-if rule than it is to actually adhere to it!

442 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Quick Quiz:
You claim that rcu_read_lock() and rcu_read_unlock() generate absolutely
no code in some kernel builds. This means that the compiler might arbitrarily
rearrange consecutive RCU read-side critical sections. Given such rearrange-
ment, if a given RCU read-side critical section is done, how can you be sure
that all prior RCU read-side critical sections are done? Won’t the compiler
rearrangements make that impossible to determine?
Answer:
In cases where rcu_read_lock() and rcu_read_unlock() generate absolutely
no code, RCU infers quiescent states only at special locations, for example,
within the scheduler. Because calls to schedule() had better prevent calling-
code accesses to shared variables from being rearranged across the call to
schedule(), if RCU detects the end of a given RCU read-side critical section,
it will necessarily detect the end of all prior RCU read-side critical sections, no
matter how aggressively the compiler scrambles the code. Again, this all as-
sumes that the compiler cannot scramble code across calls to the scheduler, out
of interrupt handlers, into the idle loop, into user-mode code, and so on. But if
your kernel build allows that sort of scrambling, you have broken far more than
just RCU!

Note that thesememory-barrier requirements do not replace the fundamental RCU
requirement that a grace period wait for all pre-existing readers. On the contrary,
the memory barriers called out in this section must operate in such a way as to en-
force this fundamental requirement. Of course, different implementations enforce
this requirement in different ways, but enforce it they must.

RCU Primitives Guaranteed to Execute Unconditionally

The common-case RCU primitives are unconditional. They are invoked, they do
their job, and they return, with no possibility of error, and no need to retry. This
is a key RCU design philosophy.

However, this philosophy is pragmatic rather than pigheaded. If someone comes
up with a good justification for a particular conditional RCU primitive, it might well
be implemented and added. After all, this guarantee was reverse-engineered, not
premeditated. The unconditional nature of the RCU primitives was initially an acci-
dent of implementation, and later experience with synchronization primitives with
conditional primitives caused me to elevate this accident to a guarantee. There-
fore, the justification for adding a conditional primitive to RCU would need to be
based on detailed and compelling use cases.

3.6. RCU concepts 443

Linux Core-api Documentation

Guaranteed Read-to-Write Upgrade

As far as RCU is concerned, it is always possible to carry out an update within an
RCU read-side critical section. For example, that RCU read-side critical section
might search for a given data element, and then might acquire the update-side
spinlock in order to update that element, all while remaining in that RCU read-
side critical section. Of course, it is necessary to exit the RCU read-side critical
section before invoking synchronize_rcu(), however, this inconvenience can be
avoided through use of the call_rcu() and kfree_rcu() API members described
later in this document.

Quick Quiz:
But how does the upgrade-to-write operation exclude other readers?
Answer:
It doesn’t, just like normal RCU updates, which also do not exclude RCU readers.

This guarantee allows lookup code to be shared between read-side and update-side
code, and was premeditated, appearing in the earliest DYNIX/ptx RCU documen-
tation.

Fundamental Non-Requirements

RCU provides extremely lightweight readers, and its read-side guarantees, though
quite useful, are correspondingly lightweight. It is therefore all too easy to assume
that RCU is guaranteeing more than it really is. Of course, the list of things that
RCU does not guarantee is infinitely long, however, the following sections list a
few non-guarantees that have caused confusion. Except where otherwise noted,
these non-guarantees were premeditated.

1. Readers Impose Minimal Ordering

2. Readers Do Not Exclude Updaters

3. Updaters Only Wait For Old Readers

4. Grace Periods Don’t Partition Read-Side Critical Sections
5. Read-Side Critical Sections Don’t Partition Grace Periods

Readers Impose Minimal Ordering

Reader-side markers such as rcu_read_lock() and rcu_read_unlock() provide
absolutely no ordering guarantees except through their interaction with the grace-
period APIs such as synchronize_rcu(). To see this, consider the following pair
of threads:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(x, 1);
5 rcu_read_unlock();

(continues on next page)

444 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
6 rcu_read_lock();
7 WRITE_ONCE(y, 1);
8 rcu_read_unlock();
9 }

10
11 void thread1(void)
12 {
13 rcu_read_lock();
14 r1 = READ_ONCE(y);
15 rcu_read_unlock();
16 rcu_read_lock();
17 r2 = READ_ONCE(x);
18 rcu_read_unlock();
19 }

After thread0() and thread1() execute concurrently, it is quite possible to have

(r1 == 1 && r2 == 0)

(that is, y appears to have been assigned before x), which would not be possi-
ble if rcu_read_lock() and rcu_read_unlock() had much in the way of ordering
properties. But they do not, so the CPU is within its rights to do significant re-
ordering. This is by design: Any significant ordering constraints would slow down
these fast-path APIs.

Quick Quiz:
Can’t the compiler also reorder this code?
Answer:
No, the volatile casts in READ_ONCE() and WRITE_ONCE() prevent the compiler
from reordering in this particular case.

Readers Do Not Exclude Updaters

Neither rcu_read_lock() nor rcu_read_unlock() exclude updates. All they do is
to prevent grace periods from ending. The following example illustrates this:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 r1 = READ_ONCE(y);
5 if (r1) {
6 do_something_with_nonzero_x();
7 r2 = READ_ONCE(x);
8 WARN_ON(!r2); /* BUG!!! */
9 }

10 rcu_read_unlock();
11 }
12
13 void thread1(void)
14 {
15 spin_lock(&my_lock);
16 WRITE_ONCE(x, 1);

(continues on next page)

3.6. RCU concepts 445

Linux Core-api Documentation

(continued from previous page)
17 WRITE_ONCE(y, 1);
18 spin_unlock(&my_lock);
19 }

If the thread0() function’s rcu_read_lock() excluded the thread1() function’
s update, the WARN_ON() could never fire. But the fact is that rcu_read_lock()
does not exclude much of anything aside from subsequent grace periods, of which
thread1() has none, so the WARN_ON() can and does fire.

Updaters Only Wait For Old Readers

It might be tempting to assume that after synchronize_rcu() completes, there
are no readers executing. This temptation must be avoided because new readers
can start immediately after synchronize_rcu() starts, and synchronize_rcu() is
under no obligation to wait for these new readers.

Quick Quiz:
Suppose that synchronize_rcu() did wait until all readers had completed instead
of waiting only on pre-existing readers. For how long would the updater be able
to rely on there being no readers?
Answer:
For no time at all. Even if synchronize_rcu() were to wait until all readers
had completed, a new reader might start immediately after synchronize_rcu()
completed. Therefore, the code following synchronize_rcu() can never rely on
there being no readers.

Grace Periods Don’t Partition Read-Side Critical Sections

It is tempting to assume that if any part of one RCU read-side critical section
precedes a given grace period, and if any part of another RCU read-side critical
section follows that same grace period, then all of the first RCU read-side critical
section must precede all of the second. However, this just isn’t the case: A single
grace period does not partition the set of RCU read-side critical sections. An ex-
ample of this situation can be illustrated as follows, where x, y, and z are initially
all zero:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(a, 1);
5 WRITE_ONCE(b, 1);
6 rcu_read_unlock();
7 }
8
9 void thread1(void)

10 {
11 r1 = READ_ONCE(a);
12 synchronize_rcu();
13 WRITE_ONCE(c, 1);

(continues on next page)

446 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
14 }
15
16 void thread2(void)
17 {
18 rcu_read_lock();
19 r2 = READ_ONCE(b);
20 r3 = READ_ONCE(c);
21 rcu_read_unlock();
22 }

It turns out that the outcome:

(r1 == 1 && r2 == 0 && r3 == 1)

is entirely possible. The following figure show how this can happen, with each
circled QS indicating the point at which RCU recorded a quiescent state for each
thread, that is, a state in which RCU knows that the thread cannot be in the midst
of an RCU read-side critical section that started before the current grace period:

3.6. RCU concepts 447

Linux Core-api Documentation

If it is necessary to partition RCU read-side critical sections in this manner, it is
necessary to use two grace periods, where the first grace period is known to end
before the second grace period starts:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(a, 1);
5 WRITE_ONCE(b, 1);
6 rcu_read_unlock();
7 }
8
9 void thread1(void)

10 {
11 r1 = READ_ONCE(a);
12 synchronize_rcu();
13 WRITE_ONCE(c, 1);
14 }
15
16 void thread2(void)
17 {
18 r2 = READ_ONCE(c);
19 synchronize_rcu();
20 WRITE_ONCE(d, 1);
21 }
22
23 void thread3(void)
24 {
25 rcu_read_lock();
26 r3 = READ_ONCE(b);
27 r4 = READ_ONCE(d);
28 rcu_read_unlock();
29 }

Here, if (r1 == 1), then thread0()’s write to b must happen before the end of
thread1()’s grace period. If in addition (r4 == 1), then thread3()’s read from
b must happen after the beginning of thread2()’s grace period. If it is also the
case that (r2 == 1), then the end of thread1()’s grace period must precede the
beginning of thread2()’s grace period. This mean that the two RCU read-side
critical sections cannot overlap, guaranteeing that (r3 == 1). As a result, the
outcome:

(r1 == 1 && r2 == 1 && r3 == 0 && r4 == 1)

cannot happen.

This non-requirement was also non-premeditated, but became apparent when
studying RCU’s interaction with memory ordering.

448 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Read-Side Critical Sections Don’t Partition Grace Periods

It is also tempting to assume that if an RCU read-side critical section happens be-
tween a pair of grace periods, then those grace periods cannot overlap. However,
this temptation leads nowhere good, as can be illustrated by the following, with
all variables initially zero:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(a, 1);
5 WRITE_ONCE(b, 1);
6 rcu_read_unlock();
7 }
8
9 void thread1(void)

10 {
11 r1 = READ_ONCE(a);
12 synchronize_rcu();
13 WRITE_ONCE(c, 1);
14 }
15
16 void thread2(void)
17 {
18 rcu_read_lock();
19 WRITE_ONCE(d, 1);
20 r2 = READ_ONCE(c);
21 rcu_read_unlock();
22 }
23
24 void thread3(void)
25 {
26 r3 = READ_ONCE(d);
27 synchronize_rcu();
28 WRITE_ONCE(e, 1);
29 }
30
31 void thread4(void)
32 {
33 rcu_read_lock();
34 r4 = READ_ONCE(b);
35 r5 = READ_ONCE(e);
36 rcu_read_unlock();
37 }

In this case, the outcome:

(r1 == 1 && r2 == 1 && r3 == 1 && r4 == 0 && r5 == 1)

is entirely possible, as illustrated below:

Again, an RCU read-side critical section can overlap almost all of a given grace
period, just so long as it does not overlap the entire grace period. As a result, an
RCU read-side critical section cannot partition a pair of RCU grace periods.

3.6. RCU concepts 449

Linux Core-api Documentation

Quick Quiz:
How long a sequence of grace periods, each separated by an RCU read-side crit-
ical section, would be required to partition the RCU read-side critical sections
at the beginning and end of the chain?
Answer:
In theory, an infinite number. In practice, an unknown number that is sensi-
tive to both implementation details and timing considerations. Therefore, even
in practice, RCU users must abide by the theoretical rather than the practical
answer.

Parallelism Facts of Life

These parallelism facts of life are by no means specific to RCU, but the RCU im-
plementation must abide by them. They therefore bear repeating:

1. Any CPU or task may be delayed at any time, and any attempts to avoid these
delays by disabling preemption, interrupts, or whatever are completely futile.
This is most obvious in preemptible user-level environments and in virtualized
environments (where a given guest OS’s VCPUs can be preempted at any
time by the underlying hypervisor), but can also happen in bare-metal envi-
ronments due to ECC errors, NMIs, and other hardware events. Although a
delay of more than about 20 seconds can result in splats, the RCU implemen-
tation is obligated to use algorithms that can tolerate extremely long delays,
but where “extremely long”is not long enough to allow wrap-around when
incrementing a 64-bit counter.

450 Chapter 3. Concurrency primitives

Linux Core-api Documentation

2. Both the compiler and the CPU can reorder memory accesses. Where it mat-
ters, RCU must use compiler directives and memory-barrier instructions to
preserve ordering.

3. Conflicting writes to memory locations in any given cache line will result in
expensive cache misses. Greater numbers of concurrent writes and more-
frequent concurrent writes will result in more dramatic slowdowns. RCU is
therefore obligated to use algorithms that have sufficient locality to avoid
significant performance and scalability problems.

4. As a rough rule of thumb, only one CPU’s worth of processing may be carried
out under the protection of any given exclusive lock. RCU must therefore use
scalable locking designs.

5. Counters are finite, especially on 32-bit systems. RCU’s use of counters must
therefore tolerate counter wrap, or be designed such that counter wrap would
take way more time than a single system is likely to run. An uptime of ten
years is quite possible, a runtime of a century much less so. As an example
of the latter, RCU’s dyntick-idle nesting counter allows 54 bits for interrupt
nesting level (this counter is 64 bits even on a 32-bit system). Overflowing
this counter requires 254 half-interrupts on a given CPUwithout that CPU ever
going idle. If a half-interrupt happened every microsecond, it would take 570
years of runtime to overflow this counter, which is currently believed to be
an acceptably long time.

6. Linux systems can have thousands of CPUs running a single Linux kernel in a
single shared-memory environment. RCU must therefore pay close attention
to high-end scalability.

This last parallelism fact of life means that RCU must pay special attention to the
preceding facts of life. The idea that Linux might scale to systems with thousands
of CPUs would have been met with some skepticism in the 1990s, but these re-
quirements would have otherwise have been unsurprising, even in the early 1990s.

Quality-of-Implementation Requirements

These sections list quality-of-implementation requirements. Although an RCU im-
plementation that ignores these requirements could still be used, it would likely
be subject to limitations that would make it inappropriate for industrial-strength
production use. Classes of quality-of-implementation requirements are as follows:

1. Specialization

2. Performance and Scalability

3. Forward Progress

4. Composability

5. Corner Cases

These classes is covered in the following sections.

3.6. RCU concepts 451

Linux Core-api Documentation

Specialization

RCU is and always has been intended primarily for read-mostly situations, which
means that RCU’s read-side primitives are optimized, often at the expense of its
update-side primitives. Experience thus far is captured by the following list of
situations:

1. Read-mostly data, where stale and inconsistent data is not a problem: RCU
works great!

2. Read-mostly data, where data must be consistent: RCU works well.

3. Read-write data, where data must be consistent: RCUmight work OK. Or not.

4. Write-mostly data, where data must be consistent: RCU is very unlikely to
be the right tool for the job, with the following exceptions, where RCU can
provide:

a. Existence guarantees for update-friendly mechanisms.

b. Wait-free read-side primitives for real-time use.

This focus on read-mostly situations means that RCU must interoperate
with other synchronization primitives. For example, the add_gp() and
remove_gp_synchronous() examples discussed earlier use RCU to protect readers
and locking to coordinate updaters. However, the need extends much farther, re-
quiring that a variety of synchronization primitives be legal within RCU read-side
critical sections, including spinlocks, sequence locks, atomic operations, reference
counters, and memory barriers.

Quick Quiz:
What about sleeping locks?
Answer:
These are forbidden within Linux-kernel RCU read-side critical sections because
it is not legal to place a quiescent state (in this case, voluntary context switch)
within an RCU read-side critical section. However, sleeping locks may be used
within userspace RCU read-side critical sections, and also within Linux-kernel
sleepable RCU (SRCU) read-side critical sections. In addition, the -rt patchset
turns spinlocks into a sleeping locks so that the corresponding critical sections
can be preempted, which also means that these sleeplockified spinlocks (but
not other sleeping locks!) may be acquire within -rt-Linux-kernel RCU read-side
critical sections. Note that it is legal for a normal RCU read-side critical sec-
tion to conditionally acquire a sleeping locks (as in mutex_trylock()), but only
as long as it does not loop indefinitely attempting to conditionally acquire that
sleeping locks. The key point is that things like mutex_trylock() either return
with the mutex held, or return an error indication if the mutex was not imme-
diately available. Either way, mutex_trylock() returns immediately without
sleeping.

It often comes as a surprise that many algorithms do not require a consistent view
of data, but many can function in that mode, with network routing being the poster
child. Internet routing algorithms take significant time to propagate updates, so
that by the time an update arrives at a given system, that system has been send-
ing network traffic the wrong way for a considerable length of time. Having a

452 Chapter 3. Concurrency primitives

Linux Core-api Documentation

few threads continue to send traffic the wrong way for a few more milliseconds
is clearly not a problem: In the worst case, TCP retransmissions will eventually
get the data where it needs to go. In general, when tracking the state of the uni-
verse outside of the computer, some level of inconsistency must be tolerated due
to speed-of-light delays if nothing else.

Furthermore, uncertainty about external state is inherent in many cases. For ex-
ample, a pair of veterinarians might use heartbeat to determine whether or not
a given cat was alive. But how long should they wait after the last heartbeat to
decide that the cat is in fact dead? Waiting less than 400 milliseconds makes no
sense because this would mean that a relaxed cat would be considered to cycle
between death and life more than 100 times per minute. Moreover, just as with
human beings, a cat’s heart might stop for some period of time, so the exact wait
period is a judgment call. One of our pair of veterinarians might wait 30 seconds
before pronouncing the cat dead, while the other might insist on waiting a full
minute. The two veterinarians would then disagree on the state of the cat during
the final 30 seconds of the minute following the last heartbeat.

Interestingly enough, this same situation applies to hardware. When push comes
to shove, how do we tell whether or not some external server has failed? We send
messages to it periodically, and declare it failed if we don’t receive a response
within a given period of time. Policy decisions can usually tolerate short periods
of inconsistency. The policy was decided some time ago, and is only now being put
into effect, so a few milliseconds of delay is normally inconsequential.

However, there are algorithms that absolutely must see consistent data. For exam-
ple, the translation between a user-level SystemV semaphore ID to the correspond-
ing in-kernel data structure is protected by RCU, but it is absolutely forbidden to
update a semaphore that has just been removed. In the Linux kernel, this need for
consistency is accommodated by acquiring spinlocks located in the in-kernel data
structure from within the RCU read-side critical section, and this is indicated by
the green box in the figure above. Many other techniques may be used, and are in
fact used within the Linux kernel.

In short, RCU is not required to maintain consistency, and other mechanisms may
be used in concert with RCU when consistency is required. RCU’s specialization
allows it to do its job extremely well, and its ability to interoperate with other
synchronization mechanisms allows the right mix of synchronization tools to be
used for a given job.

Performance and Scalability

Energy efficiency is a critical component of performance today, and Linux-kernel
RCU implementations must therefore avoid unnecessarily awakening idle CPUs.
I cannot claim that this requirement was premeditated. In fact, I learned of it
during a telephone conversation in which I was given“frank and open”feedback
on the importance of energy efficiency in battery-powered systems and on spe-
cific energy-efficiency shortcomings of the Linux-kernel RCU implementation. In
my experience, the battery-powered embedded community will consider any un-
necessary wakeups to be extremely unfriendly acts. So much so that mere Linux-
kernel-mailing-list posts are insufficient to vent their ire.

Memory consumption is not particularly important for in most situations, and has

3.6. RCU concepts 453

Linux Core-api Documentation

become decreasingly so as memory sizes have expanded and memory costs have
plummeted. However, as I learned from Matt Mackall’s bloatwatch efforts, mem-
ory footprint is critically important on single-CPU systems with non-preemptible
(CONFIG_PREEMPT=n) kernels, and thus tiny RCU was born. Josh Triplett has since
taken over the small-memory banner with his Linux kernel tinification project,
which resulted in SRCU becoming optional for those kernels not needing it.

The remaining performance requirements are, for the most part, unsurprising.
For example, in keeping with RCU’s read-side specialization, rcu_dereference()
should have negligible overhead (for example, suppression of a fewminor compiler
optimizations). Similarly, in non-preemptible environments, rcu_read_lock() and
rcu_read_unlock() should have exactly zero overhead.

In preemptible environments, in the case where the RCU read-side critical sec-
tion was not preempted (as will be the case for the highest-priority real-time
process), rcu_read_lock() and rcu_read_unlock() should have minimal over-
head. In particular, they should not contain atomic read-modify-write operations,
memory-barrier instructions, preemption disabling, interrupt disabling, or back-
wards branches. However, in the case where the RCU read-side critical section
was preempted, rcu_read_unlock()may acquire spinlocks and disable interrupts.
This is why it is better to nest an RCU read-side critical section within a preempt-
disable region than vice versa, at least in cases where that critical section is short
enough to avoid unduly degrading real-time latencies.

The synchronize_rcu() grace-period-wait primitive is optimized for throughput.
It may therefore incur several milliseconds of latency in addition to the duration of
the longest RCU read-side critical section. On the other hand, multiple concurrent
invocations of synchronize_rcu() are required to use batching optimizations so
that they can be satisfied by a single underlying grace-period-wait operation. For
example, in the Linux kernel, it is not unusual for a single grace-period-wait oper-
ation to serve more than 1,000 separate invocations of synchronize_rcu(), thus
amortizing the per-invocation overhead down to nearly zero. However, the grace-
period optimization is also required to avoid measurable degradation of real-time
scheduling and interrupt latencies.

In some cases, the multi-millisecond synchronize_rcu() latencies are unaccept-
able. In these cases, synchronize_rcu_expedited() may be used instead, reduc-
ing the grace-period latency down to a few tens of microseconds on small sys-
tems, at least in cases where the RCU read-side critical sections are short. There
are currently no special latency requirements for synchronize_rcu_expedited()
on large systems, but, consistent with the empirical nature of the RCU specifica-
tion, that is subject to change. However, there most definitely are scalability re-
quirements: A storm of synchronize_rcu_expedited() invocations on 4096 CPUs
should at least make reasonable forward progress. In return for its shorter laten-
cies, synchronize_rcu_expedited() is permitted to impose modest degradation
of real-time latency on non-idle online CPUs. Here,“modest”means roughly the
same latency degradation as a scheduling-clock interrupt.

There are a number of situations where even synchronize_rcu_expedited()’s re-
duced grace-period latency is unacceptable. In these situations, the asynchronous
call_rcu() can be used in place of synchronize_rcu() as follows:

1 struct foo {
(continues on next page)

454 Chapter 3. Concurrency primitives

http://elinux.org/Linux_Tiny-FAQ
https://lkml.kernel.org/g/20090113221724.GA15307@linux.vnet.ibm.com
https://tiny.wiki.kernel.org/
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/making-rcu-safe-deep-sub-millisecond-response

Linux Core-api Documentation

(continued from previous page)
2 int a;
3 int b;
4 struct rcu_head rh;
5 };
6
7 static void remove_gp_cb(struct rcu_head *rhp)
8 {
9 struct foo *p = container_of(rhp, struct foo, rh);

10
11 kfree(p);
12 }
13
14 bool remove_gp_asynchronous(void)
15 {
16 struct foo *p;
17
18 spin_lock(&gp_lock);
19 p = rcu_access_pointer(gp);
20 if (!p) {
21 spin_unlock(&gp_lock);
22 return false;
23 }
24 rcu_assign_pointer(gp, NULL);
25 call_rcu(&p->rh, remove_gp_cb);
26 spin_unlock(&gp_lock);
27 return true;
28 }

A definition of struct foo is finally needed, and appears on lines 1-5. The
function remove_gp_cb() is passed to call_rcu() on line 25, and will be in-
voked after the end of a subsequent grace period. This gets the same effect as
remove_gp_synchronous(), but without forcing the updater to wait for a grace
period to elapse. The call_rcu() function may be used in a number of sit-
uations where neither synchronize_rcu() nor synchronize_rcu_expedited()
would be legal, including within preempt-disable code, local_bh_disable() code,
interrupt-disable code, and interrupt handlers. However, even call_rcu() is il-
legal within NMI handlers and from idle and offline CPUs. The callback function
(remove_gp_cb() in this case) will be executed within softirq (software interrupt)
environment within the Linux kernel, either within a real softirq handler or under
the protection of local_bh_disable(). In both the Linux kernel and in userspace,
it is bad practice to write an RCU callback function that takes too long. Long-
running operations should be relegated to separate threads or (in the Linux kernel)
workqueues.

Quick Quiz:
Why does line 19 use rcu_access_pointer()? After all, call_rcu() on line 25
stores into the structure, which would interact badly with concurrent insertions.
Doesn’t this mean that rcu_dereference() is required?
Answer:
Presumably the ->gp_lock acquired on line 18 excludes any changes, including
any insertions that rcu_dereference() would protect against. Therefore, any
insertions will be delayed until after ->gp_lock is released on line 25, which in
turn means that rcu_access_pointer() suffices.

3.6. RCU concepts 455

Linux Core-api Documentation

However, all that remove_gp_cb() is doing is invoking kfree() on the data ele-
ment. This is a common idiom, and is supported by kfree_rcu(), which allows
“fire and forget”operation as shown below:

1 struct foo {
2 int a;
3 int b;
4 struct rcu_head rh;
5 };
6
7 bool remove_gp_faf(void)
8 {
9 struct foo *p;

10
11 spin_lock(&gp_lock);
12 p = rcu_dereference(gp);
13 if (!p) {
14 spin_unlock(&gp_lock);
15 return false;
16 }
17 rcu_assign_pointer(gp, NULL);
18 kfree_rcu(p, rh);
19 spin_unlock(&gp_lock);
20 return true;
21 }

Note that remove_gp_faf() simply invokes kfree_rcu() and proceeds, without
any need to pay any further attention to the subsequent grace period and kfree().
It is permissible to invoke kfree_rcu() from the same environments as for
call_rcu(). Interestingly enough, DYNIX/ptx had the equivalents of call_rcu()
and kfree_rcu(), but not synchronize_rcu(). This was due to the fact that RCU
was not heavily used within DYNIX/ptx, so the very few places that needed some-
thing like synchronize_rcu() simply open-coded it.

Quick Quiz:
Earlier it was claimed that call_rcu() and kfree_rcu() allowed updaters to
avoid being blocked by readers. But how can that be correct, given that the
invocation of the callback and the freeing of the memory (respectively) must
still wait for a grace period to elapse?
Answer:
We could define things this way, but keep in mind that this sort of definition
would say that updates in garbage-collected languages cannot complete until
the next time the garbage collector runs, which does not seem at all reason-
able. The key point is that in most cases, an updater using either call_rcu()
or kfree_rcu() can proceed to the next update as soon as it has invoked
call_rcu() or kfree_rcu(), without having to wait for a subsequent grace pe-
riod.

But what if the updater must wait for the completion of code to be executed
after the end of the grace period, but has other tasks that can be carried
out in the meantime? The polling-style get_state_synchronize_rcu() and
cond_synchronize_rcu() functions may be used for this purpose, as shown be-
low:

456 Chapter 3. Concurrency primitives

Linux Core-api Documentation

1 bool remove_gp_poll(void)
2 {
3 struct foo *p;
4 unsigned long s;
5
6 spin_lock(&gp_lock);
7 p = rcu_access_pointer(gp);
8 if (!p) {
9 spin_unlock(&gp_lock);

10 return false;
11 }
12 rcu_assign_pointer(gp, NULL);
13 spin_unlock(&gp_lock);
14 s = get_state_synchronize_rcu();
15 do_something_while_waiting();
16 cond_synchronize_rcu(s);
17 kfree(p);
18 return true;
19 }

On line 14, get_state_synchronize_rcu() obtains a “cookie”from RCU, then
line 15 carries out other tasks, and finally, line 16 returns immediately if a grace
period has elapsed in the meantime, but otherwise waits as required. The need for
get_state_synchronize_rcu and cond_synchronize_rcu() has appeared quite
recently, so it is too early to tell whether they will stand the test of time.

RCU thus provides a range of tools to allow updaters to strike the required tradeoff
between latency, flexibility and CPU overhead.

Forward Progress

In theory, delaying grace-period completion and callback invocation is harmless.
In practice, not only are memory sizes finite but also callbacks sometimes do wake-
ups, and sufficiently deferred wakeups can be difficult to distinguish from system
hangs. Therefore, RCUmust provide a number of mechanisms to promote forward
progress.

These mechanisms are not foolproof, nor can they be. For one simple example, an
infinite loop in an RCU read-side critical section must by definition prevent later
grace periods from ever completing. For a more involved example, consider a 64-
CPU system built with CONFIG_RCU_NOCB_CPU=y and booted with rcu_nocbs=1-63,
where CPUs 1 through 63 spin in tight loops that invoke call_rcu(). Even if these
tight loops also contain calls to cond_resched() (thus allowing grace periods to
complete), CPU 0 simply will not be able to invoke callbacks as fast as the other 63
CPUs can register them, at least not until the system runs out of memory. In both of
these examples, the Spiderman principle applies: With great power comes great
responsibility. However, short of this level of abuse, RCU is required to ensure
timely completion of grace periods and timely invocation of callbacks.

RCU takes the following steps to encourage timely completion of grace periods:

1. If a grace period fails to complete within 100 milliseconds, RCU causes fu-
ture invocations of cond_resched() on the holdout CPUs to provide an RCU

3.6. RCU concepts 457

Linux Core-api Documentation

quiescent state. RCU also causes those CPUs’need_resched() invocations to
return true, but only after the corresponding CPU’s next scheduling-clock.

2. CPUs mentioned in the nohz_full kernel boot parameter can run indefinitely
in the kernel without scheduling-clock interrupts, which defeats the above
need_resched() strategem. RCU will therefore invoke resched_cpu() on
any nohz_full CPUs still holding out after 109 milliseconds.

3. In kernels built with CONFIG_RCU_BOOST=y, if a given task that has been pre-
empted within an RCU read-side critical section is holding out for more than
500 milliseconds, RCU will resort to priority boosting.

4. If a CPU is still holding out 10 seconds into the grace period, RCU will invoke
resched_cpu() on it regardless of its nohz_full state.

The above values are defaults for systems running with HZ=1000. They will vary as
the value of HZ varies, and can also be changed using the relevant Kconfig options
and kernel boot parameters. RCU currently does not do much sanity checking
of these parameters, so please use caution when changing them. Note that these
forward-progressmeasures are provided only for RCU, not for SRCU or Tasks RCU.

RCU takes the following steps in call_rcu() to encourage timely invocation of
callbacks when any given non-rcu_nocbs CPU has 10,000 callbacks, or has 10,000
more callbacks than it had the last time encouragement was provided:

1. Starts a grace period, if one is not already in progress.

2. Forces immediate checking for quiescent states, rather than waiting for three
milliseconds to have elapsed since the beginning of the grace period.

3. Immediately tags the CPU’s callbacks with their grace period completion
numbers, rather than waiting for the RCU_SOFTIRQ handler to get around to
it.

4. Lifts callback-execution batch limits, which speeds up callback invocation at
the expense of degrading realtime response.

Again, these are default values when running at HZ=1000, and can be overridden.
Again, these forward-progress measures are provided only for RCU, not for SRCU
or Tasks RCU. Even for RCU, callback-invocation forward progress for rcu_nocbs
CPUs is much less well-developed, in part because workloads benefiting from
rcu_nocbs CPUs tend to invoke call_rcu() relatively infrequently. If workloads
emerge that need both rcu_nocbs CPUs and high call_rcu() invocation rates,
then additional forward-progress work will be required.

Composability

Composability has received much attention in recent years, perhaps in part due
to the collision of multicore hardware with object-oriented techniques designed
in single-threaded environments for single-threaded use. And in theory, RCU
read-side critical sections may be composed, and in fact may be nested arbitrarily
deeply. In practice, as with all real-world implementations of composable con-
structs, there are limitations.

Implementations of RCU for which rcu_read_lock() and rcu_read_unlock()
generate no code, such as Linux-kernel RCU when CONFIG_PREEMPT=n, can be

458 Chapter 3. Concurrency primitives

Linux Core-api Documentation

nested arbitrarily deeply. After all, there is no overhead. Except that if all these
instances of rcu_read_lock() and rcu_read_unlock() are visible to the compiler,
compilation will eventually fail due to exhausting memory, mass storage, or user
patience, whichever comes first. If the nesting is not visible to the compiler, as is
the case with mutually recursive functions each in its own translation unit, stack
overflow will result. If the nesting takes the form of loops, perhaps in the guise of
tail recursion, either the control variable will overflow or (in the Linux kernel) you
will get an RCU CPU stall warning. Nevertheless, this class of RCU implementa-
tions is one of the most composable constructs in existence.

RCU implementations that explicitly track nesting depth are limited by the nesting-
depth counter. For example, the Linux kernel’s preemptible RCU limits nesting to
INT_MAX. This should suffice for almost all practical purposes. That said, a consec-
utive pair of RCU read-side critical sections between which there is an operation
that waits for a grace period cannot be enclosed in another RCU read-side critical
section. This is because it is not legal to wait for a grace period within an RCU
read-side critical section: To do so would result either in deadlock or in RCU im-
plicitly splitting the enclosing RCU read-side critical section, neither of which is
conducive to a long-lived and prosperous kernel.

It is worth noting that RCU is not alone in limiting composability. For example,
many transactional-memory implementations prohibit composing a pair of trans-
actions separated by an irrevocable operation (for example, a network receive
operation). For another example, lock-based critical sections can be composed
surprisingly freely, but only if deadlock is avoided.

In short, although RCU read-side critical sections are highly composable, care is
required in some situations, just as is the case for any other composable synchro-
nization mechanism.

Corner Cases

A given RCU workload might have an endless and intense stream of RCU read-
side critical sections, perhaps even so intense that there was never a point in time
during which there was not at least one RCU read-side critical section in flight.
RCU cannot allow this situation to block grace periods: As long as all the RCU
read-side critical sections are finite, grace periods must also be finite.

That said, preemptible RCU implementations could potentially result in RCU read-
side critical sections being preempted for long durations, which has the effect of
creating a long-duration RCU read-side critical section. This situation can arise
only in heavily loaded systems, but systems using real-time priorities are of course
more vulnerable. Therefore, RCU priority boosting is provided to help deal with
this case. That said, the exact requirements on RCU priority boosting will likely
evolve as more experience accumulates.

Other workloads might have very high update rates. Although one can ar-
gue that such workloads should instead use something other than RCU, the
fact remains that RCU must handle such workloads gracefully. This require-
ment is another factor driving batching of grace periods, but it is also the
driving force behind the checks for large numbers of queued RCU callbacks
in the call_rcu() code path. Finally, high update rates should not delay
RCU read-side critical sections, although some small read-side delays can occur

3.6. RCU concepts 459

Linux Core-api Documentation

when using synchronize_rcu_expedited(), courtesy of this function’s use of
smp_call_function_single().

Although all three of these corner cases were understood in the early 1990s, a
simple user-level test consisting of close(open(path)) in a tight loop in the early
2000s suddenly provided a much deeper appreciation of the high-update-rate cor-
ner case. This test also motivated addition of some RCU code to react to high
update rates, for example, if a given CPU finds itself with more than 10,000 RCU
callbacks queued, it will cause RCU to take evasive action by more aggressively
starting grace periods and more aggressively forcing completion of grace-period
processing. This evasive action causes the grace period to complete more quickly,
but at the cost of restricting RCU’s batching optimizations, thus increasing the
CPU overhead incurred by that grace period.

Software-Engineering Requirements

Between Murphy’s Law and“To err is human”, it is necessary to guard against
mishaps and misuse:

1. It is all too easy to forget to use rcu_read_lock() everywhere that
it is needed, so kernels built with CONFIG_PROVE_RCU=y will splat if
rcu_dereference() is used outside of an RCU read-side critical section.
Update-side code can use rcu_dereference_protected(), which takes a
lockdep expression to indicate what is providing the protection. If the
indicated protection is not provided, a lockdep splat is emitted. Code
shared between readers and updaters can use rcu_dereference_check(),
which also takes a lockdep expression, and emits a lockdep splat if nei-
ther rcu_read_lock() nor the indicated protection is in place. In ad-
dition, rcu_dereference_raw() is used in those (hopefully rare) cases
where the required protection cannot be easily described. Finally,
rcu_read_lock_held() is provided to allow a function to verify that it has
been invoked within an RCU read-side critical section. I was made aware of
this set of requirements shortly after Thomas Gleixner audited a number of
RCU uses.

2. A given function might wish to check for RCU-related preconditions upon
entry, before using any other RCU API. The rcu_lockdep_assert() does this
job, asserting the expression in kernels having lockdep enabled and doing
nothing otherwise.

3. It is also easy to forget to use rcu_assign_pointer() and
rcu_dereference(), perhaps (incorrectly) substituting a simple assign-
ment. To catch this sort of error, a given RCU-protected pointer may be
tagged with __rcu, after which sparse will complain about simple-assignment
accesses to that pointer. Arnd Bergmannmade me aware of this requirement,
and also supplied the needed patch series.

4. Kernels built with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y will splat if a data
element is passed to call_rcu() twice in a row, without a grace pe-
riod in between. (This error is similar to a double free.) The cor-
responding rcu_head structures that are dynamically allocated are au-
tomatically tracked, but rcu_head structures allocated on the stack
must be initialized with init_rcu_head_on_stack() and cleaned up with

460 Chapter 3. Concurrency primitives

https://lwn.net/Articles/371986/
https://lwn.net/Articles/376011/

Linux Core-api Documentation

destroy_rcu_head_on_stack(). Similarly, statically allocated non-stack
rcu_head structures must be initialized with init_rcu_head() and cleaned
up with destroy_rcu_head(). Mathieu Desnoyers made me aware of this
requirement, and also supplied the needed patch.

5. An infinite loop in an RCU read-side critical section will eventually trigger
an RCU CPU stall warning splat, with the duration of “eventually”being
controlled by the RCU_CPU_STALL_TIMEOUT Kconfig option, or, alternatively,
by the rcupdate.rcu_cpu_stall_timeout boot/sysfs parameter. However,
RCU is not obligated to produce this splat unless there is a grace period wait-
ing on that particular RCU read-side critical section.

Some extreme workloads might intentionally delay RCU grace periods,
and systems running those workloads can be booted with rcupdate.
rcu_cpu_stall_suppress to suppress the splats. This kernel parameter may
also be set via sysfs. Furthermore, RCU CPU stall warnings are counter-
productive during sysrq dumps and during panics. RCU therefore supplies
the rcu_sysrq_start() and rcu_sysrq_end() API members to be called be-
fore and after long sysrq dumps. RCU also supplies the rcu_panic() notifier
that is automatically invoked at the beginning of a panic to suppress further
RCU CPU stall warnings.

This requirement made itself known in the early 1990s, pretty much the first
time that it was necessary to debug a CPU stall. That said, the initial imple-
mentation in DYNIX/ptx was quite generic in comparison with that of Linux.

6. Although it would be very good to detect pointers leaking out of RCU read-
side critical sections, there is currently no good way of doing this. One com-
plication is the need to distinguish between pointers leaking and pointers that
have been handed off from RCU to some other synchronization mechanism,
for example, reference counting.

7. In kernels built with CONFIG_RCU_TRACE=y, RCU-related information is pro-
vided via event tracing.

8. Open-coded use of rcu_assign_pointer() and rcu_dereference() to create
typical linked data structures can be surprisingly error-prone. Therefore,
RCU-protected linked lists and, more recently, RCU-protected hash tables
are available. Many other special-purpose RCU-protected data structures
are available in the Linux kernel and the userspace RCU library.

9. Some linked structures are created at compile time, but still require __rcu
checking. The RCU_POINTER_INITIALIZER() macro serves this purpose.

10. It is not necessary to use rcu_assign_pointer() when creating linked
structures that are to be published via a single external pointer. The
RCU_INIT_POINTER() macro is provided for this task and also for assigning
NULL pointers at runtime.

This not a hard-and-fast list: RCU’s diagnostic capabilities will continue to be
guided by the number and type of usage bugs found in real-world RCU usage.

3.6. RCU concepts 461

https://lkml.kernel.org/g/20100319013024.GA28456@Krystal
https://lwn.net/Articles/609973/#RCU%20List%20APIs
https://lwn.net/Articles/612100/

Linux Core-api Documentation

Linux Kernel Complications

The Linux kernel provides an interesting environment for all kinds of software,
including RCU. Some of the relevant points of interest are as follows:

1. Configuration

2. Firmware Interface

3. Early Boot

4. Interrupts and NMIs

5. Loadable Modules

6. Hotplug CPU

7. Scheduler and RCU

8. Tracing and RCU

9. Accesses to User Memory and RCU

10. Energy Efficiency

11. Scheduling-Clock Interrupts and RCU

12. Memory Efficiency

13. Performance, Scalability, Response Time, and Reliability

This list is probably incomplete, but it does give a feel for the most notable Linux-
kernel complications. Each of the following sections covers one of the above topics.

Configuration

RCU’s goal is automatic configuration, so that almost nobody needs to worry about
RCU’s Kconfig options. And for almost all users, RCU does in fact work well“out
of the box.”
However, there are specialized use cases that are handled by kernel boot param-
eters and Kconfig options. Unfortunately, the Kconfig system will explicitly ask
users about new Kconfig options, which requires almost all of them be hidden
behind a CONFIG_RCU_EXPERT Kconfig option.

This all should be quite obvious, but the fact remains that Linus Torvalds recently
had to remind me of this requirement.

Firmware Interface

In many cases, kernel obtains information about the system from the firmware,
and sometimes things are lost in translation. Or the translation is accurate, but
the original message is bogus.

For example, some systems’firmware overreports the number of CPUs, sometimes
by a large factor. If RCU naively believed the firmware, as it used to do, it would
create too many per-CPU kthreads. Although the resulting system will still run

462 Chapter 3. Concurrency primitives

https://lkml.kernel.org/g/CA+55aFy4wcCwaL4okTs8wXhGZ5h-ibecy_Meg9C4MNQrUnwMcg@mail.gmail.com

Linux Core-api Documentation

correctly, the extra kthreads needlessly consume memory and can cause confusion
when they show up in ps listings.

RCUmust therefore wait for a given CPU to actually come online before it can allow
itself to believe that the CPU actually exists. The resulting “ghost CPUs”(which
are never going to come online) cause a number of interesting complications.

Early Boot

The Linux kernel’s boot sequence is an interesting process, and RCU is used
early, even before rcu_init() is invoked. In fact, a number of RCU’s primitives
can be used as soon as the initial task’s task_struct is available and the boot
CPU’s per-CPU variables are set up. The read-side primitives (rcu_read_lock(),
rcu_read_unlock(), rcu_dereference(), and rcu_access_pointer()) will oper-
ate normally very early on, as will rcu_assign_pointer().

Although call_rcu() may be invoked at any time during boot, callbacks are not
guaranteed to be invoked until after all of RCU’s kthreads have been spawned,
which occurs at early_initcall() time. This delay in callback invocation is due
to the fact that RCU does not invoke callbacks until it is fully initialized, and this
full initialization cannot occur until after the scheduler has initialized itself to the
point where RCU can spawn and run its kthreads. In theory, it would be possible
to invoke callbacks earlier, however, this is not a panacea because there would be
severe restrictions on what operations those callbacks could invoke.

Perhaps surprisingly, synchronize_rcu() and synchronize_rcu_expedited(),
will operate normally during very early boot, the reason being that there is only
one CPU and preemption is disabled. This means that the call synchronize_rcu()
(or friends) itself is a quiescent state and thus a grace period, so the early-boot
implementation can be a no-op.

However, once the scheduler has spawned its first kthread, this early boot trick
fails for synchronize_rcu() (as well as for synchronize_rcu_expedited()) in
CONFIG_PREEMPT=y kernels. The reason is that an RCU read-side critical section
might be preempted, which means that a subsequent synchronize_rcu() really
does have to wait for something, as opposed to simply returning immediately. Un-
fortunately, synchronize_rcu() can’t do this until all of its kthreads are spawned,
which doesn’t happen until some time during early_initcalls() time. But this
is no excuse: RCU is nevertheless required to correctly handle synchronous grace
periods during this time period. Once all of its kthreads are up and running, RCU
starts running normally.

3.6. RCU concepts 463

https://paulmck.livejournal.com/37494.html

Linux Core-api Documentation

Quick Quiz:
How can RCU possibly handle grace periods before all of its kthreads have been
spawned???
Answer:
Very carefully! During the “dead zone”between the time that the scheduler
spawns the first task and the time that all of RCU’s kthreads have been spawned,
all synchronous grace periods are handled by the expedited grace-period mech-
anism. At runtime, this expedited mechanism relies on workqueues, but during
the dead zone the requesting task itself drives the desired expedited grace pe-
riod. Because dead-zone execution takes place within task context, everything
works. Once the dead zone ends, expedited grace periods go back to using
workqueues, as is required to avoid problems that would otherwise occur when
a user task received a POSIX signal while driving an expedited grace period.
And yes, this does mean that it is unhelpful to send POSIX signals to random
tasks between the time that the scheduler spawns its first kthread and the time
that RCU’s kthreads have all been spawned. If there ever turns out to be a good
reason for sending POSIX signals during that time, appropriate adjustments will
be made. (If it turns out that POSIX signals are sent during this time for no good
reason, other adjustments will be made, appropriate or otherwise.)

I learned of these boot-time requirements as a result of a series of system hangs.

Interrupts and NMIs

The Linux kernel has interrupts, and RCU read-side critical sections are legal
within interrupt handlers and within interrupt-disabled regions of code, as are
invocations of call_rcu().

Some Linux-kernel architectures can enter an interrupt handler from non-idle pro-
cess context, and then just never leave it, instead stealthily transitioning back to
process context. This trick is sometimes used to invoke system calls from inside
the kernel. These “half-interrupts”mean that RCU has to be very careful about
how it counts interrupt nesting levels. I learned of this requirement the hard way
during a rewrite of RCU’s dyntick-idle code.
The Linux kernel has non-maskable interrupts (NMIs), and RCU read-side critical
sections are legal within NMI handlers. Thankfully, RCU update-side primitives,
including call_rcu(), are prohibited within NMI handlers.

The name notwithstanding, some Linux-kernel architectures can have nested
NMIs, which RCU must handle correctly. Andy Lutomirski surprised me with this
requirement; he also kindly surprised me with an algorithm that meets this re-
quirement.

Furthermore, NMI handlers can be interrupted by what appear to RCU to be
normal interrupts. One way that this can happen is for code that directly in-
vokes rcu_irq_enter() and rcu_irq_exit() to be called from an NMI han-
dler. This astonishing fact of life prompted the current code structure, which
has rcu_irq_enter() invoking rcu_nmi_enter() and rcu_irq_exit() invoking
rcu_nmi_exit(). And yes, I also learned of this requirement the hard way.

464 Chapter 3. Concurrency primitives

https://lkml.kernel.org/r/CALCETrXLq1y7e_dKFPgou-FKHB6Pu-r8+t-6Ds+8=va7anBWDA@mail.gmail.com
https://lkml.kernel.org/r/CALCETrXSY9JpW3uE6H8WYk81sg56qasA2aqmjMPsq5dOtzso=g@mail.gmail.com

Linux Core-api Documentation

Loadable Modules

The Linux kernel has loadable modules, and these modules can also be unloaded.
After a given module has been unloaded, any attempt to call one of its functions
results in a segmentation fault. The module-unload functions must therefore can-
cel any delayed calls to loadable-module functions, for example, any outstanding
mod_timer() must be dealt with via del_timer_sync() or similar.

Unfortunately, there is no way to cancel an RCU callback; once you invoke
call_rcu(), the callback function is eventually going to be invoked, unless the
system goes down first. Because it is normally considered socially irresponsible
to crash the system in response to a module unload request, we need some other
way to deal with in-flight RCU callbacks.

RCU therefore provides rcu_barrier(), which waits until all in-flight RCU
callbacks have been invoked. If a module uses call_rcu(), its exit func-
tion should therefore prevent any future invocation of call_rcu(), then invoke
rcu_barrier(). In theory, the underlying module-unload code could invoke
rcu_barrier() unconditionally, but in practice this would incur unacceptable la-
tencies.

Nikita Danilov noted this requirement for an analogous filesystem-unmount situ-
ation, and Dipankar Sarma incorporated rcu_barrier() into RCU. The need for
rcu_barrier() for module unloading became apparent later.

Important: The rcu_barrier() function is not, repeat, not, obligated to wait
for a grace period. It is instead only required to wait for RCU callbacks that have
already been posted. Therefore, if there are no RCU callbacks posted anywhere
in the system, rcu_barrier() is within its rights to return immediately. Even if
there are callbacks posted, rcu_barrier() does not necessarily need to wait for
a grace period.

Quick Quiz:
Wait a minute! Each RCU callbacks must wait for a grace period to complete,
and rcu_barrier() must wait for each pre-existing callback to be invoked.
Doesn’t rcu_barrier() therefore need to wait for a full grace period if there
is even one callback posted anywhere in the system?
Answer:
Absolutely not!!! Yes, each RCU callbacks must wait for a grace period to com-
plete, but it might well be partly (or even completely) finished waiting by the
time rcu_barrier() is invoked. In that case, rcu_barrier() need only wait for
the remaining portion of the grace period to elapse. So even if there are quite
a few callbacks posted, rcu_barrier() might well return quite quickly.
So if you need to wait for a grace period as well as for all pre-existing callbacks,
you will need to invoke both synchronize_rcu() and rcu_barrier(). If latency
is a concern, you can always use workqueues to invoke them concurrently.

3.6. RCU concepts 465

Linux Core-api Documentation

Hotplug CPU

The Linux kernel supports CPU hotplug, which means that CPUs can come and
go. It is of course illegal to use any RCU API member from an offline CPU, with
the exception of SRCU read-side critical sections. This requirement was present
from day one in DYNIX/ptx, but on the other hand, the Linux kernel’s CPU-hotplug
implementation is “interesting.”
The Linux-kernel CPU-hotplug implementation has notifiers that are used to al-
low the various kernel subsystems (including RCU) to respond appropriately to a
given CPU-hotplug operation. Most RCU operations may be invoked from CPU-
hotplug notifiers, including even synchronous grace-period operations such as
synchronize_rcu() and synchronize_rcu_expedited().

However, all-callback-wait operations such as rcu_barrier() are also not sup-
ported, due to the fact that there are phases of CPU-hotplug operations where
the outgoing CPU’s callbacks will not be invoked until after the CPU-hotplug op-
eration ends, which could also result in deadlock. Furthermore, rcu_barrier()
blocks CPU-hotplug operations during its execution, which results in another type
of deadlock when invoked from a CPU-hotplug notifier.

Scheduler and RCU

RCU makes use of kthreads, and it is necessary to avoid excessive CPU-
time accumulation by these kthreads. This requirement was no surprise,
but RCU’s violation of it when running context-switch-heavy workloads when
built with CONFIG_NO_HZ_FULL=y did come as a surprise [PDF]. RCU has made
good progress towards meeting this requirement, even for context-switch-heavy
CONFIG_NO_HZ_FULL=y workloads, but there is room for further improvement.

There is no longer any prohibition against holding any of scheduler’s runqueue
or priority-inheritance spinlocks across an rcu_read_unlock(), even if interrupts
and preemption were enabled somewhere within the corresponding RCU read-side
critical section. Therefore, it is now perfectly legal to execute rcu_read_lock()
with preemption enabled, acquire one of the scheduler locks, and hold that lock
across the matching rcu_read_unlock().

Similarly, the RCU flavor consolidation has removed the need for negative nest-
ing. The fact that interrupt-disabled regions of code act as RCU read-side critical
sections implicitly avoids earlier issues that used to result in destructive recursion
via interrupt handler’s use of RCU.

Tracing and RCU

It is possible to use tracing on RCU code, but tracing itself uses RCU. For this rea-
son, rcu_dereference_raw_check() is provided for use by tracing, which avoids
the destructive recursion that could otherwise ensue. This API is also used by vir-
tualization in some architectures, where RCU readers execute in environments in
which tracing cannot be used. The tracing folks both located the requirement and
provided the needed fix, so this surprise requirement was relatively painless.

466 Chapter 3. Concurrency primitives

http://www.rdrop.com/users/paulmck/scalability/paper/BareMetal.2015.01.15b.pdf

Linux Core-api Documentation

Accesses to User Memory and RCU

The kernel needs to access user-space memory, for example, to access data refer-
enced by system-call parameters. The get_user() macro does this job.

However, user-space memory might well be paged out, which means that
get_user()might well page-fault and thus block while waiting for the resulting I/O
to complete. It would be a very bad thing for the compiler to reorder a get_user()
invocation into an RCU read-side critical section.

For example, suppose that the source code looked like this:

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 v = p->value;
4 rcu_read_unlock();
5 get_user(user_v, user_p);
6 do_something_with(v, user_v);

The compiler must not be permitted to transform this source code into the follow-
ing:

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 get_user(user_v, user_p); // BUG: POSSIBLE PAGE FAULT!!!
4 v = p->value;
5 rcu_read_unlock();
6 do_something_with(v, user_v);

If the compiler did make this transformation in a CONFIG_PREEMPT=n kernel build,
and if get_user() did page fault, the result would be a quiescent state in the
middle of an RCU read-side critical section. This misplaced quiescent state could
result in line 4 being a use-after-free access, which could be bad for your ker-
nel’s actuarial statistics. Similar examples can be constructed with the call to
get_user() preceding the rcu_read_lock().

Unfortunately, get_user() doesn’t have any particular ordering properties, and
in some architectures the underlying asm isn’t even marked volatile. And even
if it was marked volatile, the above access to p->value is not volatile, so the
compiler would not have any reason to keep those two accesses in order.

Therefore, the Linux-kernel definitions of rcu_read_lock() and
rcu_read_unlock() must act as compiler barriers, at least for outermost in-
stances of rcu_read_lock() and rcu_read_unlock() within a nested set of RCU
read-side critical sections.

3.6. RCU concepts 467

Linux Core-api Documentation

Energy Efficiency

Interrupting idle CPUs is considered socially unacceptable, especially by people
with battery-powered embedded systems. RCU therefore conserves energy by
detecting which CPUs are idle, including tracking CPUs that have been interrupted
from idle. This is a large part of the energy-efficiency requirement, so I learned of
this via an irate phone call.

Because RCU avoids interrupting idle CPUs, it is illegal to execute an RCU read-
side critical section on an idle CPU. (Kernels built with CONFIG_PROVE_RCU=y will
splat if you try it.) The RCU_NONIDLE() macro and _rcuidle event tracing is pro-
vided to work around this restriction. In addition, rcu_is_watching() may be
used to test whether or not it is currently legal to run RCU read-side critical
sections on this CPU. I learned of the need for diagnostics on the one hand and
RCU_NONIDLE() on the other while inspecting idle-loop code. Steven Rostedt sup-
plied _rcuidle event tracing, which is used quite heavily in the idle loop. However,
there are some restrictions on the code placed within RCU_NONIDLE():

1. Blocking is prohibited. In practice, this is not a serious restriction given that
idle tasks are prohibited from blocking to begin with.

2. Although nesting RCU_NONIDLE() is permitted, they cannot nest indefinitely
deeply. However, given that they can be nested on the order of a million deep,
even on 32-bit systems, this should not be a serious restriction. This nesting
limit would probably be reached long after the compiler OOMed or the stack
overflowed.

3. Any code path that enters RCU_NONIDLE() must sequence out of that same
RCU_NONIDLE(). For example, the following is grossly illegal:

1 RCU_NONIDLE({
2 do_something();
3 goto bad_idea; /* BUG!!! */
4 do_something_else();});
5 bad_idea:

It is just as illegal to transfer control into the middle of RCU_NONIDLE()’s argu-
ment. Yes, in theory, you could transfer in as long as you also transferred out,
but in practice you could also expect to get sharply worded review comments.

It is similarly socially unacceptable to interrupt an nohz_full CPU running in
userspace. RCU must therefore track nohz_full userspace execution. RCU must
therefore be able to sample state at two points in time, and be able to determine
whether or not some other CPU spent any time idle and/or executing in userspace.

These energy-efficiency requirements have proven quite difficult to understand
and to meet, for example, there have been more than five clean-sheet rewrites of
RCU’s energy-efficiency code, the last of which was finally able to demonstrate
real energy savings running on real hardware [PDF]. As noted earlier, I learned
of many of these requirements via angry phone calls: Flaming me on the Linux-
kernel mailing list was apparently not sufficient to fully vent their ire at RCU’s
energy-efficiency bugs!

468 Chapter 3. Concurrency primitives

http://www.rdrop.com/users/paulmck/realtime/paper/AMPenergy.2013.04.19a.pdf

Linux Core-api Documentation

Scheduling-Clock Interrupts and RCU

The kernel transitions between in-kernel non-idle execution, userspace execution,
and the idle loop. Depending on kernel configuration, RCU handles these states
differently:

HZ
Kcon-
fig

In-Kernel Usermode Idle

HZ_PERIODICCan rely on scheduling-clock inter-
rupt.

Can rely on
scheduling-clock
interrupt and its de-
tection of interrupt
from usermode.

Can rely
on RCU’
s dyntick-
idle detec-
tion.

NO_HZ_IDLECan rely on scheduling-clock inter-
rupt.

Can rely on
scheduling-clock
interrupt and its de-
tection of interrupt
from usermode.

Can rely
on RCU’
s dyntick-
idle detec-
tion.

NO_HZ_FULLCan only sometimes rely on
scheduling-clock interrupt. In
other cases, it is necessary to
bound kernel execution times
and/or use IPIs.

Can rely on RCU’s
dyntick-idle detection.

Can rely
on RCU’
s dyntick-
idle detec-
tion.

Quick Quiz:
Why can’t NO_HZ_FULL in-kernel execution rely on the scheduling-clock inter-
rupt, just like HZ_PERIODIC and NO_HZ_IDLE do?
Answer:
Because, as a performance optimization, NO_HZ_FULL does not necessarily re-
enable the scheduling-clock interrupt on entry to each and every system call.

However, RCU must be reliably informed as to whether any given CPU is currently
in the idle loop, and, for NO_HZ_FULL, also whether that CPU is executing in user-
mode, as discussed earlier. It also requires that the scheduling-clock interrupt be
enabled when RCU needs it to be:

1. If a CPU is either idle or executing in usermode, and RCU believes it is non-
idle, the scheduling-clock tick had better be running. Otherwise, you will get
RCU CPU stall warnings. Or at best, very long (11-second) grace periods,
with a pointless IPI waking the CPU from time to time.

2. If a CPU is in a portion of the kernel that executes RCU read-side critical
sections, and RCU believes this CPU to be idle, you will get random memory
corruption. DON’T DO THIS!!! This is one reason to test with lockdep,
which will complain about this sort of thing.

3. If a CPU is in a portion of the kernel that is absolutely positively no-joking
guaranteed to never execute any RCU read-side critical sections, and RCU
believes this CPU to to be idle, no problem. This sort of thing is used by some
architectures for light-weight exception handlers, which can then avoid the

3.6. RCU concepts 469

Linux Core-api Documentation

overhead of rcu_irq_enter() and rcu_irq_exit() at exception entry and
exit, respectively. Some go further and avoid the entireties of irq_enter()
and irq_exit(). Just make very sure you are running some of your tests with
CONFIG_PROVE_RCU=y, just in case one of your code paths was in fact joking
about not doing RCU read-side critical sections.

4. If a CPU is executing in the kernel with the scheduling-clock interrupt dis-
abled and RCU believes this CPU to be non-idle, and if the CPU goes idle
(from an RCU perspective) every few jiffies, no problem. It is usually OK for
there to be the occasional gap between idle periods of up to a second or so.
If the gap grows too long, you get RCU CPU stall warnings.

5. If a CPU is either idle or executing in usermode, and RCU believes it to be
idle, of course no problem.

6. If a CPU is executing in the kernel, the kernel code path is passing through
quiescent states at a reasonable frequency (preferably about once per few
jiffies, but the occasional excursion to a second or so is usually OK) and the
scheduling-clock interrupt is enabled, of course no problem. If the gap be-
tween a successive pair of quiescent states grows too long, you get RCU CPU
stall warnings.

Quick Quiz:
But what if my driver has a hardware interrupt handler that can run for many
seconds? I cannot invoke schedule() from an hardware interrupt handler, after
all!
Answer:
One approach is to do rcu_irq_exit();rcu_irq_enter(); every so often. But
given that long-running interrupt handlers can cause other problems, not least
for response time, shouldn’t you work to keep your interrupt handler’s runtime
within reasonable bounds?

But as long as RCU is properly informed of kernel state transitions between in-
kernel execution, usermode execution, and idle, and as long as the scheduling-
clock interrupt is enabled when RCU needs it to be, you can rest assured that the
bugs you encounter will be in some other part of RCU or some other part of the
kernel!

Memory Efficiency

Although small-memory non-realtime systems can simply use Tiny RCU, code size
is only one aspect of memory efficiency. Another aspect is the size of the rcu_head
structure used by call_rcu() and kfree_rcu(). Although this structure contains
nothing more than a pair of pointers, it does appear in many RCU-protected data
structures, including some that are size critical. The page structure is a case in
point, as evidenced by the many occurrences of the union keyword within that
structure.

This need for memory efficiency is one reason that RCU uses hand-crafted singly
linked lists to track the rcu_head structures that are waiting for a grace period to
elapse. It is also the reason why rcu_head structures do not contain debug infor-
mation, such as fields tracking the file and line of the call_rcu() or kfree_rcu()

470 Chapter 3. Concurrency primitives

Linux Core-api Documentation

that posted them. Although this information might appear in debug-only kernel
builds at some point, in the meantime, the ->func field will often provide the
needed debug information.

However, in some cases, the need for memory efficiency leads to even more ex-
treme measures. Returning to the page structure, the rcu_head field shares stor-
age with a great many other structures that are used at various points in the corre-
sponding page’s lifetime. In order to correctly resolve certain race conditions, the
Linux kernel’s memory-management subsystem needs a particular bit to remain
zero during all phases of grace-period processing, and that bit happens to map to
the bottom bit of the rcu_head structure’s ->next field. RCU makes this guaran-
tee as long as call_rcu() is used to post the callback, as opposed to kfree_rcu()
or some future “lazy”variant of call_rcu() that might one day be created for
energy-efficiency purposes.

That said, there are limits. RCU requires that the rcu_head structure be aligned
to a two-byte boundary, and passing a misaligned rcu_head structure to one of
the call_rcu() family of functions will result in a splat. It is therefore necessary
to exercise caution when packing structures containing fields of type rcu_head.
Why not a four-byte or even eight-byte alignment requirement? Because the m68k
architecture provides only two-byte alignment, and thus acts as alignment’s least
common denominator.

The reason for reserving the bottom bit of pointers to rcu_head structures is to
leave the door open to“lazy”callbacks whose invocations can safely be deferred.
Deferring invocation could potentially have energy-efficiency benefits, but only if
the rate of non-lazy callbacks decreases significantly for some important workload.
In the meantime, reserving the bottom bit keeps this option open in case it one day
becomes useful.

Performance, Scalability, Response Time, and Reliability

Expanding on the earlier discussion, RCU is used heavily by hot code paths in
performance-critical portions of the Linux kernel’s networking, security, virtual-
ization, and scheduling code paths. RCU must therefore use efficient implemen-
tations, especially in its read-side primitives. To that end, it would be good if pre-
emptible RCU’s implementation of rcu_read_lock() could be inlined, however,
doing this requires resolving #include issues with the task_struct structure.

The Linux kernel supports hardware configurations with up to 4096 CPUs, which
means that RCU must be extremely scalable. Algorithms that involve frequent ac-
quisitions of global locks or frequent atomic operations on global variables simply
cannot be tolerated within the RCU implementation. RCU therefore makes heavy
use of a combining tree based on the rcu_node structure. RCU is required to
tolerate all CPUs continuously invoking any combination of RCU’s runtime prim-
itives with minimal per-operation overhead. In fact, in many cases, increasing
load must decrease the per-operation overhead, witness the batching optimiza-
tions for synchronize_rcu(), call_rcu(), synchronize_rcu_expedited(), and
rcu_barrier(). As a general rule, RCU must cheerfully accept whatever the rest
of the Linux kernel decides to throw at it.

The Linux kernel is used for real-time workloads, especially in conjunction with the
-rt patchset. The real-time-latency response requirements are such that the tra-

3.6. RCU concepts 471

https://lkml.kernel.org/g/1439976106-137226-1-git-send-email-kirill.shutemov@linux.intel.com
https://rt.wiki.kernel.org/index.php/Main_Page

Linux Core-api Documentation

ditional approach of disabling preemption across RCU read-side critical sections
is inappropriate. Kernels built with CONFIG_PREEMPT=y therefore use an RCU im-
plementation that allows RCU read-side critical sections to be preempted. This
requirement made its presence known after users made it clear that an earlier
real-time patch did not meet their needs, in conjunction with some RCU issues
encountered by a very early version of the -rt patchset.

In addition, RCUmust make do with a sub-100-microsecond real-time latency bud-
get. In fact, on smaller systems with the -rt patchset, the Linux kernel provides
sub-20-microsecond real-time latencies for the whole kernel, including RCU. RCU’
s scalability and latency must therefore be sufficient for these sorts of configura-
tions. Tomy surprise, the sub-100-microsecond real-time latency budget applies to
even the largest systems [PDF], up to and including systems with 4096 CPUs. This
real-time requirement motivated the grace-period kthread, which also simplified
handling of a number of race conditions.

RCU must avoid degrading real-time response for CPU-bound threads, whether
executing in usermode (which is one use case for CONFIG_NO_HZ_FULL=y) or in the
kernel. That said, CPU-bound loops in the kernel must execute cond_resched()
at least once per few tens of milliseconds in order to avoid receiving an IPI from
RCU.

Finally, RCU’s status as a synchronization primitive means that any RCU failure
can result in arbitrary memory corruption that can be extremely difficult to debug.
This means that RCU must be extremely reliable, which in practice also means
that RCU must have an aggressive stress-test suite. This stress-test suite is called
rcutorture.

Although the need for rcutorture was no surprise, the current immense popu-
larity of the Linux kernel is posing interesting—and perhaps unprecedented—val-
idation challenges. To see this, keep in mind that there are well over one billion
instances of the Linux kernel running today, given Android smartphones, Linux-
powered televisions, and servers. This number can be expected to increase sharply
with the advent of the celebrated Internet of Things.

Suppose that RCU contains a race condition that manifests on average once per
million years of runtime. This bug will be occurring about three times per day
across the installed base. RCU could simply hide behind hardware error rates,
given that no one should really expect their smartphone to last for a million years.
However, anyone taking too much comfort from this thought should consider the
fact that in most jurisdictions, a successful multi-year test of a given mechanism,
which might include a Linux kernel, suffices for a number of types of safety-critical
certifications. In fact, rumor has it that the Linux kernel is already being used in
production for safety-critical applications. I don’t know about you, but I would
feel quite bad if a bug in RCU killed someone. Which might explain my recent
focus on validation and verification.

472 Chapter 3. Concurrency primitives

https://lwn.net/Articles/107930/
https://lkml.kernel.org/g/20050318002026.GA2693@us.ibm.com
http://www.rdrop.com/users/paulmck/realtime/paper/bigrt.2013.01.31a.LCA.pdf
http://www.rdrop.com/users/paulmck/realtime/paper/bigrt.2013.01.31a.LCA.pdf

Linux Core-api Documentation

Other RCU Flavors

One of the more surprising things about RCU is that there are now no fewer than
five flavors, or API families. In addition, the primary flavor that has been the
sole focus up to this point has two different implementations, non-preemptible
and preemptible. The other four flavors are listed below, with requirements for
each described in a separate section.

1. Bottom-Half Flavor (Historical)

2. Sched Flavor (Historical)

3. Sleepable RCU

4. Tasks RCU

Bottom-Half Flavor (Historical)

The RCU-bh flavor of RCU has since been expressed in terms of the other RCU
flavors as part of a consolidation of the three flavors into a single flavor. The
read-side API remains, and continues to disable softirq and to be accounted for
by lockdep. Much of the material in this section is therefore strictly historical in
nature.

The softirq-disable (AKA“bottom-half”, hence the“_bh”abbreviations) flavor of
RCU, or RCU-bh, was developed by Dipankar Sarma to provide a flavor of RCU that
could withstand the network-based denial-of-service attacks researched by Robert
Olsson. These attacks placed so much networking load on the system that some
of the CPUs never exited softirq execution, which in turn prevented those CPUs
from ever executing a context switch, which, in the RCU implementation of that
time, prevented grace periods from ever ending. The result was an out-of-memory
condition and a system hang.

The solution was the creation of RCU-bh, which does local_bh_disable() across
its read-side critical sections, and which uses the transition from one type of softirq
processing to another as a quiescent state in addition to context switch, idle, user
mode, and offline. This means that RCU-bh grace periods can complete even when
some of the CPUs execute in softirq indefinitely, thus allowing algorithms based
on RCU-bh to withstand network-based denial-of-service attacks.

Because rcu_read_lock_bh() and rcu_read_unlock_bh() disable and re-enable
softirq handlers, any attempt to start a softirq handlers during the RCU-bh read-
side critical section will be deferred. In this case, rcu_read_unlock_bh() will
invoke softirq processing, which can take considerable time. One can of course
argue that this softirq overhead should be associated with the code following the
RCU-bh read-side critical section rather than rcu_read_unlock_bh(), but the fact
is that most profiling tools cannot be expected to make this sort of fine distinction.
For example, suppose that a three-millisecond-long RCU-bh read-side critical sec-
tion executes during a time of heavy networking load. There will very likely be an
attempt to invoke at least one softirq handler during that three milliseconds, but
any such invocation will be delayed until the time of the rcu_read_unlock_bh().
This can of course make it appear at first glance as if rcu_read_unlock_bh() was
executing very slowly.

3.6. RCU concepts 473

Linux Core-api Documentation

The RCU-bh API includes rcu_read_lock_bh(), rcu_read_unlock_bh(),
rcu_dereference_bh(), rcu_dereference_bh_check(), synchronize_rcu_bh(),
synchronize_rcu_bh_expedited(), call_rcu_bh(), rcu_barrier_bh(), and
rcu_read_lock_bh_held(). However, the update-side APIs are now simple
wrappers for other RCU flavors, namely RCU-sched in CONFIG_PREEMPT=n
kernels and RCU-preempt otherwise.

Sched Flavor (Historical)

The RCU-sched flavor of RCU has since been expressed in terms of the other RCU
flavors as part of a consolidation of the three flavors into a single flavor. The read-
side API remains, and continues to disable preemption and to be accounted for
by lockdep. Much of the material in this section is therefore strictly historical in
nature.

Before preemptible RCU, waiting for an RCU grace period had the side effect of
also waiting for all pre-existing interrupt and NMI handlers. However, there are
legitimate preemptible-RCU implementations that do not have this property, given
that any point in the code outside of an RCU read-side critical section can be a qui-
escent state. Therefore, RCU-sched was created, which follows“classic”RCU in
that an RCU-sched grace period waits for for pre-existing interrupt and NMI han-
dlers. In kernels built with CONFIG_PREEMPT=n, the RCU and RCU-sched APIs have
identical implementations, while kernels built with CONFIG_PREEMPT=y provide a
separate implementation for each.

Note well that in CONFIG_PREEMPT=y kernels, rcu_read_lock_sched() and
rcu_read_unlock_sched() disable and re-enable preemption, respectively. This
means that if there was a preemption attempt during the RCU-sched read-side
critical section, rcu_read_unlock_sched() will enter the scheduler, with all the
latency and overhead entailed. Just as with rcu_read_unlock_bh(), this can make
it look as if rcu_read_unlock_sched() was executing very slowly. However, the
highest-priority task won’t be preempted, so that task will enjoy low-overhead
rcu_read_unlock_sched() invocations.

The RCU-sched API includes rcu_read_lock_sched(),
rcu_read_unlock_sched(), rcu_read_lock_sched_notrace(),
rcu_read_unlock_sched_notrace(), rcu_dereference_sched(),
rcu_dereference_sched_check(), synchronize_sched(),
synchronize_rcu_sched_expedited(), call_rcu_sched(),
rcu_barrier_sched(), and rcu_read_lock_sched_held(). However, anything
that disables preemption also marks an RCU-sched read-side critical section,
including preempt_disable() and preempt_enable(), local_irq_save() and
local_irq_restore(), and so on.

474 Chapter 3. Concurrency primitives

https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table
https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table

Linux Core-api Documentation

Sleepable RCU

For well over a decade, someone saying“I need to block within an RCU read-side
critical section”was a reliable indication that this someone did not understand
RCU. After all, if you are always blocking in an RCU read-side critical section, you
can probably afford to use a higher-overhead synchronization mechanism. How-
ever, that changed with the advent of the Linux kernel’s notifiers, whose RCU
read-side critical sections almost never sleep, but sometimes need to. This re-
sulted in the introduction of sleepable RCU, or SRCU.

SRCU allows different domains to be defined, with each such domain defined by an
instance of an srcu_struct structure. A pointer to this structure must be passed
in to each SRCU function, for example, synchronize_srcu(&ss), where ss is the
srcu_struct structure. The key benefit of these domains is that a slow SRCU
reader in one domain does not delay an SRCU grace period in some other domain.
That said, one consequence of these domains is that read-side code must pass a
“cookie”from srcu_read_lock() to srcu_read_unlock(), for example, as follows:

1 int idx;
2
3 idx = srcu_read_lock(&ss);
4 do_something();
5 srcu_read_unlock(&ss, idx);

As noted above, it is legal to block within SRCU read-side critical sections, how-
ever, with great power comes great responsibility. If you block forever in one of a
given domain’s SRCU read-side critical sections, then that domain’s grace pe-
riods will also be blocked forever. Of course, one good way to block forever is
to deadlock, which can happen if any operation in a given domain’s SRCU read-
side critical section can wait, either directly or indirectly, for that domain’s grace
period to elapse. For example, this results in a self-deadlock:

1 int idx;
2
3 idx = srcu_read_lock(&ss);
4 do_something();
5 synchronize_srcu(&ss);
6 srcu_read_unlock(&ss, idx);

However, if line 5 acquired a mutex that was held across a synchronize_srcu()
for domain ss, deadlock would still be possible. Furthermore, if line 5 acquired a
mutex that was held across a synchronize_srcu() for some other domain ss1, and
if an ss1-domain SRCU read-side critical section acquired another mutex that was
held across as ss-domain synchronize_srcu(), deadlock would again be possible.
Such a deadlock cycle could extend across an arbitrarily large number of different
SRCU domains. Again, with great power comes great responsibility.

Unlike the other RCU flavors, SRCU read-side critical sections can run on
idle and even offline CPUs. This ability requires that srcu_read_lock()
and srcu_read_unlock() contain memory barriers, which means that SRCU
readers will run a bit slower than would RCU readers. It also moti-
vates the smp_mb__after_srcu_read_unlock() API, which, in combination with
srcu_read_unlock(), guarantees a full memory barrier.

3.6. RCU concepts 475

https://lwn.net/Articles/202847/

Linux Core-api Documentation

Also unlike other RCU flavors, synchronize_srcu() may not be invoked from
CPU-hotplug notifiers, due to the fact that SRCU grace periods make use of timers
and the possibility of timers being temporarily “stranded”on the outgoing CPU.
This stranding of timers means that timers posted to the outgoing CPU will not
fire until late in the CPU-hotplug process. The problem is that if a notifier is wait-
ing on an SRCU grace period, that grace period is waiting on a timer, and that
timer is stranded on the outgoing CPU, then the notifier will never be awakened,
in other words, deadlock has occurred. This same situation of course also prohibits
srcu_barrier() from being invoked from CPU-hotplug notifiers.

SRCU also differs from other RCU flavors in that SRCU’s expedited and non-
expedited grace periods are implemented by the same mechanism. This means
that in the current SRCU implementation, expediting a future grace period has
the side effect of expediting all prior grace periods that have not yet completed.
(But please note that this is a property of the current implementation, not neces-
sarily of future implementations.) In addition, if SRCU has been idle for longer
than the interval specified by the srcutree.exp_holdoff kernel boot parameter
(25 microseconds by default), and if a synchronize_srcu() invocation ends this
idle period, that invocation will be automatically expedited.

As of v4.12, SRCU’s callbacks are maintained per-CPU, eliminating a locking bot-
tleneck present in prior kernel versions. Although this will allow users to put much
heavier stress on call_srcu(), it is important to note that SRCU does not yet take
any special steps to deal with callback flooding. So if you are posting (say) 10,000
SRCU callbacks per second per CPU, you are probably totally OK, but if you in-
tend to post (say) 1,000,000 SRCU callbacks per second per CPU, please run some
tests first. SRCU just might need a few adjustment to deal with that sort of load.
Of course, your mileage may vary based on the speed of your CPUs and the size of
your memory.

The SRCU API includes srcu_read_lock(), srcu_read_unlock(),
srcu_dereference(), srcu_dereference_check(), synchronize_srcu(),
synchronize_srcu_expedited(), call_srcu(), srcu_barrier(),
and srcu_read_lock_held(). It also includes DEFINE_SRCU(),
DEFINE_STATIC_SRCU(), and init_srcu_struct() APIs for defining and ini-
tializing srcu_struct structures.

Tasks RCU

Some forms of tracing use“trampolines”to handle the binary rewriting required to
install different types of probes. It would be good to be able to free old trampolines,
which sounds like a job for some form of RCU. However, because it is necessary to
be able to install a trace anywhere in the code, it is not possible to use read-side
markers such as rcu_read_lock() and rcu_read_unlock(). In addition, it does
not work to have these markers in the trampoline itself, because there would need
to be instructions following rcu_read_unlock(). Although synchronize_rcu()
would guarantee that execution reached the rcu_read_unlock(), it would not be
able to guarantee that execution had completely left the trampoline.

The solution, in the form of Tasks RCU, is to have implicit read-side critical sec-
tions that are delimited by voluntary context switches, that is, calls to schedule(),
cond_resched(), and synchronize_rcu_tasks(). In addition, transitions to and

476 Chapter 3. Concurrency primitives

https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table
https://lwn.net/Articles/607117/

Linux Core-api Documentation

from userspace execution also delimit tasks-RCU read-side critical sections.

The tasks-RCU API is quite compact, consisting only of call_rcu_tasks(),
synchronize_rcu_tasks(), and rcu_barrier_tasks(). In CONFIG_PREEMPT=n
kernels, trampolines cannot be preempted, so these APIs map to call_rcu(),
synchronize_rcu(), and rcu_barrier(), respectively. In CONFIG_PREEMPT=y ker-
nels, trampolines can be preempted, and these three APIs are therefore imple-
mented by separate functions that check for voluntary context switches.

Possible Future Changes

One of the tricks that RCU uses to attain update-side scalability is to increase
grace-period latency with increasing numbers of CPUs. If this becomes a serious
problem, it will be necessary to rework the grace-period state machine so as to
avoid the need for the additional latency.

RCU disables CPU hotplug in a few places, perhaps most notably in the
rcu_barrier() operations. If there is a strong reason to use rcu_barrier() in
CPU-hotplug notifiers, it will be necessary to avoid disabling CPU hotplug. This
would introduce some complexity, so there had better be a very good reason.

The tradeoff between grace-period latency on the one hand and interruptions of
other CPUs on the other hand may need to be re-examined. The desire is of course
for zero grace-period latency as well as zero interprocessor interrupts undertaken
during an expedited grace period operation. While this ideal is unlikely to be
achievable, it is quite possible that further improvements can be made.

The multiprocessor implementations of RCU use a combining tree that groups
CPUs so as to reduce lock contention and increase cache locality. However,
this combining tree does not spread its memory across NUMA nodes nor does
it align the CPU groups with hardware features such as sockets or cores. Such
spreading and alignment is currently believed to be unnecessary because the hot-
path read-side primitives do not access the combining tree, nor does call_rcu()
in the common case. If you believe that your architecture needs such spread-
ing and alignment, then your architecture should also benefit from the rcutree.
rcu_fanout_leaf boot parameter, which can be set to the number of CPUs in
a socket, NUMA node, or whatever. If the number of CPUs is too large, use a
fraction of the number of CPUs. If the number of CPUs is a large prime number,
well, that certainly is an“interesting”architectural choice! More flexible arrange-
ments might be considered, but only if rcutree.rcu_fanout_leaf has proven in-
adequate, and only if the inadequacy has been demonstrated by a carefully run
and realistic system-level workload.

Please note that arrangements that require RCU to remap CPU numbers will re-
quire extremely good demonstration of need and full exploration of alternatives.

RCU’s various kthreads are reasonably recent additions. It is quite likely that
adjustments will be required to more gracefully handle extreme loads. It might
also be necessary to be able to relate CPU utilization by RCU’s kthreads and
softirq handlers to the code that instigated this CPU utilization. For example, RCU
callback overhead might be charged back to the originating call_rcu() instance,
though probably not in production kernels.

3.6. RCU concepts 477

Linux Core-api Documentation

Additional work may be required to provide reasonable forward-progress guaran-
tees under heavy load for grace periods and for callback invocation.

Summary

This document has presented more than two decade’s worth of RCU requirements.
Given that the requirements keep changing, this will not be the last word on this
subject, but at least it serves to get an important subset of the requirements set
forth.

Acknowledgments

I am grateful to Steven Rostedt, Lai Jiangshan, Ingo Molnar, Oleg Nesterov,
Borislav Petkov, Peter Zijlstra, Boqun Feng, and Andy Lutomirski for their help
in rendering this article human readable, and to Michelle Rankin for her support
of this effort. Other contributions are acknowledged in the Linux kernel’s git
archive.

3.6.12 A Tour Through TREE_RCU’s Data Structures [LWN.net]

December 18, 2016

This article was contributed by Paul E. McKenney

Introduction

This document describes RCU’s major data structures and their relationship to
each other.

Data-Structure Relationships

RCU is for all intents and purposes a large state machine, and its data structures
maintain the state in such a way as to allow RCU readers to execute extremely
quickly, while also processing the RCU grace periods requested by updaters in
an efficient and extremely scalable fashion. The efficiency and scalability of RCU
updaters is provided primarily by a combining tree, as shown below:

This diagram shows an enclosing rcu_state structure containing a tree of
rcu_node structures. Each leaf node of the rcu_node tree has up to 16 rcu_data
structures associated with it, so that there are NR_CPUS number of rcu_data struc-
tures, one for each possible CPU. This structure is adjusted at boot time, if needed,
to handle the common case where nr_cpu_ids is much less than NR_CPUs. For
example, a number of Linux distributions set NR_CPUs=4096, which results in a
three-level rcu_node tree. If the actual hardware has only 16 CPUs, RCU will
adjust itself at boot time, resulting in an rcu_node tree with only a single node.

The purpose of this combining tree is to allow per-CPU events such as quiescent
states, dyntick-idle transitions, and CPU hotplug operations to be processed ef-
ficiently and scalably. Quiescent states are recorded by the per-CPU rcu_data
structures, and other events are recorded by the leaf-level rcu_node structures.

478 Chapter 3. Concurrency primitives

Linux Core-api Documentation

3.6. RCU concepts 479

Linux Core-api Documentation

All of these events are combined at each level of the tree until finally grace periods
are completed at the tree’s root rcu_node structure. A grace period can be com-
pleted at the root once every CPU (or, in the case of CONFIG_PREEMPT_RCU, task)
has passed through a quiescent state. Once a grace period has completed, record
of that fact is propagated back down the tree.

As can be seen from the diagram, on a 64-bit system a two-level tree with 64 leaves
can accommodate 1,024 CPUs, with a fanout of 64 at the root and a fanout of 16
at the leaves.

Quick Quiz:
Why isn’t the fanout at the leaves also 64?
Answer:
Because there are more types of events that affect the leaf-level rcu_node struc-
tures than further up the tree. Therefore, if the leaf rcu_node structures have
fanout of 64, the contention on these structures’->structures becomes exces-
sive. Experimentation on a wide variety of systems has shown that a fanout of
16 works well for the leaves of the rcu_node tree.
Of course, further experience with systems having hundreds or thousands of
CPUs may demonstrate that the fanout for the non-leaf rcu_node structures
must also be reduced. Such reduction can be easily carried out when and if
it proves necessary. In the meantime, if you are using such a system and run-
ning into contention problems on the non-leaf rcu_node structures, you may use
the CONFIG_RCU_FANOUT kernel configuration parameter to reduce the non-leaf
fanout as needed.
Kernels built for systems with strong NUMA characteristics might also need to
adjust CONFIG_RCU_FANOUT so that the domains of the rcu_node structures align
with hardware boundaries. However, there has thus far been no need for this.

If your system has more than 1,024 CPUs (or more than 512 CPUs on a 32-bit
system), then RCU will automatically add more levels to the tree. For example,
if you are crazy enough to build a 64-bit system with 65,536 CPUs, RCU would
configure the rcu_node tree as follows:

RCU currently permits up to a four-level tree, which on a 64-bit system ac-
commodates up to 4,194,304 CPUs, though only a mere 524,288 CPUs for 32-
bit systems. On the other hand, you can set both CONFIG_RCU_FANOUT and
CONFIG_RCU_FANOUT_LEAF to be as small as 2, which would result in a 16-CPU
test using a 4-level tree. This can be useful for testing large-system capabilities
on small test machines.

This multi-level combining tree allows us to get most of the performance and scal-
ability benefits of partitioning, even though RCU grace-period detection is inher-
ently a global operation. The trick here is that only the last CPU to report a quies-
cent state into a given rcu_node structure need advance to the rcu_node structure
at the next level up the tree. This means that at the leaf-level rcu_node structure,
only one access out of sixteen will progress up the tree. For the internal rcu_node
structures, the situation is even more extreme: Only one access out of sixty-four
will progress up the tree. Because the vast majority of the CPUs do not progress
up the tree, the lock contention remains roughly constant up the tree. No matter
how many CPUs there are in the system, at most 64 quiescent-state reports per
grace period will progress all the way to the root rcu_node structure, thus ensur-

480 Chapter 3. Concurrency primitives

Linux Core-api Documentation

ing that the lock contention on that root rcu_node structure remains acceptably
low.

In effect, the combining tree acts like a big shock absorber, keeping lock contention
under control at all tree levels regardless of the level of loading on the system.

RCU updaters wait for normal grace periods by registering RCU callbacks, either
directly via call_rcu() or indirectly via synchronize_rcu() and friends. RCU
callbacks are represented by rcu_head structures, which are queued on rcu_data
structures while they are waiting for a grace period to elapse, as shown in the
following figure:

This figure shows how TREE_RCU’s and PREEMPT_RCU’s major data structures are
related. Lesser data structures will be introduced with the algorithms that make
use of them.

Note that each of the data structures in the above figure has its own synchroniza-
tion:

1. Each rcu_state structures has a lock and a mutex, and some fields are pro-
tected by the corresponding root rcu_node structure’s lock.

2. Each rcu_node structure has a spinlock.

3. The fields in rcu_data are private to the corresponding CPU, although a few
can be read and written by other CPUs.

It is important to note that different data structures can have very different ideas
about the state of RCU at any given time. For but one example, awareness of

3.6. RCU concepts 481

Linux Core-api Documentation

482 Chapter 3. Concurrency primitives

Linux Core-api Documentation

the start or end of a given RCU grace period propagates slowly through the data
structures. This slow propagation is absolutely necessary for RCU to have good
read-side performance. If this balkanized implementation seems foreign to you,
one useful trick is to consider each instance of these data structures to be a dif-
ferent person, each having the usual slightly different view of reality.

The general role of each of these data structures is as follows:

1. rcu_state: This structure forms the interconnection between the rcu_node
and rcu_data structures, tracks grace periods, serves as short-term
repository for callbacks orphaned by CPU-hotplug events, maintains
rcu_barrier() state, tracks expedited grace-period state, and maintains
state used to force quiescent states when grace periods extend too long,

2. rcu_node: This structure forms the combining tree that propagates
quiescent-state information from the leaves to the root, and also propagates
grace-period information from the root to the leaves. It provides local copies
of the grace-period state in order to allow this information to be accessed in a
synchronized manner without suffering the scalability limitations that would
otherwise be imposed by global locking. In CONFIG_PREEMPT_RCU kernels,
it manages the lists of tasks that have blocked while in their current RCU
read-side critical section. In CONFIG_PREEMPT_RCU with CONFIG_RCU_BOOST,
it manages the per-rcu_node priority-boosting kernel threads (kthreads) and
state. Finally, it records CPU-hotplug state in order to determine which CPUs
should be ignored during a given grace period.

3. rcu_data: This per-CPU structure is the focus of quiescent-state detection
and RCU callback queuing. It also tracks its relationship to the correspond-
ing leaf rcu_node structure to allow more-efficient propagation of quiescent
states up the rcu_node combining tree. Like the rcu_node structure, it pro-
vides a local copy of the grace-period information to allow for-free synchro-
nized access to this information from the corresponding CPU. Finally, this
structure records past dyntick-idle state for the corresponding CPU and also
tracks statistics.

4. rcu_head: This structure represents RCU callbacks, and is the only structure
allocated and managed by RCU users. The rcu_head structure is normally
embedded within the RCU-protected data structure.

If all you wanted from this article was a general notion of how RCU’s data struc-
tures are related, you are done. Otherwise, each of the following sections give
more details on the rcu_state, rcu_node and rcu_data data structures.

The rcu_state Structure

The rcu_state structure is the base structure that represents the state of RCU in
the system. This structure forms the interconnection between the rcu_node and
rcu_data structures, tracks grace periods, contains the lock used to synchronize
with CPU-hotplug events, and maintains state used to force quiescent states when
grace periods extend too long,

A few of the rcu_state structure’s fields are discussed, singly and in groups, in
the following sections. The more specialized fields are covered in the discussion
of their use.

3.6. RCU concepts 483

Linux Core-api Documentation

Relationship to rcu_node and rcu_data Structures

This portion of the rcu_state structure is declared as follows:

1 struct rcu_node node[NUM_RCU_NODES];
2 struct rcu_node *level[NUM_RCU_LVLS + 1];
3 struct rcu_data __percpu *rda;

Quick Quiz:
Wait a minute! You said that the rcu_node structures formed a tree, but they
are declared as a flat array! What gives?
Answer:
The tree is laid out in the array. The first node In the array is the head, the next
set of nodes in the array are children of the head node, and so on until the last
set of nodes in the array are the leaves. See the following diagrams to see how
this works.

The rcu_node tree is embedded into the ->node[] array as shown in the following
figure:

One interesting consequence of this mapping is that a breadth-first traversal of
the tree is implemented as a simple linear scan of the array, which is in fact what
the rcu_for_each_node_breadth_first() macro does. This macro is used at the
beginning and ends of grace periods.

Each entry of the ->level array references the first rcu_node structure on the
corresponding level of the tree, for example, as shown below:

The zeroth element of the array references the root rcu_node structure, the first
element references the first child of the root rcu_node, and finally the second
element references the first leaf rcu_node structure.

484 Chapter 3. Concurrency primitives

Linux Core-api Documentation

For whatever it is worth, if you draw the tree to be tree-shaped rather than array-
shaped, it is easy to draw a planar representation:

Finally, the ->rda field references a per-CPU pointer to the corresponding CPU’s
rcu_data structure.

All of these fields are constant once initialization is complete, and therefore need
no protection.

Grace-Period Tracking

This portion of the rcu_state structure is declared as follows:

1 unsigned long gp_seq;

RCU grace periods are numbered, and the ->gp_seq field contains the current
grace-period sequence number. The bottom two bits are the state of the current
grace period, which can be zero for not yet started or one for in progress. In
other words, if the bottom two bits of ->gp_seq are zero, then RCU is idle. Any
other value in the bottom two bits indicates that something is broken. This field is
protected by the root rcu_node structure’s ->lock field.
There are ->gp_seq fields in the rcu_node and rcu_data structures as well. The
fields in the rcu_state structure represent themost current value, and those of the
other structures are compared in order to detect the beginnings and ends of grace
periods in a distributed fashion. The values flow from rcu_state to rcu_node
(down the tree from the root to the leaves) to rcu_data.

3.6. RCU concepts 485

Linux Core-api Documentation

Miscellaneous

This portion of the rcu_state structure is declared as follows:

1 unsigned long gp_max;
2 char abbr;
3 char *name;

The ->gp_max field tracks the duration of the longest grace period in jiffies. It is
protected by the root rcu_node’s ->lock.
The ->name and ->abbr fields distinguish between preemptible RCU (
“rcu_preempt”and“p”) and non-preemptible RCU (“rcu_sched”and“s”). These
fields are used for diagnostic and tracing purposes.

The rcu_node Structure

The rcu_node structures form the combining tree that propagates quiescent-state
information from the leaves to the root and also that propagates grace-period in-
formation from the root down to the leaves. They provides local copies of the
grace-period state in order to allow this information to be accessed in a synchro-
nized manner without suffering the scalability limitations that would otherwise be
imposed by global locking. In CONFIG_PREEMPT_RCU kernels, they manage the lists
of tasks that have blocked while in their current RCU read-side critical section.
In CONFIG_PREEMPT_RCU with CONFIG_RCU_BOOST, they manage the per-rcu_node
priority-boosting kernel threads (kthreads) and state. Finally, they record CPU-
hotplug state in order to determine which CPUs should be ignored during a given
grace period.

The rcu_node structure’s fields are discussed, singly and in groups, in the follow-
ing sections.

Connection to Combining Tree

This portion of the rcu_node structure is declared as follows:

1 struct rcu_node *parent;
2 u8 level;
3 u8 grpnum;
4 unsigned long grpmask;
5 int grplo;
6 int grphi;

The ->parent pointer references the rcu_node one level up in the tree, and is NULL
for the root rcu_node. The RCU implementation makes heavy use of this field to
push quiescent states up the tree. The ->level field gives the level in the tree,
with the root being at level zero, its children at level one, and so on. The ->grpnum
field gives this node’s position within the children of its parent, so this number can
range between 0 and 31 on 32-bit systems and between 0 and 63 on 64-bit systems.
The ->level and ->grpnum fields are used only during initialization and for tracing.
The ->grpmask field is the bitmask counterpart of ->grpnum, and therefore always
has exactly one bit set. This mask is used to clear the bit corresponding to this

486 Chapter 3. Concurrency primitives

Linux Core-api Documentation

rcu_node structure in its parent’s bitmasks, which are described later. Finally, the
->grplo and ->grphi fields contain the lowest and highest numbered CPU served
by this rcu_node structure, respectively.

All of these fields are constant, and thus do not require any synchronization.

Synchronization

This field of the rcu_node structure is declared as follows:

1 raw_spinlock_t lock;

This field is used to protect the remaining fields in this structure, unless otherwise
stated. That said, all of the fields in this structure can be accessed without locking
for tracing purposes. Yes, this can result in confusing traces, but better some
tracing confusion than to be heisenbugged out of existence.

Grace-Period Tracking

This portion of the rcu_node structure is declared as follows:

1 unsigned long gp_seq;
2 unsigned long gp_seq_needed;

The rcu_node structures’->gp_seq fields are the counterparts of the field of the
same name in the rcu_state structure. They each may lag up to one step behind
their rcu_state counterpart. If the bottom two bits of a given rcu_node structure’
s ->gp_seq field is zero, then this rcu_node structure believes that RCU is idle.

The >gp_seq field of each rcu_node structure is updated at the beginning and the
end of each grace period.

The ->gp_seq_needed fields record the furthest-in-the-future grace period re-
quest seen by the corresponding rcu_node structure. The request is consid-
ered fulfilled when the value of the ->gp_seq field equals or exceeds that of the
->gp_seq_needed field.

Quick Quiz:
Suppose that this rcu_node structure doesn’t see a request for a very long time.
Won’t wrapping of the ->gp_seq field cause problems?
Answer:
No, because if the ->gp_seq_needed field lags behind the ->gp_seq field, the
->gp_seq_needed field will be updated at the end of the grace period. Modulo-
arithmetic comparisons therefore will always get the correct answer, even with
wrapping.

3.6. RCU concepts 487

Linux Core-api Documentation

Quiescent-State Tracking

These fields manage the propagation of quiescent states up the combining tree.

This portion of the rcu_node structure has fields as follows:

1 unsigned long qsmask;
2 unsigned long expmask;
3 unsigned long qsmaskinit;
4 unsigned long expmaskinit;

The ->qsmask field tracks which of this rcu_node structure’s children still need
to report quiescent states for the current normal grace period. Such children will
have a value of 1 in their corresponding bit. Note that the leaf rcu_node structures
should be thought of as having rcu_data structures as their children. Similarly,
the ->expmask field tracks which of this rcu_node structure’s children still need
to report quiescent states for the current expedited grace period. An expedited
grace period has the same conceptual properties as a normal grace period, but the
expedited implementation accepts extreme CPU overhead to obtain much lower
grace-period latency, for example, consuming a few tens of microseconds worth of
CPU time to reduce grace-period duration from milliseconds to tens of microsec-
onds. The ->qsmaskinit field tracks which of this rcu_node structure’s children
cover for at least one online CPU. This mask is used to initialize ->qsmask, and
->expmaskinit is used to initialize ->expmask and the beginning of the normal
and expedited grace periods, respectively.

Quick Quiz:
Why are these bitmasks protected by locking? Come on, haven’t you heard of
atomic instructions???
Answer:
Lockless grace-period computation! Such a tantalizing possibility! But consider
the following sequence of events:
1. CPU 0 has been in dyntick-idle mode for quite some time. When it wakes
up, it notices that the current RCU grace period needs it to report in, so it
sets a flag where the scheduling clock interrupt will find it.

2. Meanwhile, CPU 1 is running force_quiescent_state(), and notices that
CPU 0 has been in dyntick idle mode, which qualifies as an extended qui-
escent state.

3. CPU 0’s scheduling clock interrupt fires in the middle of an RCU read-
side critical section, and notices that the RCU core needs something, so
commences RCU softirq processing.

4. CPU 0’s softirq handler executes and is just about ready to report its qui-
escent state up the rcu_node tree.

5. But CPU 1 beats it to the punch, completing the current grace period and
starting a new one.

6. CPU 0 now reports its quiescent state for the wrong grace period. That
grace period might now end before the RCU read-side critical section. If
that happens, disaster will ensue.

So the locking is absolutely required in order to coordinate clearing of the bits
with updating of the grace-period sequence number in ->gp_seq.

488 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Blocked-Task Management

PREEMPT_RCU allows tasks to be preempted in the midst of their RCU read-side
critical sections, and these tasks must be tracked explicitly. The details of exactly
why and how they are tracked will be covered in a separate article on RCU read-
side processing. For now, it is enough to know that the rcu_node structure tracks
them.

1 struct list_head blkd_tasks;
2 struct list_head *gp_tasks;
3 struct list_head *exp_tasks;
4 bool wait_blkd_tasks;

The ->blkd_tasks field is a list header for the list of blocked and preempted tasks.
As tasks undergo context switches within RCU read-side critical sections, their
task_struct structures are enqueued (via the task_struct’s ->rcu_node_entry
field) onto the head of the ->blkd_tasks list for the leaf rcu_node structure cor-
responding to the CPU on which the outgoing context switch executed. As these
tasks later exit their RCU read-side critical sections, they remove themselves from
the list. This list is therefore in reverse time order, so that if one of the tasks is
blocking the current grace period, all subsequent tasks must also be blocking that
same grace period. Therefore, a single pointer into this list suffices to track all
tasks blocking a given grace period. That pointer is stored in ->gp_tasks for nor-
mal grace periods and in ->exp_tasks for expedited grace periods. These last two
fields are NULL if either there is no grace period in flight or if there are no blocked
tasks preventing that grace period from completing. If either of these two pointers
is referencing a task that removes itself from the ->blkd_tasks list, then that task
must advance the pointer to the next task on the list, or set the pointer to NULL if
there are no subsequent tasks on the list.

For example, suppose that tasks T1, T2, and T3 are all hard-affinitied to the
largest-numbered CPU in the system. Then if task T1 blocked in an RCU read-
side critical section, then an expedited grace period started, then task T2 blocked
in an RCU read-side critical section, then a normal grace period started, and fi-
nally task 3 blocked in an RCU read-side critical section, then the state of the last
leaf rcu_node structure’s blocked-task list would be as shown below:
Task T1 is blocking both grace periods, task T2 is blocking only the normal grace
period, and task T3 is blocking neither grace period. Note that these tasks will not
remove themselves from this list immediately upon resuming execution. They will
instead remain on the list until they execute the outermost rcu_read_unlock()
that ends their RCU read-side critical section.

The ->wait_blkd_tasks field indicates whether or not the current grace period is
waiting on a blocked task.

3.6. RCU concepts 489

Linux Core-api Documentation

Sizing the rcu_node Array

The rcu_node array is sized via a series of C-preprocessor expressions as follows:

1 #ifdef CONFIG_RCU_FANOUT
2 #define RCU_FANOUT CONFIG_RCU_FANOUT
3 #else
4 # ifdef CONFIG_64BIT
5 # define RCU_FANOUT 64
6 # else
7 # define RCU_FANOUT 32
8 # endif
9 #endif

10
11 #ifdef CONFIG_RCU_FANOUT_LEAF
12 #define RCU_FANOUT_LEAF CONFIG_RCU_FANOUT_LEAF
13 #else
14 # ifdef CONFIG_64BIT
15 # define RCU_FANOUT_LEAF 64
16 # else
17 # define RCU_FANOUT_LEAF 32
18 # endif
19 #endif
20
21 #define RCU_FANOUT_1 (RCU_FANOUT_LEAF)
22 #define RCU_FANOUT_2 (RCU_FANOUT_1 * RCU_FANOUT)
23 #define RCU_FANOUT_3 (RCU_FANOUT_2 * RCU_FANOUT)
24 #define RCU_FANOUT_4 (RCU_FANOUT_3 * RCU_FANOUT)
25
26 #if NR_CPUS <= RCU_FANOUT_1

(continues on next page)

490 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
27 # define RCU_NUM_LVLS 1
28 # define NUM_RCU_LVL_0 1
29 # define NUM_RCU_NODES NUM_RCU_LVL_0
30 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0 }
31 # define RCU_NODE_NAME_INIT { "rcu_node_0" }
32 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0" }
33 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0" }
34 #elif NR_CPUS <= RCU_FANOUT_2
35 # define RCU_NUM_LVLS 2
36 # define NUM_RCU_LVL_0 1
37 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
38 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1)
39 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1 }
40 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1" }
41 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1" }
42 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1" }
43 #elif NR_CPUS <= RCU_FANOUT_3
44 # define RCU_NUM_LVLS 3
45 # define NUM_RCU_LVL_0 1
46 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
47 # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
48 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_
↪→LVL_2)
49 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_
↪→LVL_2 }
50 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1", "rcu_node_2
↪→" }
51 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1",
↪→"rcu_node_fqs_2" }
52 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1",
↪→"rcu_node_exp_2" }
53 #elif NR_CPUS <= RCU_FANOUT_4
54 # define RCU_NUM_LVLS 4
55 # define NUM_RCU_LVL_0 1
56 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_3)
57 # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
58 # define NUM_RCU_LVL_3 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
59 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_
↪→LVL_2 + NUM_RCU_LVL_3)
60 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_
↪→LVL_2, NUM_RCU_LVL_3 }
61 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1", "rcu_node_2
↪→", "rcu_node_3" }
62 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1",
↪→"rcu_node_fqs_2", "rcu_node_fqs_3" }
63 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1",
↪→"rcu_node_exp_2", "rcu_node_exp_3" }
64 #else
65 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
66 #endif

The maximum number of levels in the rcu_node structure is currently limited to
four, as specified by lines 21-24 and the structure of the subsequent“if”statement.
For 32-bit systems, this allows 16*32*32*32=524,288 CPUs, which should be suf-
ficient for the next few years at least. For 64-bit systems, 16*64*64*64=4,194,304
CPUs is allowed, which should see us through the next decade or so. This four-level

3.6. RCU concepts 491

Linux Core-api Documentation

tree also allows kernels built with CONFIG_RCU_FANOUT=8 to support up to 4096
CPUs, which might be useful in very large systems having eight CPUs per socket
(but please note that no one has yet shown any measurable performance degra-
dation due to misaligned socket and rcu_node boundaries). In addition, building
kernels with a full four levels of rcu_node tree permits better testing of RCU’s
combining-tree code.

The RCU_FANOUT symbol controls how many children are permitted at each non-
leaf level of the rcu_node tree. If the CONFIG_RCU_FANOUT Kconfig option is not
specified, it is set based on the word size of the system, which is also the Kconfig
default.

The RCU_FANOUT_LEAF symbol controls how many CPUs are handled by each leaf
rcu_node structure. Experience has shown that allowing a given leaf rcu_node
structure to handle 64 CPUs, as permitted by the number of bits in the ->qsmask
field on a 64-bit system, results in excessive contention for the leaf rcu_node
structures’->lock fields. The number of CPUs per leaf rcu_node structure is
therefore limited to 16 given the default value of CONFIG_RCU_FANOUT_LEAF. If
CONFIG_RCU_FANOUT_LEAF is unspecified, the value selected is based on the word
size of the system, just as for CONFIG_RCU_FANOUT. Lines 11-19 perform this com-
putation.

Lines 21-24 compute the maximum number of CPUs supported by a single-level
(which contains a single rcu_node structure), two-level, three-level, and four-
level rcu_node tree, respectively, given the fanout specified by RCU_FANOUT and
RCU_FANOUT_LEAF. These numbers of CPUs are retained in the RCU_FANOUT_1,
RCU_FANOUT_2, RCU_FANOUT_3, and RCU_FANOUT_4 C-preprocessor variables, re-
spectively.

These variables are used to control the C-preprocessor #if statement spanning
lines 26-66 that computes the number of rcu_node structures required for each
level of the tree, as well as the number of levels required. The number of levels is
placed in the NUM_RCU_LVLS C-preprocessor variable by lines 27, 35, 44, and 54.
The number of rcu_node structures for the topmost level of the tree is always ex-
actly one, and this value is unconditionally placed into NUM_RCU_LVL_0 by lines 28,
36, 45, and 55. The rest of the levels (if any) of the rcu_node tree are computed
by dividing the maximum number of CPUs by the fanout supported by the number
of levels from the current level down, rounding up. This computation is performed
by lines 37, 46-47, and 56-58. Lines 31-33, 40-42, 50-52, and 62-63 create initial-
izers for lockdep lock-class names. Finally, lines 64-66 produce an error if the
maximum number of CPUs is too large for the specified fanout.

The rcu_segcblist Structure

The rcu_segcblist structure maintains a segmented list of callbacks as follows:

1 #define RCU_DONE_TAIL 0
2 #define RCU_WAIT_TAIL 1
3 #define RCU_NEXT_READY_TAIL 2
4 #define RCU_NEXT_TAIL 3
5 #define RCU_CBLIST_NSEGS 4
6

(continues on next page)

492 Chapter 3. Concurrency primitives

Linux Core-api Documentation

(continued from previous page)
7 struct rcu_segcblist {
8 struct rcu_head *head;
9 struct rcu_head **tails[RCU_CBLIST_NSEGS];

10 unsigned long gp_seq[RCU_CBLIST_NSEGS];
11 long len;
12 long len_lazy;
13 };

The segments are as follows:

1. RCU_DONE_TAIL: Callbacks whose grace periods have elapsed. These call-
backs are ready to be invoked.

2. RCU_WAIT_TAIL: Callbacks that are waiting for the current grace period. Note
that different CPUs can have different ideas about which grace period is cur-
rent, hence the ->gp_seq field.

3. RCU_NEXT_READY_TAIL: Callbacks waiting for the next grace period to start.

4. RCU_NEXT_TAIL: Callbacks that have not yet been associated with a grace
period.

The ->head pointer references the first callback or is NULL if the list contains no
callbacks (which is not the same as being empty). Each element of the ->tails[]
array references the ->next pointer of the last callback in the corresponding seg-
ment of the list, or the list’s ->head pointer if that segment and all previous
segments are empty. If the corresponding segment is empty but some previous
segment is not empty, then the array element is identical to its predecessor. Older
callbacks are closer to the head of the list, and new callbacks are added at the tail.
This relationship between the ->head pointer, the ->tails[] array, and the call-
backs is shown in this diagram:

In this figure, the ->head pointer references the first RCU callback in the list. The
->tails[RCU_DONE_TAIL] array element references the ->head pointer itself, indi-
cating that none of the callbacks is ready to invoke. The ->tails[RCU_WAIT_TAIL]
array element references callback CB 2’s ->next pointer, which indicates that
CB 1 and CB 2 are both waiting on the current grace period, give or take pos-
sible disagreements about exactly which grace period is the current one. The
->tails[RCU_NEXT_READY_TAIL] array element references the same RCU call-
back that ->tails[RCU_WAIT_TAIL] does, which indicates that there are no call-
backs waiting on the next RCU grace period. The ->tails[RCU_NEXT_TAIL] ar-
ray element references CB 4’s ->next pointer, indicating that all the remaining
RCU callbacks have not yet been assigned to an RCU grace period. Note that the
->tails[RCU_NEXT_TAIL] array element always references the last RCU callback’
s ->next pointer unless the callback list is empty, in which case it references the
->head pointer.

There is one additional important special case for the ->tails[RCU_NEXT_TAIL]
array element: It can be NULL when this list is disabled. Lists are disabled when
the corresponding CPU is offline or when the corresponding CPU’s callbacks are
offloaded to a kthread, both of which are described elsewhere.

CPUs advance their callbacks from the RCU_NEXT_TAIL to the
RCU_NEXT_READY_TAIL to the RCU_WAIT_TAIL to the RCU_DONE_TAIL list seg-
ments as grace periods advance.

3.6. RCU concepts 493

Linux Core-api Documentation

494 Chapter 3. Concurrency primitives

Linux Core-api Documentation

The ->gp_seq[] array records grace-period numbers corresponding to the list seg-
ments. This is what allows different CPUs to have different ideas as to which is the
current grace period while still avoiding premature invocation of their callbacks.
In particular, this allows CPUs that go idle for extended periods to determine which
of their callbacks are ready to be invoked after reawakening.

The ->len counter contains the number of callbacks in ->head, and the
->len_lazy contains the number of those callbacks that are known to only free
memory, and whose invocation can therefore be safely deferred.

Important: It is the ->len field that determines whether or not there are
callbacks associated with this rcu_segcblist structure, not the ->head pointer.
The reason for this is that all the ready-to-invoke callbacks (that is, those in the
RCU_DONE_TAIL segment) are extracted all at once at callback-invocation time
(rcu_do_batch), due to which ->head may be set to NULL if there are no not-
done callbacks remaining in the rcu_segcblist. If callback invocation must be
postponed, for example, because a high-priority process just woke up on this CPU,
then the remaining callbacks are placed back on the RCU_DONE_TAIL segment and
->head once again points to the start of the segment. In short, the head field
can briefly be NULL even though the CPU has callbacks present the entire time.
Therefore, it is not appropriate to test the ->head pointer for NULL.

In contrast, the ->len and ->len_lazy counts are adjusted only after the corre-
sponding callbacks have been invoked. This means that the ->len count is zero
only if the rcu_segcblist structure really is devoid of callbacks. Of course, off-
CPU sampling of the ->len count requires careful use of appropriate synchro-
nization, for example, memory barriers. This synchronization can be a bit subtle,
particularly in the case of rcu_barrier().

The rcu_data Structure

The rcu_data maintains the per-CPU state for the RCU subsystem. The fields
in this structure may be accessed only from the corresponding CPU (and from
tracing) unless otherwise stated. This structure is the focus of quiescent-state
detection and RCU callback queuing. It also tracks its relationship to the corre-
sponding leaf rcu_node structure to allow more-efficient propagation of quiescent
states up the rcu_node combining tree. Like the rcu_node structure, it provides a
local copy of the grace-period information to allow for-free synchronized access to
this information from the corresponding CPU. Finally, this structure records past
dyntick-idle state for the corresponding CPU and also tracks statistics.

The rcu_data structure’s fields are discussed, singly and in groups, in the follow-
ing sections.

3.6. RCU concepts 495

Linux Core-api Documentation

Connection to Other Data Structures

This portion of the rcu_data structure is declared as follows:

1 int cpu;
2 struct rcu_node *mynode;
3 unsigned long grpmask;
4 bool beenonline;

The ->cpu field contains the number of the corresponding CPU and the ->mynode
field references the corresponding rcu_node structure. The ->mynode is used to
propagate quiescent states up the combining tree. These two fields are constant
and therefore do not require synchronization.

The ->grpmask field indicates the bit in the ->mynode->qsmask corresponding to
this rcu_data structure, and is also used when propagating quiescent states. The
->beenonline flag is set whenever the corresponding CPU comes online, which
means that the debugfs tracing need not dump out any rcu_data structure for
which this flag is not set.

Quiescent-State and Grace-Period Tracking

This portion of the rcu_data structure is declared as follows:

1 unsigned long gp_seq;
2 unsigned long gp_seq_needed;
3 bool cpu_no_qs;
4 bool core_needs_qs;
5 bool gpwrap;

The ->gp_seq field is the counterpart of the field of the same name in the
rcu_state and rcu_node structures. The ->gp_seq_needed field is the counter-
part of the field of the same name in the rcu_node structure. They may each lag
up to one behind their rcu_node counterparts, but in CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_FULL kernels can lag arbitrarily far behind for CPUs in dyntick-
idle mode (but these counters will catch up upon exit from dyntick-idle mode). If
the lower two bits of a given rcu_data structure’s ->gp_seq are zero, then this
rcu_data structure believes that RCU is idle.

Quick Quiz:
All this replication of the grace period numbers can only cause massive confu-
sion. Why not just keep a global sequence number and be done with it???
Answer:
Because if there was only a single global sequence numbers, there would need
to be a single global lock to allow safely accessing and updating it. And if we are
not going to have a single global lock, we need to carefully manage the numbers
on a per-node basis. Recall from the answer to a previous Quick Quiz that the
consequences of applying a previously sampled quiescent state to the wrong
grace period are quite severe.

The ->cpu_no_qs flag indicates that the CPU has not yet passed through a quies-
cent state, while the ->core_needs_qs flag indicates that the RCU core needs a

496 Chapter 3. Concurrency primitives

Linux Core-api Documentation

quiescent state from the corresponding CPU. The ->gpwrap field indicates that the
corresponding CPU has remained idle for so long that the gp_seq counter is in dan-
ger of overflow, which will cause the CPU to disregard the values of its counters
on its next exit from idle.

RCU Callback Handling

In the absence of CPU-hotplug events, RCU callbacks are invoked by the same
CPU that registered them. This is strictly a cache-locality optimization: callbacks
can and do get invoked on CPUs other than the one that registered them. After
all, if the CPU that registered a given callback has gone offline before the callback
can be invoked, there really is no other choice.

This portion of the rcu_data structure is declared as follows:

1 struct rcu_segcblist cblist;
2 long qlen_last_fqs_check;
3 unsigned long n_cbs_invoked;
4 unsigned long n_nocbs_invoked;
5 unsigned long n_cbs_orphaned;
6 unsigned long n_cbs_adopted;
7 unsigned long n_force_qs_snap;
8 long blimit;

The ->cblist structure is the segmented callback list described earlier. The CPU
advances the callbacks in its rcu_data structure whenever it notices that another
RCU grace period has completed. The CPU detects the completion of an RCU
grace period by noticing that the value of its rcu_data structure’s ->gp_seq field
differs from that of its leaf rcu_node structure. Recall that each rcu_node struc-
ture’s ->gp_seq field is updated at the beginnings and ends of each grace period.
The ->qlen_last_fqs_check and ->n_force_qs_snap coordinate the forcing of
quiescent states from call_rcu() and friends when callback lists grow excessively
long.

The ->n_cbs_invoked, ->n_cbs_orphaned, and ->n_cbs_adopted fields count
the number of callbacks invoked, sent to other CPUs when this CPU goes of-
fline, and received from other CPUs when those other CPUs go offline. The
->n_nocbs_invoked is used when the CPU’s callbacks are offloaded to a kthread.
Finally, the ->blimit counter is the maximum number of RCU callbacks that may
be invoked at a given time.

Dyntick-Idle Handling

This portion of the rcu_data structure is declared as follows:

1 int dynticks_snap;
2 unsigned long dynticks_fqs;

The ->dynticks_snap field is used to take a snapshot of the corresponding CPU’
s dyntick-idle state when forcing quiescent states, and is therefore accessed from
other CPUs. Finally, the ->dynticks_fqs field is used to count the number of

3.6. RCU concepts 497

Linux Core-api Documentation

times this CPU is determined to be in dyntick-idle state, and is used for tracing
and debugging purposes.

This portion of the rcu_data structure is declared as follows:

1 long dynticks_nesting;
2 long dynticks_nmi_nesting;
3 atomic_t dynticks;
4 bool rcu_need_heavy_qs;
5 bool rcu_urgent_qs;

These fields in the rcu_data structure maintain the per-CPU dyntick-idle state for
the corresponding CPU. The fields may be accessed only from the corresponding
CPU (and from tracing) unless otherwise stated.

The ->dynticks_nesting field counts the nesting depth of process execution, so
that in normal circumstances this counter has value zero or one. NMIs, irqs, and
tracers are counted by the ->dynticks_nmi_nesting field. Because NMIs cannot
be masked, changes to this variable have to be undertaken carefully using an al-
gorithm provided by Andy Lutomirski. The initial transition from idle adds one,
and nested transitions add two, so that a nesting level of five is represented by
a ->dynticks_nmi_nesting value of nine. This counter can therefore be thought
of as counting the number of reasons why this CPU cannot be permitted to enter
dyntick-idle mode, aside from process-level transitions.

However, it turns out that when running in non-idle kernel context, the Linux ker-
nel is fully capable of entering interrupt handlers that never exit and perhaps also
vice versa. Therefore, whenever the ->dynticks_nesting field is incremented up
from zero, the ->dynticks_nmi_nesting field is set to a large positive number,
and whenever the ->dynticks_nesting field is decremented down to zero, the
the ->dynticks_nmi_nesting field is set to zero. Assuming that the number of
misnested interrupts is not sufficient to overflow the counter, this approach cor-
rects the ->dynticks_nmi_nesting field every time the corresponding CPU enters
the idle loop from process context.

The ->dynticks field counts the corresponding CPU’s transitions to and from
either dyntick-idle or user mode, so that this counter has an even value when
the CPU is in dyntick-idle mode or user mode and an odd value otherwise. The
transitions to/from user mode need to be counted for user mode adaptive-ticks
support (see timers/NO_HZ.txt).

The ->rcu_need_heavy_qs field is used to record the fact that the RCU core code
would really like to see a quiescent state from the corresponding CPU, so much
so that it is willing to call for heavy-weight dyntick-counter operations. This flag
is checked by RCU’s context-switch and cond_resched() code, which provide a
momentary idle sojourn in response.

Finally, the ->rcu_urgent_qs field is used to record the fact that the RCU core
code would really like to see a quiescent state from the corresponding CPU, with
the various other fields indicating just how badly RCU wants this quiescent state.
This flag is checked by RCU’s context-switch path (rcu_note_context_switch)
and the cond_resched code.

498 Chapter 3. Concurrency primitives

Linux Core-api Documentation

Quick Quiz:
Why not simply combine the ->dynticks_nesting and
->dynticks_nmi_nesting counters into a single counter that just counts
the number of reasons that the corresponding CPU is non-idle?
Answer:
Because this would fail in the presence of interrupts whose handlers never re-
turn and of handlers that manage to return from a made-up interrupt.

Additional fields are present for some special-purpose builds, and are discussed
separately.

The rcu_head Structure

Each rcu_head structure represents an RCU callback. These structures are nor-
mally embedded within RCU-protected data structures whose algorithms use asyn-
chronous grace periods. In contrast, when using algorithms that block waiting for
RCU grace periods, RCU users need not provide rcu_head structures.

The rcu_head structure has fields as follows:

1 struct rcu_head *next;
2 void (*func)(struct rcu_head *head);

The ->next field is used to link the rcu_head structures together in the lists within
the rcu_data structures. The ->func field is a pointer to the function to be called
when the callback is ready to be invoked, and this function is passed a pointer
to the rcu_head structure. However, kfree_rcu() uses the ->func field to record
the offset of the rcu_head structure within the enclosing RCU-protected data struc-
ture.

Both of these fields are used internally by RCU. From the viewpoint of RCU users,
this structure is an opaque “cookie”.

Quick Quiz:
Given that the callback function ->func is passed a pointer to the rcu_head
structure, how is that function supposed to find the beginning of the enclosing
RCU-protected data structure?
Answer:
In actual practice, there is a separate callback function per type of RCU-
protected data structure. The callback function can therefore use the
container_of() macro in the Linux kernel (or other pointer-manipulation fa-
cilities in other software environments) to find the beginning of the enclosing
structure.

3.6. RCU concepts 499

Linux Core-api Documentation

RCU-Specific Fields in the task_struct Structure

The CONFIG_PREEMPT_RCU implementation uses some additional fields in the
task_struct structure:

1 #ifdef CONFIG_PREEMPT_RCU
2 int rcu_read_lock_nesting;
3 union rcu_special rcu_read_unlock_special;
4 struct list_head rcu_node_entry;
5 struct rcu_node *rcu_blocked_node;
6 #endif /* #ifdef CONFIG_PREEMPT_RCU */
7 #ifdef CONFIG_TASKS_RCU
8 unsigned long rcu_tasks_nvcsw;
9 bool rcu_tasks_holdout;

10 struct list_head rcu_tasks_holdout_list;
11 int rcu_tasks_idle_cpu;
12 #endif /* #ifdef CONFIG_TASKS_RCU */

The ->rcu_read_lock_nesting field records the nesting level for RCU read-side
critical sections, and the ->rcu_read_unlock_special field is a bitmask that
records special conditions that require rcu_read_unlock() to do additional work.
The ->rcu_node_entry field is used to form lists of tasks that have blocked within
preemptible-RCU read-side critical sections and the ->rcu_blocked_node field ref-
erences the rcu_node structure whose list this task is a member of, or NULL if it is
not blocked within a preemptible-RCU read-side critical section.

The ->rcu_tasks_nvcsw field tracks the number of voluntary context switches that
this task had undergone at the beginning of the current tasks-RCU grace period,
->rcu_tasks_holdout is set if the current tasks-RCU grace period is waiting on
this task, ->rcu_tasks_holdout_list is a list element enqueuing this task on the
holdout list, and ->rcu_tasks_idle_cpu tracks which CPU this idle task is run-
ning, but only if the task is currently running, that is, if the CPU is currently idle.

Accessor Functions

The following listing shows the rcu_get_root(), rcu_for_each_node_breadth_first
and rcu_for_each_leaf_node() function and macros:

1 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
2 {
3 return &rsp->node[0];
4 }
5
6 #define rcu_for_each_node_breadth_first(rsp, rnp) \
7 for ((rnp) = &(rsp)->node[0]; \
8 (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)
9

10 #define rcu_for_each_leaf_node(rsp, rnp) \
11 for ((rnp) = (rsp)->level[NUM_RCU_LVLS - 1]; \
12 (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)

The rcu_get_root() simply returns a pointer to the first element of the specified
rcu_state structure’s ->node[] array, which is the root rcu_node structure.

500 Chapter 3. Concurrency primitives

Linux Core-api Documentation

As noted earlier, the rcu_for_each_node_breadth_first() macro takes advan-
tage of the layout of the rcu_node structures in the rcu_state structure’s
->node[] array, performing a breadth-first traversal by simply traversing the ar-
ray in order. Similarly, the rcu_for_each_leaf_node() macro traverses only the
last part of the array, thus traversing only the leaf rcu_node structures.

Quick Quiz:
What does rcu_for_each_leaf_node() do if the rcu_node tree contains only a
single node?
Answer:
In the single-node case, rcu_for_each_leaf_node() traverses the single node.

Summary

So the state of RCU is represented by an rcu_state structure, which con-
tains a combining tree of rcu_node and rcu_data structures. Finally, in
CONFIG_NO_HZ_IDLE kernels, each CPU’s dyntick-idle state is tracked by dynticks-
related fields in the rcu_data structure. If you made it this far, you are well pre-
pared to read the code walkthroughs in the other articles in this series.

Acknowledgments

I owe thanks to Cyrill Gorcunov, Mathieu Desnoyers, Dhaval Giani, Paul Turner,
Abhishek Srivastava, Matt Kowalczyk, and Serge Hallyn for helping me get this
document into a more human-readable state.

Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks
of others.

3.6. RCU concepts 501

Linux Core-api Documentation

502 Chapter 3. Concurrency primitives

CHAPTER

FOUR

LOW-LEVEL HARDWARE MANAGEMENT

Cache management, managing CPU hotplug, etc.

4.1 Cache and TLB Flushing Under Linux

Author David S. Miller <davem@redhat.com>
This document describes the cache/tlb flushing interfaces called by the Linux VM
subsystem. It enumerates over each interface, describes its intended purpose, and
what side effect is expected after the interface is invoked.

The side effects described below are stated for a uniprocessor implementation, and
what is to happen on that single processor. The SMP cases are a simple extension,
in that you just extend the definition such that the side effect for a particular inter-
face occurs on all processors in the system. Don’t let this scare you into thinking
SMP cache/tlb flushing must be so inefficient, this is in fact an area where many
optimizations are possible. For example, if it can be proven that a user address
space has never executed on a cpu (see mm_cpumask()), one need not perform a
flush for this address space on that cpu.

First, the TLB flushing interfaces, since they are the simplest. The “TLB”is ab-
stracted under Linux as something the cpu uses to cache virtual–>physical address
translations obtained from the software page tables. Meaning that if the software
page tables change, it is possible for stale translations to exist in this“TLB”cache.
Therefore when software page table changes occur, the kernel will invoke one of
the following flush methods _after_ the page table changes occur:

1) void flush_tlb_all(void)

The most severe flush of all. After this interface runs, any previous
page table modification whatsoever will be visible to the cpu.

This is usually invoked when the kernel page tables are changed,
since such translations are “global”in nature.

2) void flush_tlb_mm(struct mm_struct *mm)

This interface flushes an entire user address space from the TLB.
After running, this interface must make sure that any previous page
table modifications for the address space‘mm’will be visible to the
cpu. That is, after running, there will be no entries in the TLB for
‘mm’.

503

mailto:davem@redhat.com

Linux Core-api Documentation

This interface is used to handle whole address space page table op-
erations such as what happens during fork, and exec.

3) void flush_tlb_range(struct vm_area_struct *vma, unsigned long
start, unsigned long end)

Here we are flushing a specific range of (user) virtual address trans-
lations from the TLB. After running, this interface must make sure
that any previous page table modifications for the address space
‘vma->vm_mm’in the range ‘start’to ‘end-1’will be visible to
the cpu. That is, after running, there will be no entries in the TLB
for ‘mm’for virtual addresses in the range ‘start’to ‘end-1’.
The“vma”is the backing store being used for the region. Primarily,
this is used for munmap() type operations.

The interface is provided in hopes that the port can find a suitably
efficient method for removing multiple page sized translations from
the TLB, instead of having the kernel call flush_tlb_page (see below)
for each entry which may be modified.

4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long
addr)

This time we need to remove the PAGE_SIZE sized translation from
the TLB. The‘vma’is the backing structure used by Linux to keep
track of mmap’d regions for a process, the address space is available
via vma->vm_mm. Also, one may test (vma->vm_flags & VM_EXEC)
to see if this region is executable (and thus could be in the‘instruc-
tion TLB’in split-tlb type setups).
After running, this interface must make sure that any previous page
table modification for address space‘vma->vm_mm’for user virtual
address‘addr’will be visible to the cpu. That is, after running, there
will be no entries in the TLB for‘vma->vm_mm’for virtual address
‘addr’.
This is used primarily during fault processing.

5) void update_mmu_cache(struct vm_area_struct *vma, unsigned long
address, pte_t *ptep)

At the end of every page fault, this routine is invoked to tell the archi-
tecture specific code that a translation now exists at virtual address
“address”for address space“vma->vm_mm”, in the software page
tables.

A port may use this information in any way it so chooses. For exam-
ple, it could use this event to pre-load TLB translations for software
managed TLB configurations. The sparc64 port currently does this.

Next, we have the cache flushing interfaces. In general, when Linux is changing
an existing virtual–>physical mapping to a new value, the sequence will be in one
of the following forms:

1) flush_cache_mm(mm);
change_all_page_tables_of(mm);

(continues on next page)

504 Chapter 4. Low-level hardware management

Linux Core-api Documentation

(continued from previous page)
flush_tlb_mm(mm);

2) flush_cache_range(vma, start, end);
change_range_of_page_tables(mm, start, end);
flush_tlb_range(vma, start, end);

3) flush_cache_page(vma, addr, pfn);
set_pte(pte_pointer, new_pte_val);
flush_tlb_page(vma, addr);

The cache level flush will always be first, because this allows us to properly handle
systems whose caches are strict and require a virtual–>physical translation to
exist for a virtual address when that virtual address is flushed from the cache.
The HyperSparc cpu is one such cpu with this attribute.

The cache flushing routines below need only deal with cache flushing to the ex-
tent that it is necessary for a particular cpu. Mostly, these routines must be im-
plemented for cpus which have virtually indexed caches which must be flushed
when virtual–>physical translations are changed or removed. So, for example,
the physically indexed physically tagged caches of IA32 processors have no need
to implement these interfaces since the caches are fully synchronized and have no
dependency on translation information.

Here are the routines, one by one:

1) void flush_cache_mm(struct mm_struct *mm)

This interface flushes an entire user address space from the caches.
That is, after running, there will be no cache lines associated with
‘mm’.
This interface is used to handle whole address space page table op-
erations such as what happens during exit and exec.

2) void flush_cache_dup_mm(struct mm_struct *mm)

This interface flushes an entire user address space from the caches.
That is, after running, there will be no cache lines associated with
‘mm’.
This interface is used to handle whole address space page table op-
erations such as what happens during fork.

This option is separate from flush_cache_mm to allow some optimiza-
tions for VIPT caches.

3) void flush_cache_range(struct vm_area_struct *vma, unsigned long
start, unsigned long end)

Here we are flushing a specific range of (user) virtual addresses from
the cache. After running, there will be no entries in the cache for
‘vma->vm_mm’for virtual addresses in the range‘start’to‘end-1’
.

The“vma”is the backing store being used for the region. Primarily,
this is used for munmap() type operations.

4.1. Cache and TLB Flushing Under Linux 505

Linux Core-api Documentation

The interface is provided in hopes that the port can find a suitably
efficient method for removing multiple page sized regions from the
cache, instead of having the kernel call flush_cache_page (see below)
for each entry which may be modified.

4) void flush_cache_page(struct vm_area_struct *vma, unsigned long
addr, unsigned long pfn)

This time we need to remove a PAGE_SIZE sized range from the
cache. The‘vma’is the backing structure used by Linux to keep track
of mmap’d regions for a process, the address space is available via
vma->vm_mm. Also, one may test (vma->vm_flags & VM_EXEC) to
see if this region is executable (and thus could be in the‘instruction
cache’in “Harvard”type cache layouts).
The‘pfn’indicates the physical page frame (shift this value left by
PAGE_SHIFT to get the physical address) that‘addr’translates to.
It is this mapping which should be removed from the cache.

After running, there will be no entries in the cache for‘vma->vm_mm’
for virtual address ‘addr’which translates to ‘pfn’.
This is used primarily during fault processing.

5) void flush_cache_kmaps(void)

This routine need only be implemented if the platform utilizes high-
mem. It will be called right before all of the kmaps are invalidated.

After running, there will be no entries in the cache
for the kernel virtual address range PKMAP_ADDR(0) to
PKMAP_ADDR(LAST_PKMAP).

This routing should be implemented in asm/highmem.h

6) void flush_cache_vmap(unsigned long start, unsigned long end)
void flush_cache_vunmap(unsigned long start, unsigned long end)

Here in these two interfaces we are flushing a specific range of (ker-
nel) virtual addresses from the cache. After running, there will be
no entries in the cache for the kernel address space for virtual ad-
dresses in the range ‘start’to ‘end-1’.
The first of these two routines is invoked after map_kernel_range()
has installed the page table entries. The second is invoked before
unmap_kernel_range() deletes the page table entries.

There exists another whole class of cpu cache issues which currently require a
whole different set of interfaces to handle properly. The biggest problem is that of
virtual aliasing in the data cache of a processor.

Is your port susceptible to virtual aliasing in its D-cache? Well, if your D-cache is
virtually indexed, is larger in size than PAGE_SIZE, and does not prevent multiple
cache lines for the same physical address from existing at once, you have this
problem.

If your D-cache has this problem, first define asm/shmparam.h SHMLBA properly,
it should essentially be the size of your virtually addressed D-cache (or if the size
is variable, the largest possible size). This setting will force the SYSv IPC layer to

506 Chapter 4. Low-level hardware management

Linux Core-api Documentation

only allow user processes to mmap shared memory at address which are a multiple
of this value.

Note: This does not fix shared mmaps, check out the sparc64 port for one way to
solve this (in particular SPARC_FLAG_MMAPSHARED).

Next, you have to solve the D-cache aliasing issue for all other cases. Please keep
in mind that fact that, for a given page mapped into some user address space,
there is always at least one more mapping, that of the kernel in its linear mapping
starting at PAGE_OFFSET. So immediately, once the first user maps a given phys-
ical page into its address space, by implication the D-cache aliasing problem has
the potential to exist since the kernel already maps this page at its virtual address.

void copy_user_page(void *to, void *from, unsigned long
addr, struct page *page) void clear_user_page(void *to,
unsigned long addr, struct page *page)

These two routines store data in user anonymous or COWpages.
It allows a port to efficiently avoid D-cache alias issues between
userspace and the kernel.

For example, a port may temporarily map‘from’and‘to’to kernel
virtual addresses during the copy. The virtual address for these
two pages is chosen in such a way that the kernel load/store
instructions happen to virtual addresses which are of the same
“color”as the user mapping of the page. Sparc64 for example,
uses this technique.

The‘addr’parameter tells the virtual address where the user
will ultimately have this pagemapped, and the‘page’parameter
gives a pointer to the struct page of the target.

If D-cache aliasing is not an issue, these two routines may sim-
ply call memcpy/memset directly and do nothing more.

void flush_dcache_page(struct page *page)

Any time the kernel writes to a page cache page, _OR_ the ker-
nel is about to read from a page cache page and user space
shared/writable mappings of this page potentially exist, this
routine is called.

Note: This routine need only be called for page cache pages
which can potentially ever be mapped into the address space
of a user process. So for example, VFS layer code handling vfs
symlinks in the page cache need not call this interface at all.

The phrase“kernel writes to a page cache page”means, specif-
ically, that the kernel executes store instructions that dirty data
in that page at the page->virtual mapping of that page. It is im-
portant to flush here to handle D-cache aliasing, to make sure
these kernel stores are visible to user space mappings of that
page.

4.1. Cache and TLB Flushing Under Linux 507

Linux Core-api Documentation

The corollary case is just as important, if there are users which
have shared+writable mappings of this file, we must make sure
that kernel reads of these pages will see the most recent stores
done by the user.

If D-cache aliasing is not an issue, this routine may simply be
defined as a nop on that architecture.

There is a bit set aside in page->flags (PG_arch_1) as “archi-
tecture private”. The kernel guarantees that, for pagecache
pages, it will clear this bit when such a page first enters the
pagecache.

This allows these interfaces to be implemented much more effi-
ciently. It allows one to“defer”(perhaps indefinitely) the actual
flush if there are currently no user processesmapping this page.
See sparc64’s flush_dcache_page and update_mmu_cache im-
plementations for an example of how to go about doing this.

The idea is, first at flush_dcache_page() time, if page-
>mapping->i_mmap is an empty tree, just mark the architec-
ture private page flag bit. Later, in update_mmu_cache(), a
check is made of this flag bit, and if set the flush is done and
the flag bit is cleared.

Important: It is often important, if you defer the flush, that
the actual flush occurs on the same CPU as did the cpu stores
into the page to make it dirty. Again, see sparc64 for examples
of how to deal with this.

void copy_to_user_page(struct vm_area_struct *vma, struct
page *page, unsigned long user_vaddr, void *dst, void *src,
int len) void copy_from_user_page(struct vm_area_struct *vma,
struct page *page, unsigned long user_vaddr, void *dst, void
*src, int len)

When the kernel needs to copy arbitrary data in and out of arbi-
trary user pages (f.e. for ptrace()) it will use these two routines.

Any necessary cache flushing or other coherency operations
that need to occur should happen here. If the processor’
s instruction cache does not snoop cpu stores, it is very
likely that you will need to flush the instruction cache for
copy_to_user_page().

void flush_anon_page(struct vm_area_struct *vma, struct page
*page, unsigned long vmaddr)

When the kernel needs to access the contents of an anonymous
page, it calls this function (currently only get_user_pages()).
Note: flush_dcache_page() deliberately doesn’t work for an
anonymous page. The default implementation is a nop (and
should remain so for all coherent architectures). For incoherent
architectures, it should flush the cache of the page at vmaddr.

508 Chapter 4. Low-level hardware management

Linux Core-api Documentation

void flush_kernel_dcache_page(struct page *page)

When the kernel needs to modify a user page is has obtained
with kmap, it calls this function after all modifications are com-
plete (but before kunmapping it) to bring the underlying page
up to date. It is assumed here that the user has no incoher-
ent cached copies (i.e. the original page was obtained from a
mechanism like get_user_pages()). The default implementation
is a nop and should remain so on all coherent architectures. On
incoherent architectures, this should flush the kernel cache for
page (using page_address(page)).

void flush_icache_range(unsigned long start, unsigned long
end)

When the kernel stores into addresses that it will execute out
of (eg when loading modules), this function is called.

If the icache does not snoop stores then this routine will need
to flush it.

void flush_icache_page(struct vm_area_struct *vma, struct
page *page)

All the functionality of flush_icache_page can be implemented
in flush_dcache_page and update_mmu_cache. In the future,
the hope is to remove this interface completely.

The final category of APIs is for I/O to deliberately aliased address ranges inside
the kernel. Such aliases are set up by use of the vmap/vmalloc API. Since kernel
I/O goes via physical pages, the I/O subsystem assumes that the user mapping
and kernel offset mapping are the only aliases. This isn’t true for vmap aliases,
so anything in the kernel trying to do I/O to vmap areas must manually manage
coherency. It must do this by flushing the vmap range before doing I/O and inval-
idating it after the I/O returns.

void flush_kernel_vmap_range(void *vaddr, int size)

flushes the kernel cache for a given virtual address range in
the vmap area. This is to make sure that any data the kernel
modified in the vmap range is made visible to the physical page.
The design is to make this area safe to perform I/O on. Note that
this API does not also flush the offset map alias of the area.

void invalidate_kernel_vmap_range(void *vaddr, int size)
invalidates

the cache for a given virtual address range in the vmap area
which prevents the processor from making the cache stale by
speculatively reading data while the I/O was occurring to the
physical pages. This is only necessary for data reads into the
vmap area.

4.1. Cache and TLB Flushing Under Linux 509

Linux Core-api Documentation

4.2 CPU hotplug in the Kernel

Date December, 2016
Author Sebastian Andrzej Siewior <bigeasy@linutronix.de>,

Rusty Russell <rusty@rustcorp.com.au>, Srivatsa Vaddagiri
<vatsa@in.ibm.com>, Ashok Raj <ashok.raj@intel.com>, Joel
Schopp <jschopp@austin.ibm.com>

4.2.1 Introduction

Modern advances in system architectures have introduced advanced error report-
ing and correction capabilities in processors. There are couple OEMS that support
NUMA hardware which are hot pluggable as well, where physical node insertion
and removal require support for CPU hotplug.

Such advances require CPUs available to a kernel to be removed either for provi-
sioning reasons, or for RAS purposes to keep an offending CPU off system execu-
tion path. Hence the need for CPU hotplug support in the Linux kernel.

A more novel use of CPU-hotplug support is its use today in suspend resume sup-
port for SMP. Dual-core and HT support makes even a laptop run SMP kernels
which didn’t support these methods.

4.2.2 Command Line Switches

maxcpus=n Restrict boot time CPUs to n. Say if you have fourV CPUs, using
maxcpus=2 will only boot two. You can choose to bring the other CPUs later
online.

nr_cpus=n Restrict the total amount CPUs the kernel will support. If the number
supplied here is lower than the number of physically available CPUs than
those CPUs can not be brought online later.

additional_cpus=n Use this to limit hotpluggable CPUs. This option sets
cpu_possible_mask = cpu_present_mask + additional_cpus

This option is limited to the IA64 architecture.

possible_cpus=n This option sets possible_cpus bits in cpu_possible_mask.

This option is limited to the X86 and S390 architecture.

cede_offline={"off","on"} Use this option to disable/enable putting offlined
processors to an extended H_CEDE state on supported pseries platforms. If
nothing is specified, cede_offline is set to “on”.
This option is limited to the PowerPC architecture.

cpu0_hotplug Allow to shutdown CPU0.

This option is limited to the X86 architecture.

510 Chapter 4. Low-level hardware management

mailto:bigeasy@linutronix.de
mailto:rusty@rustcorp.com.au
mailto:vatsa@in.ibm.com
mailto:ashok.raj@intel.com
mailto:jschopp@austin.ibm.com

Linux Core-api Documentation

4.2.3 CPU maps

cpu_possible_mask Bitmap of possible CPUs that can ever be available in the
system. This is used to allocate some boot time memory for per_cpu variables
that aren’t designed to grow/shrink as CPUs are made available or removed.
Once set during boot time discovery phase, the map is static, i.e no bits are
added or removed anytime. Trimming it accurately for your system needs
upfront can save some boot time memory.

cpu_online_mask Bitmap of all CPUs currently online. Its set in __cpu_up() after
a CPU is available for kernel scheduling and ready to receive interrupts from
devices. Its cleared when a CPU is brought down using __cpu_disable(),
before which all OS services including interrupts are migrated to another
target CPU.

cpu_present_mask Bitmap of CPUs currently present in the system. Not all of
them may be online. When physical hotplug is processed by the relevant sub-
system (e.g ACPI) can change and new bit either be added or removed from
the map depending on the event is hot-add/hot-remove. There are currently
no locking rules as of now. Typical usage is to init topology during boot, at
which time hotplug is disabled.

You really don’t need to manipulate any of the system CPU maps. They
should be read-only for most use. When setting up per-cpu resources almost al-
ways use cpu_possible_mask or for_each_possible_cpu() to iterate. To macro
for_each_cpu() can be used to iterate over a custom CPU mask.

Never use anything other than cpumask_t to represent bitmap of CPUs.

4.2.4 Using CPU hotplug

The kernel option CONFIG_HOTPLUG_CPU needs to be enabled. It is currently
available on multiple architectures including ARM, MIPS, PowerPC and X86. The
configuration is done via the sysfs interface:

$ ls -lh /sys/devices/system/cpu
total 0
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu0
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu1
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu2
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu3
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu4
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu5
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu6
drwxr-xr-x 9 root root 0 Dec 21 16:33 cpu7
drwxr-xr-x 2 root root 0 Dec 21 16:33 hotplug
-r--r--r-- 1 root root 4.0K Dec 21 16:33 offline
-r--r--r-- 1 root root 4.0K Dec 21 16:33 online
-r--r--r-- 1 root root 4.0K Dec 21 16:33 possible
-r--r--r-- 1 root root 4.0K Dec 21 16:33 present

The files offline, online, possible, present represent the CPU masks. Each CPU
folder contains an online file which controls the logical on (1) and off (0) state. To
logically shutdown CPU4:

4.2. CPU hotplug in the Kernel 511

Linux Core-api Documentation

$ echo 0 > /sys/devices/system/cpu/cpu4/online
smpboot: CPU 4 is now offline

Once the CPU is shutdown, it will be removed from /proc/interrupts, /proc/cpuinfo
and should also not be shown visible by the top command. To bring CPU4 back
online:

$ echo 1 > /sys/devices/system/cpu/cpu4/online
smpboot: Booting Node 0 Processor 4 APIC 0x1

The CPU is usable again. This should work on all CPUs. CPU0 is often
special and excluded from CPU hotplug. On X86 the kernel option CON-
FIG_BOOTPARAM_HOTPLUG_CPU0 has to be enabled in order to be able to shut-
down CPU0. Alternatively the kernel command option cpu0_hotplug can be used.
Some known dependencies of CPU0:

• Resume from hibernate/suspend. Hibernate/suspend will fail if CPU0 is of-
fline.

• PIC interrupts. CPU0 can’t be removed if a PIC interrupt is detected.
Please let Fenghua Yu<fenghua.yu@intel.com> know if you find any dependencies
on CPU0.

4.2.5 The CPU hotplug coordination

The offline case

Once a CPU has been logically shutdown the teardown callbacks of registered hot-
plug states will be invoked, starting with CPUHP_ONLINE and terminating at state
CPUHP_OFFLINE. This includes:

• If tasks are frozen due to a suspend operation then cpuhp_tasks_frozen will
be set to true.

• All processes are migrated away from this outgoing CPU to new CPUs. The
new CPU is chosen from each process’current cpuset, which may be a subset
of all online CPUs.

• All interrupts targeted to this CPU are migrated to a new CPU

• timers are also migrated to a new CPU

• Once all services are migrated, kernel calls an arch specific routine
__cpu_disable() to perform arch specific cleanup.

512 Chapter 4. Low-level hardware management

mailto:fenghua.yu@intel.com

Linux Core-api Documentation

Using the hotplug API

It is possible to receive notifications once a CPU is offline or onlined. This might
be important to certain drivers which need to perform some kind of setup or clean
up functions based on the number of available CPUs:

#include <linux/cpuhotplug.h>

ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "X/Y:online",
Y_online, Y_prepare_down);

X is the subsystem and Y the particular driver. The Y_online callback will be in-
voked during registration on all online CPUs. If an error occurs during the online
callback the Y_prepare_down callback will be invoked on all CPUs on which the
online callback was previously invoked. After registration completed, the Y_online
callback will be invoked once a CPU is brought online and Y_prepare_down will be
invoked when a CPU is shutdown. All resources which were previously allocated in
Y_online should be released in Y_prepare_down. The return value ret is negative
if an error occurred during the registration process. Otherwise a positive value
is returned which contains the allocated hotplug for dynamically allocated states
(CPUHP_AP_ONLINE_DYN). It will return zero for predefined states.

The callback can be remove by invoking cpuhp_remove_state(). In case of a dy-
namically allocated state (CPUHP_AP_ONLINE_DYN) use the returned state. Dur-
ing the removal of a hotplug state the teardown callback will be invoked.

Multiple instances

If a driver has multiple instances and each instance needs to perform the callback
independently then it is likely that a ‘’multi-state’’should be used. First a
multi-state state needs to be registered:

ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "X/Y:online,
Y_online, Y_prepare_down);

Y_hp_online = ret;

The cpuhp_setup_state_multi() behaves similar to cpuhp_setup_state() ex-
cept it prepares the callbacks for a multi state and does not invoke the callbacks.
This is a one time setup. Once a new instance is allocated, you need to register
this new instance:

ret = cpuhp_state_add_instance(Y_hp_online, &d->node);

This function will add this instance to your previously allocated Y_hp_online state
and invoke the previously registered callback (Y_online) on all online CPUs. The
node element is a struct hlist_node member of your per-instance data struc-
ture.

On removal of the instance: :: cpuhp_state_remove_instance(Y_hp_online, &d-
>node)

should be invoked which will invoke the teardown callback on all online CPUs.

4.2. CPU hotplug in the Kernel 513

Linux Core-api Documentation

Manual setup

Usually it is handy to invoke setup and teardown callbacks on registration or re-
moval of a state because usually the operation needs to performed once a CPU goes
online (offline) and during initial setup (shutdown) of the driver. However each
registration and removal function is also available with a _nocalls suffix which
does not invoke the provided callbacks if the invocation of the callbacks is not de-
sired. During the manual setup (or teardown) the functions get_online_cpus()
and put_online_cpus() should be used to inhibit CPU hotplug operations.

The ordering of the events

The hotplug states are defined in include/linux/cpuhotplug.h:

• The states CPUHP_OFFLINE ⋯CPUHP_AP_OFFLINE are invoked before the
CPU is up.

• The states CPUHP_AP_OFFLINE ⋯CPUHP_AP_ONLINE are invoked just the
after the CPU has been brought up. The interrupts are off and the scheduler is
not yet active on this CPU. Starting with CPUHP_AP_OFFLINE the callbacks
are invoked on the target CPU.

• The states between CPUHP_AP_ONLINE_DYN and
CPUHP_AP_ONLINE_DYN_END are reserved for the dynamic allocation.

• The states are invoked in the reverse order on CPU shutdown starting with
CPUHP_ONLINE and stopping at CPUHP_OFFLINE. Here the callbacks are
invoked on the CPU that will be shutdown until CPUHP_AP_OFFLINE.

A dynamically allocated state via CPUHP_AP_ONLINE_DYN is often enough. How-
ever if an earlier invocation during the bring up or shutdown is required then an
explicit state should be acquired. An explicit state might also be required if the
hotplug event requires specific ordering in respect to another hotplug event.

4.2.6 Testing of hotplug states

One way to verify whether a custom state is working as expected or not
is to shutdown a CPU and then put it online again. It is also possible
to put the CPU to certain state (for instance CPUHP_AP_ONLINE) and then
go back to CPUHP_ONLINE. This would simulate an error one state after
CPUHP_AP_ONLINE which would lead to rollback to the online state.

All registered states are enumerated in /sys/devices/system/cpu/hotplug/
states:

$ tail /sys/devices/system/cpu/hotplug/states
138: mm/vmscan:online
139: mm/vmstat:online
140: lib/percpu_cnt:online
141: acpi/cpu-drv:online
142: base/cacheinfo:online
143: virtio/net:online
144: x86/mce:online

(continues on next page)

514 Chapter 4. Low-level hardware management

Linux Core-api Documentation

(continued from previous page)
145: printk:online
168: sched:active
169: online

To rollback CPU4 to lib/percpu_cnt:online and back online just issue:

$ cat /sys/devices/system/cpu/cpu4/hotplug/state
169
$ echo 140 > /sys/devices/system/cpu/cpu4/hotplug/target
$ cat /sys/devices/system/cpu/cpu4/hotplug/state
140

It is important to note that the teardown callbac of state 140 have been invoked.
And now get back online:

$ echo 169 > /sys/devices/system/cpu/cpu4/hotplug/target
$ cat /sys/devices/system/cpu/cpu4/hotplug/state
169

With trace events enabled, the individual steps are visible, too:

TASK-PID CPU# TIMESTAMP FUNCTION
| | | | |

bash-394 [001] 22.976: cpuhp_enter: cpu: 0004 target: 140 step: 169␣
↪→(cpuhp_kick_ap_work)
cpuhp/4-31 [004] 22.977: cpuhp_enter: cpu: 0004 target: 140 step: 168␣
↪→(sched_cpu_deactivate)
cpuhp/4-31 [004] 22.990: cpuhp_exit: cpu: 0004 state: 168 step: 168␣
↪→ret: 0
cpuhp/4-31 [004] 22.991: cpuhp_enter: cpu: 0004 target: 140 step: 144␣
↪→(mce_cpu_pre_down)
cpuhp/4-31 [004] 22.992: cpuhp_exit: cpu: 0004 state: 144 step: 144␣
↪→ret: 0
cpuhp/4-31 [004] 22.993: cpuhp_multi_enter: cpu: 0004 target: 140␣
↪→step: 143 (virtnet_cpu_down_prep)
cpuhp/4-31 [004] 22.994: cpuhp_exit: cpu: 0004 state: 143 step: 143␣
↪→ret: 0
cpuhp/4-31 [004] 22.995: cpuhp_enter: cpu: 0004 target: 140 step: 142␣
↪→(cacheinfo_cpu_pre_down)
cpuhp/4-31 [004] 22.996: cpuhp_exit: cpu: 0004 state: 142 step: 142␣
↪→ret: 0

bash-394 [001] 22.997: cpuhp_exit: cpu: 0004 state: 140 step: 169␣
↪→ret: 0

bash-394 [005] 95.540: cpuhp_enter: cpu: 0004 target: 169 step: 140␣
↪→(cpuhp_kick_ap_work)
cpuhp/4-31 [004] 95.541: cpuhp_enter: cpu: 0004 target: 169 step: 141␣
↪→(acpi_soft_cpu_online)
cpuhp/4-31 [004] 95.542: cpuhp_exit: cpu: 0004 state: 141 step: 141␣
↪→ret: 0
cpuhp/4-31 [004] 95.543: cpuhp_enter: cpu: 0004 target: 169 step: 142␣
↪→(cacheinfo_cpu_online)
cpuhp/4-31 [004] 95.544: cpuhp_exit: cpu: 0004 state: 142 step: 142␣
↪→ret: 0
cpuhp/4-31 [004] 95.545: cpuhp_multi_enter: cpu: 0004 target: 169␣
↪→step: 143 (virtnet_cpu_online)

(continues on next page)

4.2. CPU hotplug in the Kernel 515

Linux Core-api Documentation

(continued from previous page)
cpuhp/4-31 [004] 95.546: cpuhp_exit: cpu: 0004 state: 143 step: 143␣
↪→ret: 0
cpuhp/4-31 [004] 95.547: cpuhp_enter: cpu: 0004 target: 169 step: 144␣
↪→(mce_cpu_online)
cpuhp/4-31 [004] 95.548: cpuhp_exit: cpu: 0004 state: 144 step: 144␣
↪→ret: 0
cpuhp/4-31 [004] 95.549: cpuhp_enter: cpu: 0004 target: 169 step: 145␣
↪→(console_cpu_notify)
cpuhp/4-31 [004] 95.550: cpuhp_exit: cpu: 0004 state: 145 step: 145␣
↪→ret: 0
cpuhp/4-31 [004] 95.551: cpuhp_enter: cpu: 0004 target: 169 step: 168␣
↪→(sched_cpu_activate)
cpuhp/4-31 [004] 95.552: cpuhp_exit: cpu: 0004 state: 168 step: 168␣
↪→ret: 0

bash-394 [005] 95.553: cpuhp_exit: cpu: 0004 state: 169 step: 140␣
↪→ret: 0

As it an be seen, CPU4 went down until timestamp 22.996 and then back up until
95.552. All invoked callbacks including their return codes are visible in the trace.

4.2.7 Architecture’s requirements

The following functions and configurations are required:

CONFIG_HOTPLUG_CPU This entry needs to be enabled in Kconfig

__cpu_up() Arch interface to bring up a CPU

__cpu_disable() Arch interface to shutdown a CPU, no more interrupts can be
handled by the kernel after the routine returns. This includes the shutdown
of the timer.

__cpu_die() This actually supposed to ensure death of the CPU. Actually look
at some example code in other arch that implement CPU hotplug. The pro-
cessor is taken down from the idle() loop for that specific architecture.
__cpu_die() typically waits for some per_cpu state to be set, to ensure the
processor dead routine is called to be sure positively.

4.2.8 User Space Notification

After CPU successfully onlined or offline udev events are sent. A udev rule like:

SUBSYSTEM=="cpu", DRIVERS=="processor", DEVPATH=="/devices/system/cpu/*",␣
↪→RUN+="the_hotplug_receiver.sh"

will receive all events. A script like:

#!/bin/sh

if ["${ACTION}" = "offline"]
then

echo "CPU ${DEVPATH##*/} offline"

(continues on next page)

516 Chapter 4. Low-level hardware management

Linux Core-api Documentation

(continued from previous page)
elif ["${ACTION}" = "online"]
then

echo "CPU ${DEVPATH##*/} online"

fi

can process the event further.

4.2.9 Kernel Inline Documentations Reference

int cpuhp_setup_state(enum cpuhp_state state, const char * name, int
(*startup)(unsigned int cpu), int (*teardown) (un-
signed int cpu))

Setup hotplug state callbacks with calling the callbacks

Parameters
enum cpuhp_state state The state for which the calls are installed

const char * name Name of the callback (will be used in debug output)

int (*)(unsigned int cpu) startup startup callback function

int (*)(unsigned int cpu) teardown teardown callback function

Description
Installs the callback functions and invokes the startup callback on the present cpus
which have already reached the state.
int cpuhp_setup_state_nocalls(enum cpuhp_state state, const char

* name, int (*startup)(unsigned int cpu),
int (*teardown) (unsigned int cpu))

Setup hotplug state callbacks without calling the callbacks

Parameters
enum cpuhp_state state The state for which the calls are installed

const char * name Name of the callback.

int (*)(unsigned int cpu) startup startup callback function

int (*)(unsigned int cpu) teardown teardown callback function

Description
Same as cpuhp_setup_state except that no calls are executed are invoked during
installation of this callback. NOP if SMP=n or HOTPLUG_CPU=n.

int cpuhp_setup_state_multi(enum cpuhp_state state, const char * name,
int (*startup)(unsigned int cpu, struct
hlist_node *node), int (*teardown) (unsigned
int cpu, struct hlist_node *node))

Add callbacks for multi state

Parameters
enum cpuhp_state state The state for which the calls are installed

4.2. CPU hotplug in the Kernel 517

Linux Core-api Documentation

const char * name Name of the callback.

int (*)(unsigned int cpu, struct hlist_node *node) startup startup
callback function

int (*)(unsigned int cpu, struct hlist_node *node) teardown teardown
callback function

Description
Sets the internal multi_instance flag and prepares a state to work as a multi in-
stance callback. No callbacks are invoked at this point. The callbacks are invoked
once an instance for this state are registered via cpuhp_state_add_instance or
cpuhp_state_add_instance_nocalls.
int cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node

* node)
Add an instance for a state and invoke startup callback.

Parameters
enum cpuhp_state state The state for which the instance is installed

struct hlist_node * node The node for this individual state.

Description
Installs the instance for the state and invokes the startup callback on the present
cpus which have already reached the state. The state must have been earlier
marked as multi-instance by cpuhp_setup_state_multi.
int cpuhp_state_add_instance_nocalls(enum cpuhp_state state, struct

hlist_node * node)
Add an instance for a state without invoking the startup callback.

Parameters
enum cpuhp_state state The state for which the instance is installed

struct hlist_node * node The node for this individual state.

Description
Installs the instance for the state The state must have been earlier marked as
multi-instance by cpuhp_setup_state_multi.
void cpuhp_remove_state(enum cpuhp_state state)

Remove hotplug state callbacks and invoke the teardown

Parameters
enum cpuhp_state state The state for which the calls are removed

Description
Removes the callback functions and invokes the teardown callback on the present
cpus which have already reached the state.
void cpuhp_remove_state_nocalls(enum cpuhp_state state)

Remove hotplug state callbacks without invoking teardown

Parameters
enum cpuhp_state state The state for which the calls are removed

518 Chapter 4. Low-level hardware management

Linux Core-api Documentation

void cpuhp_remove_multi_state(enum cpuhp_state state)
Remove hotplug multi state callback

Parameters
enum cpuhp_state state The state for which the calls are removed

Description
Removes the callback functions from a multi state. This is the reverse of
cpuhp_setup_state_multi(). All instances should have been removed before in-
voking this function.

int cpuhp_state_remove_instance(enum cpuhp_state state, struct
hlist_node * node)

Remove hotplug instance from state and invoke the teardown callback

Parameters
enum cpuhp_state state The state from which the instance is removed

struct hlist_node * node The node for this individual state.

Description
Removes the instance and invokes the teardown callback on the present cpus
which have already reached the state.
int cpuhp_state_remove_instance_nocalls(enum cpuhp_state state,

struct hlist_node * node)
Remove hotplug instance from state without invoking the reatdown callback

Parameters
enum cpuhp_state state The state from which the instance is removed

struct hlist_node * node The node for this individual state.

Description
Removes the instance without invoking the teardown callback.

4.3 Memory hotplug

4.3.1 Memory hotplug event notifier

Hotplugging events are sent to a notification queue.

There are six types of notification defined in include/linux/memory.h:

MEM_GOING_ONLINE Generated before new memory becomes available in or-
der to be able to prepare subsystems to handle memory. The page allocator
is still unable to allocate from the new memory.

MEM_CANCEL_ONLINE Generated if MEM_GOING_ONLINE fails.

MEM_ONLINE Generated when memory has successfully brought online. The
callback may allocate pages from the new memory.

4.3. Memory hotplug 519

Linux Core-api Documentation

MEM_GOING_OFFLINE Generated to begin the process of offlining memory. Al-
locations are no longer possible from the memory but some of the memory to
be offlined is still in use. The callback can be used to free memory known to
a subsystem from the indicated memory block.

MEM_CANCEL_OFFLINE Generated if MEM_GOING_OFFLINE fails. Memory
is available again from the memory block that we attempted to offline.

MEM_OFFLINE Generated after offlining memory is complete.

A callback routine can be registered by calling:

hotplug_memory_notifier(callback_func, priority)

Callback functions with higher values of priority are called before callback func-
tions with lower values.

A callback function must have the following prototype:

int callback_func(
struct notifier_block *self, unsigned long action, void *arg);

The first argument of the callback function (self) is a pointer to the block of the
notifier chain that points to the callback function itself. The second argument
(action) is one of the event types described above. The third argument (arg) passes
a pointer of struct memory_notify:

struct memory_notify {
unsigned long start_pfn;
unsigned long nr_pages;
int status_change_nid_normal;
int status_change_nid_high;
int status_change_nid;

}

• start_pfn is start_pfn of online/offline memory.

• nr_pages is # of pages of online/offline memory.

• status_change_nid_normal is set node id when N_NORMAL_MEMORY of
nodemask is (will be) set/clear, if this is -1, then nodemask status is not
changed.

• status_change_nid_high is set node id when N_HIGH_MEMORY of nodemask
is (will be) set/clear, if this is -1, then nodemask status is not changed.

• status_change_nid is set node id when N_MEMORY of nodemask is (will be)
set/clear. It means a new(memoryless) node gets new memory by online and
a node loses all memory. If this is -1, then nodemask status is not changed.

If status_changed_nid* >= 0, callback should create/discard structures for
the node if necessary.

The callback routine shall return one of the values NOTIFY_DONE, NOTIFY_OK,
NOTIFY_BAD, NOTIFY_STOP defined in include/linux/notifier.h

NOTIFY_DONE and NOTIFY_OK have no effect on the further processing.

520 Chapter 4. Low-level hardware management

Linux Core-api Documentation

NOTIFY_BAD is used as response to the MEM_GOING_ONLINE,
MEM_GOING_OFFLINE, MEM_ONLINE, or MEM_OFFLINE action to cancel
hotplugging. It stops further processing of the notification queue.

NOTIFY_STOP stops further processing of the notification queue.

4.3.2 Locking Internals

When adding/removing memory that uses memory block devices (i.e. ordinary
RAM), the device_hotplug_lock should be held to:

• synchronize against online/offline requests (e.g. via sysfs). This way, memory
block devices can only be accessed (.online/.state attributes) by user space
once memory has been fully added. And when removing memory, we know
nobody is in critical sections.

• synchronize against CPU hotplug and similar (e.g. relevant for ACPI and PPC)

Especially, there is a possible lock inversion that is avoided using de-
vice_hotplug_lock when addingmemory and user space tries to online that memory
faster than expected:

• device_online() will first take the device_lock(), followed by
mem_hotplug_lock

• add_memory_resource() will first take the mem_hotplug_lock, followed by the
device_lock() (while creating the devices, during bus_add_device()).

As the device is visible to user space before taking the device_lock(), this can result
in a lock inversion.

onlining/offlining of memory should be done via device_online()/ device_offline()
- to make sure it is properly synchronized to actions via sysfs. Holding de-
vice_hotplug_lock is advised (to e.g. protect online_type)

When adding/removing/onlining/offlining memory or adding/removing heteroge-
neous/device memory, we should always hold the mem_hotplug_lock in write mode
to serialise memory hotplug (e.g. access to global/zone variables).

In addition, mem_hotplug_lock (in contrast to device_hotplug_lock) in read mode
allows for a quite efficient get_online_mems/put_online_mems implementation, so
code accessing memory can protect from that memory vanishing.

4.4 Linux generic IRQ handling

Copyright © 2005-2010: Thomas Gleixner

Copyright © 2005-2006: Ingo Molnar

4.4. Linux generic IRQ handling 521

Linux Core-api Documentation

4.4.1 Introduction

The generic interrupt handling layer is designed to provide a complete abstrac-
tion of interrupt handling for device drivers. It is able to handle all the different
types of interrupt controller hardware. Device drivers use generic API functions to
request, enable, disable and free interrupts. The drivers do not have to know any-
thing about interrupt hardware details, so they can be used on different platforms
without code changes.

This documentation is provided to developers who want to implement an interrupt
subsystem based for their architecture, with the help of the generic IRQ handling
layer.

4.4.2 Rationale

The original implementation of interrupt handling in Linux uses the __do_IRQ()
super-handler, which is able to deal with every type of interrupt logic.

Originally, Russell King identified different types of handlers to build a quite uni-
versal set for the ARM interrupt handler implementation in Linux 2.5/2.6. He
distinguished between:

• Level type

• Edge type

• Simple type

During the implementation we identified another type:

• Fast EOI type

In the SMP world of the __do_IRQ() super-handler another type was identified:

• Per CPU type

This split implementation of high-level IRQ handlers allows us to optimize the flow
of the interrupt handling for each specific interrupt type. This reduces complexity
in that particular code path and allows the optimized handling of a given type.

The original general IRQ implementation used hw_interrupt_type structures and
their ->ack, ->end [etc.] callbacks to differentiate the flow control in the super-
handler. This leads to a mix of flow logic and low-level hardware logic, and
it also leads to unnecessary code duplication: for example in i386, there is an
ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many of the
low-level details but have different flow handling.

A more natural abstraction is the clean separation of the‘irq flow’and the‘chip
details’.
Analysing a couple of architecture’s IRQ subsystem implementations reveals that
most of them can use a generic set of ‘irq flow’methods and only need to add
the chip-level specific code. The separation is also valuable for (sub)architectures
which need specific quirks in the IRQ flow itself but not in the chip details - and
thus provides a more transparent IRQ subsystem design.

522 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Each interrupt descriptor is assigned its own high-level flow handler, which is
normally one of the generic implementations. (This high-level flow handler imple-
mentation also makes it simple to provide demultiplexing handlers which can be
found in embedded platforms on various architectures.)

The separation makes the generic interrupt handling layer more flexible and ex-
tensible. For example, an (sub)architecture can use a generic IRQ-flow implemen-
tation for‘level type’interrupts and add a (sub)architecture specific‘edge type’
implementation.

To make the transition to the new model easier and prevent the breakage of exist-
ing implementations, the __do_IRQ() super-handler is still available. This leads to
a kind of duality for the time being. Over time the new model should be used in
more and more architectures, as it enables smaller and cleaner IRQ subsystems.
It’s deprecated for three years now and about to be removed.

4.4.3 Known Bugs And Assumptions

None (knock on wood).

4.4.4 Abstraction layers

There are three main levels of abstraction in the interrupt code:

1. High-level driver API

2. High-level IRQ flow handlers

3. Chip-level hardware encapsulation

Interrupt control flow

Each interrupt is described by an interrupt descriptor structure irq_desc. The
interrupt is referenced by an‘unsigned int’numeric value which selects the cor-
responding interrupt description structure in the descriptor structures array. The
descriptor structure contains status information and pointers to the interrupt flow
method and the interrupt chip structure which are assigned to this interrupt.

Whenever an interrupt triggers, the low-level architecture code calls into the
generic interrupt code by calling desc->handle_irq(). This high-level IRQ handling
function only uses desc->irq_data.chip primitives referenced by the assigned chip
descriptor structure.

4.4. Linux generic IRQ handling 523

Linux Core-api Documentation

High-level Driver API

The high-level Driver API consists of following functions:

• request_irq()

• request_threaded_irq()

• free_irq()

• disable_irq()

• enable_irq()

• disable_irq_nosync() (SMP only)

• synchronize_irq() (SMP only)

• irq_set_irq_type()

• irq_set_irq_wake()

• irq_set_handler_data()

• irq_set_chip()

• irq_set_chip_data()

See the autogenerated function documentation for details.

High-level IRQ flow handlers

The generic layer provides a set of pre-defined irq-flow methods:

• handle_level_irq()

• handle_edge_irq()

• handle_fasteoi_irq()

• handle_simple_irq()

• handle_percpu_irq()

• handle_edge_eoi_irq()

• handle_bad_irq()

The interrupt flow handlers (either pre-defined or architecture specific) are as-
signed to specific interrupts by the architecture either during bootup or during
device initialization.

524 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Default flow implementations

Helper functions

The helper functions call the chip primitives and are used by the default flow imple-
mentations. The following helper functions are implemented (simplified excerpt):

default_enable(struct irq_data *data)
{

desc->irq_data.chip->irq_unmask(data);
}

default_disable(struct irq_data *data)
{

if (!delay_disable(data))
desc->irq_data.chip->irq_mask(data);

}

default_ack(struct irq_data *data)
{

chip->irq_ack(data);
}

default_mask_ack(struct irq_data *data)
{

if (chip->irq_mask_ack) {
chip->irq_mask_ack(data);

} else {
chip->irq_mask(data);
chip->irq_ack(data);

}
}

noop(struct irq_data *data))
{
}

Default flow handler implementations

Default Level IRQ flow handler

handle_level_irq provides a generic implementation for level-triggered interrupts.

The following control flow is implemented (simplified excerpt):

desc->irq_data.chip->irq_mask_ack();
handle_irq_event(desc->action);
desc->irq_data.chip->irq_unmask();

4.4. Linux generic IRQ handling 525

Linux Core-api Documentation

Default Fast EOI IRQ flow handler

handle_fasteoi_irq provides a generic implementation for interrupts, which only
need an EOI at the end of the handler.

The following control flow is implemented (simplified excerpt):

handle_irq_event(desc->action);
desc->irq_data.chip->irq_eoi();

Default Edge IRQ flow handler

handle_edge_irq provides a generic implementation for edge-triggered interrupts.

The following control flow is implemented (simplified excerpt):

if (desc->status & running) {
desc->irq_data.chip->irq_mask_ack();
desc->status |= pending | masked;
return;

}
desc->irq_data.chip->irq_ack();
desc->status |= running;
do {

if (desc->status & masked)
desc->irq_data.chip->irq_unmask();

desc->status &= ~pending;
handle_irq_event(desc->action);

} while (status & pending);
desc->status &= ~running;

Default simple IRQ flow handler

handle_simple_irq provides a generic implementation for simple interrupts.

Note: The simple flow handler does not call any handler/chip primitives.

The following control flow is implemented (simplified excerpt):

handle_irq_event(desc->action);

526 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Default per CPU flow handler

handle_percpu_irq provides a generic implementation for per CPU interrupts.

Per CPU interrupts are only available on SMP and the handler provides a simplified
version without locking.

The following control flow is implemented (simplified excerpt):

if (desc->irq_data.chip->irq_ack)
desc->irq_data.chip->irq_ack();

handle_irq_event(desc->action);
if (desc->irq_data.chip->irq_eoi)

desc->irq_data.chip->irq_eoi();

EOI Edge IRQ flow handler

handle_edge_eoi_irq provides an abnomination of the edge handler which is solely
used to tame a badly wreckaged irq controller on powerpc/cell.

Bad IRQ flow handler

handle_bad_irq is used for spurious interrupts which have no real handler as-
signed..

Quirks and optimizations

The generic functions are intended for‘clean’architectures and chips, which have
no platform-specific IRQ handling quirks. If an architecture needs to implement
quirks on the ‘flow’level then it can do so by overriding the high-level irq-flow
handler.

Delayed interrupt disable

This per interrupt selectable feature, which was introduced by Russell King in
the ARM interrupt implementation, does not mask an interrupt at the hardware
level when disable_irq() is called. The interrupt is kept enabled and is masked
in the flow handler when an interrupt event happens. This prevents losing edge
interrupts on hardware which does not store an edge interrupt event while the
interrupt is disabled at the hardware level. When an interrupt arrives while the
IRQ_DISABLED flag is set, then the interrupt is masked at the hardware level and
the IRQ_PENDING bit is set. When the interrupt is re-enabled by enable_irq()
the pending bit is checked and if it is set, the interrupt is resent either via
hardware or by a software resend mechanism. (It’s necessary to enable CON-
FIG_HARDIRQS_SW_RESEND when you want to use the delayed interrupt dis-
able feature and your hardware is not capable of retriggering an interrupt.) The
delayed interrupt disable is not configurable.

4.4. Linux generic IRQ handling 527

Linux Core-api Documentation

Chip-level hardware encapsulation

The chip-level hardware descriptor structure irq_chip contains all the direct chip
relevant functions, which can be utilized by the irq flow implementations.

• irq_ack

• irq_mask_ack - Optional, recommended for performance

• irq_mask

• irq_unmask

• irq_eoi - Optional, required for EOI flow handlers

• irq_retrigger - Optional

• irq_set_type - Optional

• irq_set_wake - Optional

These primitives are strictly intended to mean what they say: ack means ACK,
masking means masking of an IRQ line, etc. It is up to the flow handler(s) to use
these basic units of low-level functionality.

4.4.5 __do_IRQ entry point

The original implementation __do_IRQ() was an alternative entry point for all types
of interrupts. It no longer exists.

This handler turned out to be not suitable for all interrupt hardware and was
therefore reimplemented with split functionality for edge/level/simple/percpu in-
terrupts. This is not only a functional optimization. It also shortens code paths for
interrupts.

4.4.6 Locking on SMP

The locking of chip registers is up to the architecture that defines the chip primi-
tives. The per-irq structure is protected via desc->lock, by the generic layer.

4.4.7 Generic interrupt chip

To avoid copies of identical implementations of IRQ chips the core provides a con-
figurable generic interrupt chip implementation. Developers should check care-
fully whether the generic chip fits their needs before implementing the same func-
tionality slightly differently themselves.

void irq_gc_mask_set_bit(struct irq_data * d)
Mask chip via setting bit in mask register

Parameters
struct irq_data * d irq_data

528 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Description
Chip has a single mask register. Values of this register are cached and protected
by gc->lock

void irq_gc_mask_clr_bit(struct irq_data * d)
Mask chip via clearing bit in mask register

Parameters
struct irq_data * d irq_data

Description
Chip has a single mask register. Values of this register are cached and protected
by gc->lock

void irq_gc_ack_set_bit(struct irq_data * d)
Ack pending interrupt via setting bit

Parameters
struct irq_data * d irq_data

struct irq_chip_generic * irq_alloc_generic_chip(const char * name,
int num_ct, unsigned
int irq_base, void
__iomem * reg_base,
irq_flow_handler_t handler)

Allocate a generic chip and initialize it

Parameters
const char * name Name of the irq chip

int num_ct Number of irq_chip_type instances associated with this

unsigned int irq_base Interrupt base nr for this chip

void __iomem * reg_base Register base address (virtual)

irq_flow_handler_t handler Default flow handler associated with this chip

Description
Returns an initialized irq_chip_generic structure. The chip defaults to the primary
(index 0) irq_chip_type and handler
int __irq_alloc_domain_generic_chips(struct irq_domain * d,

int irqs_per_chip, int num_ct,
const char * name,
irq_flow_handler_t handler, un-
signed int clr, unsigned int set,
enum irq_gc_flags gcflags)

Allocate generic chips for an irq domain

Parameters
struct irq_domain * d irq domain for which to allocate chips

int irqs_per_chip Number of interrupts each chip handles (max 32)

int num_ct Number of irq_chip_type instances associated with this

4.4. Linux generic IRQ handling 529

Linux Core-api Documentation

const char * name Name of the irq chip

irq_flow_handler_t handler Default flow handler associated with these chips

unsigned int clr IRQ_* bits to clear in the mapping function

unsigned int set IRQ_* bits to set in the mapping function

enum irq_gc_flags gcflags Generic chip specific setup flags

struct irq_chip_generic * irq_get_domain_generic_chip(struct irq_domain
* d, unsigned
int hw_irq)

Get a pointer to the generic chip of a hw_irq

Parameters
struct irq_domain * d irq domain pointer

unsigned int hw_irq Hardware interrupt number

void irq_setup_generic_chip(struct irq_chip_generic * gc, u32 msk, enum
irq_gc_flags flags, unsigned int clr, unsigned
int set)

Setup a range of interrupts with a generic chip

Parameters
struct irq_chip_generic * gc Generic irq chip holding all data

u32 msk Bitmask holding the irqs to initialize relative to gc->irq_base

enum irq_gc_flags flags Flags for initialization

unsigned int clr IRQ_* bits to clear

unsigned int set IRQ_* bits to set

Description
Set up max. 32 interrupts starting from gc->irq_base. Note, this initializes all
interrupts to the primary irq_chip_type and its associated handler.

int irq_setup_alt_chip(struct irq_data * d, unsigned int type)
Switch to alternative chip

Parameters
struct irq_data * d irq_data for this interrupt

unsigned int type Flow type to be initialized

Description
Only to be called from chip->irq_set_type() callbacks.

void irq_remove_generic_chip(struct irq_chip_generic * gc, u32 msk, un-
signed int clr, unsigned int set)

Remove a chip

Parameters
struct irq_chip_generic * gc Generic irq chip holding all data

u32 msk Bitmask holding the irqs to initialize relative to gc->irq_base

530 Chapter 4. Low-level hardware management

Linux Core-api Documentation

unsigned int clr IRQ_* bits to clear

unsigned int set IRQ_* bits to set

Description
Remove up to 32 interrupts starting from gc->irq_base.

4.4.8 Structures

This chapter contains the autogenerated documentation of the structures which
are used in the generic IRQ layer.

struct irq_common_data
per irq data shared by all irqchips

Definition

struct irq_common_data {
unsigned int __private state_use_accessors;

#ifdef CONFIG_NUMA;
unsigned int node;

#endif;
void *handler_data;
struct msi_desc *msi_desc;
cpumask_var_t affinity;

#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK;
cpumask_var_t effective_affinity;

#endif;
#ifdef CONFIG_GENERIC_IRQ_IPI;

unsigned int ipi_offset;
#endif;
};

Members
state_use_accessors status information for irq chip functions. Use accessor

functions to deal with it

node node index useful for balancing

handler_data per-IRQ data for the irq_chip methods

msi_desc MSI descriptor

affinity IRQ affinity on SMP. If this is an IPI related irq, then this is the mask of
the CPUs to which an IPI can be sent.

effective_affinity The effective IRQ affinity on SMP as some irq chips do not
allow multi CPU destinations. A subset of affinity.

ipi_offset Offset of first IPI target cpu in affinity. Optional.
struct irq_data

per irq chip data passed down to chip functions

Definition

4.4. Linux generic IRQ handling 531

Linux Core-api Documentation

struct irq_data {
u32 mask;
unsigned int irq;
unsigned long hwirq;
struct irq_common_data *common;
struct irq_chip *chip;
struct irq_domain *domain;

#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY;
struct irq_data *parent_data;

#endif;
void *chip_data;

};

Members
mask precomputed bitmask for accessing the chip registers

irq interrupt number

hwirq hardware interrupt number, local to the interrupt domain

common point to data shared by all irqchips

chip low level interrupt hardware access

domain Interrupt translation domain; responsible for mapping between hwirq
number and linux irq number.

parent_data pointer to parent struct irq_data to support hierarchy irq_domain

chip_data platform-specific per-chip private data for the chip methods, to allow
shared chip implementations

struct irq_chip
hardware interrupt chip descriptor

Definition

struct irq_chip {
struct device *parent_device;
const char *name;
unsigned int (*irq_startup)(struct irq_data *data);
void (*irq_shutdown)(struct irq_data *data);
void (*irq_enable)(struct irq_data *data);
void (*irq_disable)(struct irq_data *data);
void (*irq_ack)(struct irq_data *data);
void (*irq_mask)(struct irq_data *data);
void (*irq_mask_ack)(struct irq_data *data);
void (*irq_unmask)(struct irq_data *data);
void (*irq_eoi)(struct irq_data *data);
int (*irq_set_affinity)(struct irq_data *data, const struct cpumask␣

↪→*dest, bool force);
int (*irq_retrigger)(struct irq_data *data);
int (*irq_set_type)(struct irq_data *data, unsigned int flow_type);
int (*irq_set_wake)(struct irq_data *data, unsigned int on);
void (*irq_bus_lock)(struct irq_data *data);
void (*irq_bus_sync_unlock)(struct irq_data *data);
void (*irq_cpu_online)(struct irq_data *data);
void (*irq_cpu_offline)(struct irq_data *data);

(continues on next page)

532 Chapter 4. Low-level hardware management

Linux Core-api Documentation

(continued from previous page)
void (*irq_suspend)(struct irq_data *data);
void (*irq_resume)(struct irq_data *data);
void (*irq_pm_shutdown)(struct irq_data *data);
void (*irq_calc_mask)(struct irq_data *data);
void (*irq_print_chip)(struct irq_data *data, struct seq_file *p);
int (*irq_request_resources)(struct irq_data *data);
void (*irq_release_resources)(struct irq_data *data);
void (*irq_compose_msi_msg)(struct irq_data *data, struct msi_msg *msg);
void (*irq_write_msi_msg)(struct irq_data *data, struct msi_msg *msg);
int (*irq_get_irqchip_state)(struct irq_data *data, enum irqchip_irq_

↪→state which, bool *state);
int (*irq_set_irqchip_state)(struct irq_data *data, enum irqchip_irq_

↪→state which, bool state);
int (*irq_set_vcpu_affinity)(struct irq_data *data, void *vcpu_info);
void (*ipi_send_single)(struct irq_data *data, unsigned int cpu);
void (*ipi_send_mask)(struct irq_data *data, const struct cpumask *dest);
int (*irq_nmi_setup)(struct irq_data *data);
void (*irq_nmi_teardown)(struct irq_data *data);
unsigned long flags;

};

Members
parent_device pointer to parent device for irqchip

name name for /proc/interrupts

irq_startup start up the interrupt (defaults to ->enable if NULL)

irq_shutdown shut down the interrupt (defaults to ->disable if NULL)

irq_enable enable the interrupt (defaults to chip->unmask if NULL)

irq_disable disable the interrupt

irq_ack start of a new interrupt

irq_mask mask an interrupt source

irq_mask_ack ack and mask an interrupt source

irq_unmask unmask an interrupt source

irq_eoi end of interrupt

irq_set_affinity Set the CPU affinity on SMP machines. If the force argument
is true, it tells the driver to unconditionally apply the affinity setting. Sanity
checks against the supplied affinity mask are not required. This is used for
CPU hotplug where the target CPU is not yet set in the cpu_online_mask.

irq_retrigger resend an IRQ to the CPU

irq_set_type set the flow type (IRQ_TYPE_LEVEL/etc.) of an IRQ

irq_set_wake enable/disable power-management wake-on of an IRQ

irq_bus_lock function to lock access to slow bus (i2c) chips

irq_bus_sync_unlock function to sync and unlock slow bus (i2c) chips

irq_cpu_online configure an interrupt source for a secondary CPU

4.4. Linux generic IRQ handling 533

Linux Core-api Documentation

irq_cpu_offline un-configure an interrupt source for a secondary CPU

irq_suspend function called from core code on suspend once per chip, when one
or more interrupts are installed

irq_resume function called from core code on resume once per chip, when one
ore more interrupts are installed

irq_pm_shutdown function called from core code on shutdown once per chip

irq_calc_mask Optional function to set irq_data.mask for special cases

irq_print_chip optional to print special chip info in show_interrupts

irq_request_resources optional to request resources before calling any other
callback related to this irq

irq_release_resources optional to release resources acquired with
irq_request_resources

irq_compose_msi_msg optional to compose message content for MSI

irq_write_msi_msg optional to write message content for MSI

irq_get_irqchip_state return the internal state of an interrupt

irq_set_irqchip_state set the internal state of a interrupt

irq_set_vcpu_affinity optional to target a vCPU in a virtual machine

ipi_send_single send a single IPI to destination cpus

ipi_send_mask send an IPI to destination cpus in cpumask

irq_nmi_setup function called from core code before enabling an NMI

irq_nmi_teardown function called from core code after disabling an NMI

flags chip specific flags

struct irq_chip_regs
register offsets for struct irq_gci

Definition

struct irq_chip_regs {
unsigned long enable;
unsigned long disable;
unsigned long mask;
unsigned long ack;
unsigned long eoi;
unsigned long type;
unsigned long polarity;

};

Members
enable Enable register offset to reg_base

disable Disable register offset to reg_base

mask Mask register offset to reg_base

ack Ack register offset to reg_base

534 Chapter 4. Low-level hardware management

Linux Core-api Documentation

eoi Eoi register offset to reg_base

type Type configuration register offset to reg_base

polarity Polarity configuration register offset to reg_base

struct irq_chip_type
Generic interrupt chip instance for a flow type

Definition

struct irq_chip_type {
struct irq_chip chip;
struct irq_chip_regs regs;
irq_flow_handler_t handler;
u32 type;
u32 mask_cache_priv;
u32 *mask_cache;

};

Members
chip The real interrupt chip which provides the callbacks

regs Register offsets for this chip

handler Flow handler associated with this chip

type Chip can handle these flow types

mask_cache_priv Cached mask register private to the chip type

mask_cache Pointer to cached mask register

Description
A irq_generic_chip can have several instances of irq_chip_type when it requires
different functions and register offsets for different flow types.

struct irq_chip_generic
Generic irq chip data structure

Definition

struct irq_chip_generic {
raw_spinlock_t lock;
void __iomem *reg_base;
u32 (*reg_readl)(void __iomem *addr);
void (*reg_writel)(u32 val, void __iomem *addr);
void (*suspend)(struct irq_chip_generic *gc);
void (*resume)(struct irq_chip_generic *gc);
unsigned int irq_base;
unsigned int irq_cnt;
u32 mask_cache;
u32 type_cache;
u32 polarity_cache;
u32 wake_enabled;
u32 wake_active;
unsigned int num_ct;
void *private;
unsigned long installed;

(continues on next page)

4.4. Linux generic IRQ handling 535

Linux Core-api Documentation

(continued from previous page)
unsigned long unused;
struct irq_domain *domain;
struct list_head list;
struct irq_chip_type chip_types[];

};

Members
lock Lock to protect register and cache data access

reg_base Register base address (virtual)

reg_readl Alternate I/O accessor (defaults to readl if NULL)

reg_writel Alternate I/O accessor (defaults to writel if NULL)

suspend Function called from core code on suspend once per chip; can be useful
instead of irq_chip::suspend to handle chip details even when no interrupts
are in use

resume Function called from core code on resume once per chip; can be useful
instead of irq_chip::suspend to handle chip details even when no interrupts
are in use

irq_base Interrupt base nr for this chip

irq_cnt Number of interrupts handled by this chip

mask_cache Cached mask register shared between all chip types

type_cache Cached type register

polarity_cache Cached polarity register

wake_enabled Interrupt can wakeup from suspend

wake_active Interrupt is marked as an wakeup from suspend source

num_ct Number of available irq_chip_type instances (usually 1)

private Private data for non generic chip callbacks

installed bitfield to denote installed interrupts

unused bitfield to denote unused interrupts

domain irq domain pointer

list List head for keeping track of instances

chip_types Array of interrupt irq_chip_types

Description
Note, that irq_chip_generic can have multiple irq_chip_type implementations
which can be associated to a particular irq line of an irq_chip_generic instance.
That allows to share and protect state in an irq_chip_generic instance when we
need to implement different flow mechanisms (level/edge) for it.

enum irq_gc_flags
Initialization flags for generic irq chips

Constants

536 Chapter 4. Low-level hardware management

Linux Core-api Documentation

IRQ_GC_INIT_MASK_CACHE Initialize the mask_cache by reading mask reg

IRQ_GC_INIT_NESTED_LOCK Set the lock class of the irqs to nested for irq chips
which need to call irq_set_wake() on the parent irq. Usually GPIO implemen-
tations

IRQ_GC_MASK_CACHE_PER_TYPE Mask cache is chip type private

IRQ_GC_NO_MASK Do not calculate irq_data->mask

IRQ_GC_BE_IO Use big-endian register accesses (default: LE)

struct irqaction
per interrupt action descriptor

Definition

struct irqaction {
irq_handler_t handler;
void *dev_id;
void __percpu *percpu_dev_id;
struct irqaction *next;
irq_handler_t thread_fn;
struct task_struct *thread;
struct irqaction *secondary;
unsigned int irq;
unsigned int flags;
unsigned long thread_flags;
unsigned long thread_mask;
const char *name;
struct proc_dir_entry *dir;

};

Members
handler interrupt handler function

dev_id cookie to identify the device

percpu_dev_id cookie to identify the device

next pointer to the next irqaction for shared interrupts

thread_fn interrupt handler function for threaded interrupts

thread thread pointer for threaded interrupts

secondary pointer to secondary irqaction (force threading)

irq interrupt number

flags flags (see IRQF_* above)

thread_flags flags related to thread
thread_mask bitmask for keeping track of thread activity
name name of the device

dir pointer to the proc/irq/NN/name entry

4.4. Linux generic IRQ handling 537

Linux Core-api Documentation

int request_irq(unsigned int irq, irq_handler_t handler, unsigned
long flags, const char * name, void * dev)

Add a handler for an interrupt line

Parameters
unsigned int irq The interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs. Primary han-
dler for threaded interrupts If NULL, the default primary handler is installed

unsigned long flags Handling flags

const char * name Name of the device generating this interrupt

void * dev A cookie passed to the handler function

Description
This call allocates an interrupt and establishes a handler; see the documentation
for request_threaded_irq() for details.

struct irq_affinity_notify
context for notification of IRQ affinity changes

Definition

struct irq_affinity_notify {
unsigned int irq;
struct kref kref;
struct work_struct work;
void (*notify)(struct irq_affinity_notify *, const cpumask_t *mask);
void (*release)(struct kref *ref);

};

Members
irq Interrupt to which notification applies

kref Reference count, for internal use

work Work item, for internal use

notify Function to be called on change. This will be called in process context.

release Function to be called on release. This will be called in process context.
Once registered, the structure must only be freed when this function is called
or later.

struct irq_affinity
Description for automatic irq affinity assignements

Definition

struct irq_affinity {
unsigned int pre_vectors;
unsigned int post_vectors;
unsigned int nr_sets;
unsigned int set_size[IRQ_AFFINITY_MAX_SETS];
void (*calc_sets)(struct irq_affinity *, unsigned int nvecs);
void *priv;

};

538 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Members
pre_vectors Don’t apply affinity to pre_vectors at beginning of the MSI(-X) vec-

tor space

post_vectors Don’t apply affinity to post_vectors at end of the MSI(-X) vector
space

nr_sets The number of interrupt sets for which affinity spreading is required

set_size Array holding the size of each interrupt set

calc_sets Callback for calculating the number and size of interrupt sets

priv Private data for usage by calc_sets, usually a pointer to driver/device spe-
cific data.

struct irq_affinity_desc
Interrupt affinity descriptor

Definition

struct irq_affinity_desc {
struct cpumask mask;
unsigned int is_managed : 1;

};

Members
mask cpumask to hold the affinity assignment

is_managed 1 if the interrupt is managed internally

int irq_set_affinity(unsigned int irq, const struct cpumask * cpumask)
Set the irq affinity of a given irq

Parameters
unsigned int irq Interrupt to set affinity

const struct cpumask * cpumask cpumask

Description
Fails if cpumask does not contain an online CPU

int irq_force_affinity(unsigned int irq, const struct cpumask * cpumask)
Force the irq affinity of a given irq

Parameters
unsigned int irq Interrupt to set affinity

const struct cpumask * cpumask cpumask

Description
Same as irq_set_affinity, but without checking the mask against online cpus.

Solely for low level cpu hotplug code, where we need to make per cpu interrupts
affine before the cpu becomes online.

4.4. Linux generic IRQ handling 539

Linux Core-api Documentation

4.4.9 Public Functions Provided

This chapter contains the autogenerated documentation of the kernel API func-
tions which are exported.

bool synchronize_hardirq(unsigned int irq)
wait for pending hard IRQ handlers (on other CPUs)

Parameters
unsigned int irq interrupt number to wait for

This function waits for any pending hard IRQ handlers for this interrupt to
complete before returning. If you use this function while holding a resource
the IRQ handler may need you will deadlock. It does not take associated
threaded handlers into account.

Do not use this for shutdown scenarios where you must be sure that all parts
(hardirq and threaded handler) have completed.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.

It does not check whether there is an interrupt in flight at the hardware
level, but not serviced yet, as this might deadlock when called with in-
terrupts disabled and the target CPU of the interrupt is the current CPU.

void synchronize_irq(unsigned int irq)
wait for pending IRQ handlers (on other CPUs)

Parameters
unsigned int irq interrupt number to wait for

This function waits for any pending IRQ handlers for this interrupt to com-
plete before returning. If you use this function while holding a resource the
IRQ handler may need you will deadlock.

Can only be called from preemptible code as it might sleep when an interrupt
thread is associated to irq.
It optionally makes sure (when the irq chip supports that method) that the
interrupt is not pending in any CPU and waiting for service.

int irq_can_set_affinity(unsigned int irq)
Check if the affinity of a given irq can be set

Parameters
unsigned int irq Interrupt to check

bool irq_can_set_affinity_usr(unsigned int irq)
Check if affinity of a irq can be set from user space

Parameters
unsigned int irq Interrupt to check

540 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Description
Like irq_can_set_affinity() above, but additionally checks for the AFFIN-
ITY_MANAGED flag.

void irq_set_thread_affinity(struct irq_desc * desc)
Notify irq threads to adjust affinity

Parameters
struct irq_desc * desc irq descriptor which has affitnity changed

We just set IRQTF_AFFINITY and delegate the affinity setting to the interrupt
thread itself. We can not call set_cpus_allowed_ptr() here as we hold desc-
>lock and this code can be called from hard interrupt context.

int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify
* notify)

control notification of IRQ affinity changes

Parameters
unsigned int irq Interrupt for which to enable/disable notification

struct irq_affinity_notify * notify Context for notification, or NULL to dis-
able notification. Function pointers must be initialised; the other fields will
be initialised by this function.

Must be called in process context. Notification may only be enabled
after the IRQ is allocated and must be disabled before the IRQ is
freed using free_irq().

int irq_set_vcpu_affinity(unsigned int irq, void * vcpu_info)
Set vcpu affinity for the interrupt

Parameters
unsigned int irq interrupt number to set affinity

void * vcpu_info vCPU specific data or pointer to a percpu array of vCPU spe-
cific data for percpu_devid interrupts

This function uses the vCPU specific data to set the vCPU affinity
for an irq. The vCPU specific data is passed from outside, such
as KVM. One example code path is as below: KVM -> IOMMU ->
irq_set_vcpu_affinity().

void disable_irq_nosync(unsigned int irq)
disable an irq without waiting

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Disables and Enables are nested. Unlike
disable_irq(), this function does not ensure existing instances of the IRQ
handler have completed before returning.

This function may be called from IRQ context.

void disable_irq(unsigned int irq)
disable an irq and wait for completion

4.4. Linux generic IRQ handling 541

Linux Core-api Documentation

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Enables and Disables are nested. This
function waits for any pending IRQ handlers for this interrupt to complete
before returning. If you use this function while holding a resource the IRQ
handler may need you will deadlock.

This function may be called - with care - from IRQ context.

bool disable_hardirq(unsigned int irq)
disables an irq and waits for hardirq completion

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Enables and Disables are nested. This
function waits for any pending hard IRQ handlers for this interrupt to com-
plete before returning. If you use this function while holding a resource the
hard IRQ handler may need you will deadlock.

When used to optimistically disable an interrupt from atomic context the re-
turn value must be checked.

Return
false if a threaded handler is active.

This function may be called - with care - from IRQ context.

void disable_nmi_nosync(unsigned int irq)
disable an nmi without waiting

Parameters
unsigned int irq Interrupt to disable

Disable the selected interrupt line. Disables and enables are nested. The
interrupt to disable must have been requested through request_nmi. Unlike
disable_nmi(), this function does not ensure existing instances of the IRQ han-
dler have completed before returning.

void enable_irq(unsigned int irq)
enable handling of an irq

Parameters
unsigned int irq Interrupt to enable

Undoes the effect of one call to disable_irq(). If this matches the last dis-
able, processing of interrupts on this IRQ line is re-enabled.

This function may be called from IRQ context only when desc->irq_data.chip-
>bus_lock and desc->chip->bus_sync_unlock are NULL !

void enable_nmi(unsigned int irq)
enable handling of an nmi

Parameters

542 Chapter 4. Low-level hardware management

Linux Core-api Documentation

unsigned int irq Interrupt to enable

The interrupt to enable must have been requested through request_nmi. Un-
does the effect of one call to disable_nmi(). If this matches the last disable,
processing of interrupts on this IRQ line is re-enabled.

int irq_set_irq_wake(unsigned int irq, unsigned int on)
control irq power management wakeup

Parameters
unsigned int irq interrupt to control

unsigned int on enable/disable power management wakeup

Enable/disable power management wakeup mode, which is disabled by de-
fault. Enables and disables must match, just as they match for non-wakeup
mode support.

Wakeup mode lets this IRQ wake the system from sleep states like“suspend
to RAM”.

Note
irq enable/disable state is completely orthogonal to the enable/disable state

of irq wake. An irq can be disabled with disable_irq() and still wake the
system as long as the irq has wake enabled. If this does not hold, then the
underlying irq chip and the related driver need to be investigated.

void irq_wake_thread(unsigned int irq, void * dev_id)
wake the irq thread for the action identified by dev_id

Parameters
unsigned int irq Interrupt line

void * dev_id Device identity for which the thread should be woken

const void * free_irq(unsigned int irq, void * dev_id)
free an interrupt allocated with request_irq

Parameters
unsigned int irq Interrupt line to free

void * dev_id Device identity to free

Remove an interrupt handler. The handler is removed and if the interrupt
line is no longer in use by any driver it is disabled. On a shared IRQ the caller
must ensure the interrupt is disabled on the card it drives before calling this
function. The function does not return until any executing interrupts for this
IRQ have completed.

This function must not be called from interrupt context.

Returns the devname argument passed to request_irq.

int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char * devname, void * dev_id)

allocate an interrupt line

4.4. Linux generic IRQ handling 543

Linux Core-api Documentation

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs. Primary han-
dler for threaded interrupts If NULL and thread_fn != NULL the default pri-
mary handler is installed

irq_handler_t thread_fn Function called from the irq handler thread If NULL,
no irq thread is created

unsigned long irqflags Interrupt type flags

const char * devname An ascii name for the claiming device

void * dev_id A cookie passed back to the handler function

This call allocates interrupt resources and enables the interrupt line and IRQ
handling. From the point this call is made your handler function may be in-
voked. Since your handler function must clear any interrupt the board raises,
you must take care both to initialise your hardware and to set up the interrupt
handler in the right order.

If you want to set up a threaded irq handler for your device then you need to
supply handler and thread_fn. handler is still called in hard interrupt con-
text and has to check whether the interrupt originates from the device. If yes
it needs to disable the interrupt on the device and return IRQ_WAKE_THREAD
which will wake up the handler thread and run thread_fn. This split handler
design is necessary to support shared interrupts.

Dev_id must be globally unique. Normally the address of the device data
structure is used as the cookie. Since the handler receives this value it makes
sense to use it.

If your interrupt is shared youmust pass a nonNULL dev_id as this is required
when freeing the interrupt.

Flags:

IRQF_SHARED Interrupt is shared IRQF_TRIGGER_* Specify active edge(s)
or level

int request_any_context_irq(unsigned int irq, irq_handler_t handler, un-
signed long flags, const char * name, void
* dev_id)

allocate an interrupt line

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs. Threaded
handler for threaded interrupts.

unsigned long flags Interrupt type flags

const char * name An ascii name for the claiming device

void * dev_id A cookie passed back to the handler function

544 Chapter 4. Low-level hardware management

Linux Core-api Documentation

This call allocates interrupt resources and enables the interrupt line and IRQ
handling. It selects either a hardirq or threaded handling method depending
on the context.

On failure, it returns a negative value. On success, it returns either
IRQC_IS_HARDIRQ or IRQC_IS_NESTED.

int request_nmi(unsigned int irq, irq_handler_t handler, unsigned
long irqflags, const char * name, void * dev_id)

allocate an interrupt line for NMI delivery

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs. Threaded
handler for threaded interrupts.

unsigned long irqflags Interrupt type flags

const char * name An ascii name for the claiming device

void * dev_id A cookie passed back to the handler function

This call allocates interrupt resources and enables the interrupt line and IRQ
handling. It sets up the IRQ line to be handled as an NMI.

An interrupt line delivering NMIs cannot be shared and IRQ handling cannot
be threaded.

Interrupt lines requested for NMI delivering must produce per cpu interrupts
and have auto enabling setting disabled.

Dev_id must be globally unique. Normally the address of the device data
structure is used as the cookie. Since the handler receives this value it makes
sense to use it.

If the interrupt line cannot be used to deliver NMIs, function will fail and
return a negative value.

bool irq_percpu_is_enabled(unsigned int irq)
Check whether the per cpu irq is enabled

Parameters
unsigned int irq Linux irq number to check for

Description
Must be called from a non migratable context. Returns the enable state of a per
cpu interrupt on the current cpu.

void remove_percpu_irq(unsigned int irq, struct irqaction * act)
free a per-cpu interrupt

Parameters
unsigned int irq Interrupt line to free

struct irqaction * act irqaction for the interrupt

Description

4.4. Linux generic IRQ handling 545

Linux Core-api Documentation

Used to remove interrupts statically setup by the early boot process.

void free_percpu_irq(unsigned int irq, void __percpu * dev_id)
free an interrupt allocated with request_percpu_irq

Parameters
unsigned int irq Interrupt line to free

void __percpu * dev_id Device identity to free

Remove a percpu interrupt handler. The handler is removed, but the inter-
rupt line is not disabled. This must be done on each CPU before calling this
function. The function does not return until any executing interrupts for this
IRQ have completed.

This function must not be called from interrupt context.

int setup_percpu_irq(unsigned int irq, struct irqaction * act)
setup a per-cpu interrupt

Parameters
unsigned int irq Interrupt line to setup

struct irqaction * act irqaction for the interrupt

Description
Used to statically setup per-cpu interrupts in the early boot process.

int __request_percpu_irq(unsigned int irq, irq_handler_t handler, un-
signed long flags, const char * devname, void
__percpu * dev_id)

allocate a percpu interrupt line

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs.

unsigned long flags Interrupt type flags (IRQF_TIMER only)

const char * devname An ascii name for the claiming device

void __percpu * dev_id A percpu cookie passed back to the handler function

This call allocates interrupt resources and enables the interrupt on the local
CPU. If the interrupt is supposed to be enabled on other CPUs, it has to be
done on each CPU using enable_percpu_irq().

Dev_id must be globally unique. It is a per-cpu variable, and the handler gets
called with the interrupted CPU’s instance of that variable.

int request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char
* name, void __percpu * dev_id)

allocate a percpu interrupt line for NMI delivery

Parameters
unsigned int irq Interrupt line to allocate

irq_handler_t handler Function to be called when the IRQ occurs.

546 Chapter 4. Low-level hardware management

Linux Core-api Documentation

const char * name An ascii name for the claiming device

void __percpu * dev_id A percpu cookie passed back to the handler function

This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
have to be setup on each CPU by calling prepare_percpu_nmi() before being
enabled on the same CPU by using enable_percpu_nmi().

Dev_id must be globally unique. It is a per-cpu variable, and the handler gets
called with the interrupted CPU’s instance of that variable.
Interrupt lines requested for NMI delivering should have auto enabling set-
ting disabled.

If the interrupt line cannot be used to deliver NMIs, function will fail returning
a negative value.

int prepare_percpu_nmi(unsigned int irq)
performs CPU local setup for NMI delivery

Parameters
unsigned int irq Interrupt line to prepare for NMI delivery

This call prepares an interrupt line to deliver NMI on the current CPU, before
that interrupt line gets enabled with enable_percpu_nmi().

As a CPU local operation, this should be called from non-preemptible context.

If the interrupt line cannot be used to deliver NMIs, function will fail returning
a negative value.

void teardown_percpu_nmi(unsigned int irq)
undoes NMI setup of IRQ line

Parameters
unsigned int irq Interrupt line from which CPU local NMI configuration should

be removed

This call undoes the setup done by prepare_percpu_nmi().

IRQ line should not be enabled for the current CPU.

As a CPU local operation, this should be called from non-preemptible
context.

int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
bool * state)

returns the irqchip state of a interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM

enum irqchip_irq_state which One of IRQCHIP_STATE_* the caller wants to
know about

bool * state a pointer to a boolean where the state is to be storeed

This call snapshots the internal irqchip state of an interrupt, returning into
state the bit corresponding to stage which

4.4. Linux generic IRQ handling 547

Linux Core-api Documentation

This function should be called with preemption disabled if the interrupt con-
troller has per-cpu registers.

int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
bool val)

set the state of a forwarded interrupt.

Parameters
unsigned int irq Interrupt line that is forwarded to a VM

enum irqchip_irq_state which State to be restored (one of IRQCHIP_STATE_*)

bool val Value corresponding to which
This call sets the internal irqchip state of an interrupt, depending on the value
of which.
This function should be called with preemption disabled if the interrupt con-
troller has per-cpu registers.

int irq_set_chip(unsigned int irq, struct irq_chip * chip)
set the irq chip for an irq

Parameters
unsigned int irq irq number

struct irq_chip * chip pointer to irq chip description structure

int irq_set_irq_type(unsigned int irq, unsigned int type)
set the irq trigger type for an irq

Parameters
unsigned int irq irq number

unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h

int irq_set_handler_data(unsigned int irq, void * data)
set irq handler data for an irq

Parameters
unsigned int irq Interrupt number

void * data Pointer to interrupt specific data

Set the hardware irq controller data for an irq

int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset,
struct msi_desc * entry)

set MSI descriptor data for an irq at offset

Parameters
unsigned int irq_base Interrupt number base

unsigned int irq_offset Interrupt number offset

struct msi_desc * entry Pointer to MSI descriptor data

Set the MSI descriptor entry for an irq at offset

548 Chapter 4. Low-level hardware management

Linux Core-api Documentation

int irq_set_msi_desc(unsigned int irq, struct msi_desc * entry)
set MSI descriptor data for an irq

Parameters
unsigned int irq Interrupt number

struct msi_desc * entry Pointer to MSI descriptor data

Set the MSI descriptor entry for an irq

int irq_set_chip_data(unsigned int irq, void * data)
set irq chip data for an irq

Parameters
unsigned int irq Interrupt number

void * data Pointer to chip specific data

Set the hardware irq chip data for an irq

void irq_disable(struct irq_desc * desc)
Mark interrupt disabled

Parameters
struct irq_desc * desc irq descriptor which should be disabled

Description
If the chip does not implement the irq_disable callback, we use a lazy disable ap-
proach. That means we mark the interrupt disabled, but leave the hardware un-
masked. That’s an optimization because we avoid the hardware access for the
common case where no interrupt happens after we marked it disabled. If an in-
terrupt happens, then the interrupt flow handler masks the line at the hardware
level and marks it pending.

If the interrupt chip does not implement the irq_disable callback, a driver can dis-
able the lazy approach for a particular irq line by calling‘irq_set_status_flags(irq,
IRQ_DISABLE_UNLAZY)’. This can be used for devices which cannot disable
the interrupt at the device level under certain circumstances and have to use dis-
able_irq[_nosync] instead.

void handle_simple_irq(struct irq_desc * desc)
Simple and software-decoded IRQs.

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Simple interrupts are either sent from a demultiplexing interrupt handler or
come from hardware, where no interrupt hardware control is necessary.

Note
The caller is expected to handle the ack, clear, mask and unmask issues if

necessary.

void handle_untracked_irq(struct irq_desc * desc)
Simple and software-decoded IRQs.

Parameters

4.4. Linux generic IRQ handling 549

Linux Core-api Documentation

struct irq_desc * desc the interrupt description structure for this irq

Untracked interrupts are sent from a demultiplexing interrupt handler when
the demultiplexer does not know which device it its multiplexed irq domain
generated the interrupt. IRQ’s handled through here are not subjected to
stats tracking, randomness, or spurious interrupt detection.

Note
Like handle_simple_irq, the caller is expected to handle the ack, clear,

mask and unmask issues if necessary.

void handle_level_irq(struct irq_desc * desc)
Level type irq handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Level type interrupts are active as long as the hardware line has the active
level. This may require to mask the interrupt and unmask it after the asso-
ciated handler has acknowledged the device, so the interrupt line is back to
inactive.

void handle_fasteoi_irq(struct irq_desc * desc)
irq handler for transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Only a single callback will be issued to the chip: an ->eoi() call when the inter-
rupt has been serviced. This enables support for modern forms of interrupt
handlers, which handle the flow details in hardware, transparently.

void handle_fasteoi_nmi(struct irq_desc * desc)
irq handler for NMI interrupt lines

Parameters
struct irq_desc * desc the interrupt description structure for this irq

A simple NMI-safe handler, considering the restrictions from request_nmi.

Only a single callback will be issued to the chip: an ->eoi() call when the inter-
rupt has been serviced. This enables support for modern forms of interrupt
handlers, which handle the flow details in hardware, transparently.

void handle_edge_irq(struct irq_desc * desc)
edge type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Interrupt occures on the falling and/or rising edge of a hardware signal. The
occurrence is latched into the irq controller hardware and must be acked in
order to be reenabled. After the ack another interrupt can happen on the
same source even before the first one is handled by the associated event han-
dler. If this happens it might be necessary to disable (mask) the interrupt

550 Chapter 4. Low-level hardware management

Linux Core-api Documentation

depending on the controller hardware. This requires to reenable the inter-
rupt inside of the loop which handles the interrupts which have arrived while
the handler was running. If all pending interrupts are handled, the loop is
left.

void handle_edge_eoi_irq(struct irq_desc * desc)
edge eoi type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Description
Similar as the above handle_edge_irq, but using eoi and w/o the mask/unmask
logic.

void handle_percpu_irq(struct irq_desc * desc)
Per CPU local irq handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Per CPU interrupts on SMP machines without locking requirements

void handle_percpu_devid_irq(struct irq_desc * desc)
Per CPU local irq handler with per cpu dev ids

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Description
Per CPU interrupts on SMP machines without locking requirements. Same as
handle_percpu_irq() above but with the following extras:

action->percpu_dev_id is a pointer to percpu variables which contain the real de-
vice id for the cpu on which this handler is called

void handle_percpu_devid_fasteoi_nmi(struct irq_desc * desc)
Per CPU local NMI handler with per cpu dev ids

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Description
Similar to handle_fasteoi_nmi, but handling the dev_id cookie as a percpu pointer.

void irq_cpu_online(void)
Invoke all irq_cpu_online functions.

Parameters
void no arguments

Description
Iterate through all irqs and invoke the chip.irq_cpu_online() for each.

4.4. Linux generic IRQ handling 551

Linux Core-api Documentation

void irq_cpu_offline(void)
Invoke all irq_cpu_offline functions.

Parameters
void no arguments

Description
Iterate through all irqs and invoke the chip.irq_cpu_offline() for each.

void handle_fasteoi_ack_irq(struct irq_desc * desc)
irq handler for edge hierarchy stacked on transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
also needs to have its ->irq_ack() function called.

void handle_fasteoi_mask_irq(struct irq_desc * desc)
irq handler for level hierarchy stacked on transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
also needs to have its ->irq_mask_ack() function called.

int irq_chip_set_parent_state(struct irq_data * data, enum
irqchip_irq_state which, bool val)

set the state of a parent interrupt.

Parameters
struct irq_data * data Pointer to interrupt specific data

enum irqchip_irq_state which State to be restored (one of IRQCHIP_STATE_*)

bool val Value corresponding to which
Description
Conditional success, if the underlying irqchip does not implement it.

int irq_chip_get_parent_state(struct irq_data * data, enum
irqchip_irq_state which, bool * state)

get the state of a parent interrupt.

Parameters
struct irq_data * data Pointer to interrupt specific data

enum irqchip_irq_state which one of IRQCHIP_STATE_* the caller wants to
know

bool * state a pointer to a boolean where the state is to be stored

Description
Conditional success, if the underlying irqchip does not implement it.

552 Chapter 4. Low-level hardware management

Linux Core-api Documentation

void irq_chip_enable_parent(struct irq_data * data)
Enable the parent interrupt (defaults to unmask if NULL)

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_disable_parent(struct irq_data * data)
Disable the parent interrupt (defaults to mask if NULL)

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_ack_parent(struct irq_data * data)
Acknowledge the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_mask_parent(struct irq_data * data)
Mask the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_mask_ack_parent(struct irq_data * data)
Mask and acknowledge the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_unmask_parent(struct irq_data * data)
Unmask the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_eoi_parent(struct irq_data * data)
Invoke EOI on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

int irq_chip_set_affinity_parent(struct irq_data * data, const struct
cpumask * dest, bool force)

Set affinity on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

const struct cpumask * dest The affinity mask to set

bool force Flag to enforce setting (disable online checks)

Description
Conditinal, as the underlying parent chip might not implement it.

4.4. Linux generic IRQ handling 553

Linux Core-api Documentation

int irq_chip_set_type_parent(struct irq_data * data, unsigned int type)
Set IRQ type on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h

Description
Conditional, as the underlying parent chip might not implement it.

int irq_chip_retrigger_hierarchy(struct irq_data * data)
Retrigger an interrupt in hardware

Parameters
struct irq_data * data Pointer to interrupt specific data

Description
Iterate through the domain hierarchy of the interrupt and check whether a hw
retrigger function exists. If yes, invoke it.

int irq_chip_set_vcpu_affinity_parent(struct irq_data * data, void
* vcpu_info)

Set vcpu affinity on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void * vcpu_info The vcpu affinity information

int irq_chip_set_wake_parent(struct irq_data * data, unsigned int on)
Set/reset wake-up on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

unsigned int on Whether to set or reset the wake-up capability of this irq

Description
Conditional, as the underlying parent chip might not implement it.

int irq_chip_request_resources_parent(struct irq_data * data)
Request resources on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_release_resources_parent(struct irq_data * data)
Release resources on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

int irq_chip_compose_msi_msg(struct irq_data * data, struct msi_msg
* msg)

Componse msi message for a irq chip

554 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Parameters
struct irq_data * data Pointer to interrupt specific data

struct msi_msg * msg Pointer to the MSI message

Description
For hierarchical domains we find the first chip in the hierarchy which implements
the irq_compose_msi_msg callback. For non hierarchical we use the top level chip.

int irq_chip_pm_get(struct irq_data * data)
Enable power for an IRQ chip

Parameters
struct irq_data * data Pointer to interrupt specific data

Description
Enable the power to the IRQ chip referenced by the interrupt data structure.

int irq_chip_pm_put(struct irq_data * data)
Disable power for an IRQ chip

Parameters
struct irq_data * data Pointer to interrupt specific data

Description
Disable the power to the IRQ chip referenced by the interrupt data structure, be-
longs. Note that power will only be disabled, once this function has been called
for all IRQs that have called irq_chip_pm_get().

4.4.10 Internal Functions Provided

This chapter contains the autogenerated documentation of the internal functions.

int generic_handle_irq(unsigned int irq)
Invoke the handler for a particular irq

Parameters
unsigned int irq The irq number to handle

int __handle_domain_irq(struct irq_domain * domain, unsigned int hwirq,
bool lookup, struct pt_regs * regs)

Invoke the handler for a HW irq belonging to a domain

Parameters
struct irq_domain * domain The domain where to perform the lookup

unsigned int hwirq The HW irq number to convert to a logical one

bool lookup Whether to perform the domain lookup or not

struct pt_regs * regs Register file coming from the low-level handling code

4.4. Linux generic IRQ handling 555

Linux Core-api Documentation

Return
0 on success, or -EINVAL if conversion has failed

int handle_domain_nmi(struct irq_domain * domain, unsigned int hwirq,
struct pt_regs * regs)

Invoke the handler for a HW irq belonging to a domain

Parameters
struct irq_domain * domain The domain where to perform the lookup

unsigned int hwirq The HW irq number to convert to a logical one

struct pt_regs * regs Register file coming from the low-level handling code

This function must be called from an NMI context.

Return
0 on success, or -EINVAL if conversion has failed

void irq_free_descs(unsigned int from, unsigned int cnt)
free irq descriptors

Parameters
unsigned int from Start of descriptor range

unsigned int cnt Number of consecutive irqs to free

int __ref __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt,
int node, struct module * owner, const struct
irq_affinity_desc * affinity)

allocate and initialize a range of irq descriptors

Parameters
int irq Allocate for specific irq number if irq >= 0

unsigned int from Start the search from this irq number

unsigned int cnt Number of consecutive irqs to allocate.

int node Preferred node on which the irq descriptor should be allocated

struct module * owner Owning module (can be NULL)

const struct irq_affinity_desc * affinity Optional pointer to an affinity
mask array of size cnt which hints where the irq descriptors should be al-
located and which default affinities to use

Description
Returns the first irq number or error code

unsigned int irq_alloc_hwirqs(int cnt, int node)
Allocate an irq descriptor and initialize the hardware

Parameters
int cnt number of interrupts to allocate

int node node on which to allocate

556 Chapter 4. Low-level hardware management

Linux Core-api Documentation

Description
Returns an interrupt number > 0 or 0, if the allocation fails.

void irq_free_hwirqs(unsigned int from, int cnt)
Free irq descriptor and cleanup the hardware

Parameters
unsigned int from Free from irq number

int cnt number of interrupts to free

unsigned int irq_get_next_irq(unsigned int offset)
get next allocated irq number

Parameters
unsigned int offset where to start the search

Description
Returns next irq number after offset or nr_irqs if none is found.

unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
Get the statistics for an interrupt on a cpu

Parameters
unsigned int irq The interrupt number

int cpu The cpu number

Description
Returns the sum of interrupt counts on cpu since boot for irq. The caller must
ensure that the interrupt is not removed concurrently.

unsigned int kstat_irqs(unsigned int irq)
Get the statistics for an interrupt

Parameters
unsigned int irq The interrupt number

Description
Returns the sum of interrupt counts on all cpus since boot for irq. The caller must
ensure that the interrupt is not removed concurrently.

unsigned int kstat_irqs_usr(unsigned int irq)
Get the statistics for an interrupt

Parameters
unsigned int irq The interrupt number

Description
Returns the sum of interrupt counts on all cpus since boot for irq. Contrary to
kstat_irqs() this can be called from any context. It uses rcu since a concur-
rent removal of an interrupt descriptor is observing an rcu grace period before
delayed_free_desc()/irq_kobj_release().

4.4. Linux generic IRQ handling 557

Linux Core-api Documentation

void handle_bad_irq(struct irq_desc * desc)
handle spurious and unhandled irqs

Parameters
struct irq_desc * desc description of the interrupt

Description
Handles spurious and unhandled IRQ’s. It also prints a debugmessage.
int irq_set_chip(unsigned int irq, struct irq_chip * chip)

set the irq chip for an irq

Parameters
unsigned int irq irq number

struct irq_chip * chip pointer to irq chip description structure

int irq_set_irq_type(unsigned int irq, unsigned int type)
set the irq trigger type for an irq

Parameters
unsigned int irq irq number

unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h

int irq_set_handler_data(unsigned int irq, void * data)
set irq handler data for an irq

Parameters
unsigned int irq Interrupt number

void * data Pointer to interrupt specific data

Set the hardware irq controller data for an irq

int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset,
struct msi_desc * entry)

set MSI descriptor data for an irq at offset

Parameters
unsigned int irq_base Interrupt number base

unsigned int irq_offset Interrupt number offset

struct msi_desc * entry Pointer to MSI descriptor data

Set the MSI descriptor entry for an irq at offset

int irq_set_msi_desc(unsigned int irq, struct msi_desc * entry)
set MSI descriptor data for an irq

Parameters
unsigned int irq Interrupt number

struct msi_desc * entry Pointer to MSI descriptor data

Set the MSI descriptor entry for an irq

558 Chapter 4. Low-level hardware management

Linux Core-api Documentation

int irq_set_chip_data(unsigned int irq, void * data)
set irq chip data for an irq

Parameters
unsigned int irq Interrupt number

void * data Pointer to chip specific data

Set the hardware irq chip data for an irq

void irq_disable(struct irq_desc * desc)
Mark interrupt disabled

Parameters
struct irq_desc * desc irq descriptor which should be disabled

Description
If the chip does not implement the irq_disable callback, we use a lazy disable ap-
proach. That means we mark the interrupt disabled, but leave the hardware un-
masked. That’s an optimization because we avoid the hardware access for the
common case where no interrupt happens after we marked it disabled. If an in-
terrupt happens, then the interrupt flow handler masks the line at the hardware
level and marks it pending.

If the interrupt chip does not implement the irq_disable callback, a driver can dis-
able the lazy approach for a particular irq line by calling‘irq_set_status_flags(irq,
IRQ_DISABLE_UNLAZY)’. This can be used for devices which cannot disable
the interrupt at the device level under certain circumstances and have to use dis-
able_irq[_nosync] instead.

void handle_simple_irq(struct irq_desc * desc)
Simple and software-decoded IRQs.

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Simple interrupts are either sent from a demultiplexing interrupt handler or
come from hardware, where no interrupt hardware control is necessary.

Note
The caller is expected to handle the ack, clear, mask and unmask issues if

necessary.

void handle_untracked_irq(struct irq_desc * desc)
Simple and software-decoded IRQs.

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Untracked interrupts are sent from a demultiplexing interrupt handler when
the demultiplexer does not know which device it its multiplexed irq domain
generated the interrupt. IRQ’s handled through here are not subjected to
stats tracking, randomness, or spurious interrupt detection.

Note

4.4. Linux generic IRQ handling 559

Linux Core-api Documentation

Like handle_simple_irq, the caller is expected to handle the ack, clear,
mask and unmask issues if necessary.

void handle_level_irq(struct irq_desc * desc)
Level type irq handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Level type interrupts are active as long as the hardware line has the active
level. This may require to mask the interrupt and unmask it after the asso-
ciated handler has acknowledged the device, so the interrupt line is back to
inactive.

void handle_fasteoi_irq(struct irq_desc * desc)
irq handler for transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Only a single callback will be issued to the chip: an ->eoi() call when the inter-
rupt has been serviced. This enables support for modern forms of interrupt
handlers, which handle the flow details in hardware, transparently.

void handle_fasteoi_nmi(struct irq_desc * desc)
irq handler for NMI interrupt lines

Parameters
struct irq_desc * desc the interrupt description structure for this irq

A simple NMI-safe handler, considering the restrictions from request_nmi.

Only a single callback will be issued to the chip: an ->eoi() call when the inter-
rupt has been serviced. This enables support for modern forms of interrupt
handlers, which handle the flow details in hardware, transparently.

void handle_edge_irq(struct irq_desc * desc)
edge type IRQ handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Interrupt occures on the falling and/or rising edge of a hardware signal. The
occurrence is latched into the irq controller hardware and must be acked in
order to be reenabled. After the ack another interrupt can happen on the
same source even before the first one is handled by the associated event han-
dler. If this happens it might be necessary to disable (mask) the interrupt
depending on the controller hardware. This requires to reenable the inter-
rupt inside of the loop which handles the interrupts which have arrived while
the handler was running. If all pending interrupts are handled, the loop is
left.

void handle_edge_eoi_irq(struct irq_desc * desc)
edge eoi type IRQ handler

Parameters

560 Chapter 4. Low-level hardware management

Linux Core-api Documentation

struct irq_desc * desc the interrupt description structure for this irq

Description
Similar as the above handle_edge_irq, but using eoi and w/o the mask/unmask
logic.

void handle_percpu_irq(struct irq_desc * desc)
Per CPU local irq handler

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Per CPU interrupts on SMP machines without locking requirements

void handle_percpu_devid_irq(struct irq_desc * desc)
Per CPU local irq handler with per cpu dev ids

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Description
Per CPU interrupts on SMP machines without locking requirements. Same as
handle_percpu_irq() above but with the following extras:

action->percpu_dev_id is a pointer to percpu variables which contain the real de-
vice id for the cpu on which this handler is called

void handle_percpu_devid_fasteoi_nmi(struct irq_desc * desc)
Per CPU local NMI handler with per cpu dev ids

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Description
Similar to handle_fasteoi_nmi, but handling the dev_id cookie as a percpu pointer.

void irq_cpu_online(void)
Invoke all irq_cpu_online functions.

Parameters
void no arguments

Description
Iterate through all irqs and invoke the chip.irq_cpu_online() for each.

void irq_cpu_offline(void)
Invoke all irq_cpu_offline functions.

Parameters
void no arguments

Description
Iterate through all irqs and invoke the chip.irq_cpu_offline() for each.

4.4. Linux generic IRQ handling 561

Linux Core-api Documentation

void handle_fasteoi_ack_irq(struct irq_desc * desc)
irq handler for edge hierarchy stacked on transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
also needs to have its ->irq_ack() function called.

void handle_fasteoi_mask_irq(struct irq_desc * desc)
irq handler for level hierarchy stacked on transparent controllers

Parameters
struct irq_desc * desc the interrupt description structure for this irq

Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip
also needs to have its ->irq_mask_ack() function called.

int irq_chip_set_parent_state(struct irq_data * data, enum
irqchip_irq_state which, bool val)

set the state of a parent interrupt.

Parameters
struct irq_data * data Pointer to interrupt specific data

enum irqchip_irq_state which State to be restored (one of IRQCHIP_STATE_*)

bool val Value corresponding to which
Description
Conditional success, if the underlying irqchip does not implement it.

int irq_chip_get_parent_state(struct irq_data * data, enum
irqchip_irq_state which, bool * state)

get the state of a parent interrupt.

Parameters
struct irq_data * data Pointer to interrupt specific data

enum irqchip_irq_state which one of IRQCHIP_STATE_* the caller wants to
know

bool * state a pointer to a boolean where the state is to be stored

Description
Conditional success, if the underlying irqchip does not implement it.

void irq_chip_enable_parent(struct irq_data * data)
Enable the parent interrupt (defaults to unmask if NULL)

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_disable_parent(struct irq_data * data)
Disable the parent interrupt (defaults to mask if NULL)

Parameters

562 Chapter 4. Low-level hardware management

Linux Core-api Documentation

struct irq_data * data Pointer to interrupt specific data

void irq_chip_ack_parent(struct irq_data * data)
Acknowledge the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_mask_parent(struct irq_data * data)
Mask the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_mask_ack_parent(struct irq_data * data)
Mask and acknowledge the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_unmask_parent(struct irq_data * data)
Unmask the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_eoi_parent(struct irq_data * data)
Invoke EOI on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

int irq_chip_set_affinity_parent(struct irq_data * data, const struct
cpumask * dest, bool force)

Set affinity on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

const struct cpumask * dest The affinity mask to set

bool force Flag to enforce setting (disable online checks)

Description
Conditinal, as the underlying parent chip might not implement it.

int irq_chip_set_type_parent(struct irq_data * data, unsigned int type)
Set IRQ type on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

unsigned int type IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h

Description
Conditional, as the underlying parent chip might not implement it.

4.4. Linux generic IRQ handling 563

Linux Core-api Documentation

int irq_chip_retrigger_hierarchy(struct irq_data * data)
Retrigger an interrupt in hardware

Parameters
struct irq_data * data Pointer to interrupt specific data

Description
Iterate through the domain hierarchy of the interrupt and check whether a hw
retrigger function exists. If yes, invoke it.

int irq_chip_set_vcpu_affinity_parent(struct irq_data * data, void
* vcpu_info)

Set vcpu affinity on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void * vcpu_info The vcpu affinity information

int irq_chip_set_wake_parent(struct irq_data * data, unsigned int on)
Set/reset wake-up on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

unsigned int on Whether to set or reset the wake-up capability of this irq

Description
Conditional, as the underlying parent chip might not implement it.

int irq_chip_request_resources_parent(struct irq_data * data)
Request resources on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

void irq_chip_release_resources_parent(struct irq_data * data)
Release resources on the parent interrupt

Parameters
struct irq_data * data Pointer to interrupt specific data

int irq_chip_compose_msi_msg(struct irq_data * data, struct msi_msg
* msg)

Componse msi message for a irq chip

Parameters
struct irq_data * data Pointer to interrupt specific data

struct msi_msg * msg Pointer to the MSI message

Description
For hierarchical domains we find the first chip in the hierarchy which implements
the irq_compose_msi_msg callback. For non hierarchical we use the top level chip.

564 Chapter 4. Low-level hardware management

Linux Core-api Documentation

int irq_chip_pm_get(struct irq_data * data)
Enable power for an IRQ chip

Parameters
struct irq_data * data Pointer to interrupt specific data

Description
Enable the power to the IRQ chip referenced by the interrupt data structure.

int irq_chip_pm_put(struct irq_data * data)
Disable power for an IRQ chip

Parameters
struct irq_data * data Pointer to interrupt specific data

Description
Disable the power to the IRQ chip referenced by the interrupt data structure, be-
longs. Note that power will only be disabled, once this function has been called
for all IRQs that have called irq_chip_pm_get().

4.4.11 Credits

The following people have contributed to this document:

1. Thomas Gleixner tglx@linutronix.de

2. Ingo Molnar mingo@elte.hu

4.5 Memory Protection Keys

Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature which is
found on Intel’s Skylake (and later)“Scalable Processor”Server CPUs. It will be
available in future non-server Intel parts and future AMD processors.

For anyone wishing to test or use this feature, it is available in Amazon’s EC2 C5
instances and is known to work there using an Ubuntu 17.04 image.

Memory Protection Keys provides a mechanism for enforcing page-based protec-
tions, but without requiring modification of the page tables when an application
changes protection domains. It works by dedicating 4 previously ignored bits in
each page table entry to a “protection key”, giving 16 possible keys.
There is also a new user-accessible register (PKRU) with two separate bits (Access
Disable and Write Disable) for each key. Being a CPU register, PKRU is inherently
thread-local, potentially giving each thread a different set of protections from ev-
ery other thread.

There are two new instructions (RDPKRU/WRPKRU) for reading and writing to
the new register. The feature is only available in 64-bit mode, even though there
is theoretically space in the PAE PTEs. These permissions are enforced on data
access only and have no effect on instruction fetches.

4.5. Memory Protection Keys 565

mailto:tglx@linutronix.de
mailto:mingo@elte.hu

Linux Core-api Documentation

4.5.1 Syscalls

There are 3 system calls which directly interact with pkeys:

int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
int pkey_mprotect(unsigned long start, size_t len,

unsigned long prot, int pkey);

Before a pkey can be used, it must first be allocated with pkey_alloc(). An applica-
tion calls the WRPKRU instruction directly in order to change access permissions
to memory covered with a key. In this example WRPKRU is wrapped by a C func-
tion called pkey_set().

int real_prot = PROT_READ|PROT_WRITE;
pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
... application runs here

Now, if the application needs to update the data at ‘ptr’, it can gain access, do
the update, then remove its write access:

pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
*ptr = foo; // assign something
pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again

Now when it frees the memory, it will also free the pkey since it is no longer in
use:

munmap(ptr, PAGE_SIZE);
pkey_free(pkey);

Note: pkey_set() is a wrapper for the RDPKRU and WRP-
KRU instructions. An example implementation can be found in
tools/testing/selftests/x86/protection_keys.c.

4.5.2 Behavior

The kernel attempts to make protection keys consistent with the behavior of a
plain mprotect(). For instance if you do this:

mprotect(ptr, size, PROT_NONE);
something(ptr);

you can expect the same effects with protection keys when doing this:

pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
something(ptr);

That should be true whether something() is a direct access to ‘ptr’like:

566 Chapter 4. Low-level hardware management

Linux Core-api Documentation

*ptr = foo;

or when the kernel does the access on the application’s behalf like with a read():
read(fd, ptr, 1);

The kernel will send a SIGSEGV in both cases, but si_code will be set to
SEGV_PKERR when violating protection keys versus SEGV_ACCERR when the
plain mprotect() permissions are violated.

4.5. Memory Protection Keys 567

Linux Core-api Documentation

568 Chapter 4. Low-level hardware management

CHAPTER

FIVE

MEMORY MANAGEMENT

How to allocate and use memory in the kernel. Note that there is a lot more
memory-management documentation in /vm/index.

5.1 Memory Allocation Guide

Linux provides a variety of APIs for memory allocation. You can allocate small
chunks using kmalloc or kmem_cache_alloc families, large virtually contiguous
areas using vmalloc and its derivatives, or you can directly request pages from
the page allocator with alloc_pages. It is also possible to use more specialized
allocators, for instance cma_alloc or zs_malloc.

Most of the memory allocation APIs use GFP flags to express how that memory
should be allocated. The GFP acronym stands for“get free pages”, the underlying
memory allocation function.

Diversity of the allocation APIs combined with the numerous GFP flags makes the
question“How should I allocate memory?”not that easy to answer, although very
likely you should use

kzalloc(<size>, GFP_KERNEL);

Of course there are cases when other allocation APIs and different GFP flags must
be used.

5.1.1 Get Free Page flags

The GFP flags control the allocators behavior. They tell what memory zones can be
used, how hard the allocator should try to find free memory, whether the memory
can be accessed by the userspace etc. The Documentation/core-api/mm-api.rst
provides reference documentation for the GFP flags and their combinations and
here we briefly outline their recommended usage:

• Most of the time GFP_KERNEL is what you need. Memory for the kernel
data structures, DMAable memory, inode cache, all these and many other
allocations types can use GFP_KERNEL. Note, that using GFP_KERNEL implies
GFP_RECLAIM, which means that direct reclaim may be triggered under mem-
ory pressure; the calling context must be allowed to sleep.

569

Linux Core-api Documentation

• If the allocation is performed from an atomic context, e.g interrupt handler,
use GFP_NOWAIT. This flag prevents direct reclaim and IO or filesystem op-
erations. Consequently, under memory pressure GFP_NOWAIT allocation is
likely to fail. Allocations which have a reasonable fallback should be using
GFP_NOWARN.

• If you think that accessing memory reserves is justified and the kernel will be
stressed unless allocation succeeds, you may use GFP_ATOMIC.

• Untrusted allocations triggered from userspace should be a subject of kmem
accounting and must have __GFP_ACCOUNT bit set. There is the handy
GFP_KERNEL_ACCOUNT shortcut for GFP_KERNEL allocations that should be ac-
counted.

• Userspace allocations should use either of the GFP_USER, GFP_HIGHUSER or
GFP_HIGHUSER_MOVABLE flags. The longer the flag name the less restrictive it
is.

GFP_HIGHUSER_MOVABLE does not require that allocated memory will be di-
rectly accessible by the kernel and implies that the data is movable.

GFP_HIGHUSER means that the allocated memory is not movable, but it is not
required to be directly accessible by the kernel. An example may be a hard-
ware allocation that maps data directly into userspace but has no addressing
limitations.

GFP_USER means that the allocated memory is not movable and it must be
directly accessible by the kernel.

You may notice that quite a few allocations in the existing code specify GFP_NOIO
or GFP_NOFS. Historically, they were used to prevent recursion deadlocks caused
by direct memory reclaim calling back into the FS or IO paths and blocking on
already held resources. Since 4.12 the preferred way to address this issue is to
use new scope APIs described in Documentation/core-api/gfp_mask-from-fs-io.rst.

Other legacy GFP flags are GFP_DMA and GFP_DMA32. They are used to ensure that
the allocated memory is accessible by hardware with limited addressing capabili-
ties. So unless you are writing a driver for a device with such restrictions, avoid
using these flags. And even with hardware with restrictions it is preferable to use
dma_alloc* APIs.

5.1.2 Selecting memory allocator

The most straightforward way to allocate memory is to use a function from the
kmalloc() family. And, to be on the safe side it’s best to use routines that set
memory to zero, like kzalloc(). If you need to allocate memory for an array,
there are kmalloc_array() and kcalloc() helpers. The helpers struct_size(), ar-
ray_size() and array3_size() can be used to safely calculate object sizes without
overflowing.

The maximal size of a chunk that can be allocated with kmalloc is limited. The
actual limit depends on the hardware and the kernel configuration, but it is a good
practice to use kmalloc for objects smaller than page size.

The address of a chunk allocated with kmalloc is aligned to at least

570 Chapter 5. Memory management

Linux Core-api Documentation

ARCH_KMALLOC_MINALIGN bytes. For sizes which are a power of two, the align-
ment is also guaranteed to be at least the respective size.

For large allocations you can use vmalloc() and vzalloc(), or directly request
pages from the page allocator. The memory allocated by vmalloc and related func-
tions is not physically contiguous.

If you are not sure whether the allocation size is too large for kmalloc, it is possible
to use kvmalloc() and its derivatives. It will try to allocate memory with kmalloc
and if the allocation fails it will be retried with vmalloc. There are restrictions on
which GFP flags can be used with kvmalloc; please see kvmalloc_node() refer-
ence documentation. Note that kvmalloc may return memory that is not physically
contiguous.

If you need to allocate many identical objects you can use the slab cache
allocator. The cache should be set up with kmem_cache_create() or
kmem_cache_create_usercopy() before it can be used. The second function
should be used if a part of the cache might be copied to the userspace. After the
cache is created kmem_cache_alloc() and its convenience wrappers can allocate
memory from that cache.

When the allocated memory is no longer needed it must be freed. You can use
kvfree() for the memory allocated with kmalloc, vmalloc and kvmalloc. The slab
caches should be freed with kmem_cache_free(). And don’t forget to destroy the
cache with kmem_cache_destroy().

5.2 Dynamic DMA mapping using the generic device

Author James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
This document describes the DMA API. For a more gentle introduction of the API
(and actual examples), see Documentation/DMA-API-HOWTO.txt.

This API is split into two pieces. Part I describes the basic API. Part II describes
extensions for supporting non-consistent memory machines. Unless you know that
your driver absolutely has to support non-consistent platforms (this is usually only
legacy platforms) you should only use the API described in part I.

5.2.1 Part I - dma_API

To get the dma_API, you must #include <linux/dma-mapping.h>. This provides
dma_addr_t and the interfaces described below.

A dma_addr_t can hold any valid DMA address for the platform. It can be given to
a device to use as a DMA source or target. A CPU cannot reference a dma_addr_t
directly because there may be translation between its physical address space and
the DMA address space.

5.2. Dynamic DMA mapping using the generic device 571

mailto:James.Bottomley@HansenPartnership.com

Linux Core-api Documentation

5.2.2 Part Ia - Using large DMA-coherent buffers

void *
dma_alloc_coherent(struct device *dev, size_t size,

dma_addr_t *dma_handle, gfp_t flag)

Consistent memory is memory for which a write by either the device or the proces-
sor can immediately be read by the processor or device without having to worry
about caching effects. (You may however need to make sure to flush the processor’
s write buffers before telling devices to read that memory.)

This routine allocates a region of <size> bytes of consistent memory.

It returns a pointer to the allocated region (in the processor’s virtual address
space) or NULL if the allocation failed.

It also returns a <dma_handle> which may be cast to an unsigned integer the
same width as the bus and given to the device as the DMA address base of the
region.

Note: consistent memory can be expensive on some platforms, and the minimum
allocation length may be as big as a page, so you should consolidate your requests
for consistent memory as much as possible. The simplest way to do that is to use
the dma_pool calls (see below).

The flag parameter (dma_alloc_coherent() only) allows the caller to specify the
GFP_ flags (see kmalloc()) for the allocation (the implementation may choose to
ignore flags that affect the location of the returned memory, like GFP_DMA).

void
dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,

dma_addr_t dma_handle)

Free a region of consistent memory you previously allocated. dev, size and
dma_handle must all be the same as those passed into dma_alloc_coherent().
cpu_addr must be the virtual address returned by the dma_alloc_coherent().

Note that unlike their sibling allocation calls, these routines may only be called
with IRQs enabled.

5.2.3 Part Ib - Using small DMA-coherent buffers

To get this part of the dma_API, you must #include <linux/dmapool.h>

Many drivers need lots of small DMA-coherent memory regions for DMA de-
scriptors or I/O buffers. Rather than allocating in units of a page or more
using dma_alloc_coherent(), you can use DMA pools. These work much like
a struct kmem_cache, except that they use the DMA-coherent allocator, not
__get_free_pages(). Also, they understand common hardware constraints for align-
ment, like queue heads needing to be aligned on N-byte boundaries.

struct dma_pool *
dma_pool_create(const char *name, struct device *dev,

size_t size, size_t align, size_t alloc);

572 Chapter 5. Memory management

Linux Core-api Documentation

dma_pool_create() initializes a pool of DMA-coherent buffers for use with a given
device. It must be called in a context which can sleep.

The“name”is for diagnostics (like a struct kmem_cache name); dev and size are
like what you’d pass to dma_alloc_coherent(). The device’s hardware alignment
requirement for this type of data is“align”(which is expressed in bytes, and must
be a power of two). If your device has no boundary crossing restrictions, pass 0 for
alloc; passing 4096 says memory allocated from this pool must not cross 4KByte
boundaries.

void *
dma_pool_zalloc(struct dma_pool *pool, gfp_t mem_flags,

dma_addr_t *handle)

Wraps dma_pool_alloc() and also zeroes the returned memory if the allocation
attempt succeeded.

void *
dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,

dma_addr_t *dma_handle);

This allocates memory from the pool; the returned memory will meet the size
and alignment requirements specified at creation time. Pass GFP_ATOMIC to pre-
vent blocking, or if it’s permitted (not in_interrupt, not holding SMP locks), pass
GFP_KERNEL to allow blocking. Like dma_alloc_coherent(), this returns two val-
ues: an address usable by the CPU, and the DMA address usable by the pool’s
device.

void
dma_pool_free(struct dma_pool *pool, void *vaddr,

dma_addr_t addr);

This puts memory back into the pool. The pool is what was passed to
dma_pool_alloc(); the CPU (vaddr) and DMA addresses are what were returned
when that routine allocated the memory being freed.

void
dma_pool_destroy(struct dma_pool *pool);

dma_pool_destroy() frees the resources of the pool. It must be called in a context
which can sleep. Make sure you’ve freed all allocated memory back to the pool
before you destroy it.

5.2.4 Part Ic - DMA addressing limitations

int
dma_set_mask_and_coherent(struct device *dev, u64 mask)

Checks to see if the mask is possible and updates the device streaming and coher-
ent DMA mask parameters if it is.

Returns: 0 if successful and a negative error if not.

5.2. Dynamic DMA mapping using the generic device 573

Linux Core-api Documentation

int
dma_set_mask(struct device *dev, u64 mask)

Checks to see if the mask is possible and updates the device parameters if it is.

Returns: 0 if successful and a negative error if not.

int
dma_set_coherent_mask(struct device *dev, u64 mask)

Checks to see if the mask is possible and updates the device parameters if it is.

Returns: 0 if successful and a negative error if not.

u64
dma_get_required_mask(struct device *dev)

This API returns the mask that the platform requires to operate efficiently. Usu-
ally this means the returned mask is the minimum required to cover all of memory.
Examining the required mask gives drivers with variable descriptor sizes the op-
portunity to use smaller descriptors as necessary.

Requesting the required mask does not alter the current mask. If you wish to take
advantage of it, you should issue a dma_set_mask() call to set the mask to the value
returned.

size_t
dma_max_mapping_size(struct device *dev);

Returns the maximum size of a mapping for the device. The size parameter of the
mapping functions like dma_map_single(), dma_map_page() and others should not
be larger than the returned value.

bool
dma_need_sync(struct device *dev, dma_addr_t dma_addr);

Returns %true if dma_sync_single_for_{device,cpu} calls are required to transfer
memory ownership. Returns %false if those calls can be skipped.

unsigned long
dma_get_merge_boundary(struct device *dev);

Returns the DMA merge boundary. If the device cannot merge any the DMA ad-
dress segments, the function returns 0.

574 Chapter 5. Memory management

Linux Core-api Documentation

5.2.5 Part Id - Streaming DMA mappings

dma_addr_t
dma_map_single(struct device *dev, void *cpu_addr, size_t size,

enum dma_data_direction direction)

Maps a piece of processor virtual memory so it can be accessed by the device and
returns the DMA address of the memory.

The direction for both APIs may be converted freely by casting. However the
dma_API uses a strongly typed enumerator for its direction:

DMA_NONE no direction (used for debugging)
DMA_TO_DEVICE data is going from the memory to the device
DMA_FROM_DEVICE data is coming from the device to the memory
DMA_BIDIRECTIONAL direction isn’t known

Note: Not all memory regions in a machine can be mapped by this API. Further,
contiguous kernel virtual space may not be contiguous as physical memory. Since
this API does not provide any scatter/gather capability, it will fail if the user tries
to map a non-physically contiguous piece of memory. For this reason, memory to
be mapped by this API should be obtained from sources which guarantee it to be
physically contiguous (like kmalloc).

Further, the DMA address of the memory must be within the dma_mask of the
device (the dma_mask is a bit mask of the addressable region for the device, i.e.,
if the DMA address of the memory ANDed with the dma_mask is still equal to
the DMA address, then the device can perform DMA to the memory). To ensure
that the memory allocated by kmalloc is within the dma_mask, the driver may
specify various platform-dependent flags to restrict the DMA address range of
the allocation (e.g., on x86, GFP_DMA guarantees to be within the first 16MB of
available DMA addresses, as required by ISA devices).

Note also that the above constraints on physical contiguity and dma_mask may not
apply if the platform has an IOMMU (a device which maps an I/O DMA address to
a physical memory address). However, to be portable, device driver writers may
not assume that such an IOMMU exists.

Warning: Memory coherency operates at a granularity called the cache line
width. In order formemorymapped by this API to operate correctly, themapped
region must begin exactly on a cache line boundary and end exactly on one (to
prevent two separately mapped regions from sharing a single cache line). Since
the cache line size may not be known at compile time, the API will not enforce
this requirement. Therefore, it is recommended that driver writers who don’t
take special care to determine the cache line size at run time only map virtual
regions that begin and end on page boundaries (which are guaranteed also to
be cache line boundaries).

DMA_TO_DEVICE synchronisation must be done after the last modification of
the memory region by the software and before it is handed off to the device.

5.2. Dynamic DMA mapping using the generic device 575

Linux Core-api Documentation

Once this primitive is used, memory covered by this primitive should be treated
as read-only by the device. If the device may write to it at any point, it should
be DMA_BIDIRECTIONAL (see below).

DMA_FROM_DEVICE synchronisation must be done before the driver accesses
data that may be changed by the device. This memory should be treated as
read-only by the driver. If the driver needs to write to it at any point, it should
be DMA_BIDIRECTIONAL (see below).

DMA_BIDIRECTIONAL requires special handling: it means that the driver isn’
t sure if the memory was modified before being handed off to the device and
also isn’t sure if the device will also modify it. Thus, you must always sync
bidirectional memory twice: once before the memory is handed off to the de-
vice (to make sure all memory changes are flushed from the processor) and
once before the data may be accessed after being used by the device (to make
sure any processor cache lines are updated with data that the device may have
changed).

void
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,

enum dma_data_direction direction)

Unmaps the region previously mapped. All the parameters passed in must be
identical to those passed in (and returned) by the mapping API.

dma_addr_t
dma_map_page(struct device *dev, struct page *page,

unsigned long offset, size_t size,
enum dma_data_direction direction)

void
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,

enum dma_data_direction direction)

API for mapping and unmapping for pages. All the notes andwarnings for the other
mapping APIs apply here. Also, although the <offset> and <size> parameters are
provided to do partial page mapping, it is recommended that you never use these
unless you really know what the cache width is.

dma_addr_t
dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,

enum dma_data_direction dir, unsigned long attrs)

void
dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,

enum dma_data_direction dir, unsigned long attrs)

API for mapping and unmapping for MMIO resources. All the notes and warnings
for the other mapping APIs apply here. The API should only be used to map device
MMIO resources, mapping of RAM is not permitted.

int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)

576 Chapter 5. Memory management

Linux Core-api Documentation

In some circumstances dma_map_single(), dma_map_page() and
dma_map_resource() will fail to create a mapping. A driver can check for
these errors by testing the returned DMA address with dma_mapping_error(). A
non-zero return value means the mapping could not be created and the driver
should take appropriate action (e.g. reduce current DMA mapping usage or delay
and try again later).

int
dma_map_sg(struct device *dev, struct scatterlist *sg,

int nents, enum dma_data_direction direction)

Returns: the number of DMA address segments mapped (this may be shorter than
<nents> passed in if some elements of the scatter/gather list are physically or
virtually adjacent and an IOMMU maps them with a single entry).

Please note that the sg cannot be mapped again if it has been mapped once. The
mapping process is allowed to destroy information in the sg.

As with the other mapping interfaces, dma_map_sg() can fail. When it does, 0 is
returned and a driver must take appropriate action. It is critical that the driver
do something, in the case of a block driver aborting the request or even oopsing
is better than doing nothing and corrupting the filesystem.

With scatterlists, you use the resulting mapping like this:

int i, count = dma_map_sg(dev, sglist, nents, direction);
struct scatterlist *sg;

for_each_sg(sglist, sg, count, i) {
hw_address[i] = sg_dma_address(sg);
hw_len[i] = sg_dma_len(sg);

}

where nents is the number of entries in the sglist.

The implementation is free to merge several consecutive sglist entries into one
(e.g. with an IOMMU, or if several pages just happen to be physically contiguous)
and returns the actual number of sg entries it mapped them to. On failure 0, is
returned.

Then you should loop count times (note: this can be less than nents times) and
use sg_dma_address() and sg_dma_len() macros where you previously accessed
sg->address and sg->length as shown above.

void
dma_unmap_sg(struct device *dev, struct scatterlist *sg,

int nents, enum dma_data_direction direction)

Unmap the previously mapped scatter/gather list. All the parameters must be the
same as those and passed in to the scatter/gather mapping API.

Note: <nents>must be the number you passed in, not the number of DMA address
entries returned.

void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,

(continues on next page)

5.2. Dynamic DMA mapping using the generic device 577

Linux Core-api Documentation

(continued from previous page)
size_t size,
enum dma_data_direction direction)

void
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,

size_t size,
enum dma_data_direction direction)

void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,

int nents,
enum dma_data_direction direction)

void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,

int nents,
enum dma_data_direction direction)

Synchronise a single contiguous or scatter/gathermapping for the CPU and device.
With the sync_sg API, all the parameters must be the same as those passed into
the single mapping API. With the sync_single API, you can use dma_handle and
size parameters that aren’t identical to those passed into the single mapping API
to do a partial sync.

Note: You must do this:
• Before reading values that have been written by DMA from the device (use
the DMA_FROM_DEVICE direction)

• After writing values that will be written to the device using DMA (use the
DMA_TO_DEVICE) direction

• before and after handing memory to the device if the memory is
DMA_BIDIRECTIONAL

See also dma_map_single().

dma_addr_t
dma_map_single_attrs(struct device *dev, void *cpu_addr, size_t size,

enum dma_data_direction dir,
unsigned long attrs)

void
dma_unmap_single_attrs(struct device *dev, dma_addr_t dma_addr,

size_t size, enum dma_data_direction dir,
unsigned long attrs)

int
dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl,

int nents, enum dma_data_direction dir,
unsigned long attrs)

void
dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,

(continues on next page)

578 Chapter 5. Memory management

Linux Core-api Documentation

(continued from previous page)
int nents, enum dma_data_direction dir,
unsigned long attrs)

The four functions above are just like the counterpart functions without the _attrs
suffixes, except that they pass an optional dma_attrs.

The interpretation of DMA attributes is architecture-specific, and each attribute
should be documented in Documentation/DMA-attributes.txt.

If dma_attrs are 0, the semantics of each of these functions is identical to
those of the corresponding function without the _attrs suffix. As a result
dma_map_single_attrs() can generally replace dma_map_single(), etc.

As an example of the use of the *_attrs functions, here’s how you could pass an
attribute DMA_ATTR_FOO when mapping memory for DMA:

#include <linux/dma-mapping.h>
/* DMA_ATTR_FOO should be defined in linux/dma-mapping.h and
* documented in Documentation/DMA-attributes.txt */
...

unsigned long attr;
attr |= DMA_ATTR_FOO;
....
n = dma_map_sg_attrs(dev, sg, nents, DMA_TO_DEVICE, attr);
....

Architectures that care about DMA_ATTR_FOO would check for its presence in
their implementations of the mapping and unmapping routines, e.g.::

void whizco_dma_map_sg_attrs(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)

{
....
if (attrs & DMA_ATTR_FOO)

/* twizzle the frobnozzle */
....

}

5.2.6 Part II - Advanced dma usage

Warning: These pieces of the DMA API should not be used in the majority of cases,
since they cater for unlikely corner cases that don’t belong in usual drivers.
If you don’t understand how cache line coherency works between a processor and
an I/O device, you should not be using this part of the API at all.

void *
dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,

gfp_t flag, unsigned long attrs)

Identical to dma_alloc_coherent() except that when the
DMA_ATTR_NON_CONSISTENT flags is passed in the attrs argument, the

5.2. Dynamic DMA mapping using the generic device 579

Linux Core-api Documentation

platform will choose to return either consistent or non-consistent memory as it
sees fit. By using this API, you are guaranteeing to the platform that you have
all the correct and necessary sync points for this memory in the driver should it
choose to return non-consistent memory.

Note: where the platform can return consistent memory, it will guarantee that the
sync points become nops.

Warning: Handling non-consistent memory is a real pain. You should only use this
API if you positively know your driver will be required to work on one of the rare
(usually non-PCI) architectures that simply cannot make consistent memory.

void
dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,

dma_addr_t dma_handle, unsigned long attrs)

Free memory allocated by the dma_alloc_attrs(). All common parameters must be
identical to those otherwise passed to dma_free_coherent, and the attrs argument
must be identical to the attrs passed to dma_alloc_attrs().

int
dma_get_cache_alignment(void)

Returns the processor cache alignment. This is the absolute minimum alignment
and width that you must observe when either mapping memory or doing partial
flushes.

Note: This API may return a number larger than the actual cache line, but it will
guarantee that one or more cache lines fit exactly into the width returned by this
call. It will also always be a power of two for easy alignment.

void
dma_cache_sync(struct device *dev, void *vaddr, size_t size,

enum dma_data_direction direction)

Do a partial sync of memory that was allocated by dma_alloc_attrs() with the
DMA_ATTR_NON_CONSISTENT flag starting at virtual address vaddr and contin-
uing on for size. Again, you must observe the cache line boundaries when doing
this.

int
dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,

dma_addr_t device_addr, size_t size);

Declare region of memory to be handed out by dma_alloc_coherent() when it’s
asked for coherent memory for this device.

phys_addr is the CPU physical address to which the memory is currently assigned
(this will be ioremapped so the CPU can access the region).

device_addr is the DMA address the device needs to be programmed with to
actually address this memory (this will be handed out as the dma_addr_t in
dma_alloc_coherent()).

size is the size of the area (must be multiples of PAGE_SIZE).

580 Chapter 5. Memory management

Linux Core-api Documentation

As a simplification for the platforms, only one such region of memory may be de-
clared per device.

For reasons of efficiency, most platforms choose to track the declared region only
at the granularity of a page. For smaller allocations, you should use the dma_pool()
API.

5.2.7 Part III - Debug drivers use of the DMA-API

The DMA-API as described above has some constraints. DMA addresses must be
released with the corresponding function with the same size for example. With the
advent of hardware IOMMUs it becomes more and more important that drivers do
not violate those constraints. In the worst case such a violation can result in data
corruption up to destroyed filesystems.

To debug drivers and find bugs in the usage of the DMA-API checking code can
be compiled into the kernel which will tell the developer about those violations. If
your architecture supports it you can select the “Enable debugging of DMA-API
usage”option in your kernel configuration. Enabling this option has a performance
impact. Do not enable it in production kernels.

If you boot the resulting kernel will contain code which does some bookkeeping
about what DMA memory was allocated for which device. If this code detects
an error it prints a warning message with some details into your kernel log. An
example warning message may look like this:

WARNING: at /data2/repos/linux-2.6-iommu/lib/dma-debug.c:448
check_unmap+0x203/0x490()

Hardware name:
forcedeth 0000:00:08.0: DMA-API: device driver frees DMA memory with wrong

function [device address=0x00000000640444be] [size=66 bytes]␣
↪→[mapped as
single] [unmapped as page]
Modules linked in: nfsd exportfs bridge stp llc r8169
Pid: 0, comm: swapper Tainted: G W 2.6.28-dmatest-09289-g8bb99c0 #1
Call Trace:
<IRQ> [<ffffffff80240b22>] warn_slowpath+0xf2/0x130
[<ffffffff80647b70>] _spin_unlock+0x10/0x30
[<ffffffff80537e75>] usb_hcd_link_urb_to_ep+0x75/0xc0
[<ffffffff80647c22>] _spin_unlock_irqrestore+0x12/0x40
[<ffffffff8055347f>] ohci_urb_enqueue+0x19f/0x7c0
[<ffffffff80252f96>] queue_work+0x56/0x60
[<ffffffff80237e10>] enqueue_task_fair+0x20/0x50
[<ffffffff80539279>] usb_hcd_submit_urb+0x379/0xbc0
[<ffffffff803b78c3>] cpumask_next_and+0x23/0x40
[<ffffffff80235177>] find_busiest_group+0x207/0x8a0
[<ffffffff8064784f>] _spin_lock_irqsave+0x1f/0x50
[<ffffffff803c7ea3>] check_unmap+0x203/0x490
[<ffffffff803c8259>] debug_dma_unmap_page+0x49/0x50
[<ffffffff80485f26>] nv_tx_done_optimized+0xc6/0x2c0
[<ffffffff80486c13>] nv_nic_irq_optimized+0x73/0x2b0
[<ffffffff8026df84>] handle_IRQ_event+0x34/0x70
[<ffffffff8026ffe9>] handle_edge_irq+0xc9/0x150
[<ffffffff8020e3ab>] do_IRQ+0xcb/0x1c0

(continues on next page)

5.2. Dynamic DMA mapping using the generic device 581

Linux Core-api Documentation

(continued from previous page)
[<ffffffff8020c093>] ret_from_intr+0x0/0xa
<EOI> <4>---[end trace f6435a98e2a38c0e]---

The driver developer can find the driver and the device including a stacktrace of
the DMA-API call which caused this warning.

Per default only the first error will result in a warning message. All other errors
will only silently counted. This limitation exist to prevent the code from flooding
your kernel log. To support debugging a device driver this can be disabled via
debugfs. See the debugfs interface documentation below for details.

The debugfs directory for the DMA-API debugging code is called dma-api/. In this
directory the following files can currently be found:

dma-
api/all_errors

This file contains a numeric value. If this value is not equal to zero
the debugging code will print a warning for every error it finds into
the kernel log. Be careful with this option, as it can easily flood your
logs.

dma-
api/disabled

This read-only file contains the character‘Y’if the debugging code
is disabled. This can happen when it runs out of memory or if it was
disabled at boot time

dma-
api/dump

This read-only file contains current DMA mappings.

dma-
api/error_count

This file is read-only and shows the total numbers of errors found.

dma-
api/num_errors

The number in this file shows how many warnings will be printed to
the kernel log before it stops. This number is initialized to one at
system boot and be set by writing into this file

dma-
api/min_free_entries

This read-only file can be read to get the minimum number of free
dma_debug_entries the allocator has ever seen. If this value goes
down to zero the code will attempt to increase nr_total_entries to
compensate.

dma-
api/num_free_entries

The current number of free dma_debug_entries in the allocator.

dma-
api/nr_total_entries

The total number of dma_debug_entries in the allocator, both free
and used.

dma-
api/driver_filter

You can write a name of a driver into this file to limit the debug output
to requests from that particular driver. Write an empty string to that
file to disable the filter and see all errors again.

If you have this code compiled into your kernel it will be enabled by default. If you
want to boot without the bookkeeping anyway you can provide ‘dma_debug=off’
as a boot parameter. This will disable DMA-API debugging. Notice that you can
not enable it again at runtime. You have to reboot to do so.

If you want to see debug messages only for a special device driver you can specify
the dma_debug_driver=<drivername> parameter. This will enable the driver filter
at boot time. The debug code will only print errors for that driver afterwards. This
filter can be disabled or changed later using debugfs.

When the code disables itself at runtime this is most likely because it
ran out of dma_debug_entries and was unable to allocate more on-demand.

582 Chapter 5. Memory management

Linux Core-api Documentation

65536 entries are preallocated at boot - if this is too low for you boot with
‘dma_debug_entries=<your_desired_number>’to overwrite the default. Note that
the code allocates entries in batches, so the exact number of preallocated entries
may be greater than the actual number requested. The code will print to the kernel
log each time it has dynamically allocated as many entries as were initially preal-
located. This is to indicate that a larger preallocation size may be appropriate, or
if it happens continually that a driver may be leaking mappings.

void
debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);

dma-debug interface debug_dma_mapping_error() to debug drivers that fail
to check DMA mapping errors on addresses returned by dma_map_single()
and dma_map_page() interfaces. This interface clears a flag set by de-
bug_dma_map_page() to indicate that dma_mapping_error() has been called by
the driver. When driver does unmap, debug_dma_unmap() checks the flag and if
this flag is still set, prints warning message that includes call trace that leads up
to the unmap. This interface can be called from dma_mapping_error() routines to
enable DMA mapping error check debugging.

5.3 Dynamic DMA mapping Guide

Author David S. Miller <davem@redhat.com>
Author Richard Henderson <rth@cygnus.com>
Author Jakub Jelinek <jakub@redhat.com>

This is a guide to device driver writers on how to use the DMA API with example
pseudo-code. For a concise description of the API, see DMA-API.txt.

5.3.1 CPU and DMA addresses

There are several kinds of addresses involved in the DMA API, and it’s important
to understand the differences.

The kernel normally uses virtual addresses. Any address returned by kmalloc(),
vmalloc(), and similar interfaces is a virtual address and can be stored in a void
*.

The virtual memory system (TLB, page tables, etc.) translates virtual addresses to
CPU physical addresses, which are stored as“phys_addr_t”or“resource_size_t”.
The kernel manages device resources like registers as physical addresses. These
are the addresses in /proc/iomem. The physical address is not directly useful to a
driver; it must use ioremap() to map the space and produce a virtual address.

I/O devices use a third kind of address: a“bus address”. If a device has registers
at an MMIO address, or if it performs DMA to read or write system memory, the
addresses used by the device are bus addresses. In some systems, bus addresses
are identical to CPU physical addresses, but in general they are not. IOMMUs and
host bridges can produce arbitrary mappings between physical and bus addresses.

5.3. Dynamic DMA mapping Guide 583

mailto:davem@redhat.com
mailto:rth@cygnus.com
mailto:jakub@redhat.com

Linux Core-api Documentation

From a device’s point of view, DMA uses the bus address space, but it may be
restricted to a subset of that space. For example, even if a system supports 64-bit
addresses for main memory and PCI BARs, it may use an IOMMU so devices only
need to use 32-bit DMA addresses.

Here’s a picture and some examples:
CPU CPU Bus

Virtual Physical Address
Address Address Space
Space Space

+-------+ +------+ +------+
| | |MMIO | Offset | |
| | Virtual |Space | applied | |

C +-------+ --------> B +------+ ----------> +------+ A
| | mapping | | by host | |

+-----+ | | | | bridge | | +--------+
			+------+					
CPU				RAM				Device
+-----+ +-------+ +------+ +------+ +--------+

| | Virtual |Buffer| Mapping | |
X +-------+ --------> Y +------+ <---------- +------+ Z

| | mapping | RAM | by IOMMU
| | | |
| | | |
+-------+ +------+

During the enumeration process, the kernel learns about I/O devices and their
MMIO space and the host bridges that connect them to the system. For example,
if a PCI device has a BAR, the kernel reads the bus address (A) from the BAR
and converts it to a CPU physical address (B). The address B is stored in a struct
resource and usually exposed via /proc/iomem. When a driver claims a device, it
typically uses ioremap() to map physical address B at a virtual address (C). It can
then use, e.g., ioread32(C), to access the device registers at bus address A.

If the device supports DMA, the driver sets up a buffer using kmalloc() or a similar
interface, which returns a virtual address (X). The virtual memory system maps X
to a physical address (Y) in system RAM. The driver can use virtual address X to
access the buffer, but the device itself cannot because DMA doesn’t go through
the CPU virtual memory system.

In some simple systems, the device can do DMA directly to physical address Y.
But in many others, there is IOMMU hardware that translates DMA addresses to
physical addresses, e.g., it translates Z to Y. This is part of the reason for the DMA
API: the driver can give a virtual address X to an interface like dma_map_single(),
which sets up any required IOMMU mapping and returns the DMA address Z. The
driver then tells the device to do DMA to Z, and the IOMMU maps it to the buffer
at address Y in system RAM.

So that Linux can use the dynamic DMA mapping, it needs some help from the
drivers, namely it has to take into account that DMA addresses should be mapped
only for the time they are actually used and unmapped after the DMA transfer.

The following API will work of course even on platforms where no such hardware

584 Chapter 5. Memory management

Linux Core-api Documentation

exists.

Note that the DMA API works with any bus independent of the underlying micro-
processor architecture. You should use the DMA API rather than the bus-specific
DMA API, i.e., use the dma_map_*() interfaces rather than the pci_map_*() inter-
faces.

First of all, you should make sure:

#include <linux/dma-mapping.h>

is in your driver, which provides the definition of dma_addr_t. This type can hold
any valid DMA address for the platform and should be used everywhere you hold
a DMA address returned from the DMA mapping functions.

5.3.2 What memory is DMA’able?

The first piece of information you must know is what kernel memory can be used
with the DMA mapping facilities. There has been an unwritten set of rules regard-
ing this, and this text is an attempt to finally write them down.

If you acquired your memory via the page allocator (i.e. __get_free_page*()) or the
generic memory allocators (i.e. kmalloc() or kmem_cache_alloc()) then you may
DMA to/from that memory using the addresses returned from those routines.

This means specifically that you may _not_ use the memory/addresses returned
from vmalloc() for DMA. It is possible to DMA to the _underlying_ memory
mapped into a vmalloc() area, but this requires walking page tables to get the
physical addresses, and then translating each of those pages back to a kernel ad-
dress using something like __va(). [EDIT: Update this when we integrate Gerd
Knorr’s generic code which does this.]
This rule also means that you may use neither kernel image addresses (items in
data/text/bss segments), nor module image addresses, nor stack addresses for
DMA. These could all be mapped somewhere entirely different than the rest of
physical memory. Even if those classes of memory could physically work with
DMA, you’d need to ensure the I/O buffers were cacheline-aligned. Without
that, you’d see cacheline sharing problems (data corruption) on CPUs with DMA-
incoherent caches. (The CPU could write to one word, DMA would write to a
different one in the same cache line, and one of them could be overwritten.)

Also, this means that you cannot take the return of a kmap() call and DMA to/from
that. This is similar to vmalloc().

What about block I/O and networking buffers? The block I/O and networking sub-
systems make sure that the buffers they use are valid for you to DMA from/to.

5.3. Dynamic DMA mapping Guide 585

Linux Core-api Documentation

5.3.3 DMA addressing capabilities

By default, the kernel assumes that your device can address 32-bits of DMA ad-
dressing. For a 64-bit capable device, this needs to be increased, and for a device
with limitations, it needs to be decreased.

Special note about PCI: PCI-X specification requires PCI-X devices to support 64-
bit addressing (DAC) for all transactions. And at least one platform (SGI SN2)
requires 64-bit consistent allocations to operate correctly when the IO bus is in
PCI-X mode.

For correct operation, you must set the DMA mask to inform the kernel about your
devices DMA addressing capabilities.

This is performed via a call to dma_set_mask_and_coherent():

int dma_set_mask_and_coherent(struct device *dev, u64 mask);

which will set the mask for both streaming and coherent APIs together. If you
have some special requirements, then the following two separate calls can be used
instead:

The setup for streaming mappings is performed via a call to
dma_set_mask():

int dma_set_mask(struct device *dev, u64 mask);

The setup for consistent allocations is performed via a call to
dma_set_coherent_mask():

int dma_set_coherent_mask(struct device *dev, u64 mask);

Here, dev is a pointer to the device struct of your device, and mask is a bit mask
describing which bits of an address your device supports. Often the device struct
of your device is embedded in the bus-specific device struct of your device. For
example, &pdev->dev is a pointer to the device struct of a PCI device (pdev is a
pointer to the PCI device struct of your device).

These calls usually return zero to indicated your device can perform DMA prop-
erly on the machine given the address mask you provided, but they might return
an error if the mask is too small to be supportable on the given system. If it re-
turns non-zero, your device cannot perform DMA properly on this platform, and
attempting to do so will result in undefined behavior. You must not use DMA on
this device unless the dma_set_mask family of functions has returned success.

This means that in the failure case, you have two options:

1) Use some non-DMA mode for data transfer, if possible.

2) Ignore this device and do not initialize it.

It is recommended that your driver print a kernel KERN_WARNINGmessage when
setting the DMA mask fails. In this manner, if a user of your driver reports that
performance is bad or that the device is not even detected, you can ask them for
the kernel messages to find out exactly why.

The standard 64-bit addressing device would do something like this:

586 Chapter 5. Memory management

Linux Core-api Documentation

if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
dev_warn(dev, "mydev: No suitable DMA available\n");
goto ignore_this_device;

}

If the device only supports 32-bit addressing for descriptors in the coherent allo-
cations, but supports full 64-bits for streaming mappings it would look like this:

if (dma_set_mask(dev, DMA_BIT_MASK(64))) {
dev_warn(dev, "mydev: No suitable DMA available\n");
goto ignore_this_device;

}

The coherent mask will always be able to set the same or a smaller mask
as the streaming mask. However for the rare case that a device driver only
uses consistent allocations, one would have to check the return value from
dma_set_coherent_mask().

Finally, if your device can only drive the low 24-bits of address you might do some-
thing like:

if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
dev_warn(dev, "mydev: 24-bit DMA addressing not available\n");
goto ignore_this_device;

}

When dma_set_mask() or dma_set_mask_and_coherent() is successful, and returns
zero, the kernel saves away this mask you have provided. The kernel will use this
information later when you make DMA mappings.

There is a case which we are aware of at this time, which is worth mentioning
in this documentation. If your device supports multiple functions (for example
a sound card provides playback and record functions) and the various different
functions have _different_ DMA addressing limitations, you may wish to probe
each mask and only provide the functionality which the machine can handle. It
is important that the last call to dma_set_mask() be for the most specific mask.

Here is pseudo-code showing how this might be done:

#define PLAYBACK_ADDRESS_BITS DMA_BIT_MASK(32)
#define RECORD_ADDRESS_BITS DMA_BIT_MASK(24)

struct my_sound_card *card;
struct device *dev;

...
if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {

card->playback_enabled = 1;
} else {

card->playback_enabled = 0;
dev_warn(dev, "%s: Playback disabled due to DMA limitations\n",

card->name);
}
if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {

card->record_enabled = 1;
(continues on next page)

5.3. Dynamic DMA mapping Guide 587

Linux Core-api Documentation

(continued from previous page)
} else {

card->record_enabled = 0;
dev_warn(dev, "%s: Record disabled due to DMA limitations\n",

card->name);
}

A sound card was used as an example here because this genre of PCI devices seems
to be littered with ISA chips given a PCI front end, and thus retaining the 16MB
DMA addressing limitations of ISA.

5.3.4 Types of DMA mappings

There are two types of DMA mappings:

• Consistent DMA mappings which are usually mapped at driver initialization,
unmapped at the end and for which the hardware should guarantee that the
device and the CPU can access the data in parallel and will see updates made
by each other without any explicit software flushing.

Think of “consistent”as “synchronous”or “coherent”.
The current default is to return consistent memory in the low 32 bits of the
DMA space. However, for future compatibility you should set the consistent
mask even if this default is fine for your driver.

Good examples of what to use consistent mappings for are:

– Network card DMA ring descriptors.
– SCSI adapter mailbox command data structures.
– Device firmware microcode executed out of main memory.

The invariant these examples all require is that any CPU store to memory
is immediately visible to the device, and vice versa. Consistent mappings
guarantee this.

Important: Consistent DMA memory does not preclude the usage of proper
memory barriers. The CPU may reorder stores to consistent memory just as
it may normal memory. Example: if it is important for the device to see the
first word of a descriptor updated before the second, you must do something
like:

desc->word0 = address;
wmb();
desc->word1 = DESC_VALID;

in order to get correct behavior on all platforms.

Also, on some platforms your driver may need to flush CPU write buffers in
much the same way as it needs to flush write buffers found in PCI bridges
(such as by reading a register’s value after writing it).

588 Chapter 5. Memory management

Linux Core-api Documentation

• Streaming DMA mappings which are usually mapped for one DMA transfer,
unmapped right after it (unless you use dma_sync_* below) and for which
hardware can optimize for sequential accesses.

Think of“streaming”as“asynchronous”or“outside the coherency domain”
.

Good examples of what to use streaming mappings for are:

– Networking buffers transmitted/received by a device.
– Filesystem buffers written/read by a SCSI device.

The interfaces for using this type of mapping were designed in such a way
that an implementation can make whatever performance optimizations the
hardware allows. To this end, when using such mappings you must be explicit
about what you want to happen.

Neither type of DMA mapping has alignment restrictions that come from the un-
derlying bus, although some devices may have such restrictions. Also, systems
with caches that aren’t DMA-coherent will work better when the underlying buffers
don’t share cache lines with other data.

5.3.5 Using Consistent DMA mappings

To allocate and map large (PAGE_SIZE or so) consistent DMA regions, you should
do:

dma_addr_t dma_handle;

cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);

where device is a struct device *. This may be called in interrupt context with
the GFP_ATOMIC flag.

Size is the length of the region you want to allocate, in bytes.

This routine will allocate RAM for that region, so it acts similarly to
__get_free_pages() (but takes size instead of a page order). If your driver needs
regions sized smaller than a page, you may prefer using the dma_pool interface,
described below.

The consistent DMA mapping interfaces, will by default return a DMA address
which is 32-bit addressable. Even if the device indicates (via the DMA mask) that
it may address the upper 32-bits, consistent allocation will only return > 32-bit
addresses for DMA if the consistent DMA mask has been explicitly changed via
dma_set_coherent_mask(). This is true of the dma_pool interface as well.

dma_alloc_coherent() returns two values: the virtual address which you can use
to access it from the CPU and dma_handle which you pass to the card.

The CPU virtual address and the DMA address are both guaranteed to be aligned
to the smallest PAGE_SIZE order which is greater than or equal to the requested
size. This invariant exists (for example) to guarantee that if you allocate a chunk
which is smaller than or equal to 64 kilobytes, the extent of the buffer you receive
will not cross a 64K boundary.

5.3. Dynamic DMA mapping Guide 589

Linux Core-api Documentation

To unmap and free such a DMA region, you call:

dma_free_coherent(dev, size, cpu_addr, dma_handle);

where dev, size are the same as in the above call and cpu_addr and dma_handle
are the values dma_alloc_coherent() returned to you. This function may not be
called in interrupt context.

If your driver needs lots of smaller memory regions, you can write custom code to
subdivide pages returned by dma_alloc_coherent(), or you can use the dma_pool
API to do that. A dma_pool is like a kmem_cache, but it uses dma_alloc_coherent(),
not __get_free_pages(). Also, it understands common hardware constraints for
alignment, like queue heads needing to be aligned on N byte boundaries.

Create a dma_pool like this:

struct dma_pool *pool;

pool = dma_pool_create(name, dev, size, align, boundary);

The “name”is for diagnostics (like a kmem_cache name); dev and size are as
above. The device’s hardware alignment requirement for this type of data is
“align”(which is expressed in bytes, and must be a power of two). If your device
has no boundary crossing restrictions, pass 0 for boundary; passing 4096 says
memory allocated from this pool must not cross 4KByte boundaries (but at that
time it may be better to use dma_alloc_coherent() directly instead).

Allocate memory from a DMA pool like this:

cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);

flags are GFP_KERNEL if blocking is permitted (not in_interrupt nor holding SMP
locks), GFP_ATOMIC otherwise. Like dma_alloc_coherent(), this returns two val-
ues, cpu_addr and dma_handle.

Free memory that was allocated from a dma_pool like this:

dma_pool_free(pool, cpu_addr, dma_handle);

where pool is what you passed to dma_pool_alloc(), and cpu_addr and
dma_handle are the values dma_pool_alloc() returned. This function may be
called in interrupt context.

Destroy a dma_pool by calling:

dma_pool_destroy(pool);

Make sure you’ve called dma_pool_free() for all memory allocated from a pool
before you destroy the pool. This function may not be called in interrupt context.

590 Chapter 5. Memory management

Linux Core-api Documentation

5.3.6 DMA Direction

The interfaces described in subsequent portions of this document take a DMA
direction argument, which is an integer and takes on one of the following values:

DMA_BIDIRECTIONAL
DMA_TO_DEVICE
DMA_FROM_DEVICE
DMA_NONE

You should provide the exact DMA direction if you know it.

DMA_TO_DEVICE means“frommain memory to the device”DMA_FROM_DEVICE
means“from the device to main memory”It is the direction in which the data moves
during the DMA transfer.

You are _strongly_ encouraged to specify this as precisely as you possibly can.

If you absolutely cannot know the direction of the DMA transfer, specify
DMA_BIDIRECTIONAL. It means that the DMA can go in either direction. The
platform guarantees that you may legally specify this, and that it will work, but
this may be at the cost of performance for example.

The value DMA_NONE is to be used for debugging. One can hold this in a data
structure before you come to know the precise direction, and this will help catch
cases where your direction tracking logic has failed to set things up properly.

Another advantage of specifying this value precisely (outside of potential platform-
specific optimizations of such) is for debugging. Some platforms actually have a
write permission boolean which DMA mappings can be marked with, much like
page protections in the user program address space. Such platforms can and
do report errors in the kernel logs when the DMA controller hardware detects
violation of the permission setting.

Only streaming mappings specify a direction, consistent mappings implicitly have
a direction attribute setting of DMA_BIDIRECTIONAL.

The SCSI subsystem tells you the direction to use in the‘sc_data_direction’member
of the SCSI command your driver is working on.

For Networking drivers, it’s a rather simple affair. For transmit packets,
map/unmap them with the DMA_TO_DEVICE direction specifier. For receive pack-
ets, just the opposite, map/unmap them with the DMA_FROM_DEVICE direction
specifier.

5.3.7 Using Streaming DMA mappings

The streaming DMA mapping routines can be called from interrupt context. There
are two versions of each map/unmap, one which will map/unmap a single memory
region, and one which will map/unmap a scatterlist.

To map a single region, you do:

struct device *dev = &my_dev->dev;
dma_addr_t dma_handle;

(continues on next page)

5.3. Dynamic DMA mapping Guide 591

Linux Core-api Documentation

(continued from previous page)
void *addr = buffer->ptr;
size_t size = buffer->len;

dma_handle = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling;
}

and to unmap it:

dma_unmap_single(dev, dma_handle, size, direction);

You should call dma_mapping_error() as dma_map_single() could fail and return
error. Doing so will ensure that the mapping code will work correctly on all DMA
implementations without any dependency on the specifics of the underlying imple-
mentation. Using the returned address without checking for errors could result
in failures ranging from panics to silent data corruption. The same applies to
dma_map_page() as well.

You should call dma_unmap_single() when the DMA activity is finished, e.g., from
the interrupt which told you that the DMA transfer is done.

Using CPU pointers like this for single mappings has a disadvantage: you cannot
reference HIGHMEM memory in this way. Thus, there is a map/unmap interface
pair akin to dma_{map,unmap}_single(). These interfaces deal with page/offset
pairs instead of CPU pointers. Specifically:

struct device *dev = &my_dev->dev;
dma_addr_t dma_handle;
struct page *page = buffer->page;
unsigned long offset = buffer->offset;
size_t size = buffer->len;

dma_handle = dma_map_page(dev, page, offset, size, direction);
if (dma_mapping_error(dev, dma_handle)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling;
}

...

dma_unmap_page(dev, dma_handle, size, direction);

Here, “offset”means byte offset within the given page.
You should call dma_mapping_error() as dma_map_page() could fail and return
error as outlined under the dma_map_single() discussion.

592 Chapter 5. Memory management

Linux Core-api Documentation

You should call dma_unmap_page() when the DMA activity is finished, e.g., from
the interrupt which told you that the DMA transfer is done.

With scatterlists, you map a region gathered from several regions by:

int i, count = dma_map_sg(dev, sglist, nents, direction);
struct scatterlist *sg;

for_each_sg(sglist, sg, count, i) {
hw_address[i] = sg_dma_address(sg);
hw_len[i] = sg_dma_len(sg);

}

where nents is the number of entries in the sglist.

The implementation is free to merge several consecutive sglist entries into one
(e.g. if DMA mapping is done with PAGE_SIZE granularity, any consecutive sglist
entries can be merged into one provided the first one ends and the second one
starts on a page boundary - in fact this is a huge advantage for cards which either
cannot do scatter-gather or have very limited number of scatter-gather entries)
and returns the actual number of sg entries it mapped them to. On failure 0 is
returned.

Then you should loop count times (note: this can be less than nents times) and
use sg_dma_address() and sg_dma_len() macros where you previously accessed
sg->address and sg->length as shown above.

To unmap a scatterlist, just call:

dma_unmap_sg(dev, sglist, nents, direction);

Again, make sure DMA activity has already finished.

Note: The ‘nents’argument to the dma_unmap_sg call must be the _same_
one you passed into the dma_map_sg call, it should _NOT_ be the ‘count’value
returned from the dma_map_sg call.

Every dma_map_{single,sg}() call should have its dma_unmap_{single,sg}() coun-
terpart, because the DMA address space is a shared resource and you could render
the machine unusable by consuming all DMA addresses.

If you need to use the same streaming DMA region multiple times and touch the
data in between the DMA transfers, the buffer needs to be synced properly in order
for the CPU and device to see the most up-to-date and correct copy of the DMA
buffer.

So, firstly, just map it with dma_map_{single,sg}(), and after each DMA transfer
call either:

dma_sync_single_for_cpu(dev, dma_handle, size, direction);

or:

dma_sync_sg_for_cpu(dev, sglist, nents, direction);

5.3. Dynamic DMA mapping Guide 593

Linux Core-api Documentation

as appropriate.

Then, if you wish to let the device get at the DMA area again, finish accessing the
data with the CPU, and then before actually giving the buffer to the hardware call
either:

dma_sync_single_for_device(dev, dma_handle, size, direction);

or:

dma_sync_sg_for_device(dev, sglist, nents, direction);

as appropriate.

Note: The ‘nents’argument to dma_sync_sg_for_cpu() and
dma_sync_sg_for_device() must be the same passed to dma_map_sg(). It is
NOT the count returned by dma_map_sg().

After the last DMA transfer call one of the DMA unmap routines
dma_unmap_{single,sg}(). If you don’t touch the data from the first dma_map_*()
call till dma_unmap_*(), then you don’t have to call the dma_sync_*() routines at
all.

Here is pseudo code which shows a situation in which you would need to use the
dma_sync_*() interfaces:

my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
{

dma_addr_t mapping;

mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
if (dma_mapping_error(cp->dev, mapping)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling;
}

cp->rx_buf = buffer;
cp->rx_len = len;
cp->rx_dma = mapping;

give_rx_buf_to_card(cp);
}

...

my_card_interrupt_handler(int irq, void *devid, struct pt_regs *regs)
{

struct my_card *cp = devid;

...
if (read_card_status(cp) == RX_BUF_TRANSFERRED) {

(continues on next page)

594 Chapter 5. Memory management

Linux Core-api Documentation

(continued from previous page)
struct my_card_header *hp;

/* Examine the header to see if we wish
* to accept the data. But synchronize
* the DMA transfer with the CPU first
* so that we see updated contents.
*/

dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
cp->rx_len,
DMA_FROM_DEVICE);

/* Now it is safe to examine the buffer. */
hp = (struct my_card_header *) cp->rx_buf;
if (header_is_ok(hp)) {

dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
DMA_FROM_DEVICE);

pass_to_upper_layers(cp->rx_buf);
make_and_setup_new_rx_buf(cp);

} else {
/* CPU should not write to
* DMA_FROM_DEVICE-mapped area,
* so dma_sync_single_for_device() is
* not needed here. It would be required
* for DMA_BIDIRECTIONAL mapping if
* the memory was modified.
*/

give_rx_buf_to_card(cp);
}

}
}

Drivers converted fully to this interface should not use virt_to_bus() any longer,
nor should they use bus_to_virt(). Some drivers have to be changed a little
bit, because there is no longer an equivalent to bus_to_virt() in the dynamic
DMA mapping scheme - you have to always store the DMA addresses returned
by the dma_alloc_coherent(), dma_pool_alloc(), and dma_map_single() calls
(dma_map_sg() stores them in the scatterlist itself if the platform supports dy-
namic DMA mapping in hardware) in your driver structures and/or in the card
registers.

All drivers should be using these interfaces with no exceptions. It is planned to
completely remove virt_to_bus() and bus_to_virt() as they are entirely deprecated.
Some ports already do not provide these as it is impossible to correctly support
them.

5.3. Dynamic DMA mapping Guide 595

Linux Core-api Documentation

5.3.8 Handling Errors

DMA address space is limited on some architectures and an allocation failure can
be determined by:

• checking if dma_alloc_coherent() returns NULL or dma_map_sg returns 0

• checking the dma_addr_t returned from dma_map_single() and
dma_map_page() by using dma_mapping_error():

dma_addr_t dma_handle;

dma_handle = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling;
}

• unmap pages that are already mapped, when mapping error occurs in the
middle of a multiple page mapping attempt. These example are applicable to
dma_map_page() as well.

Example 1:

dma_addr_t dma_handle1;
dma_addr_t dma_handle2;

dma_handle1 = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle1)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling1;
}
dma_handle2 = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle2)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling2;
}

...

map_error_handling2:
dma_unmap_single(dma_handle1);

map_error_handling1:

Example 2:

596 Chapter 5. Memory management

Linux Core-api Documentation

/*
* if buffers are allocated in a loop, unmap all mapped buffers when
* mapping error is detected in the middle
*/

dma_addr_t dma_addr;
dma_addr_t array[DMA_BUFFERS];
int save_index = 0;

for (i = 0; i < DMA_BUFFERS; i++) {

...

dma_addr = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_addr)) {

/*
* reduce current DMA mapping usage,
* delay and try again later or
* reset driver.
*/

goto map_error_handling;
}
array[i].dma_addr = dma_addr;
save_index++;

}

...

map_error_handling:

for (i = 0; i < save_index; i++) {

...

dma_unmap_single(array[i].dma_addr);
}

Networking drivers must call dev_kfree_skb() to free the socket buffer and return
NETDEV_TX_OK if the DMA mapping fails on the transmit hook (ndo_start_xmit).
This means that the socket buffer is just dropped in the failure case.

SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping fails
in the queuecommand hook. This means that the SCSI subsystem passes the com-
mand to the driver again later.

5.3.9 Optimizing Unmap State Space Consumption

Onmany platforms, dma_unmap_{single,page}() is simply a nop. Therefore, keep-
ing track of the mapping address and length is a waste of space. Instead of filling
your drivers up with ifdefs and the like to“work around”this (which would defeat
the whole purpose of a portable API) the following facilities are provided.

Actually, instead of describing the macros one by one, we’ll transform some ex-
ample code.

5.3. Dynamic DMA mapping Guide 597

Linux Core-api Documentation

1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures. Exam-
ple, before:

struct ring_state {
struct sk_buff *skb;
dma_addr_t mapping;
__u32 len;

};

after:

struct ring_state {
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(mapping);
DEFINE_DMA_UNMAP_LEN(len);

};

2) Use dma_unmap_{addr,len}_set() to set these values. Example, before:

ringp->mapping = FOO;
ringp->len = BAR;

after:

dma_unmap_addr_set(ringp, mapping, FOO);
dma_unmap_len_set(ringp, len, BAR);

3) Use dma_unmap_{addr,len}() to access these values. Example, before:

dma_unmap_single(dev, ringp->mapping, ringp->len,
DMA_FROM_DEVICE);

after:

dma_unmap_single(dev,
dma_unmap_addr(ringp, mapping),
dma_unmap_len(ringp, len),
DMA_FROM_DEVICE);

It really should be self-explanatory. We treat the ADDR and LEN separately, be-
cause it is possible for an implementation to only need the address in order to
perform the unmap operation.

5.3.10 Platform Issues

If you are just writing drivers for Linux and do not maintain an architecture port
for the kernel, you can safely skip down to “Closing”.
1) Struct scatterlist requirements.

You need to enable CONFIG_NEED_SG_DMA_LENGTH if the architecture
supports IOMMUs (including software IOMMU).

2) ARCH_DMA_MINALIGN

Architectures must ensure that kmalloc’ed buffer is DMA-safe. Drivers and
subsystems depend on it. If an architecture isn’t fully DMA-coherent (i.e.

598 Chapter 5. Memory management

Linux Core-api Documentation

hardware doesn’t ensure that data in the CPU cache is identical to data
in main memory), ARCH_DMA_MINALIGN must be set so that the memory
allocator makes sure that kmalloc’ed buffer doesn’t share a cache line with
the others. See arch/arm/include/asm/cache.h as an example.

Note that ARCH_DMA_MINALIGN is about DMA memory alignment con-
straints. You don’t need to worry about the architecture data alignment
constraints (e.g. the alignment constraints about 64-bit objects).

5.3.11 Closing

This document, and the API itself, would not be in its current form without the
feedback and suggestions from numerous individuals. We would like to specifically
mention, in no particular order, the following people:

Russell King <rmk@arm.linux.org.uk>
Leo Dagum <dagum@barrel.engr.sgi.com>
Ralf Baechle <ralf@oss.sgi.com>
Grant Grundler <grundler@cup.hp.com>
Jay Estabrook <Jay.Estabrook@compaq.com>
Thomas Sailer <sailer@ife.ee.ethz.ch>
Andrea Arcangeli <andrea@suse.de>
Jens Axboe <jens.axboe@oracle.com>
David Mosberger-Tang <davidm@hpl.hp.com>

5.4 DMA attributes

This document describes the semantics of the DMA attributes that are defined in
linux/dma-mapping.h.

5.4.1 DMA_ATTR_WEAK_ORDERING

DMA_ATTR_WEAK_ORDERING specifies that reads andwrites to themappingmay
be weakly ordered, that is that reads and writes may pass each other.

Since it is optional for platforms to implement DMA_ATTR_WEAK_ORDERING,
those that do not will simply ignore the attribute and exhibit default behavior.

5.4.2 DMA_ATTR_WRITE_COMBINE

DMA_ATTR_WRITE_COMBINE specifies that writes to the mapping may be
buffered to improve performance.

Since it is optional for platforms to implement DMA_ATTR_WRITE_COMBINE,
those that do not will simply ignore the attribute and exhibit default behavior.

5.4. DMA attributes 599

Linux Core-api Documentation

5.4.3 DMA_ATTR_NON_CONSISTENT

DMA_ATTR_NON_CONSISTENT lets the platform to choose to return either con-
sistent or non-consistent memory as it sees fit. By using this API, you are guaran-
teeing to the platform that you have all the correct and necessary sync points for
this memory in the driver.

5.4.4 DMA_ATTR_NO_KERNEL_MAPPING

DMA_ATTR_NO_KERNEL_MAPPING lets the platform to avoid creating a kernel
virtual mapping for the allocated buffer. On some architectures creating such
mapping is non-trivial task and consumes very limited resources (like kernel vir-
tual address space or dma consistent address space). Buffers allocated with this
attribute can be only passed to user space by calling dma_mmap_attrs(). By us-
ing this API, you are guaranteeing that you won’t dereference the pointer re-
turned by dma_alloc_attr(). You can treat it as a cookie that must be passed to
dma_mmap_attrs() and dma_free_attrs(). Make sure that both of these also get
this attribute set on each call.

Since it is optional for platforms to implement DMA_ATTR_NO_KERNEL_MAPPING,
those that do not will simply ignore the attribute and exhibit default behavior.

5.4.5 DMA_ATTR_SKIP_CPU_SYNC

By default dma_map_{single,page,sg} functions family transfer a given buffer
from CPU domain to device domain. Some advanced use cases might require
sharing a buffer between more than one device. This requires having a map-
ping created separately for each device and is usually performed by calling
dma_map_{single,page,sg} function more than once for the given buffer with
device pointer to each device taking part in the buffer sharing. The first call
transfers a buffer from ‘CPU’domain to ‘device’domain, what synchronizes
CPU caches for the given region (usually it means that the cache has been
flushed or invalidated depending on the dma direction). However, next calls to
dma_map_{single,page,sg}() for other devices will perform exactly the same syn-
chronization operation on the CPU cache. CPU cache synchronization might be a
time consuming operation, especially if the buffers are large, so it is highly rec-
ommended to avoid it if possible. DMA_ATTR_SKIP_CPU_SYNC allows platform
code to skip synchronization of the CPU cache for the given buffer assuming that
it has been already transferred to‘device’domain. This attribute can be also used
for dma_unmap_{single,page,sg} functions family to force buffer to stay in device
domain after releasing a mapping for it. Use this attribute with care!

600 Chapter 5. Memory management

Linux Core-api Documentation

5.4.6 DMA_ATTR_FORCE_CONTIGUOUS

By default DMA-mapping subsystem is allowed to assemble the buffer allocated by
dma_alloc_attrs() function from individual pages if it can be mapped as contiguous
chunk into device dma address space. By specifying this attribute the allocated
buffer is forced to be contiguous also in physical memory.

5.4.7 DMA_ATTR_ALLOC_SINGLE_PAGES

This is a hint to the DMA-mapping subsystem that it’s probably not worth the time
to try to allocate memory to in a way that gives better TLB efficiency (AKA it’s not
worth trying to build the mapping out of larger pages). You might want to specify
this if:

• You know that the accesses to this memory won’t thrash the TLB. You might
know that the accesses are likely to be sequential or that they aren’t sequen-
tial but it’s unlikely you’ll ping-pong between many addresses that are likely
to be in different physical pages.

• You know that the penalty of TLB misses while accessing the memory will be
small enough to be inconsequential. If you are doing a heavy operation like
decryption or decompression this might be the case.

• You know that the DMAmapping is fairly transitory. If you expect themapping
to have a short lifetime then it may be worth it to optimize allocation (avoid
coming up with large pages) instead of getting the slight performance win of
larger pages.

Setting this hint doesn’t guarantee that you won’t get huge pages, but it means
that we won’t try quite as hard to get them.

Note: At the moment DMA_ATTR_ALLOC_SINGLE_PAGES is only implemented
on ARM, though ARM64 patches will likely be posted soon.

5.4.8 DMA_ATTR_NO_WARN

This tells the DMA-mapping subsystem to suppress allocation failure reports (sim-
ilarly to __GFP_NOWARN).

On some architectures allocation failures are reported with error messages to the
system logs. Although this can help to identify and debug problems, drivers which
handle failures (eg, retry later) have no problems with them, and can actually flood
the system logs with error messages that aren’t any problem at all, depending on
the implementation of the retry mechanism.

So, this provides a way for drivers to avoid those error messages on calls where
allocation failures are not a problem, and shouldn’t bother the logs.

Note: At the moment DMA_ATTR_NO_WARN is only implemented on PowerPC.

5.4. DMA attributes 601

Linux Core-api Documentation

5.4.9 DMA_ATTR_PRIVILEGED

Some advanced peripherals such as remote processors and GPUs perform ac-
cesses to DMA buffers in both privileged “supervisor”and unprivileged “user”
modes. This attribute is used to indicate to the DMA-mapping subsystem that the
buffer is fully accessible at the elevated privilege level (and ideally inaccessible or
at least read-only at the lesser-privileged levels).

5.5 DMA with ISA and LPC devices

Author Pierre Ossman <drzeus@drzeus.cx>
This document describes how to do DMA transfers using the old ISA DMA con-
troller. Even though ISA is more or less dead today the LPC bus uses the same
DMA system so it will be around for quite some time.

5.5.1 Headers and dependencies

To do ISA style DMA you need to include two headers:

#include <linux/dma-mapping.h>
#include <asm/dma.h>

The first is the generic DMA API used to convert virtual addresses to bus addresses
(see Documentation/DMA-API.txt for details).

The second contains the routines specific to ISA DMA transfers. Since this is not
present on all platforms make sure you construct your Kconfig to be dependent on
ISA_DMA_API (not ISA) so that nobody tries to build your driver on unsupported
platforms.

5.5.2 Buffer allocation

The ISA DMA controller has some very strict requirements on which memory it
can access so extra care must be taken when allocating buffers.

(You usually need a special buffer for DMA transfers instead of transferring directly
to and from your normal data structures.)

The DMA-able address space is the lowest 16 MB of _physical_ memory. Also the
transfer block may not cross page boundaries (which are 64 or 128 KiB depending
on which channel you use).

In order to allocate a piece of memory that satisfies all these requirements you
pass the flag GFP_DMA to kmalloc.

Unfortunately the memory available for ISA DMA is scarce so unless you allocate
the memory during boot-up it’s a good idea to also pass __GFP_RETRY_MAYFAIL
and __GFP_NOWARN to make the allocator try a bit harder.

(This scarcity also means that you should allocate the buffer as early as possible
and not release it until the driver is unloaded.)

602 Chapter 5. Memory management

mailto:drzeus@drzeus.cx

Linux Core-api Documentation

5.5.3 Address translation

To translate the virtual address to a bus address, use the normal DMA API. Do
not use isa_virt_to_bus() even though it does the same thing. The reason for this
is that the function isa_virt_to_bus() will require a Kconfig dependency to ISA, not
just ISA_DMA_API which is really all you need. Remember that even though the
DMA controller has its origins in ISA it is used elsewhere.

Note: x86_64 had a broken DMA API when it came to ISA but has since been
fixed. If your arch has problems then fix the DMA API instead of reverting to the
ISA functions.

5.5.4 Channels

A normal ISA DMA controller has 8 channels. The lower four are for 8-bit transfers
and the upper four are for 16-bit transfers.

(Actually the DMA controller is really two separate controllers where channel 4 is
used to give DMA access for the second controller (0-3). This means that of the
four 16-bits channels only three are usable.)

You allocate these in a similar fashion as all basic resources:

extern int request_dma(unsigned int dmanr, const char * device_id); extern void
free_dma(unsigned int dmanr);

The ability to use 16-bit or 8-bit transfers is _not_ up to you as a driver author
but depends on what the hardware supports. Check your specs or test different
channels.

5.5.5 Transfer data

Now for the good stuff, the actual DMA transfer. :)

Before you use any ISA DMA routines you need to claim the DMA lock using
claim_dma_lock(). The reason is that some DMA operations are not atomic so
only one driver may fiddle with the registers at a time.

The first time you use the DMA controller you should call clear_dma_ff(). This
clears an internal register in the DMA controller that is used for the non-atomic
operations. As long as you (and everyone else) uses the locking functions then you
only need to reset this once.

Next, you tell the controller in which direction you intend to do the transfer
using set_dma_mode(). Currently you have the options DMA_MODE_READ and
DMA_MODE_WRITE.

Set the address from where the transfer should start (this needs to be 16-bit
aligned for 16-bit transfers) and howmany bytes to transfer. Note that it’s _bytes_.
The DMA routines will do all the required translation to values that the DMA con-
troller understands.

The final step is enabling the DMA channel and releasing the DMA lock.

5.5. DMA with ISA and LPC devices 603

Linux Core-api Documentation

Once the DMA transfer is finished (or timed out) you should disable the channel
again. You should also check get_dma_residue() to make sure that all data has
been transferred.

Example:

int flags, residue;

flags = claim_dma_lock();

clear_dma_ff();

set_dma_mode(channel, DMA_MODE_WRITE);
set_dma_addr(channel, phys_addr);
set_dma_count(channel, num_bytes);

dma_enable(channel);

release_dma_lock(flags);

while (!device_done());

flags = claim_dma_lock();

dma_disable(channel);

residue = dma_get_residue(channel);
if (residue != 0)

printk(KERN_ERR "driver: Incomplete DMA transfer!"
" %d bytes left!\n", residue);

release_dma_lock(flags);

5.5.6 Suspend/resume

It is the driver’s responsibility to make sure that the machine isn’t suspended
while a DMA transfer is in progress. Also, all DMA settings are lost when the
system suspends so if your driver relies on the DMA controller being in a certain
state then you have to restore these registers upon resume.

5.6 Memory Management APIs

5.6.1 User Space Memory Access

access_ok(addr, size)
Checks if a user space pointer is valid

Parameters
addr User space pointer to start of block to check

size Size of block to check

Context

604 Chapter 5. Memory management

Linux Core-api Documentation

User context only. This function may sleep if pagefaults are enabled.

Description
Checks if a pointer to a block of memory in user space is valid.

Note that, depending on architecture, this function probably just checks that the
pointer is in the user space range - after calling this function, memory access
functions may still return -EFAULT.

Return
true (nonzero) if the memory block may be valid, false (zero) if it is definitely in-
valid.

get_user(x, ptr)
Get a simple variable from user space.

Parameters
x Variable to store result.

ptr Source address, in user space.

Context
User context only. This function may sleep if pagefaults are enabled.

Description
This macro copies a single simple variable from user space to kernel space. It
supports simple types like char and int, but not larger data types like structures
or arrays.

ptr must have pointer-to-simple-variable type, and the result of dereferencing ptr
must be assignable to x without a cast.
Return
zero on success, or -EFAULT on error. On error, the variable x is set to zero.
put_user(x, ptr)

Write a simple value into user space.

Parameters
x Value to copy to user space.

ptr Destination address, in user space.

Context
User context only. This function may sleep if pagefaults are enabled.

Description
This macro copies a single simple value from kernel space to user space. It sup-
ports simple types like char and int, but not larger data types like structures or
arrays.

ptr must have pointer-to-simple-variable type, and x must be assignable to the
result of dereferencing ptr.
Return

5.6. Memory Management APIs 605

Linux Core-api Documentation

zero on success, or -EFAULT on error.

__get_user(x, ptr)
Get a simple variable from user space, with less checking.

Parameters
x Variable to store result.

ptr Source address, in user space.

Context
User context only. This function may sleep if pagefaults are enabled.

Description
This macro copies a single simple variable from user space to kernel space. It
supports simple types like char and int, but not larger data types like structures
or arrays.

ptr must have pointer-to-simple-variable type, and the result of dereferencing ptr
must be assignable to x without a cast.
Caller must check the pointer with access_ok() before calling this function.

Return
zero on success, or -EFAULT on error. On error, the variable x is set to zero.
__put_user(x, ptr)

Write a simple value into user space, with less checking.

Parameters
x Value to copy to user space.

ptr Destination address, in user space.

Context
User context only. This function may sleep if pagefaults are enabled.

Description
This macro copies a single simple value from kernel space to user space. It sup-
ports simple types like char and int, but not larger data types like structures or
arrays.

ptr must have pointer-to-simple-variable type, and x must be assignable to the
result of dereferencing ptr.
Caller must check the pointer with access_ok() before calling this function.

Return
zero on success, or -EFAULT on error.

unsigned long clear_user(void __user * to, unsigned long n)
Zero a block of memory in user space.

Parameters
void __user * to Destination address, in user space.

606 Chapter 5. Memory management

Linux Core-api Documentation

unsigned long n Number of bytes to zero.

Description
Zero a block of memory in user space.

Return
number of bytes that could not be cleared. On success, this will be zero.

unsigned long __clear_user(void __user * to, unsigned long n)
Zero a block of memory in user space, with less checking.

Parameters
void __user * to Destination address, in user space.

unsigned long n Number of bytes to zero.

Description
Zero a block of memory in user space. Caller must check the specified block with
access_ok() before calling this function.

Return
number of bytes that could not be cleared. On success, this will be zero.

int get_user_pages_fast(unsigned long start, int nr_pages, unsigned
int gup_flags, struct page ** pages)

pin user pages in memory

Parameters
unsigned long start starting user address

int nr_pages number of pages from start to pin

unsigned int gup_flags flags modifying pin behaviour

struct page ** pages array that receives pointers to the pages pinned. Should
be at least nr_pages long.

Description
Attempt to pin user pages in memory without taking mm->mmap_lock. If not suc-
cessful, it will fall back to taking the lock and calling get_user_pages().

Returns number of pages pinned. This may be fewer than the number requested.
If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns -errno.

5.6.2 Memory Allocation Controls

Functions which need to allocate memory often use GFP flags to express how that
memory should be allocated. The GFP acronym stands for “get free pages”,
the underlying memory allocation function. Not every GFP flag is allowed to ev-
ery function which may allocate memory. Most users will want to use a plain
GFP_KERNEL.

5.6. Memory Management APIs 607

Linux Core-api Documentation

Page mobility and placement hints

These flags provide hints about how mobile the page is. Pages with similar mobil-
ity are placed within the same pageblocks to minimise problems due to external
fragmentation.

__GFP_MOVABLE (also a zone modifier) indicates that the page can be moved by
page migration during memory compaction or can be reclaimed.

__GFP_RECLAIMABLE is used for slab allocations that specify
SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.

__GFP_WRITE indicates the caller intends to dirty the page. Where possible, these
pages will be spread between local zones to avoid all the dirty pages being in one
zone (fair zone allocation policy).

__GFP_HARDWALL enforces the cpuset memory allocation policy.

__GFP_THISNODE forces the allocation to be satisfied from the requested node with
no fallbacks or placement policy enforcements.

__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.

Watermark modifiers – controls access to emergency reserves

__GFP_HIGH indicates that the caller is high-priority and that granting the request
is necessary before the system can make forward progress. For example, creating
an IO context to clean pages.

__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is high prior-
ity. Users are typically interrupt handlers. This may be used in conjunction with
__GFP_HIGH

__GFP_MEMALLOC allows access to all memory. This should only be used when the
caller guarantees the allocation will allow more memory to be freed very shortly
e.g. process exiting or swapping. Users either should be the MM or co-ordinating
closely with the VM (e.g. swap over NFS). Users of this flag have to be extremely
careful to not deplete the reserve completely and implement a throttling mecha-
nism which controls the consumption of the reserve based on the amount of freed
memory. Usage of a pre-allocated pool (e.g. mempool) should be always consid-
ered before using this flag.

__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. This
takes precedence over the __GFP_MEMALLOC flag if both are set.

Reclaim modifiers

Please note that all the following flags are only applicable to sleepable allocations
(e.g. GFP_NOWAIT and GFP_ATOMIC will ignore them).

__GFP_IO can start physical IO.

__GFP_FS can call down to the low-level FS. Clearing the flag avoids the allocator
recursing into the filesystem which might already be holding locks.

608 Chapter 5. Memory management

Linux Core-api Documentation

__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. This
flag can be cleared to avoid unnecessary delays when a fallback option is available.

__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when the
low watermark is reached and have it reclaim pages until the high watermark is
reached. A caller may wish to clear this flag when fallback options are available
and the reclaim is likely to disrupt the system. The canonical example is THP
allocation where a fallback is cheap but reclaim/compaction may cause indirect
stalls.

__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.

The default allocator behavior depends on the request size. We have a concept
of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER). !costly
allocations are too essential to fail so they are implicitly non-failing by default
(with some exceptions like OOM victims might fail so the caller still has to check
for failures) while costly requests try to be not disruptive and back off even without
invoking the OOM killer. The following three modifiers might be used to override
some of these implicit rules

__GFP_NORETRY: The VM implementation will try only very lightweight memory
direct reclaim to get some memory under memory pressure (thus it can sleep). It
will avoid disruptive actions like OOM killer. The caller must handle the failure
which is quite likely to happen under heavy memory pressure. The flag is suitable
when failure can easily be handled at small cost, such as reduced throughput

__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim proce-
dures that have previously failed if there is some indication that progress has been
made else where. It can wait for other tasks to attempt high level approaches to
freeing memory such as compaction (which removes fragmentation) and page-out.
There is still a definite limit to the number of retries, but it is a larger limit than
with __GFP_NORETRY. Allocations with this flag may fail, but only when there is
genuinely little unused memory. While these allocations do not directly trigger
the OOM killer, their failure indicates that the system is likely to need to use the
OOM killer soon. The caller must handle failure, but can reasonably do so by fail-
ing a higher-level request, or completing it only in a much less efficient manner.
If the allocation does fail, and the caller is in a position to free some non-essential
memory, doing so could benefit the system as a whole.

__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller cannot
handle allocation failures. The allocation could block indefinitely but will never
return with failure. Testing for failure is pointless. New users should be evaluated
carefully (and the flag should be used only when there is no reasonable failure
policy) but it is definitely preferable to use the flag rather than opencode endless
loop around allocator. Using this flag for costly allocations is _highly_ discouraged.

5.6. Memory Management APIs 609

Linux Core-api Documentation

Useful GFP flag combinations

Useful GFP flag combinations that are commonly used. It is recommended that
subsystems start with one of these combinations and then set/clear __GFP_FOO
flags as necessary.

GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower wa-
termark is applied to allow access to “atomic reserves”
GFP_KERNEL is typical for kernel-internal allocations. The caller requires
ZONE_NORMAL or a lower zone for direct access but can direct reclaim.

GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is ac-
counted to kmemcg.

GFP_NOWAIT is for kernel allocations that should not stall for direct reclaim, start
physical IO or use any filesystem callback.

GFP_NOIO will use direct reclaim to discard clean pages or slab pages that do not
require the starting of any physical IO. Please try to avoid using this flag directly
and instead use memalloc_noio_{save,restore} to mark the whole scope which
cannot perform any IO with a short explanation why. All allocation requests will
inherit GFP_NOIO implicitly.

GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. Please
try to avoid using this flag directly and instead use memalloc_nofs_{save,restore}
to mark the whole scope which cannot/shouldn’t recurse into the FS layer with a
short explanation why. All allocation requests will inherit GFP_NOFS implicitly.

GFP_USER is for userspace allocations that also need to be directly accessibly by the
kernel or hardware. It is typically used by hardware for buffers that are mapped
to userspace (e.g. graphics) that hardware still must DMA to. cpuset limits are
enforced for these allocations.

GFP_DMA exists for historical reasons and should be avoided where possible. The
flags indicates that the caller requires that the lowest zone be used (ZONE_DMA
or 16M on x86-64). Ideally, this would be removed but it would require careful
auditing as some users really require it and others use the flag to avoid lowmem
reserves in ZONE_DMA and treat the lowest zone as a type of emergency reserve.

GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit address.

GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, do
not need to be directly accessible by the kernel but that cannot move once in use.
An example may be a hardware allocation that maps data directly into userspace
but has no addressing limitations.

GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not need
direct access to but can use kmap() when access is required. They are expected
to be movable via page reclaim or page migration. Typically, pages on the LRU
would also be allocated with GFP_HIGHUSER_MOVABLE.

GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
compound allocations that will generally fail quickly if memory is not available
and will not wake kswapd/kcompactd on failure. The _LIGHT version does not
attempt reclaim/compaction at all and is by default used in page fault path, while
the non-light is used by khugepaged.

610 Chapter 5. Memory management

Linux Core-api Documentation

5.6.3 The Slab Cache

void * kmalloc(size_t size, gfp_t flags)
allocate memory

Parameters
size_t size how many bytes of memory are required.

gfp_t flags the type of memory to allocate.

Description
kmalloc is the normal method of allocating memory for objects smaller than page
size in the kernel.

The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
bytes. For size of power of two bytes, the alignment is also guaranteed to be at
least to the size.

The flags argument may be one of the GFP flags defined at include/linux/gfp.h and
described at Documentation/core-api/mm-api.rst

The recommended usage of the flags is described at Documentation/core-
api/memory-allocation.rst

Below is a brief outline of the most useful GFP flags

GFP_KERNEL Allocate normal kernel ram. May sleep.

GFP_NOWAIT Allocation will not sleep.

GFP_ATOMIC Allocation will not sleep. May use emergency pools.

GFP_HIGHUSER Allocate memory from high memory on behalf of user.

Also it is possible to set different flags by OR’ing in one or more of the following
additional flags:
__GFP_HIGH This allocation has high priority and may use emergency pools.

__GFP_NOFAIL Indicate that this allocation is in no way allowed to fail (think twice
before using).

__GFP_NORETRY If memory is not immediately available, then give up at once.

__GFP_NOWARN If allocation fails, don’t issue any warnings.
__GFP_RETRY_MAYFAIL Try really hard to succeed the allocation but fail eventually.

void * kmalloc_array(size_t n, size_t size, gfp_t flags)
allocate memory for an array.

Parameters
size_t n number of elements.

size_t size element size.

gfp_t flags the type of memory to allocate (see kmalloc).

void * kcalloc(size_t n, size_t size, gfp_t flags)
allocate memory for an array. The memory is set to zero.

5.6. Memory Management APIs 611

Linux Core-api Documentation

Parameters
size_t n number of elements.

size_t size element size.

gfp_t flags the type of memory to allocate (see kmalloc).

void * kzalloc(size_t size, gfp_t flags)
allocate memory. The memory is set to zero.

Parameters
size_t size how many bytes of memory are required.

gfp_t flags the type of memory to allocate (see kmalloc).

void * kzalloc_node(size_t size, gfp_t flags, int node)
allocate zeroed memory from a particular memory node.

Parameters
size_t size how many bytes of memory are required.

gfp_t flags the type of memory to allocate (see kmalloc).

int node memory node from which to allocate

void * kmem_cache_alloc(struct kmem_cache * cachep, gfp_t flags)
Allocate an object

Parameters
struct kmem_cache * cachep The cache to allocate from.

gfp_t flags See kmalloc().

Description
Allocate an object from this cache. The flags are only relevant if the cache has no
available objects.

Return
pointer to the new object or NULL in case of error

void * kmem_cache_alloc_node(struct kmem_cache * cachep, gfp_t flags,
int nodeid)

Allocate an object on the specified node

Parameters
struct kmem_cache * cachep The cache to allocate from.

gfp_t flags See kmalloc().

int nodeid node number of the target node.

Description
Identical to kmem_cache_alloc but it will allocatememory on the given node, which
can improve the performance for cpu bound structures.

Fallback to other node is possible if __GFP_THISNODE is not set.

Return

612 Chapter 5. Memory management

Linux Core-api Documentation

pointer to the new object or NULL in case of error

void kmem_cache_free(struct kmem_cache * cachep, void * objp)
Deallocate an object

Parameters
struct kmem_cache * cachep The cache the allocation was from.

void * objp The previously allocated object.

Description
Free an object which was previously allocated from this cache.

void kfree(const void * objp)
free previously allocated memory

Parameters
const void * objp pointer returned by kmalloc.

Description
If objp is NULL, no operation is performed.
Don’t free memory not originally allocated by kmalloc() or you will run into
trouble.

size_t __ksize(const void * objp)

• Uninstrumented ksize.

Parameters
const void * objp pointer to the object

Description
Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
safety checks as ksize() with KASAN instrumentation enabled.

Return
size of the actual memory used by objp in bytes
struct kmem_cache * kmem_cache_create_usercopy(const char * name,

unsigned int size,
unsigned int align,
slab_flags_t flags, un-
signed int useroffset,
unsigned int usersize,
void (*ctor)(void *))

Create a cache with a region suitable for copying to userspace

Parameters
const char * name A string which is used in /proc/slabinfo to identify this cache.

unsigned int size The size of objects to be created in this cache.

unsigned int align The required alignment for the objects.

slab_flags_t flags SLAB flags

5.6. Memory Management APIs 613

Linux Core-api Documentation

unsigned int useroffset Usercopy region offset

unsigned int usersize Usercopy region size

void (*)(void *) ctor A constructor for the objects.

Description
Cannot be called within a interrupt, but can be interrupted. The ctor is run when
new pages are allocated by the cache.

The flags are

SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) to catch ref-
erences to uninitialised memory.

SLAB_RED_ZONE - Insert Red zones around the allocated memory to check for buffer
overruns.

SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware cacheline.
This can be beneficial if you’re counting cycles as closely as davem.
Return
a pointer to the cache on success, NULL on failure.

struct kmem_cache * kmem_cache_create(const char * name, un-
signed int size, unsigned
int align, slab_flags_t flags, void
(*ctor)(void *))

Create a cache.

Parameters
const char * name A string which is used in /proc/slabinfo to identify this cache.

unsigned int size The size of objects to be created in this cache.

unsigned int align The required alignment for the objects.

slab_flags_t flags SLAB flags

void (*)(void *) ctor A constructor for the objects.

Description
Cannot be called within a interrupt, but can be interrupted. The ctor is run when
new pages are allocated by the cache.

The flags are

SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) to catch ref-
erences to uninitialised memory.

SLAB_RED_ZONE - Insert Red zones around the allocated memory to check for buffer
overruns.

SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware cacheline.
This can be beneficial if you’re counting cycles as closely as davem.
Return
a pointer to the cache on success, NULL on failure.

614 Chapter 5. Memory management

Linux Core-api Documentation

int kmem_cache_shrink(struct kmem_cache * cachep)
Shrink a cache.

Parameters
struct kmem_cache * cachep The cache to shrink.

Description
Releases as many slabs as possible for a cache. To help debugging, a zero exit
status indicates all slabs were released.

Return
0 if all slabs were released, non-zero otherwise

void * krealloc(const void * p, size_t new_size, gfp_t flags)
reallocate memory. The contents will remain unchanged.

Parameters
const void * p object to reallocate memory for.

size_t new_size how many bytes of memory are required.

gfp_t flags the type of memory to allocate.

Description
The contents of the object pointed to are preserved up to the lesser of the new and
old sizes. If p is NULL, krealloc() behaves exactly like kmalloc(). If new_size is
0 and p is not a NULL pointer, the object pointed to is freed.
Return
pointer to the allocated memory or NULL in case of error

void kzfree(const void * p)
like kfree but zero memory

Parameters
const void * p object to free memory of

Description
The memory of the object p points to is zeroed before freed. If p is NULL, kzfree()
does nothing.

Note
this function zeroes the whole allocated buffer which can be a good deal bigger
than the requested buffer size passed to kmalloc(). So be careful when using this
function in performance sensitive code.

size_t ksize(const void * objp)
get the actual amount of memory allocated for a given object

Parameters
const void * objp Pointer to the object

Description

5.6. Memory Management APIs 615

Linux Core-api Documentation

kmalloc may internally round up allocations and return more memory than re-
quested. ksize() can be used to determine the actual amount of memory allo-
cated. The caller may use this additional memory, even though a smaller amount
of memory was initially specified with the kmalloc call. The caller must guaran-
tee that objp points to a valid object previously allocated with either kmalloc()
or kmem_cache_alloc(). The object must not be freed during the duration of the
call.

Return
size of the actual memory used by objp in bytes
void kfree_const(const void * x)

conditionally free memory

Parameters
const void * x pointer to the memory

Description
Function calls kfree only if x is not in .rodata section.
void * kvmalloc_node(size_t size, gfp_t flags, int node)

attempt to allocate physically contiguous memory, but upon failure, fall back
to non-contiguous (vmalloc) allocation.

Parameters
size_t size size of the request.

gfp_t flags gfp mask for the allocation - must be compatible (superset) with
GFP_KERNEL.

int node numa node to allocate from

Description
Uses kmalloc to get the memory but if the allocation fails then falls back to the
vmalloc allocator. Use kvfree for freeing the memory.

Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
__GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
preferable to the vmalloc fallback, due to visible performance drawbacks.

Please note that any use of gfp flags outside of GFP_KERNEL is careful to not fall
back to vmalloc.

Return
pointer to the allocated memory of NULL in case of failure

void kvfree(const void * addr)
Free memory.

Parameters
const void * addr Pointer to allocated memory.

Description

616 Chapter 5. Memory management

Linux Core-api Documentation

kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). It is
slightly more efficient to use kfree() or vfree() if you are certain that you know
which one to use.

Context
Either preemptible task context or not-NMI interrupt.

5.6.4 Virtually Contiguous Mappings

void vm_unmap_aliases(void)
unmap outstanding lazy aliases in the vmap layer

Parameters
void no arguments

Description
The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily to amor-
tize TLB flushing overheads. What this means is that any page you have now, may,
in a former life, have been mapped into kernel virtual address by the vmap layer
and so there might be some CPUs with TLB entries still referencing that page
(additional to the regular 1:1 kernel mapping).

vm_unmap_aliases flushes all such lazy mappings. After it returns, we can be sure
that none of the pages we have control over will have any aliases from the vmap
layer.

void vm_unmap_ram(const void * mem, unsigned int count)
unmap linear kernel address space set up by vm_map_ram

Parameters
const void * mem the pointer returned by vm_map_ram

unsigned int count the count passed to that vm_map_ram call (cannot unmap
partial)

void * vm_map_ram(struct page ** pages, unsigned int count, int node)
map pages linearly into kernel virtual address (vmalloc space)

Parameters
struct page ** pages an array of pointers to the pages to be mapped

unsigned int count number of pages

int node prefer to allocate data structures on this node

Description
If you use this function for less than VMAP_MAX_ALLOC pages, it could be faster
than vmap so it’s good. But if you mix long-life and short-life objects with
vm_map_ram(), it could consume lots of address space through fragmentation (es-
pecially on a 32bit machine). You could see failures in the end. Please use this
function for short-lived objects.

Return
a pointer to the address that has been mapped, or NULL on failure

5.6. Memory Management APIs 617

Linux Core-api Documentation

void vfree(const void * addr)
release memory allocated by vmalloc()

Parameters
const void * addr memory base address

Description
Free the virtually continuous memory area starting at addr, as obtained from
vmalloc(), vmalloc_32() or __vmalloc(). If addr is NULL, no operation is per-
formed.

Must not be called in NMI context (strictly speaking, only if we don’t have CON-
FIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling conventions for
vfree() arch-depenedent would be a really bad idea)

May sleep if called not from interrupt context.

NOTE
assumes that the object at addr has a size >= sizeof(llist_node)
void vunmap(const void * addr)

release virtual mapping obtained by vmap()

Parameters
const void * addr memory base address

Description
Free the virtually contiguous memory area starting at addr, which was created
from the page array passed to vmap().

Must not be called in interrupt context.

void * vmap(struct page ** pages, unsigned int count, unsigned long flags,
pgprot_t prot)

map an array of pages into virtually contiguous space

Parameters
struct page ** pages array of page pointers

unsigned int count number of pages to map

unsigned long flags vm_area->flags

pgprot_t prot page protection for the mapping

Description
Maps count pages from pages into contiguous kernel virtual space.
Return
the address of the area or NULL on failure

void * __vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, int node, const void * caller)

allocate virtually contiguous memory

Parameters

618 Chapter 5. Memory management

Linux Core-api Documentation

unsigned long size allocation size

unsigned long align desired alignment

gfp_t gfp_mask flags for the page level allocator

int node node to use for allocation or NUMA_NO_NODE

const void * caller caller’s return address
Description
Allocate enough pages to cover size from the page level allocator with gfp_mask
flags. Map them into contiguous kernel virtual space.

Reclaim modifiers in gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL and
__GFP_NOFAIL are not supported

Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.

Return
pointer to the allocated memory or NULL on error

void * vmalloc(unsigned long size)
allocate virtually contiguous memory

Parameters
unsigned long size allocation size

Description
Allocate enough pages to cover size from the page level allocator and map them
into contiguous kernel virtual space.

For tight control over page level allocator and protection flags use __vmalloc()
instead.

Return
pointer to the allocated memory or NULL on error

void * vzalloc(unsigned long size)
allocate virtually contiguous memory with zero fill

Parameters
unsigned long size allocation size

Description
Allocate enough pages to cover size from the page level allocator and map them
into contiguous kernel virtual space. The memory allocated is set to zero.

For tight control over page level allocator and protection flags use __vmalloc()
instead.

Return
pointer to the allocated memory or NULL on error

void * vmalloc_user(unsigned long size)
allocate zeroed virtually contiguous memory for userspace

5.6. Memory Management APIs 619

Linux Core-api Documentation

Parameters
unsigned long size allocation size

Description
The resulting memory area is zeroed so it can be mapped to userspace without
leaking data.

Return
pointer to the allocated memory or NULL on error

void * vmalloc_node(unsigned long size, int node)
allocate memory on a specific node

Parameters
unsigned long size allocation size

int node numa node

Description
Allocate enough pages to cover size from the page level allocator and map them
into contiguous kernel virtual space.

For tight control over page level allocator and protection flags use __vmalloc()
instead.

Return
pointer to the allocated memory or NULL on error

void * vzalloc_node(unsigned long size, int node)
allocate memory on a specific node with zero fill

Parameters
unsigned long size allocation size

int node numa node

Description
Allocate enough pages to cover size from the page level allocator and map them
into contiguous kernel virtual space. The memory allocated is set to zero.

Return
pointer to the allocated memory or NULL on error

void * vmalloc_32(unsigned long size)
allocate virtually contiguous memory (32bit addressable)

Parameters
unsigned long size allocation size

Description
Allocate enough 32bit PA addressable pages to cover size from the page level
allocator and map them into contiguous kernel virtual space.

Return

620 Chapter 5. Memory management

Linux Core-api Documentation

pointer to the allocated memory or NULL on error

void * vmalloc_32_user(unsigned long size)
allocate zeroed virtually contiguous 32bit memory

Parameters
unsigned long size allocation size

Description
The resulting memory area is 32bit addressable and zeroed so it can be mapped
to userspace without leaking data.

Return
pointer to the allocated memory or NULL on error

int remap_vmalloc_range_partial(struct vm_area_struct * vma, unsigned
long uaddr, void * kaddr, unsigned
long pgoff, unsigned long size)

map vmalloc pages to userspace

Parameters
struct vm_area_struct * vma vma to cover

unsigned long uaddr target user address to start at

void * kaddr virtual address of vmalloc kernel memory

unsigned long pgoff offset from kaddr to start at
unsigned long size size of map area

Return
0 for success, -Exxx on failure

Description
This function checks that kaddr is a valid vmalloc’ed area, and that it is big enough
to cover the range starting at uaddr in vma. Will return failure if that criteria isn’
t met.

Similar to remap_pfn_range() (see mm/memory.c)

int remap_vmalloc_range(struct vm_area_struct * vma, void * addr, un-
signed long pgoff)

map vmalloc pages to userspace

Parameters
struct vm_area_struct * vma vma to cover (map full range of vma)

void * addr vmalloc memory

unsigned long pgoff number of pages into addr before first page to map

Return
0 for success, -Exxx on failure

Description

5.6. Memory Management APIs 621

Linux Core-api Documentation

This function checks that addr is a valid vmalloc’ed area, and that it is big enough
to cover the vma. Will return failure if that criteria isn’t met.
Similar to remap_pfn_range() (see mm/memory.c)

struct vm_struct * alloc_vm_area(size_t size, pte_t ** ptes)
allocate a range of kernel address space

Parameters
size_t size size of the area

pte_t ** ptes returns the PTEs for the address space

Return
NULL on failure, vm_struct on success

Description
This function reserves a range of kernel address space, and allocates pagetables
to map that range. No actual mappings are created.

If ptes is non-NULL, pointers to the PTEs (in init_mm) allocated for the VM area
are returned.

5.6.5 File Mapping and Page Cache

int read_cache_pages(struct address_space * mapping, struct list_head
* pages, int (*filler)(void *, struct page *), void * data)

populate an address space with some pages & start reads against them

Parameters
struct address_space * mapping the address_space

struct list_head * pages The address of a list_head which contains the target
pages. These pages have their ->index populated and are otherwise unini-
tialised.

int (*)(void *, struct page *) filler callback routine for filling a single
page.

void * data private data for the callback routine.

Description
Hides the details of the LRU cache etc from the filesystems.

Return
0 on success, error return by filler otherwise
void page_cache_readahead_unbounded(struct address_space * mapping,

struct file * file, pgoff_t index, un-
signed long nr_to_read, unsigned
long lookahead_size)

Start unchecked readahead.

Parameters
struct address_space * mapping File address space.

622 Chapter 5. Memory management

Linux Core-api Documentation

struct file * file This instance of the open file; used for authentication.

pgoff_t index First page index to read.

unsigned long nr_to_read The number of pages to read.

unsigned long lookahead_size Where to start the next readahead.

Description
This function is for filesystems to call when they want to start readahead beyond a
file’s stated i_size. This is almost certainly not the function you want to call. Use
page_cache_async_readahead() or page_cache_sync_readahead() instead.

Context
File is referenced by caller. Mutexes may be held by caller. May sleep, but will not
reenter filesystem to reclaim memory.

void page_cache_sync_readahead(struct address_space * mapping, struct
file_ra_state * ra, struct file * filp,
pgoff_t index, unsigned long req_count)

generic file readahead

Parameters
struct address_space * mapping address_space which holds the pagecache

and I/O vectors

struct file_ra_state * ra file_ra_state which holds the readahead state

struct file * filp passed on to ->readpage() and ->readpages()

pgoff_t index Index of first page to be read.

unsigned long req_count Total number of pages being read by the caller.

Description
page_cache_sync_readahead() should be called when a cache miss happened: it
will submit the read. The readahead logic may decide to piggyback more pages
onto the read request if access patterns suggest it will improve performance.

void page_cache_async_readahead(struct address_space * mapping, struct
file_ra_state * ra, struct file * filp, struct
page * page, pgoff_t index, unsigned
long req_count)

file readahead for marked pages

Parameters
struct address_space * mapping address_space which holds the pagecache

and I/O vectors

struct file_ra_state * ra file_ra_state which holds the readahead state

struct file * filp passed on to ->readpage() and ->readpages()

struct page * page The page at index which triggered the readahead call.
pgoff_t index Index of first page to be read.

unsigned long req_count Total number of pages being read by the caller.

5.6. Memory Management APIs 623

Linux Core-api Documentation

Description
page_cache_async_readahead() should be called when a page is used which is
marked as PageReadahead; this is a marker to suggest that the application has
used up enough of the readahead window that we should start pulling in more
pages.

void delete_from_page_cache(struct page * page)
delete page from page cache

Parameters
struct page * page the page which the kernel is trying to remove from page

cache

Description
This must be called only on pages that have been verified to be in the page cache
and locked. It will never put the page into the free list, the caller has a reference
on the page.

int filemap_flush(struct address_space * mapping)
mostly a non-blocking flush

Parameters
struct address_space * mapping target address_space

Description
This is a mostly non-blocking flush. Not suitable for data-integrity purposes - I/O
may not be started against all dirty pages.

Return
0 on success, negative error code otherwise.

bool filemap_range_has_page(struct address_space * mapping,
loff_t start_byte, loff_t end_byte)

check if a page exists in range.

Parameters
struct address_space * mapping address space within which to check

loff_t start_byte offset in bytes where the range starts

loff_t end_byte offset in bytes where the range ends (inclusive)

Description
Find at least one page in the range supplied, usually used to check if direct writing
in this range will trigger a writeback.

Return
true if at least one page exists in the specified range, false otherwise.

int filemap_fdatawait_range(struct address_space * mapping,
loff_t start_byte, loff_t end_byte)

wait for writeback to complete

Parameters

624 Chapter 5. Memory management

Linux Core-api Documentation

struct address_space * mapping address space structure to wait for

loff_t start_byte offset in bytes where the range starts

loff_t end_byte offset in bytes where the range ends (inclusive)

Description
Walk the list of under-writeback pages of the given address space in the given
range and wait for all of them. Check error status of the address space and return
it.

Since the error status of the address space is cleared by this function, callers are
responsible for checking the return value and handling and/or reporting the error.

Return
error status of the address space.

int filemap_fdatawait_range_keep_errors(struct address_space
* mapping, loff_t start_byte,
loff_t end_byte)

wait for writeback to complete

Parameters
struct address_space * mapping address space structure to wait for

loff_t start_byte offset in bytes where the range starts

loff_t end_byte offset in bytes where the range ends (inclusive)

Description
Walk the list of under-writeback pages of the given address space in the given
range and wait for all of them. Unlike filemap_fdatawait_range(), this function
does not clear error status of the address space.

Use this function if callers don’t handle errors themselves. Expected call sites
are system-wide / filesystem-wide data flushers: e.g. sync(2), fsfreeze(8)

int file_fdatawait_range(struct file * file, loff_t start_byte, loff_t end_byte)
wait for writeback to complete

Parameters
struct file * file file pointing to address space structure to wait for

loff_t start_byte offset in bytes where the range starts

loff_t end_byte offset in bytes where the range ends (inclusive)

Description
Walk the list of under-writeback pages of the address space that file refers to, in
the given range and wait for all of them. Check error status of the address space
vs. the file->f_wb_err cursor and return it.

Since the error status of the file is advanced by this function, callers are responsi-
ble for checking the return value and handling and/or reporting the error.

Return
error status of the address space vs. the file->f_wb_err cursor.

5.6. Memory Management APIs 625

Linux Core-api Documentation

int filemap_fdatawait_keep_errors(struct address_space * mapping)
wait for writeback without clearing errors

Parameters
struct address_space * mapping address space structure to wait for

Description
Walk the list of under-writeback pages of the given address space and wait for all
of them. Unlike filemap_fdatawait(), this function does not clear error status of
the address space.

Use this function if callers don’t handle errors themselves. Expected call sites
are system-wide / filesystem-wide data flushers: e.g. sync(2), fsfreeze(8)

Return
error status of the address space.

int filemap_write_and_wait_range(struct address_space * mapping,
loff_t lstart, loff_t lend)

write out & wait on a file range

Parameters
struct address_space * mapping the address_space for the pages

loff_t lstart offset in bytes where the range starts

loff_t lend offset in bytes where the range ends (inclusive)

Description
Write out and wait upon file offsets lstart->lend, inclusive.

Note that lend is inclusive (describes the last byte to be written) so that this func-
tion can be used to write to the very end-of-file (end = -1).

Return
error status of the address space.

int file_check_and_advance_wb_err(struct file * file)
report wb error (if any) that was previously and advance wb_err to current
one

Parameters
struct file * file struct file on which the error is being reported

Description
When userland calls fsync (or something like nfsd does the equivalent), we want
to report any writeback errors that occurred since the last fsync (or since the file
was opened if there haven’t been any).
Grab the wb_err from the mapping. If it matches what we have in the file, then
just quickly return 0. The file is all caught up.

If it doesn’t match, then take the mapping value, set the“seen”flag in it and try
to swap it into place. If it works, or another task beat us to it with the new value,

626 Chapter 5. Memory management

Linux Core-api Documentation

then update the f_wb_err and return the error portion. The error at this point must
be reported via proper channels (a’la fsync, or NFS COMMIT operation, etc.).
While we handle mapping->wb_err with atomic operations, the f_wb_err value
is protected by the f_lock since we must ensure that it reflects the latest value
swapped in for this file descriptor.

Return
0 on success, negative error code otherwise.

int file_write_and_wait_range(struct file * file, loff_t lstart, loff_t lend)
write out & wait on a file range

Parameters
struct file * file file pointing to address_space with pages

loff_t lstart offset in bytes where the range starts

loff_t lend offset in bytes where the range ends (inclusive)

Description
Write out and wait upon file offsets lstart->lend, inclusive.

Note that lend is inclusive (describes the last byte to be written) so that this func-
tion can be used to write to the very end-of-file (end = -1).

After writing out and waiting on the data, we check and advance the f_wb_err
cursor to the latest value, and return any errors detected there.

Return
0 on success, negative error code otherwise.

int replace_page_cache_page(struct page * old, struct page * new,
gfp_t gfp_mask)

replace a pagecache page with a new one

Parameters
struct page * old page to be replaced

struct page * new page to replace with

gfp_t gfp_mask allocation mode

Description
This function replaces a page in the pagecache with a new one. On success it
acquires the pagecache reference for the new page and drops it for the old page.
Both the old and new pages must be locked. This function does not add the new
page to the LRU, the caller must do that.

The remove + add is atomic. This function cannot fail.

Return
0

int add_to_page_cache_locked(struct page * page, struct address_space
* mapping, pgoff_t offset, gfp_t gfp_mask)

add a locked page to the pagecache

5.6. Memory Management APIs 627

Linux Core-api Documentation

Parameters
struct page * page page to add

struct address_space * mapping the page’s address_space
pgoff_t offset page index

gfp_t gfp_mask page allocation mode

Description
This function is used to add a page to the pagecache. It must be locked. This
function does not add the page to the LRU. The caller must do that.

Return
0 on success, negative error code otherwise.

void add_page_wait_queue(struct page * page, wait_queue_entry_t
* waiter)

Add an arbitrary waiter to a page’s wait queue
Parameters
struct page * page Page defining the wait queue of interest

wait_queue_entry_t * waiter Waiter to add to the queue

Description
Add an arbitrary waiter to the wait queue for the nominated page.
void unlock_page(struct page * page)

unlock a locked page

Parameters
struct page * page the page

Description
Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). Also wakes
sleepers in wait_on_page_writeback() because the wakeup mechanism between
PageLocked pages and PageWriteback pages is shared. But that’s OK - sleepers
in wait_on_page_writeback() just go back to sleep.

Note that this depends on PG_waiters being the sign bit in the byte that contains
PG_locked - thus the BUILD_BUG_ON(). That allows us to clear the PG_locked bit
and test PG_waiters at the same time fairly portably (architectures that do LL/SC
can test any bit, while x86 can test the sign bit).

void end_page_writeback(struct page * page)
end writeback against a page

Parameters
struct page * page the page

void __lock_page(struct page * __page)
get a lock on the page, assuming we need to sleep to get it

Parameters

628 Chapter 5. Memory management

Linux Core-api Documentation

struct page * __page the page to lock

pgoff_t page_cache_next_miss(struct address_space * mapping,
pgoff_t index, unsigned long max_scan)

Find the next gap in the page cache.

Parameters
struct address_space * mapping Mapping.

pgoff_t index Index.

unsigned long max_scan Maximum range to search.

Description
Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the gap
with the lowest index.

This function may be called under the rcu_read_lock. However, this will not atom-
ically search a snapshot of the cache at a single point in time. For example,
if a gap is created at index 5, then subsequently a gap is created at index 10,
page_cache_next_miss covering both indices may return 10 if called under the
rcu_read_lock.

Return
The index of the gap if found, otherwise an index outside the range specified (in
which case‘return - index >= max_scan’will be true). In the rare case of index
wrap-around, 0 will be returned.

pgoff_t page_cache_prev_miss(struct address_space * mapping,
pgoff_t index, unsigned long max_scan)

Find the previous gap in the page cache.

Parameters
struct address_space * mapping Mapping.

pgoff_t index Index.

unsigned long max_scan Maximum range to search.

Description
Search the range [max(index - max_scan + 1, 0), index] for the gap with the highest
index.

This function may be called under the rcu_read_lock. However, this will not atom-
ically search a snapshot of the cache at a single point in time. For example,
if a gap is created at index 10, then subsequently a gap is created at index 5,
page_cache_prev_miss() covering both indices may return 5 if called under the
rcu_read_lock.

Return
The index of the gap if found, otherwise an index outside the range specified (in
which case‘index - return >= max_scan’will be true). In the rare case of wrap-
around, ULONG_MAX will be returned.

5.6. Memory Management APIs 629

Linux Core-api Documentation

struct page * find_lock_entry(struct address_space * mapping,
pgoff_t offset)

locate, pin and lock a page cache entry

Parameters
struct address_space * mapping the address_space to search

pgoff_t offset the page cache index

Description
Looks up the page cache slot atmapping & offset. If there is a page cache page,
it is returned locked and with an increased refcount.

If the slot holds a shadow entry of a previously evicted page, or a swap entry from
shmem/tmpfs, it is returned.

find_lock_entry() may sleep.

Return
the found page or shadow entry, NULL if nothing is found.

struct page * pagecache_get_page(struct address_space * mapping,
pgoff_t index, int fgp_flags,
gfp_t gfp_mask)

Find and get a reference to a page.

Parameters
struct address_space * mapping The address_space to search.

pgoff_t index The page index.

int fgp_flags FGP flags modify how the page is returned.

gfp_t gfp_mask Memory allocation flags to use if FGP_CREAT is specified.

Description
Looks up the page cache entry at mapping & index.
fgp_flags can be zero or more of these flags:
• FGP_ACCESSED - The page will be marked accessed.

• FGP_LOCK - The page is returned locked.

• FGP_CREAT - If no page is present then a new page is allocated using gfp_mask
and added to the page cache and the VM’s LRU list. The page is returned
locked and with an increased refcount.

• FGP_FOR_MMAP - The caller wants to do its own locking dance if the page is
already in cache. If the page was allocated, unlock it before returning so the
caller can do the same dance.

If FGP_LOCK or FGP_CREAT are specified then the function may sleep even if the GFP
flags specified for FGP_CREAT are atomic.

If there is a page cache page, it is returned with an increased refcount.

Return

630 Chapter 5. Memory management

Linux Core-api Documentation

The found page or NULL otherwise.

unsigned find_get_pages_contig(struct address_space * mapping,
pgoff_t index, unsigned int nr_pages,
struct page ** pages)

gang contiguous pagecache lookup

Parameters
struct address_space * mapping The address_space to search

pgoff_t index The starting page index

unsigned int nr_pages The maximum number of pages

struct page ** pages Where the resulting pages are placed

Description
find_get_pages_contig() works exactly like find_get_pages(), except that the
returned number of pages are guaranteed to be contiguous.

Return
the number of pages which were found.

unsigned find_get_pages_range_tag(struct address_space * mapping,
pgoff_t * index, pgoff_t end,
xa_mark_t tag, unsigned
int nr_pages, struct page ** pages)

find and return pages in given range matching tag
Parameters
struct address_space * mapping the address_space to search

pgoff_t * index the starting page index

pgoff_t end The final page index (inclusive)

xa_mark_t tag the tag index

unsigned int nr_pages the maximum number of pages

struct page ** pages where the resulting pages are placed

Description
Like find_get_pages, except we only return pages which are tagged with tag. We
update index to index the next page for the traversal.
Return
the number of pages which were found.

ssize_t generic_file_buffered_read(struct kiocb * iocb, struct iov_iter
* iter, ssize_t written)

generic file read routine

Parameters
struct kiocb * iocb the iocb to read

struct iov_iter * iter data destination

5.6. Memory Management APIs 631

Linux Core-api Documentation

ssize_t written already copied

Description
This is a generic file read routine, and uses the mapping->a_ops->readpage() func-
tion for the actual low-level stuff.

This is really ugly. But the goto’s actually try to clarify some of the logic when it
comes to error handling etc.

Return
• total number of bytes copied, including those the were already written
• negative error code if nothing was copied

ssize_t generic_file_read_iter(struct kiocb * iocb, struct iov_iter * iter)
generic filesystem read routine

Parameters
struct kiocb * iocb kernel I/O control block

struct iov_iter * iter destination for the data read

Description
This is the “read_iter()”routine for all filesystems that can use the page cache
directly.

The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall be returned
when no data can be read without waiting for I/O requests to complete; it doesn’
t prevent readahead.

The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O requests shall be
made for the read or for readahead. When no data can be read, -EAGAIN shall
be returned. When readahead would be triggered, a partial, possibly empty read
shall be returned.

Return
• number of bytes copied, even for partial reads

• negative error code (or 0 if IOCB_NOIO) if nothing was read

vm_fault_t filemap_fault(struct vm_fault * vmf)
read in file data for page fault handling

Parameters
struct vm_fault * vmf struct vm_fault containing details of the fault

Description
filemap_fault() is invoked via the vma operations vector for a mapped memory
region to read in file data during a page fault.

The goto’s are kind of ugly, but this streamlines the normal case of having it in
the page cache, and handles the special cases reasonably without having a lot of
duplicated code.

vma->vm_mm->mmap_lock must be held on entry.

632 Chapter 5. Memory management

Linux Core-api Documentation

If our return value has VM_FAULT_RETRY set, it’s because the mmap_lock may
be dropped before doing I/O or by lock_page_maybe_drop_mmap().

If our return value does not have VM_FAULT_RETRY set, the mmap_lock has not
been released.

We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.

Return
bitwise-OR of VM_FAULT_ codes.

struct page * read_cache_page(struct address_space * mapping,
pgoff_t index, int (*filler)(void *, struct
page *), void * data)

read into page cache, fill it if needed

Parameters
struct address_space * mapping the page’s address_space
pgoff_t index the page index

int (*)(void *, struct page *) filler function to perform the read

void * data first arg to filler(data, page) function, often left as NULL

Description
Read into the page cache. If a page already exists, and PageUptodate() is not set,
try to fill the page and wait for it to become unlocked.

If the page does not get brought uptodate, return -EIO.

Return
up to date page on success, ERR_PTR() on failure.

struct page * read_cache_page_gfp(struct address_space * mapping,
pgoff_t index, gfp_t gfp)

read into page cache, using specified page allocation flags.

Parameters
struct address_space * mapping the page’s address_space
pgoff_t index the page index

gfp_t gfp the page allocator flags to use if allocating

Description
This is the same as“read_mapping_page(mapping, index, NULL)”, but with any
new page allocations done using the specified allocation flags.

If the page does not get brought uptodate, return -EIO.

Return
up to date page on success, ERR_PTR() on failure.

ssize_t __generic_file_write_iter(struct kiocb * iocb, struct iov_iter
* from)

write data to a file

5.6. Memory Management APIs 633

Linux Core-api Documentation

Parameters
struct kiocb * iocb IO state structure (file, offset, etc.)

struct iov_iter * from iov_iter with data to write

Description
This function does all the work needed for actually writing data to a file. It does
all basic checks, removes SUID from the file, updates modification times and calls
proper subroutines depending on whether we do direct IO or a standard buffered
write.

It expects i_mutex to be grabbed unless we work on a block device or similar object
which does not need locking at all.

This function does not take care of syncing data in case of O_SYNC write. A caller
has to handle it. This is mainly due to the fact that we want to avoid syncing under
i_mutex.

Return
• number of bytes written, even for truncated writes

• negative error code if no data has been written at all

ssize_t generic_file_write_iter(struct kiocb * iocb, struct iov_iter * from)
write data to a file

Parameters
struct kiocb * iocb IO state structure

struct iov_iter * from iov_iter with data to write

Description
This is a wrapper around __generic_file_write_iter() to be used by most
filesystems. It takes care of syncing the file in case of O_SYNC file and acquires
i_mutex as needed.

Return
• negative error code if no data has been written at all of vfs_fsync_range()
failed for a synchronous write

• number of bytes written, even for truncated writes

int try_to_release_page(struct page * page, gfp_t gfp_mask)
release old fs-specific metadata on a page

Parameters
struct page * page the page which the kernel is trying to free

gfp_t gfp_mask memory allocation flags (and I/O mode)

Description
The address_space is to try to release any data against the page (presumably at
page->private).

This may also be called if PG_fscache is set on a page, indicating that the page is
known to the local caching routines.

634 Chapter 5. Memory management

Linux Core-api Documentation

The gfp_mask argument specifies whether I/O may be performed to release this
page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).

Return
1 if the release was successful, otherwise return zero.

void balance_dirty_pages_ratelimited(struct address_space * mapping)
balance dirty memory state

Parameters
struct address_space * mapping address_space which was dirtied

Description
Processes which are dirtying memory should call in here once for each page which
was newly dirtied. The function will periodically check the system’s dirty state
and will initiate writeback if needed.

On really big machines, get_writeback_state is expensive, so try to avoid calling it
too often (ratelimiting). But once we’re over the dirty memory limit we decrease
the ratelimiting by a lot, to prevent individual processes from overshooting the
limit by (ratelimit_pages) each.

void tag_pages_for_writeback(struct address_space * mapping,
pgoff_t start, pgoff_t end)

tag pages to be written by write_cache_pages

Parameters
struct address_space * mapping address space structure to write

pgoff_t start starting page index

pgoff_t end ending page index (inclusive)

Description
This function scans the page range from start to end (inclusive) and tags all
pages that have DIRTY tag set with a special TOWRITE tag. The idea is that
write_cache_pages (or whoever calls this function) will then use TOWRITE tag
to identify pages eligible for writeback. This mechanism is used to avoid livelock-
ing of writeback by a process steadily creating new dirty pages in the file (thus
it is important for this function to be quick so that it can tag pages faster than a
dirtying process can create them).

int write_cache_pages(struct address_space * mapping, struct write-
back_control * wbc, writepage_t writepage, void
* data)

walk the list of dirty pages of the given address space and write all of them.

Parameters
struct address_space * mapping address space structure to write

struct writeback_control * wbc subtract the number of written pages from
*wbc->nr_to_write

writepage_t writepage function called for each page

void * data data passed to writepage function

5.6. Memory Management APIs 635

Linux Core-api Documentation

Description
If a page is already under I/O, write_cache_pages() skips it, even if it’s dirty. This
is desirable behaviour for memory-cleaning writeback, but it is INCORRECT for
data-integrity system calls such as fsync(). fsync() and msync() need to guarantee
that all the data which was dirty at the time the call was made get new I/O started
against them. If wbc->sync_mode is WB_SYNC_ALL then we were called for data
integrity and we must wait for existing IO to complete.

To avoid livelocks (when other process dirties new pages), we first tag pages which
should be written back with TOWRITE tag and only then start writing them. For
data-integrity sync we have to be careful so that we do not miss some pages (e.g.,
because some other process has cleared TOWRITE tag we set). The rule we follow
is that TOWRITE tag can be cleared only by the process clearing the DIRTY tag
(and submitting the page for IO).

To avoid deadlocks between range_cyclic writeback and callers that hold pages
in PageWriteback to aggregate IO until write_cache_pages() returns, we do not
loop back to the start of the file. Doing so causes a page lock/page writeback
access order inversion - we should only ever lock multiple pages in ascending
page->index order, and looping back to the start of the file violates that rule and
causes deadlocks.

Return
0 on success, negative error code otherwise

int generic_writepages(struct address_space * mapping, struct write-
back_control * wbc)

walk the list of dirty pages of the given address space and writepage() all of
them.

Parameters
struct address_space * mapping address space structure to write

struct writeback_control * wbc subtract the number of written pages from
*wbc->nr_to_write

Description
This is a library function, which implements the writepages() ad-
dress_space_operation.

Return
0 on success, negative error code otherwise

int write_one_page(struct page * page)
write out a single page and wait on I/O

Parameters
struct page * page the page to write

Description
The page must be locked by the caller and will be unlocked upon return.

Note that the mapping’s AS_EIO/AS_ENOSPC flags will be cleared when this
function returns.

636 Chapter 5. Memory management

Linux Core-api Documentation

Return
0 on success, negative error code otherwise

void wait_for_stable_page(struct page * page)
wait for writeback to finish, if necessary.

Parameters
struct page * page The page to wait on.

Description
This function determines if the given page is related to a backing device that re-
quires page contents to be held stable during writeback. If so, then it will wait for
any pending writeback to complete.

void truncate_inode_pages_range(struct address_space * mapping,
loff_t lstart, loff_t lend)

truncate range of pages specified by start & end byte offsets

Parameters
struct address_space * mapping mapping to truncate

loff_t lstart offset from which to truncate

loff_t lend offset to which to truncate (inclusive)

Description
Truncate the page cache, removing the pages that are between specified offsets
(and zeroing out partial pages if lstart or lend + 1 is not page aligned).

Truncate takes two passes - the first pass is nonblocking. It will not block on page
locks and it will not block on writeback. The second pass will wait. This is to
prevent as much IO as possible in the affected region. The first pass will remove
most pages, so the search cost of the second pass is low.

We pass down the cache-hot hint to the page freeing code. Even if the mapping is
large, it is probably the case that the final pages are the most recently touched,
and freeing happens in ascending file offset order.

Note that since ->invalidatepage() accepts range to invalidate trun-
cate_inode_pages_range is able to handle cases where lend + 1 is not page
aligned properly.

void truncate_inode_pages(struct address_space * mapping, loff_t lstart)
truncate all the pages from an offset

Parameters
struct address_space * mapping mapping to truncate

loff_t lstart offset from which to truncate

Description
Called under (and serialised by) inode->i_mutex.

Note

5.6. Memory Management APIs 637

Linux Core-api Documentation

When this function returns, there can be a page in the process of deletion (inside
__delete_from_page_cache()) in the specified range. Thus mapping->nrpages can
be non-zero when this function returns even after truncation of the wholemapping.

void truncate_inode_pages_final(struct address_space * mapping)
truncate all pages before inode dies

Parameters
struct address_space * mapping mapping to truncate

Description
Called under (and serialized by) inode->i_mutex.

Filesystems have to use this in the .evict_inode path to inform the VM that this is
the final truncate and the inode is going away.

unsigned long invalidate_mapping_pages(struct address_space
* mapping, pgoff_t start,
pgoff_t end)

Invalidate all the unlocked pages of one inode

Parameters
struct address_space * mapping the address_space which holds the pages to

invalidate

pgoff_t start the offset ‘from’which to invalidate
pgoff_t end the offset ‘to’which to invalidate (inclusive)
Description
This function only removes the unlocked pages, if you want to remove all the pages
of one inode, you must call truncate_inode_pages.

invalidate_mapping_pages() will not block on IO activity. It will not invalidate
pages which are dirty, locked, under writeback or mapped into pagetables.

Return
the number of the pages that were invalidated

int invalidate_inode_pages2_range(struct address_space * mapping,
pgoff_t start, pgoff_t end)

remove range of pages from an address_space

Parameters
struct address_space * mapping the address_space

pgoff_t start the page offset ‘from’which to invalidate
pgoff_t end the page offset ‘to’which to invalidate (inclusive)
Description
Any pages which are found to be mapped into pagetables are unmapped prior to
invalidation.

Return

638 Chapter 5. Memory management

Linux Core-api Documentation

-EBUSY if any pages could not be invalidated.

int invalidate_inode_pages2(struct address_space * mapping)
remove all pages from an address_space

Parameters
struct address_space * mapping the address_space

Description
Any pages which are found to be mapped into pagetables are unmapped prior to
invalidation.

Return
-EBUSY if any pages could not be invalidated.

void truncate_pagecache(struct inode * inode, loff_t newsize)
unmap and remove pagecache that has been truncated

Parameters
struct inode * inode inode

loff_t newsize new file size

Description
inode’s new i_size must already be written before truncate_pagecache is called.
This function should typically be called before the filesystem releases resources
associated with the freed range (eg. deallocates blocks). This way, pagecache will
always stay logically coherent with on-disk format, and the filesystem would not
have to deal with situations such as writepage being called for a page that has
already had its underlying blocks deallocated.

void truncate_setsize(struct inode * inode, loff_t newsize)
update inode and pagecache for a new file size

Parameters
struct inode * inode inode

loff_t newsize new file size

Description
truncate_setsize updates i_size and performs pagecache truncation (if necessary)
to newsize. It will be typically be called from the filesystem’s setattr function
when ATTR_SIZE is passed in.

Must be called with a lock serializing truncates and writes (generally i_mutex but
e.g. xfs uses a different lock) and before all filesystem specific block truncation
has been performed.

void pagecache_isize_extended(struct inode * inode, loff_t from, loff_t to)
update pagecache after extension of i_size

Parameters
struct inode * inode inode for which i_size was extended

loff_t from original inode size

5.6. Memory Management APIs 639

Linux Core-api Documentation

loff_t to new inode size

Description
Handle extension of inode size either caused by extending truncate or by write
starting after current i_size. We mark the page straddling current i_size RO so
that page_mkwrite() is called on the nearest write access to the page. This way
filesystem can be sure that page_mkwrite() is called on the page before user writes
to the page via mmap after the i_size has been changed.

The function must be called after i_size is updated so that page fault coming after
we unlock the page will already see the new i_size. The function must be called
while we still hold i_mutex - this not only makes sure i_size is stable but also that
userspace cannot observe new i_size value before we are prepared to store mmap
writes at new inode size.

void truncate_pagecache_range(struct inode * inode, loff_t lstart,
loff_t lend)

unmap and remove pagecache that is hole-punched

Parameters
struct inode * inode inode

loff_t lstart offset of beginning of hole

loff_t lend offset of last byte of hole

Description
This function should typically be called before the filesystem releases resources
associated with the freed range (eg. deallocates blocks). This way, pagecache will
always stay logically coherent with on-disk format, and the filesystem would not
have to deal with situations such as writepage being called for a page that has
already had its underlying blocks deallocated.

void mapping_set_error(struct address_space * mapping, int error)
record a writeback error in the address_space

Parameters
struct address_space * mapping the mapping in which an error should be set

int error the error to set in the mapping

Description
When writeback fails in some way, we must record that error so that userspace
can be informed when fsync and the like are called. We endeavor to report errors
on any file that was open at the time of the error. Some internal callers also need
to know when writeback errors have occurred.

When a writeback error occurs, most filesystems will want to call map-
ping_set_error to record the error in the mapping so that it can be reported when
the application calls fsync(2).

void attach_page_private(struct page * page, void * data)
Attach private data to a page.

Parameters

640 Chapter 5. Memory management

Linux Core-api Documentation

struct page * page Page to attach data to.

void * data Data to attach to page.

Description
Attaching private data to a page increments the page’s reference count. The data
must be detached before the page will be freed.

void * detach_page_private(struct page * page)
Detach private data from a page.

Parameters
struct page * page Page to detach data from.

Description
Removes the data that was previously attached to the page and decrements the
refcount on the page.

Return
Data that was attached to the page.

struct page * find_get_page(struct address_space * mapping,
pgoff_t offset)

find and get a page reference

Parameters
struct address_space * mapping the address_space to search

pgoff_t offset the page index

Description
Looks up the page cache slot atmapping & offset. If there is a page cache page,
it is returned with an increased refcount.

Otherwise, NULL is returned.

struct page * find_lock_page(struct address_space * mapping,
pgoff_t offset)

locate, pin and lock a pagecache page

Parameters
struct address_space * mapping the address_space to search

pgoff_t offset the page index

Description
Looks up the page cache slot atmapping & offset. If there is a page cache page,
it is returned locked and with an increased refcount.

Otherwise, NULL is returned.

find_lock_page() may sleep.

struct page * find_or_create_page(struct address_space * mapping,
pgoff_t index, gfp_t gfp_mask)

locate or add a pagecache page

5.6. Memory Management APIs 641

Linux Core-api Documentation

Parameters
struct address_space * mapping the page’s address_space
pgoff_t index the page’s index into the mapping
gfp_t gfp_mask page allocation mode

Description
Looks up the page cache slot atmapping & offset. If there is a page cache page,
it is returned locked and with an increased refcount.

If the page is not present, a new page is allocated using gfp_mask and added to
the page cache and the VM’s LRU list. The page is returned locked and with an
increased refcount.

On memory exhaustion, NULL is returned.

find_or_create_page() may sleep, even if gfp_flags specifies an atomic alloca-
tion!

struct page * grab_cache_page_nowait(struct address_space * mapping,
pgoff_t index)

returns locked page at given index in given cache

Parameters
struct address_space * mapping target address_space

pgoff_t index the page index

Description
Same as grab_cache_page(), but do not wait if the page is unavailable. This is
intended for speculative data generators, where the data can be regenerated if
the page couldn’t be grabbed. This routine should be safe to call while holding
the lock for another page.

Clear __GFP_FS when allocating the page to avoid recursion into the fs and dead-
lock against the caller’s locked page.
struct readahead_control

Describes a readahead request.

Definition

struct readahead_control {
struct file *file;
struct address_space *mapping;

};

Members
file The file, used primarily by network filesystems for authentication. May be

NULL if invoked internally by the filesystem.

mapping Readahead this filesystem object.

Description

642 Chapter 5. Memory management

Linux Core-api Documentation

A readahead request is for consecutive pages. Filesystems which implement the
->readahead method should call readahead_page() or readahead_page_batch()
in a loop and attempt to start I/O against each page in the request.

Most of the fields in this struct are private and should be accessed by the functions
below.

struct page * readahead_page(struct readahead_control * rac)
Get the next page to read.

Parameters
struct readahead_control * rac The current readahead request.

Context
The page is locked and has an elevated refcount. The caller should decreases the
refcount once the page has been submitted for I/O and unlock the page once all
I/O to that page has completed.

Return
A pointer to the next page, or NULL if we are done.

readahead_page_batch(rac, array)
Get a batch of pages to read.

Parameters
rac The current readahead request.

array An array of pointers to struct page.

Context
The pages are locked and have an elevated refcount. The caller should decreases
the refcount once the page has been submitted for I/O and unlock the page once
all I/O to that page has completed.

Return
The number of pages placed in the array. 0 indicates the request is complete.

loff_t readahead_pos(struct readahead_control * rac)
The byte offset into the file of this readahead request.

Parameters
struct readahead_control * rac The readahead request.

loff_t readahead_length(struct readahead_control * rac)
The number of bytes in this readahead request.

Parameters
struct readahead_control * rac The readahead request.

pgoff_t readahead_index(struct readahead_control * rac)
The index of the first page in this readahead request.

Parameters
struct readahead_control * rac The readahead request.

5.6. Memory Management APIs 643

Linux Core-api Documentation

unsigned int readahead_count(struct readahead_control * rac)
The number of pages in this readahead request.

Parameters
struct readahead_control * rac The readahead request.

int page_mkwrite_check_truncate(struct page * page, struct inode * inode)
check if page was truncated

Parameters
struct page * page the page to check

struct inode * inode the inode to check the page against

Description
Returns the number of bytes in the page up to EOF, or -EFAULT if the page was
truncated.

5.6.6 Memory pools

void mempool_exit(mempool_t * pool)
exit a mempool initialized with mempool_init()

Parameters
mempool_t * pool pointer to the memory pool which was initialized with

mempool_init().

Description
Free all reserved elements in pool and pool itself. This function only sleeps if the
free_fn() function sleeps.

May be called on a zeroed but uninitialized mempool (i.e. allocated with
kzalloc()).

void mempool_destroy(mempool_t * pool)
deallocate a memory pool

Parameters
mempool_t * pool pointer to the memory pool which was allocated via

mempool_create().

Description
Free all reserved elements in pool and pool itself. This function only sleeps if the
free_fn() function sleeps.

int mempool_init(mempool_t * pool, int min_nr, mempool_alloc_t * alloc_fn,
mempool_free_t * free_fn, void * pool_data)

initialize a memory pool

Parameters
mempool_t * pool pointer to the memory pool that should be initialized

int min_nr the minimum number of elements guaranteed to be allocated for this
pool.

644 Chapter 5. Memory management

Linux Core-api Documentation

mempool_alloc_t * alloc_fn user-defined element-allocation function.

mempool_free_t * free_fn user-defined element-freeing function.

void * pool_data optional private data available to the user-defined functions.

Description
Like mempool_create(), but initializes the pool in (i.e. embedded in another struc-
ture).

Return
0 on success, negative error code otherwise.

mempool_t * mempool_create(int min_nr, mempool_alloc_t * alloc_fn, mem-
pool_free_t * free_fn, void * pool_data)

create a memory pool

Parameters
int min_nr the minimum number of elements guaranteed to be allocated for this

pool.

mempool_alloc_t * alloc_fn user-defined element-allocation function.

mempool_free_t * free_fn user-defined element-freeing function.

void * pool_data optional private data available to the user-defined functions.

Description
this function creates and allocates a guaranteed size, preallocated memory pool.
The pool can be used from the mempool_alloc() and mempool_free() functions.
This function might sleep. Both the alloc_fn() and the free_fn() functions might
sleep - as long as the mempool_alloc() function is not called from IRQ contexts.

Return
pointer to the created memory pool object or NULL on error.

int mempool_resize(mempool_t * pool, int new_min_nr)
resize an existing memory pool

Parameters
mempool_t * pool pointer to the memory pool which was allocated via

mempool_create().

int new_min_nr the new minimum number of elements guaranteed to be allo-
cated for this pool.

Description
This function shrinks/grows the pool. In the case of growing, it cannot be
guaranteed that the pool will be grown to the new size immediately, but new
mempool_free() calls will refill it. This function may sleep.

Note, the caller must guarantee that no mempool_destroy is called while this func-
tion is running. mempool_alloc() & mempool_free() might be called (eg. from
IRQ contexts) while this function executes.

Return

5.6. Memory Management APIs 645

Linux Core-api Documentation

0 on success, negative error code otherwise.

void * mempool_alloc(mempool_t * pool, gfp_t gfp_mask)
allocate an element from a specific memory pool

Parameters
mempool_t * pool pointer to the memory pool which was allocated via

mempool_create().

gfp_t gfp_mask the usual allocation bitmask.

Description
this function only sleeps if the alloc_fn() function sleeps or returns NULL. Note that
due to preallocation, this function never fails when called from process contexts.
(it might fail if called from an IRQ context.)

Note
using __GFP_ZERO is not supported.

Return
pointer to the allocated element or NULL on error.

void mempool_free(void * element, mempool_t * pool)
return an element to the pool.

Parameters
void * element pool element pointer.

mempool_t * pool pointer to the memory pool which was allocated via
mempool_create().

Description
this function only sleeps if the free_fn() function sleeps.

5.6.7 DMA pools

struct dma_pool * dma_pool_create(const char * name, struct de-
vice * dev, size_t size, size_t align,
size_t boundary)

Creates a pool of consistent memory blocks, for dma.

Parameters
const char * name name of pool, for diagnostics

struct device * dev device that will be doing the DMA

size_t size size of the blocks in this pool.

size_t align alignment requirement for blocks; must be a power of two

size_t boundary returned blocks won’t cross this power of two boundary
Context
not in_interrupt()

646 Chapter 5. Memory management

Linux Core-api Documentation

Description
Given one of these pools, dma_pool_alloc() may be used to allocate memory.
Such memory will all have“consistent”DMA mappings, accessible by the device
and its driver without using cache flushing primitives. The actual size of blocks
allocated may be larger than requested because of alignment.

If boundary is nonzero, objects returned from dma_pool_alloc() won’t cross
that size boundary. This is useful for devices which have addressing restrictions
on individual DMA transfers, such as not crossing boundaries of 4KBytes.

Return
a dma allocation pool with the requested characteristics, or NULL if one can’t be
created.

void dma_pool_destroy(struct dma_pool * pool)
destroys a pool of dma memory blocks.

Parameters
struct dma_pool * pool dma pool that will be destroyed

Context
!in_interrupt()

Description
Caller guarantees that no more memory from the pool is in use, and that nothing
will try to use the pool after this call.

void * dma_pool_alloc(struct dma_pool * pool, gfp_t mem_flags, dma_addr_t
* handle)

get a block of consistent memory

Parameters
struct dma_pool * pool dma pool that will produce the block

gfp_t mem_flags GFP_* bitmask

dma_addr_t * handle pointer to dma address of block

Return
the kernel virtual address of a currently unused block, and reports its dma address
through the handle. If such a memory block can’t be allocated, NULL is returned.
void dma_pool_free(struct dma_pool * pool, void * vaddr, dma_addr_t dma)

put block back into dma pool

Parameters
struct dma_pool * pool the dma pool holding the block

void * vaddr virtual address of block

dma_addr_t dma dma address of block

Description
Caller promises neither device nor driver will again touch this block unless it is
first re-allocated.

5.6. Memory Management APIs 647

Linux Core-api Documentation

struct dma_pool * dmam_pool_create(const char * name, struct de-
vice * dev, size_t size, size_t align,
size_t allocation)

Managed dma_pool_create()

Parameters
const char * name name of pool, for diagnostics

struct device * dev device that will be doing the DMA

size_t size size of the blocks in this pool.

size_t align alignment requirement for blocks; must be a power of two

size_t allocation returned blocks won’t cross this boundary (or zero)
Description
Managed dma_pool_create(). DMA pool created with this function is automati-
cally destroyed on driver detach.

Return
a managed dma allocation pool with the requested characteristics, or NULL if one
can’t be created.
void dmam_pool_destroy(struct dma_pool * pool)

Managed dma_pool_destroy()

Parameters
struct dma_pool * pool dma pool that will be destroyed

Description
Managed dma_pool_destroy().

5.6.8 More Memory Management Functions

void zap_vma_ptes(struct vm_area_struct * vma, unsigned long address, un-
signed long size)

remove ptes mapping the vma

Parameters
struct vm_area_struct * vma vm_area_struct holding ptes to be zapped

unsigned long address starting address of pages to zap

unsigned long size number of bytes to zap

Description
This function only unmaps ptes assigned to VM_PFNMAP vmas.

The entire address range must be fully contained within the vma.

int vm_insert_pages(struct vm_area_struct * vma, unsigned long addr,
struct page ** pages, unsigned long * num)

insert multiple pages into user vma, batching the pmd lock.

Parameters

648 Chapter 5. Memory management

Linux Core-api Documentation

struct vm_area_struct * vma user vma to map to

unsigned long addr target start user address of these pages

struct page ** pages source kernel pages

unsigned long * num in: number of pages to map. out: number of pages that
were not mapped. (0 means all pages were successfully mapped).

Description
Preferred over vm_insert_page() when inserting multiple pages.

In case of error, we may have mapped a subset of the provided pages. It is the
caller’s responsibility to account for this case.
The same restrictions apply as in vm_insert_page().

int vm_insert_page(struct vm_area_struct * vma, unsigned long addr, struct
page * page)

insert single page into user vma

Parameters
struct vm_area_struct * vma user vma to map to

unsigned long addr target user address of this page

struct page * page source kernel page

Description
This allows drivers to insert individual pages they’ve allocated into a user vma.
The page has to be a nice clean _individual_ kernel allocation. If you allocate a
compound page, you need to have marked it as such (__GFP_COMP), or manually
just split the page up yourself (see split_page()).

NOTE! Traditionally this was done with“remap_pfn_range()”which took an ar-
bitrary page protection parameter. This doesn’t allow that. Your vma protection
will have to be set up correctly, which means that if you want a shared writable
mapping, you’d better ask for a shared writable mapping!
The page does not need to be reserved.

Usually this function is called from f_op->mmap() handler under mm->mmap_lock
write-lock, so it can change vma->vm_flags. Caller must set VM_MIXEDMAP on
vma if it wants to call this function from other places, for example from page-fault
handler.

Return
0 on success, negative error code otherwise.

int vm_map_pages(struct vm_area_struct * vma, struct page ** pages, un-
signed long num)

maps range of kernel pages starts with non zero offset

Parameters
struct vm_area_struct * vma user vma to map to

struct page ** pages pointer to array of source kernel pages

5.6. Memory Management APIs 649

Linux Core-api Documentation

unsigned long num number of pages in page array

Description
Maps an object consisting of num pages, catering for the user’s requested
vm_pgoff

If we fail to insert any page into the vma, the function will return immediately
leaving any previously inserted pages present. Callers from the mmap handler
may immediately return the error as their caller will destroy the vma, removing any
successfully inserted pages. Other callers should make their own arrangements
for calling unmap_region().

Context
Process context. Called by mmap handlers.

Return
0 on success and error code otherwise.

int vm_map_pages_zero(struct vm_area_struct * vma, struct page ** pages,
unsigned long num)

map range of kernel pages starts with zero offset

Parameters
struct vm_area_struct * vma user vma to map to

struct page ** pages pointer to array of source kernel pages

unsigned long num number of pages in page array

Description
Similar to vm_map_pages(), except that it explicitly sets the offset to 0. This func-
tion is intended for the drivers that did not consider vm_pgoff.

Context
Process context. Called by mmap handlers.

Return
0 on success and error code otherwise.

vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct * vma, unsigned
long addr, unsigned long pfn, pg-
prot_t pgprot)

insert single pfn into user vma with specified pgprot

Parameters
struct vm_area_struct * vma user vma to map to

unsigned long addr target user address of this page

unsigned long pfn source kernel pfn

pgprot_t pgprot pgprot flags for the inserted page

Description

650 Chapter 5. Memory management

Linux Core-api Documentation

This is exactly like vmf_insert_pfn(), except that it allows drivers to to override
pgprot on a per-page basis.

This only makes sense for IO mappings, and it makes no sense for COWmappings.
In general, using multiple vmas is preferable; vmf_insert_pfn_prot should only be
used if using multiple VMAs is impractical.

See vmf_insert_mixed_prot() for a discussion of the implication of using a value
of pgprot different from that of vma->vm_page_prot.
Context
Process context. May allocate using GFP_KERNEL.

Return
vm_fault_t value.

vm_fault_t vmf_insert_pfn(struct vm_area_struct * vma, unsigned
long addr, unsigned long pfn)

insert single pfn into user vma

Parameters
struct vm_area_struct * vma user vma to map to

unsigned long addr target user address of this page

unsigned long pfn source kernel pfn

Description
Similar to vm_insert_page, this allows drivers to insert individual pages they’ve
allocated into a user vma. Same comments apply.

This function should only be called from a vm_ops->fault handler, and in that case
the handler should return the result of this function.

vma cannot be a COW mapping.

As this is called only for pages that do not currently exist, we do not need to flush
old virtual caches or the TLB.

Context
Process context. May allocate using GFP_KERNEL.

Return
vm_fault_t value.

vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct * vma, unsigned
long addr, pfn_t pfn, pgprot_t pgprot)

insert single pfn into user vma with specified pgprot

Parameters
struct vm_area_struct * vma user vma to map to

unsigned long addr target user address of this page

pfn_t pfn source kernel pfn

pgprot_t pgprot pgprot flags for the inserted page

5.6. Memory Management APIs 651

Linux Core-api Documentation

Description
This is exactly like vmf_insert_mixed(), except that it allows drivers to to override
pgprot on a per-page basis.

Typically this function should be used by drivers to set caching- and encryption
bits different than those of vma->vm_page_prot, because the caching- or en-
cryption mode may not be known at mmap() time. This is ok as long as vma-
>vm_page_prot is not used by the core vm to set caching and encryption bits for
those vmas (except for COW pages). This is ensured by core vm only modifying
these page table entries using functions that don’t touch caching- or encryption
bits, using pte_modify() if needed. (See for example mprotect()). Also when new
page-table entries are created, this is only done using the fault() callback, and
never using the value of vma->vm_page_prot, except for page-table entries that
point to anonymous pages as the result of COW.

Context
Process context. May allocate using GFP_KERNEL.

Return
vm_fault_t value.

int remap_pfn_range(struct vm_area_struct * vma, unsigned long addr, un-
signed long pfn, unsigned long size, pgprot_t prot)

remap kernel memory to userspace

Parameters
struct vm_area_struct * vma user vma to map to

unsigned long addr target user address to start at

unsigned long pfn page frame number of kernel physical memory address

unsigned long size size of mapping area

pgprot_t prot page protection flags for this mapping

Note
this is only safe if the mm semaphore is held when called.

Return
0 on success, negative error code otherwise.

int vm_iomap_memory(struct vm_area_struct * vma, phys_addr_t start, un-
signed long len)

remap memory to userspace

Parameters
struct vm_area_struct * vma user vma to map to

phys_addr_t start start of the physical memory to be mapped

unsigned long len size of area

Description

652 Chapter 5. Memory management

Linux Core-api Documentation

This is a simplified io_remap_pfn_range() for common driver use. The driver just
needs to give us the physical memory range to be mapped, we’ll figure out the
rest from the vma information.

NOTE! Some drivers might want to tweak vma->vm_page_prot first to get what-
ever write-combining details or similar.

Return
0 on success, negative error code otherwise.

void unmap_mapping_range(struct address_space * mapping, loff_t
const holebegin, loff_t const holelen,
int even_cows)

unmap the portion of all mmaps in the specified address_space corresponding
to the specified byte range in the underlying file.

Parameters
struct address_space * mapping the address space containing mmaps to be

unmapped.

loff_t const holebegin byte in first page to unmap, relative to the start of the
underlying file. This will be rounded down to a PAGE_SIZE boundary. Note
that this is different from truncate_pagecache(), which must keep the par-
tial page. In contrast, we must get rid of partial pages.

loff_t const holelen size of prospective hole in bytes. This will be rounded up
to a PAGE_SIZE boundary. A holelen of zero truncates to the end of the file.

int even_cows 1 when truncating a file, unmap even private COWed pages; but
0 when invalidating pagecache, don’t throw away private data.

int follow_pfn(struct vm_area_struct * vma, unsigned long address, un-
signed long * pfn)

look up PFN at a user virtual address

Parameters
struct vm_area_struct * vma memory mapping

unsigned long address user virtual address

unsigned long * pfn location to store found PFN

Description
Only IO mappings and raw PFN mappings are allowed.

Return
zero and the pfn at pfn on success, -ve otherwise.
unsigned long __get_pfnblock_flags_mask(struct page * page, un-

signed long pfn, unsigned
long end_bitidx, unsigned
long mask)

Return the requested group of flags for the pageblock_nr_pages block of
pages

Parameters

5.6. Memory Management APIs 653

Linux Core-api Documentation

struct page * page The page within the block of interest

unsigned long pfn The target page frame number

unsigned long end_bitidx The last bit of interest to retrieve

unsigned long mask mask of bits that the caller is interested in

Return
pageblock_bits flags

void set_pfnblock_flags_mask(struct page * page, unsigned long flags, un-
signed long pfn, unsigned long end_bitidx,
unsigned long mask)

Set the requested group of flags for a pageblock_nr_pages block of pages

Parameters
struct page * page The page within the block of interest

unsigned long flags The flags to set

unsigned long pfn The target page frame number

unsigned long end_bitidx The last bit of interest

unsigned long mask mask of bits that the caller is interested in

void __putback_isolated_page(struct page * page, unsigned int order,
int mt)

Return a now-isolated page back where we got it

Parameters
struct page * page Page that was isolated

unsigned int order Order of the isolated page

int mt The page’s pageblock’s migratetype
Description
This function is meant to return a page pulled from the free lists via
__isolate_free_page back to the free lists they were pulled from.

void * alloc_pages_exact(size_t size, gfp_t gfp_mask)
allocate an exact number physically-contiguous pages.

Parameters
size_t size the number of bytes to allocate

gfp_t gfp_mask GFP flags for the allocation, must not contain __GFP_COMP

Description
This function is similar to alloc_pages(), except that it allocates the minimum num-
ber of pages to satisfy the request. alloc_pages() can only allocate memory in
power-of-two pages.

This function is also limited by MAX_ORDER.

Memory allocated by this function must be released by free_pages_exact().

Return

654 Chapter 5. Memory management

Linux Core-api Documentation

pointer to the allocated area or NULL in case of error.

void * alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
allocate an exact number of physically-contiguous pages on a node.

Parameters
int nid the preferred node ID where memory should be allocated

size_t size the number of bytes to allocate

gfp_t gfp_mask GFP flags for the allocation, must not contain __GFP_COMP

Description
Like alloc_pages_exact(), but try to allocate on node nid first before falling back.

Return
pointer to the allocated area or NULL in case of error.

void free_pages_exact(void * virt, size_t size)
release memory allocated via alloc_pages_exact()

Parameters
void * virt the value returned by alloc_pages_exact.

size_t size size of allocation, same value as passed to alloc_pages_exact().

Description
Release the memory allocated by a previous call to alloc_pages_exact.

unsigned long nr_free_zone_pages(int offset)
count number of pages beyond high watermark

Parameters
int offset The zone index of the highest zone

Description
nr_free_zone_pages() counts the number of pages which are beyond the high
watermark within all zones at or below a given zone index. For each zone, the
number of pages is calculated as:

nr_free_zone_pages = managed_pages - high_pages

Return
number of pages beyond high watermark.

unsigned long nr_free_buffer_pages(void)
count number of pages beyond high watermark

Parameters
void no arguments

Description
nr_free_buffer_pages() counts the number of pages which are beyond the high
watermark within ZONE_DMA and ZONE_NORMAL.

Return

5.6. Memory Management APIs 655

Linux Core-api Documentation

number of pages beyond highwatermark within ZONE_DMA and ZONE_NORMAL.

unsigned long nr_free_pagecache_pages(void)
count number of pages beyond high watermark

Parameters
void no arguments

Description
nr_free_pagecache_pages() counts the number of pages which are beyond the
high watermark within all zones.

Return
number of pages beyond high watermark within all zones.

int find_next_best_node(int node, nodemask_t * used_node_mask)
find the next node that should appear in a given node’s fallback list

Parameters
int node node whose fallback list we’re appending
nodemask_t * used_node_mask nodemask_t of already used nodes

Description
We use a number of factors to determine which is the next node that should appear
on a given node’s fallback list. The node should not have appeared already in node’
s fallback list, and it should be the next closest node according to the distance
array (which contains arbitrary distance values from each node to each node in
the system), and should also prefer nodes with no CPUs, since presumably they’ll
have very little allocation pressure on them otherwise.

Return
node id of the found node or NUMA_NO_NODE if no node is found.

void sparse_memory_present_with_active_regions(int nid)
Call memory_present for each active range

Parameters
int nid The node to call memory_present for. If MAX_NUMNODES, all nodes will

be used.

Description
If an architecture guarantees that all ranges registered contain no holes and may
be freed, this function may be used instead of calling memory_present() manually.

void get_pfn_range_for_nid(unsigned int nid, unsigned long * start_pfn,
unsigned long * end_pfn)

Return the start and end page frames for a node

Parameters
unsigned int nid The nid to return the range for. If MAX_NUMNODES, the min

and max PFN are returned.

656 Chapter 5. Memory management

Linux Core-api Documentation

unsigned long * start_pfn Passed by reference. On return, it will have the
node start_pfn.

unsigned long * end_pfn Passed by reference. On return, it will have the node
end_pfn.

Description
It returns the start and end page frame of a node based on information provided by
memblock_set_node(). If called for a node with no available memory, a warning
is printed and the start and end PFNs will be 0.

unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned
long end_pfn)

Return number of page frames in holes within a range

Parameters
unsigned long start_pfn The start PFN to start searching for holes

unsigned long end_pfn The end PFN to stop searching for holes

Return
the number of pages frames in memory holes within a range.

unsigned long node_map_pfn_alignment(void)
determine the maximum internode alignment

Parameters
void no arguments

Description
This function should be called after nodemap is populated and sorted. It calculates
the maximum power of two alignment which can distinguish all the nodes.

For example, if all nodes are 1GiB and aligned to 1GiB, the return value would
indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the nodes are shifted
by 256MiB, 256MiB. Note that if only the last node is shifted, 1GiB is enough and
this function will indicate so.

This is used to test whether pfn -> nid mapping of the chosen memory model has
fine enough granularity to avoid incorrect mapping for the populated node map.

Return
the determined alignment in pfn’s. 0 if there is no alignment requirement (single
node).

unsigned long find_min_pfn_with_active_regions(void)
Find the minimum PFN registered

Parameters
void no arguments

Return
the minimum PFN based on information provided via memblock_set_node().

5.6. Memory Management APIs 657

Linux Core-api Documentation

void free_area_init(unsigned long * max_zone_pfn)
Initialise all pg_data_t and zone data

Parameters
unsigned long * max_zone_pfn an array of max PFNs for each zone

Description
This will call free_area_init_node() for each active node in the system. Using the
page ranges provided by memblock_set_node(), the size of each zone in each node
and their holes is calculated. If the maximum PFN between two adjacent zones
match, it is assumed that the zone is empty. For example, if arch_max_dma_pfn
== arch_max_dma32_pfn, it is assumed that arch_max_dma32_pfn has no pages.
It is also assumed that a zone starts where the previous one ended. For example,
ZONE_DMA32 starts at arch_max_dma_pfn.

void set_dma_reserve(unsigned long new_dma_reserve)
set the specified number of pages reserved in the first zone

Parameters
unsigned long new_dma_reserve The number of pages to mark reserved

Description
The per-cpu batchsize and zone watermarks are determined by managed_pages.
In the DMA zone, a significant percentage may be consumed by kernel image and
other unfreeable allocations which can skew the watermarks badly. This function
may optionally be used to account for unfreeable pages in the first zone (e.g.,
ZONE_DMA). The effect will be lower watermarks and smaller per-cpu batchsize.

void setup_per_zone_wmarks(void)
called when min_free_kbytes changes or when memory is hot-
{added|removed}

Parameters
void no arguments

Description
Ensures that the watermark[min,low,high] values for each zone are set correctly
with respect to min_free_kbytes.

int alloc_contig_range(unsigned long start, unsigned long end, un-
signed migratetype, gfp_t gfp_mask)

• tries to allocate given range of pages

Parameters
unsigned long start start PFN to allocate

unsigned long end one-past-the-last PFN to allocate

unsigned migratetype migratetype of the underlaying pageblocks (either #MI-
GRATE_MOVABLE or #MIGRATE_CMA). All pageblocks in range must have
the same migratetype and it must be either of the two.

gfp_t gfp_mask GFP mask to use during compaction

658 Chapter 5. Memory management

Linux Core-api Documentation

Description
The PFN range does not have to be pageblock orMAX_ORDER_NR_PAGES aligned.
The PFN range must belong to a single zone.

The first thing this routine does is attempt to MIGRATE_ISOLATE all pageblocks
in the range. Once isolated, the pageblocks should not be modified by others.

Return
zero on success or negative error code. On success all pages which PFN is in [start,
end) are allocated for the caller and need to be freed with free_contig_range().

struct page * alloc_contig_pages(unsigned long nr_pages,
gfp_t gfp_mask, int nid, nodemask_t
* nodemask)

• tries to find and allocate contiguous range of pages

Parameters
unsigned long nr_pages Number of contiguous pages to allocate

gfp_t gfp_mask GFP mask to limit search and used during compaction

int nid Target node

nodemask_t * nodemask Mask for other possible nodes

Description
This routine is a wrapper around alloc_contig_range(). It scans over zones
on an applicable zonelist to find a contiguous pfn range which can then be tried
for allocation with alloc_contig_range(). This routine is intended for allocation
requests which can not be fulfilled with the buddy allocator.

The allocated memory is always aligned to a page boundary. If nr_pages is a power
of two then the alignment is guaranteed to be to the given nr_pages (e.g. 1GB
request would be aligned to 1GB).

Allocated pages can be freed with free_contig_range() or by manually calling
__free_page() on each allocated page.

Return
pointer to contiguous pages on success, or NULL if not successful.

5.7 The genalloc/genpool subsystem

There are a number of memory-allocation subsystems in the kernel, each aimed
at a specific need. Sometimes, however, a kernel developer needs to implement a
new allocator for a specific range of special-purpose memory; often that memory
is located on a device somewhere. The author of the driver for that device can
certainly write a little allocator to get the job done, but that is the way to fill the
kernel with dozens of poorly tested allocators. Back in 2005, Jes Sorensen lifted
one of those allocators from the sym53c8xx_2 driver and posted it as a generic
module for the creation of ad hoc memory allocators. This code was merged for
the 2.6.13 release; it has been modified considerably since then.

5.7. The genalloc/genpool subsystem 659

https://lwn.net/Articles/125842/

Linux Core-api Documentation

Code using this allocator should include <linux/genalloc.h>. The action begins
with the creation of a pool using one of:

struct gen_pool * gen_pool_create(int min_alloc_order, int nid)
create a new special memory pool

Parameters
int min_alloc_order log base 2 of number of bytes each bitmap bit represents

int nid node id of the node the pool structure should be allocated on, or -1

Description
Create a new special memory pool that can be used to manage special purpose
memory not managed by the regular kmalloc/kfree interface.

struct gen_pool * devm_gen_pool_create(struct device * dev,
int min_alloc_order, int nid, const
char * name)

managed gen_pool_create

Parameters
struct device * dev device that provides the gen_pool

int min_alloc_order log base 2 of number of bytes each bitmap bit represents

int nid node selector for allocated gen_pool, NUMA_NO_NODE for all nodes

const char * name name of a gen_pool or NULL, identifies a particular gen_pool
on device

Description
Create a new special memory pool that can be used to manage special purpose
memory not managed by the regular kmalloc/kfree interface. The pool will be
automatically destroyed by the device management code.

A call to gen_pool_create()will create a pool. The granularity of allocations is set
with min_alloc_order; it is a log-base-2 number like those used by the page alloca-
tor, but it refers to bytes rather than pages. So, if min_alloc_order is passed as 3,
then all allocations will be amultiple of eight bytes. Increasingmin_alloc_order de-
creases the memory required to track the memory in the pool. The nid parameter
specifies which NUMA node should be used for the allocation of the housekeeping
structures; it can be -1 if the caller doesn’t care.
The“managed”interface devm_gen_pool_create() ties the pool to a specific de-
vice. Among other things, it will automatically clean up the pool when the given
device is destroyed.

A pool is shut down with:

void gen_pool_destroy(struct gen_pool * pool)
destroy a special memory pool

Parameters
struct gen_pool * pool pool to destroy

Description

660 Chapter 5. Memory management

Linux Core-api Documentation

Destroy the specified special memory pool. Verifies that there are no outstanding
allocations.

It’s worth noting that, if there are still allocations outstanding from the given
pool, this function will take the rather extreme step of invoking BUG(), crashing
the entire system. You have been warned.

A freshly created pool has no memory to allocate. It is fairly useless in that state,
so one of the first orders of business is usually to add memory to the pool. That
can be done with one of:

int gen_pool_add(struct gen_pool * pool, unsigned long addr, size_t size,
int nid)

add a new chunk of special memory to the pool

Parameters
struct gen_pool * pool pool to add new memory chunk to

unsigned long addr starting address of memory chunk to add to pool

size_t size size in bytes of the memory chunk to add to pool

int nid node id of the node the chunk structure and bitmap should be allocated
on, or -1

Description
Add a new chunk of special memory to the specified pool.

Returns 0 on success or a -ve errno on failure.

int gen_pool_add_owner(struct gen_pool * pool, unsigned long virt,
phys_addr_t phys, size_t size, int nid, void
* owner)

add a new chunk of special memory to the pool

Parameters
struct gen_pool * pool pool to add new memory chunk to

unsigned long virt virtual starting address of memory chunk to add to pool

phys_addr_t phys physical starting address of memory chunk to add to pool

size_t size size in bytes of the memory chunk to add to pool

int nid node id of the node the chunk structure and bitmap should be allocated
on, or -1

void * owner private data the publisher would like to recall at alloc time

Description
Add a new chunk of special memory to the specified pool.

Returns 0 on success or a -ve errno on failure.

A call to gen_pool_add() will place the size bytes of memory starting at addr
(in the kernel’s virtual address space) into the given pool, once again using nid
as the node ID for ancillary memory allocations. The gen_pool_add_virt() variant
associates an explicit physical address with the memory; this is only necessary if
the pool will be used for DMA allocations.

5.7. The genalloc/genpool subsystem 661

Linux Core-api Documentation

The functions for allocating memory from the pool (and putting it back) are:

unsigned long gen_pool_alloc(struct gen_pool * pool, size_t size)
allocate special memory from the pool

Parameters
struct gen_pool * pool pool to allocate from

size_t size number of bytes to allocate from the pool

Description
Allocate the requested number of bytes from the specified pool. Uses the pool
allocation function (with first-fit algorithm by default). Can not be used in NMI
handler on architectures without NMI-safe cmpxchg implementation.

void * gen_pool_dma_alloc(struct gen_pool * pool, size_t size, dma_addr_t
* dma)

allocate special memory from the pool for DMA usage

Parameters
struct gen_pool * pool pool to allocate from

size_t size number of bytes to allocate from the pool

dma_addr_t * dma dma-view physical address return value. Use NULL if un-
needed.

Description
Allocate the requested number of bytes from the specified pool. Uses the pool
allocation function (with first-fit algorithm by default). Can not be used in NMI
handler on architectures without NMI-safe cmpxchg implementation.

Return
virtual address of the allocated memory, or NULL on failure

void gen_pool_free_owner(struct gen_pool * pool, unsigned long addr,
size_t size, void ** owner)

free allocated special memory back to the pool

Parameters
struct gen_pool * pool pool to free to

unsigned long addr starting address of memory to free back to pool

size_t size size in bytes of memory to free

void ** owner private data stashed at gen_pool_add() time

Description
Free previously allocated special memory back to the specified pool. Can not be
used in NMI handler on architectures without NMI-safe cmpxchg implementation.

As one would expect, gen_pool_alloc() will allocate size< bytes from the given
pool. The gen_pool_dma_alloc() variant allocates memory for use with DMA op-
erations, returning the associated physical address in the space pointed to by dma.
This will only work if the memory was added with gen_pool_add_virt(). Note that

662 Chapter 5. Memory management

Linux Core-api Documentation

this function departs from the usual genpool pattern of using unsigned long values
to represent kernel addresses; it returns a void * instead.

That all seems relatively simple; indeed, some developers clearly found it to be too
simple. After all, the interface above provides no control over how the allocation
functions choose which specific piece of memory to return. If that sort of control
is needed, the following functions will be of interest:

unsigned long gen_pool_alloc_algo_owner(struct gen_pool * pool,
size_t size, gen-
pool_algo_t algo, void * data,
void ** owner)

allocate special memory from the pool

Parameters
struct gen_pool * pool pool to allocate from

size_t size number of bytes to allocate from the pool

genpool_algo_t algo algorithm passed from caller

void * data data passed to algorithm

void ** owner optionally retrieve the chunk owner

Description
Allocate the requested number of bytes from the specified pool. Uses the pool
allocation function (with first-fit algorithm by default). Can not be used in NMI
handler on architectures without NMI-safe cmpxchg implementation.

void gen_pool_set_algo(struct gen_pool * pool, genpool_algo_t algo, void
* data)

set the allocation algorithm

Parameters
struct gen_pool * pool pool to change allocation algorithm

genpool_algo_t algo custom algorithm function

void * data additional data used by algo
Description
Call algo for each memory allocation in the pool. If algo is NULL use
gen_pool_first_fit as default memory allocation function.

Allocations with gen_pool_alloc_algo() specify an algorithm to be used to
choose the memory to be allocated; the default algorithm can be set with
gen_pool_set_algo(). The data value is passed to the algorithm; most ignore
it, but it is occasionally needed. One can, naturally, write a special-purpose algo-
rithm, but there is a fair set already available:

• gen_pool_first_fit is a simple first-fit allocator; this is the default algorithm if
none other has been specified.

• gen_pool_first_fit_align forces the allocation to have a specific alignment
(passed via data in a genpool_data_align structure).

5.7. The genalloc/genpool subsystem 663

Linux Core-api Documentation

• gen_pool_first_fit_order_align aligns the allocation to the order of the size. A
60-byte allocation will thus be 64-byte aligned, for example.

• gen_pool_best_fit, as one would expect, is a simple best-fit allocator.

• gen_pool_fixed_alloc allocates at a specific offset (passed in a gen-
pool_data_fixed structure via the data parameter) within the pool. If the indi-
cated memory is not available the allocation fails.

There is a handful of other functions, mostly for purposes like querying the space
available in the pool or iterating through chunks of memory. Most users, how-
ever, should not need much beyond what has been described above. With luck,
wider awareness of this module will help to prevent the writing of special-purpose
memory allocators in the future.

phys_addr_t gen_pool_virt_to_phys(struct gen_pool * pool, unsigned
long addr)

return the physical address of memory

Parameters
struct gen_pool * pool pool to allocate from

unsigned long addr starting address of memory

Description
Returns the physical address on success, or -1 on error.

void gen_pool_for_each_chunk(struct gen_pool * pool, void (*func)(struct
gen_pool *pool, struct gen_pool_chunk
*chunk, void *data), void * data)

call func for every chunk of generic memory pool

Parameters
struct gen_pool * pool the generic memory pool

void (*)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data) func
func to call

void * data additional data used by func
Description
Call func for every chunk of generic memory pool. The func is called with
rcu_read_lock held.

bool gen_pool_has_addr(struct gen_pool * pool, unsigned long start,
size_t size)

checks if an address falls within the range of a pool

Parameters
struct gen_pool * pool the generic memory pool

unsigned long start start address

size_t size size of the region

Description

664 Chapter 5. Memory management

Linux Core-api Documentation

Check if the range of addresses falls within the specified pool. Returns true if the
entire range is contained in the pool and false otherwise.

size_t gen_pool_avail(struct gen_pool * pool)
get available free space of the pool

Parameters
struct gen_pool * pool pool to get available free space

Description
Return available free space of the specified pool.

size_t gen_pool_size(struct gen_pool * pool)
get size in bytes of memory managed by the pool

Parameters
struct gen_pool * pool pool to get size

Description
Return size in bytes of memory managed by the pool.

struct gen_pool * gen_pool_get(struct device * dev, const char * name)
Obtain the gen_pool (if any) for a device

Parameters
struct device * dev device to retrieve the gen_pool from

const char * name name of a gen_pool or NULL, identifies a particular gen_pool
on device

Description
Returns the gen_pool for the device if one is present, or NULL.

struct gen_pool * of_gen_pool_get(struct device_node * np, const char
* propname, int index)

find a pool by phandle property

Parameters
struct device_node * np device node

const char * propname property name containing phandle(s)

int index index into the phandle array

Description
Returns the pool that contains the chunk starting at the physical address of the
device tree node pointed at by the phandle property, or NULL if not found.

5.7. The genalloc/genpool subsystem 665

Linux Core-api Documentation

5.8 pin_user_pages() and related calls

• Overview

• Basic description of FOLL_PIN

• Which flags are set by each wrapper

• Tracking dma-pinned pages

• FOLL_PIN, FOLL_GET, FOLL_LONGTERM: when to use which flags

– CASE 1: Direct IO (DIO)
– CASE 2: RDMA
– CASE 3: MMU notifier registration, with or without page faulting hard-
ware

– CASE 4: Pinning for struct page manipulation only
– CASE 5: Pinning in order to write to the data within the page

• page_maybe_dma_pinned(): the whole point of pinning

• Another way of thinking about FOLL_GET, FOLL_PIN, and
FOLL_LONGTERM

• Unit testing

• Other diagnostics

• References

5.8.1 Overview

This document describes the following functions:

pin_user_pages()
pin_user_pages_fast()
pin_user_pages_remote()

5.8.2 Basic description of FOLL_PIN

FOLL_PIN and FOLL_LONGTERM are flags that can be passed to the
get_user_pages*() (“gup”) family of functions. FOLL_PIN has significant interac-
tions and interdependencies with FOLL_LONGTERM, so both are covered here.

FOLL_PIN is internal to gup, meaning that it should not appear at the gup call sites.
This allows the associated wrapper functions (pin_user_pages*() and others) to set
the correct combination of these flags, and to check for problems as well.

FOLL_LONGTERM, on the other hand, is allowed to be set at the gup call
sites. This is in order to avoid creating a large number of wrapper functions to
cover all combinations of get*(), pin*(), FOLL_LONGTERM, and more. Also, the

666 Chapter 5. Memory management

Linux Core-api Documentation

pin_user_pages*() APIs are clearly distinct from the get_user_pages*() APIs, so
that’s a natural dividing line, and a good point to make separate wrapper calls. In
other words, use pin_user_pages*() for DMA-pinned pages, and get_user_pages*()
for other cases. There are five cases described later on in this document, to further
clarify that concept.

FOLL_PIN and FOLL_GET are mutually exclusive for a given gup call. However,
multiple threads and call sites are free to pin the same struct pages, via both
FOLL_PIN and FOLL_GET. It’s just the call site that needs to choose one or the
other, not the struct page(s).

The FOLL_PIN implementation is nearly the same as FOLL_GET, except that
FOLL_PIN uses a different reference counting technique.

FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying that is,
FOLL_LONGTERM is a specific case, more restrictive case of FOLL_PIN.

5.8.3 Which flags are set by each wrapper

For these pin_user_pages*() functions, FOLL_PIN is OR’d in with whatever gup
flags the caller provides. The caller is required to pass in a non-null struct pages*
array, and the function then pins pages by incrementing each by a special value:
GUP_PIN_COUNTING_BIAS.

For huge pages (and in fact, any compound page of more than 2 pages), the
GUP_PIN_COUNTING_BIAS scheme is not used. Instead, an exact form of pin
counting is achieved, by using the 3rd struct page in the compound page. A new
struct page field, hpage_pinned_refcount, has been added in order to support this.

This approach for compound pages avoids the counting upper limit problems that
are discussed below. Those limitations would have been aggravated severely by
huge pages, because each tail page adds a refcount to the head page. And in
fact, testing revealed that, without a separate hpage_pinned_refcount field, page
overflows were seen in some huge page stress tests.

This also means that huge pages and compound pages (of order > 1) do not suffer
from the false positives problem that is mentioned below.:

Function

pin_user_pages FOLL_PIN is always set internally by this function.
pin_user_pages_fast FOLL_PIN is always set internally by this function.
pin_user_pages_remote FOLL_PIN is always set internally by this function.

For these get_user_pages*() functions, FOLL_GETmight not even be specified. Be-
havior is a little more complex than above. If FOLL_GET was not specified, but the
caller passed in a non-null struct pages* array, then the function sets FOLL_GET
for you, and proceeds to pin pages by incrementing the refcount of each page by
+1.:

Function

get_user_pages FOLL_GET is sometimes set internally by this␣
↪→function.

(continues on next page)

5.8. pin_user_pages() and related calls 667

Linux Core-api Documentation

(continued from previous page)
get_user_pages_fast FOLL_GET is sometimes set internally by this␣
↪→function.
get_user_pages_remote FOLL_GET is sometimes set internally by this␣
↪→function.

5.8.4 Tracking dma-pinned pages

Some of the key design constraints, and solutions, for tracking dma-pinned pages:

• An actual reference count, per struct page, is required. This is because mul-
tiple processes may pin and unpin a page.

• False positives (reporting that a page is dma-pinned, when in fact it is not)
are acceptable, but false negatives are not.

• struct page may not be increased in size for this, and all fields are already
used.

• Given the above, we can overload the page->_refcount field by using, sort of,
the upper bits in that field for a dma-pinned count. “Sort of”, means that,
rather than dividing page->_refcount into bit fields, we simple add a medium-
large value (GUP_PIN_COUNTING_BIAS, initially chosen to be 1024: 10 bits)
to page->_refcount. This provides fuzzy behavior: if a page has get_page()
called on it 1024 times, then it will appear to have a single dma-pinned count.
And again, that’s acceptable.

This also leads to limitations: there are only 31-10==21 bits available for a counter
that increments 10 bits at a time.

• Callers must specifically request “dma-pinned tracking of pages”. In other
words, just calling get_user_pages() will not suffice; a new set of functions,
pin_user_page() and related, must be used.

5.8.5 FOLL_PIN, FOLL_GET, FOLL_LONGTERM: when to use which
flags

Thanks to Jan Kara, Vlastimil Babka and several other -mm people, for describing
these categories:

CASE 1: Direct IO (DIO)

There are GUP references to pages that are serving as DIO buffers. These buffers
are needed for a relatively short time (so they are not “long term”). No special
synchronization with page_mkclean() or munmap() is provided. Therefore, flags
to set at the call site are:

FOLL_PIN

⋯but rather than setting FOLL_PIN directly, call sites should use one of the
pin_user_pages*() routines that set FOLL_PIN.

668 Chapter 5. Memory management

Linux Core-api Documentation

CASE 2: RDMA

There are GUP references to pages that are serving as DMA buffers. These
buffers are needed for a long time (“long term”). No special synchronization
with page_mkclean() or munmap() is provided. Therefore, flags to set at the call
site are:

FOLL_PIN | FOLL_LONGTERM

NOTE: Some pages, such as DAX pages, cannot be pinned with longterm pins.
That’s because DAX pages do not have a separate page cache, and so“pinning”
implies locking down file system blocks, which is not (yet) supported in that way.

CASE 3: MMU notifier registration, with or without page faulting hardware

Device drivers can pin pages via get_user_pages*(), and register for mmu notifier
callbacks for the memory range. Then, upon receiving a notifier“invalidate range”
callback , stop the device from using the range, and unpin the pages. There may
be other possible schemes, such as for example explicitly synchronizing against
pending IO, that accomplish approximately the same thing.

Or, if the hardware supports replayable page faults, then the device driver can
avoid pinning entirely (this is ideal), as follows: register for mmu notifier callbacks
as above, but instead of stopping the device and unpinning in the callback, simply
remove the range from the device’s page tables.
Either way, as long as the driver unpins the pages uponmmu notifier callback, then
there is proper synchronization with both filesystem and mm (page_mkclean(),
munmap(), etc). Therefore, neither flag needs to be set.

CASE 4: Pinning for struct page manipulation only

If only struct page data (as opposed to the actual memory contents that a page is
tracking) is affected, then normal GUP calls are sufficient, and neither flag needs
to be set.

CASE 5: Pinning in order to write to the data within the page

Even though neither DMA nor Direct IO is involved, just a simple case of “pin,
write to a page’s data, unpin”can cause a problem. Case 5 may be considered a
superset of Case 1, plus Case 2, plus anything that invokes that pattern. In other
words, if the code is neither Case 1 nor Case 2, it may still require FOLL_PIN, for
patterns like this:

Correct (uses FOLL_PIN calls): pin_user_pages() write to the data within the
pages unpin_user_pages()

INCORRECT (uses FOLL_GET calls): get_user_pages() write to the data within
the pages put_page()

5.8. pin_user_pages() and related calls 669

Linux Core-api Documentation

5.8.6 page_maybe_dma_pinned(): the whole point of pinning

The whole point of marking pages as“DMA-pinned”or“gup-pinned”is to be able
to query, “is this page DMA-pinned?”That allows code such as page_mkclean()
(and file system writeback code in general) to make informed decisions about what
to do when a page cannot be unmapped due to such pins.

What to do in those cases is the subject of a years-long series of discussions and
debates (see the References at the end of this document). It’s a TODO item here:
fill in the details once that’s worked out. Meanwhile, it’s safe to say that having
this available:

static inline bool page_maybe_dma_pinned(struct page *page)

⋯is a prerequisite to solving the long-running gup+DMA problem.

5.8.7 Another way of thinking about FOLL_GET, FOLL_PIN, and
FOLL_LONGTERM

Another way of thinking about these flags is as a progression of restrictions:
FOLL_GET is for struct page manipulation, without affecting the data that the
struct page refers to. FOLL_PIN is a replacement for FOLL_GET, and is for short
term pins on pages whose data will get accessed. As such, FOLL_PIN is a “more
severe”form of pinning. And finally, FOLL_LONGTERM is an even more restric-
tive case that has FOLL_PIN as a prerequisite: this is for pages that will be pinned
longterm, and whose data will be accessed.

5.8.8 Unit testing

This file:

tools/testing/selftests/vm/gup_benchmark.c

has the following new calls to exercise the new pin*() wrapper functions:

• PIN_FAST_BENCHMARK (./gup_benchmark -a)

• PIN_BENCHMARK (./gup_benchmark -b)

You can monitor how many total dma-pinned pages have been acquired and re-
leased since the system was booted, via two new /proc/vmstat entries:

/proc/vmstat/nr_foll_pin_acquired
/proc/vmstat/nr_foll_pin_released

Under normal conditions, these two values will be equal unless there are any long-
term [R]DMA pins in place, or during pin/unpin transitions.

• nr_foll_pin_acquired: This is the number of logical pins that have been ac-
quired since the system was powered on. For huge pages, the head page is
pinned once for each page (head page and each tail page) within the huge
page. This follows the same sort of behavior that get_user_pages() uses for
huge pages: the head page is refcounted once for each tail or head page in
the huge page, when get_user_pages() is applied to a huge page.

670 Chapter 5. Memory management

Linux Core-api Documentation

• nr_foll_pin_released: The number of logical pins that have been released
since the systemwas powered on. Note that pages are released (unpinned) on
a PAGE_SIZE granularity, even if the original pin was applied to a huge page.
Becaused of the pin count behavior described above in“nr_foll_pin_acquired”
, the accounting balances out, so that after doing this:

pin_user_pages(huge_page);
for (each page in huge_page)

unpin_user_page(page);

⋯the following is expected:
nr_foll_pin_released == nr_foll_pin_acquired

(⋯unless it was already out of balance due to a long-term RDMA pin being in
place.)

5.8.9 Other diagnostics

dump_page() has been enhanced slightly, to handle these new counting fields, and
to better report on compound pages in general. Specifically, for compound pages
with order > 1, the exact (hpage_pinned_refcount) pincount is reported.

5.8.10 References

• Some slow progress on get_user_pages() (Apr 2, 2019)

• DMA and get_user_pages() (LPC: Dec 12, 2018)

• The trouble with get_user_pages() (Apr 30, 2018)

• LWN kernel index: get_user_pages()

John Hubbard, October, 2019

5.9 Boot time memory management

Early system initialization cannot use“normal”memory management simply be-
cause it is not set up yet. But there is still need to allocate memory for various
data structures, for instance for the physical page allocator.

A specialized allocator called memblock performs the boot time memory manage-
ment. The architecture specific initialization must set it up in setup_arch() and
tear it down in mem_init() functions.

Once the early memory management is available it offers a variety of functions and
macros for memory allocations. The allocation request may be directed to the first
(and probably the only) node or to a particular node in a NUMA system. There are
API variants that panic when an allocation fails and those that don’t.
Memblock also offers a variety of APIs that control its own behaviour.

5.9. Boot time memory management 671

https://lwn.net/Articles/784574/
https://lwn.net/Articles/774411/
https://lwn.net/Articles/753027/
https://lwn.net/Kernel/Index/#Memory_management-get_user_pages

Linux Core-api Documentation

5.9.1 Memblock Overview

Memblock is a method of managing memory regions during the early boot period
when the usual kernel memory allocators are not up and running.

Memblock views the system memory as collections of contiguous regions. There
are several types of these collections:

• memory - describes the physical memory available to the kernel; this may differ
from the actual physical memory installed in the system, for instance when
the memory is restricted with mem= command line parameter

• reserved - describes the regions that were allocated

• physmap - describes the actual physical memory regardless of the possible
restrictions; the physmap type is only available on some architectures.

Each region is represented by struct memblock_region that defines the region
extents, its attributes and NUMA node id on NUMA systems. Every memory
type is described by the struct memblock_type which contains an array of mem-
ory regions along with the allocator metadata. The memory types are nicely
wrapped with struct memblock. This structure is statically initialzed at build
time. The region arrays for the“memory”and“reserved”types are initially sized to
INIT_MEMBLOCK_REGIONS and for the“physmap”type to INIT_PHYSMEM_REGIONS.
The memblock_allow_resize() enables automatic resizing of the region arrays dur-
ing addition of new regions. This feature should be used with care so that memory
allocated for the region array will not overlap with areas that should be reserved,
for example initrd.

The early architecture setup should tell memblock what the physical memory lay-
out is by using memblock_add() or memblock_add_node() functions. The first func-
tion does not assign the region to a NUMA node and it is appropriate for UMA
systems. Yet, it is possible to use it on NUMA systems as well and assign the re-
gion to a NUMA node later in the setup process using memblock_set_node(). The
memblock_add_node() performs such an assignment directly.

Oncememblock is setup thememory can be allocated using one of the API variants:

• memblock_phys_alloc*() - these functions return the physical address of the
allocated memory

• memblock_alloc*() - these functions return the virtual address of the allo-
cated memory.

Note, that both API variants use implicit assumptions about allowed mem-
ory ranges and the fallback methods. Consult the documentation of
memblock_alloc_internal() and memblock_alloc_range_nid() functions for
more elaborate description.

As the system boot progresses, the architecture specific mem_init() function frees
all the memory to the buddy page allocator.

Unless an architecture enables CONFIG_ARCH_KEEP_MEMBLOCK, the memblock data
structures will be discarded after the system initialization completes.

672 Chapter 5. Memory management

Linux Core-api Documentation

5.9.2 Functions and structures

Here is the description of memblock data structures, functions and macros. Some
of them are actually internal, but since they are documented it would be silly to
omit them. Besides, reading the descriptions for the internal functions can help
to understand what really happens under the hood.

enum memblock_flags
definition of memory region attributes

Constants
MEMBLOCK_NONE no special request

MEMBLOCK_HOTPLUG hotpluggable region

MEMBLOCK_MIRROR mirrored region

MEMBLOCK_NOMAP don’t add to kernel direct mapping
struct memblock_region

represents a memory region

Definition

struct memblock_region {
phys_addr_t base;
phys_addr_t size;
enum memblock_flags flags;

#ifdef CONFIG_NEED_MULTIPLE_NODES;
int nid;

#endif;
};

Members
base base address of the region

size size of the region

flags memory region attributes

nid NUMA node id

struct memblock_type
collection of memory regions of certain type

Definition

struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct memblock_region *regions;
char *name;

};

Members
cnt number of regions

5.9. Boot time memory management 673

Linux Core-api Documentation

max size of the allocated array

total_size size of all regions

regions array of regions

name the memory type symbolic name

struct memblock
memblock allocator metadata

Definition

struct memblock {
bool bottom_up;
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;

#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP;
struct memblock_type physmem;

#endif;
};

Members
bottom_up is bottom up direction?

current_limit physical address of the current allocation limit

memory usable memory regions

reserved reserved memory regions

physmem all physical memory

for_each_mem_range(i, type_a, type_b, nid, flags, p_start, p_end, p_nid)
iterate through memblock areas from type_a and not included in type_b. Or
just type_a if type_b is NULL.

Parameters
i u64 used as loop variable

type_a ptr to memblock_type to iterate

type_b ptr to memblock_type which excludes from the iteration

nid node selector, NUMA_NO_NODE for all nodes

flags pick from blocks based on memory attributes

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

p_nid ptr to int for nid of the range, can be NULL

for_each_mem_range_rev(i, type_a, type_b, nid, flags, p_start, p_end, p_nid)
reverse iterate through memblock areas from type_a and not included in
type_b. Or just type_a if type_b is NULL.

Parameters
i u64 used as loop variable

674 Chapter 5. Memory management

Linux Core-api Documentation

type_a ptr to memblock_type to iterate

type_b ptr to memblock_type which excludes from the iteration

nid node selector, NUMA_NO_NODE for all nodes

flags pick from blocks based on memory attributes

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

p_nid ptr to int for nid of the range, can be NULL

for_each_reserved_mem_region(i, p_start, p_end)
iterate over all reserved memblock areas

Parameters
i u64 used as loop variable

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

Description
Walks over reserved areas of memblock. Available as soon as memblock is initial-
ized.

for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid)
early memory pfn range iterator

Parameters
i an integer used as loop variable

nid node selector, MAX_NUMNODES for all nodes

p_start ptr to ulong for start pfn of the range, can be NULL

p_end ptr to ulong for end pfn of the range, can be NULL

p_nid ptr to int for nid of the range, can be NULL

Description
Walks over configured memory ranges.

for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end)
iterate through zone specific free memblock areas

Parameters
i u64 used as loop variable

zone zone in which all of the memory blocks reside

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

Description
Walks over free (memory && !reserved) areas of memblock in a specific zone.
Available once memblock and an empty zone is initialized. The main assumption

5.9. Boot time memory management 675

Linux Core-api Documentation

is that the zone start, end, and pgdat have been associated. This way we can use
the zone to determine NUMA node, and if a given part of the memblock is valid
for the zone.

for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end)
iterate through zone specific free memblock areas from a given point

Parameters
i u64 used as loop variable

zone zone in which all of the memory blocks reside

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

Description
Walks over free (memory && !reserved) areas of memblock in a specific zone,
continuing from current position. Available as soon as memblock is initialized.

for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid)
iterate through free memblock areas

Parameters
i u64 used as loop variable

nid node selector, NUMA_NO_NODE for all nodes

flags pick from blocks based on memory attributes

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

p_nid ptr to int for nid of the range, can be NULL

Description
Walks over free (memory && !reserved) areas of memblock. Available as soon as
memblock is initialized.

for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, p_nid)
rev-iterate through free memblock areas

Parameters
i u64 used as loop variable

nid node selector, NUMA_NO_NODE for all nodes

flags pick from blocks based on memory attributes

p_start ptr to phys_addr_t for start address of the range, can be NULL

p_end ptr to phys_addr_t for end address of the range, can be NULL

p_nid ptr to int for nid of the range, can be NULL

Description
Walks over free (memory && !reserved) areas of memblock in reverse order. Avail-
able as soon as memblock is initialized.

676 Chapter 5. Memory management

Linux Core-api Documentation

void memblock_set_current_limit(phys_addr_t limit)
Set the current allocation limit to allow limiting allocations to what is cur-
rently accessible during boot

Parameters
phys_addr_t limit New limit value (physical address)

unsigned long memblock_region_memory_base_pfn(const struct mem-
block_region * reg)

get the lowest pfn of the memory region

Parameters
const struct memblock_region * reg memblock_region structure

Return
the lowest pfn intersecting with the memory region

unsigned long memblock_region_memory_end_pfn(const struct mem-
block_region * reg)

get the end pfn of the memory region

Parameters
const struct memblock_region * reg memblock_region structure

Return
the end_pfn of the reserved region

unsigned long memblock_region_reserved_base_pfn(const struct mem-
block_region * reg)

get the lowest pfn of the reserved region

Parameters
const struct memblock_region * reg memblock_region structure

Return
the lowest pfn intersecting with the reserved region

unsigned long memblock_region_reserved_end_pfn(const struct mem-
block_region * reg)

get the end pfn of the reserved region

Parameters
const struct memblock_region * reg memblock_region structure

Return
the end_pfn of the reserved region

5.9. Boot time memory management 677

Linux Core-api Documentation

phys_addr_t __init_memblock __memblock_find_range_bottom_up(phys_addr_t start,
phys_addr_t end,
phys_addr_t size,
phys_addr_t align,
int nid,
enum
mem-
block_flags flags)

find free area utility in bottom-up

Parameters
phys_addr_t start start of candidate range

phys_addr_t end end of candidate range, can be MEMBLOCK_ALLOC_ANYWHERE or
MEMBLOCK_ALLOC_ACCESSIBLE

phys_addr_t size size of free area to find

phys_addr_t align alignment of free area to find

int nid nid of the free area to find, NUMA_NO_NODE for any node

enum memblock_flags flags pick from blocks based on memory attributes

Description
Utility called from memblock_find_in_range_node(), find free area bottom-up.

Return
Found address on success, 0 on failure.

phys_addr_t __init_memblock __memblock_find_range_top_down(phys_addr_t start,
phys_addr_t end,
phys_addr_t size,
phys_addr_t align,
int nid,
enum
mem-
block_flags flags)

find free area utility, in top-down

Parameters
phys_addr_t start start of candidate range

phys_addr_t end end of candidate range, can be MEMBLOCK_ALLOC_ANYWHERE or
MEMBLOCK_ALLOC_ACCESSIBLE

phys_addr_t size size of free area to find

phys_addr_t align alignment of free area to find

int nid nid of the free area to find, NUMA_NO_NODE for any node

enum memblock_flags flags pick from blocks based on memory attributes

Description
Utility called from memblock_find_in_range_node(), find free area top-down.

678 Chapter 5. Memory management

Linux Core-api Documentation

Return
Found address on success, 0 on failure.

phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
phys_addr_t align,
phys_addr_t start,
phys_addr_t end,
int nid,
enum mem-
block_flags flags)

find free area in given range and node

Parameters
phys_addr_t size size of free area to find

phys_addr_t align alignment of free area to find

phys_addr_t start start of candidate range

phys_addr_t end end of candidate range, can be MEMBLOCK_ALLOC_ANYWHERE or
MEMBLOCK_ALLOC_ACCESSIBLE

int nid nid of the free area to find, NUMA_NO_NODE for any node

enum memblock_flags flags pick from blocks based on memory attributes

Description
Find size free area aligned to align in the specified range and node.
When allocation direction is bottom-up, the start should be greater than the end
of the kernel image. Otherwise, it will be trimmed. The reason is that we want
the bottom-up allocation just near the kernel image so it is highly likely that the
allocated memory and the kernel will reside in the same node.

If bottom-up allocation failed, will try to allocate memory top-down.

Return
Found address on success, 0 on failure.

phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
phys_addr_t end,
phys_addr_t size,
phys_addr_t align)

find free area in given range

Parameters
phys_addr_t start start of candidate range

phys_addr_t end end of candidate range, can be MEMBLOCK_ALLOC_ANYWHERE or
MEMBLOCK_ALLOC_ACCESSIBLE

phys_addr_t size size of free area to find

phys_addr_t align alignment of free area to find

Description
Find size free area aligned to align in the specified range.

5.9. Boot time memory management 679

Linux Core-api Documentation

Return
Found address on success, 0 on failure.

void memblock_discard(void)
discard memory and reserved arrays if they were allocated

Parameters
void no arguments

int __init_memblock memblock_double_array(struct memblock_type * type,
phys_addr_t new_area_start,
phys_addr_t new_area_size)

double the size of the memblock regions array

Parameters
struct memblock_type * type memblock type of the regions array being dou-

bled

phys_addr_t new_area_start starting address of memory range to avoid overlap
with

phys_addr_t new_area_size size of memory range to avoid overlap with

Description
Double the size of the type regions array. If memblock is being used to allocate
memory for a new reserved regions array and there is a previously allocated mem-
ory range [new_area_start, new_area_start + new_area_size] waiting to be re-
served, ensure the memory used by the new array does not overlap.

Return
0 on success, -1 on failure.

void __init_memblock memblock_merge_regions(struct memblock_type
* type)

merge neighboring compatible regions

Parameters
struct memblock_type * type memblock type to scan

Description
Scan type and merge neighboring compatible regions.
void __init_memblock memblock_insert_region(struct memblock_type

* type, int idx,
phys_addr_t base,
phys_addr_t size,
int nid, enum mem-
block_flags flags)

insert new memblock region

Parameters
struct memblock_type * type memblock type to insert into

int idx index for the insertion point

680 Chapter 5. Memory management

Linux Core-api Documentation

phys_addr_t base base address of the new region

phys_addr_t size size of the new region

int nid node id of the new region

enum memblock_flags flags flags of the new region

Description
Insert new memblock region [base, base + size) into type at idx. type must
already have extra room to accommodate the new region.

int __init_memblock memblock_add_range(struct memblock_type
* type, phys_addr_t base,
phys_addr_t size, int nid, enum
memblock_flags flags)

add new memblock region

Parameters
struct memblock_type * type memblock type to add new region into

phys_addr_t base base address of the new region

phys_addr_t size size of the new region

int nid nid of the new region

enum memblock_flags flags flags of the new region

Description
Add new memblock region [base, base + size) into type. The new region is al-
lowed to overlap with existing ones - overlaps don’t affect already existing re-
gions. type is guaranteed to be minimal (all neighbouring compatible regions are
merged) after the addition.

Return
0 on success, -errno on failure.

int __init_memblock memblock_add_node(phys_addr_t base,
phys_addr_t size, int nid)

add new memblock region within a NUMA node

Parameters
phys_addr_t base base address of the new region

phys_addr_t size size of the new region

int nid nid of the new region

Description
Add new memblock region [base, base + size) to the “memory”type. See
memblock_add_range() description for mode details

Return
0 on success, -errno on failure.

5.9. Boot time memory management 681

Linux Core-api Documentation

int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
add new memblock region

Parameters
phys_addr_t base base address of the new region

phys_addr_t size size of the new region

Description
Add new memblock region [base, base + size) to the “memory”type. See
memblock_add_range() description for mode details

Return
0 on success, -errno on failure.

int __init_memblock memblock_isolate_range(struct memblock_type
* type, phys_addr_t base,
phys_addr_t size, int
* start_rgn, int * end_rgn)

isolate given range into disjoint memblocks

Parameters
struct memblock_type * type memblock type to isolate range for

phys_addr_t base base of range to isolate

phys_addr_t size size of range to isolate

int * start_rgn out parameter for the start of isolated region

int * end_rgn out parameter for the end of isolated region

Description
Walk type and ensure that regions don’t cross the boundaries defined by [base,
base + size). Crossing regions are split at the boundaries, which may create at
most two more regions. The index of the first region inside the range is returned
in *start_rgn and end in *end_rgn.
Return
0 on success, -errno on failure.

int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
free boot memory block

Parameters
phys_addr_t base phys starting address of the boot memory block

phys_addr_t size size of the boot memory block in bytes

Description
Free boot memory block previously allocated by memblock_alloc_xx() API. The
freeing memory will not be released to the buddy allocator.

682 Chapter 5. Memory management

Linux Core-api Documentation

int __init_memblock memblock_setclr_flag(phys_addr_t base,
phys_addr_t size, int set,
int flag)

set or clear flag for a memory region

Parameters
phys_addr_t base base address of the region

phys_addr_t size size of the region

int set set or clear the flag

int flag the flag to udpate

Description
This function isolates region [base, base + size), and sets/clears flag
Return
0 on success, -errno on failure.

int __init_memblock memblock_mark_hotplug(phys_addr_t base,
phys_addr_t size)

Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.

Parameters
phys_addr_t base the base phys addr of the region

phys_addr_t size the size of the region

Return
0 on success, -errno on failure.

int __init_memblock memblock_clear_hotplug(phys_addr_t base,
phys_addr_t size)

Clear flag MEMBLOCK_HOTPLUG for a specified region.

Parameters
phys_addr_t base the base phys addr of the region

phys_addr_t size the size of the region

Return
0 on success, -errno on failure.

int __init_memblock memblock_mark_mirror(phys_addr_t base,
phys_addr_t size)

Mark mirrored memory with flag MEMBLOCK_MIRROR.

Parameters
phys_addr_t base the base phys addr of the region

phys_addr_t size the size of the region

Return
0 on success, -errno on failure.

5.9. Boot time memory management 683

Linux Core-api Documentation

int __init_memblock memblock_mark_nomap(phys_addr_t base,
phys_addr_t size)

Mark a memory region with flag MEMBLOCK_NOMAP.

Parameters
phys_addr_t base the base phys addr of the region

phys_addr_t size the size of the region

Return
0 on success, -errno on failure.

int __init_memblock memblock_clear_nomap(phys_addr_t base,
phys_addr_t size)

Clear flag MEMBLOCK_NOMAP for a specified region.

Parameters
phys_addr_t base the base phys addr of the region

phys_addr_t size the size of the region

Return
0 on success, -errno on failure.

void __init_memblock __next_reserved_mem_region(u64 * idx, phys_addr_t
* out_start,
phys_addr_t
* out_end)

next function for for_each_reserved_region()

Parameters
u64 * idx pointer to u64 loop variable

phys_addr_t * out_start ptr to phys_addr_t for start address of the region, can
be NULL

phys_addr_t * out_end ptr to phys_addr_t for end address of the region, can be
NULL

Description
Iterate over all reserved memory regions.

void __init_memblock __next_mem_range(u64 * idx, int nid, enum mem-
block_flags flags, struct mem-
block_type * type_a, struct mem-
block_type * type_b, phys_addr_t
* out_start, phys_addr_t * out_end,
int * out_nid)

next function for for_each_free_mem_range() etc.

Parameters
u64 * idx pointer to u64 loop variable

int nid node selector, NUMA_NO_NODE for all nodes

enum memblock_flags flags pick from blocks based on memory attributes

684 Chapter 5. Memory management

Linux Core-api Documentation

struct memblock_type * type_a pointer to memblock_type from where the
range is taken

struct memblock_type * type_b pointer to memblock_type which excludes
memory from being taken

phys_addr_t * out_start ptr to phys_addr_t for start address of the range, can
be NULL

phys_addr_t * out_end ptr to phys_addr_t for end address of the range, can be
NULL

int * out_nid ptr to int for nid of the range, can be NULL

Description
Find the first area from *idx which matches nid, fill the out parameters, and up-
date *idx for the next iteration. The lower 32bit of *idx contains index into type_a
and the upper 32bit indexes the areas before each region in type_b. For example,
if type_b regions look like the following,

0:[0-16), 1:[32-48), 2:[128-130)

The upper 32bit indexes the following regions.

0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)

As both region arrays are sorted, the function advances the two indices in lockstep
and returns each intersection.

void __init_memblock __next_mem_range_rev(u64 * idx, int nid, enum mem-
block_flags flags, struct mem-
block_type * type_a, struct
memblock_type * type_b,
phys_addr_t * out_start,
phys_addr_t * out_end, int
* out_nid)

generic next function for for_each_*_range_rev()

Parameters
u64 * idx pointer to u64 loop variable

int nid node selector, NUMA_NO_NODE for all nodes

enum memblock_flags flags pick from blocks based on memory attributes

struct memblock_type * type_a pointer to memblock_type from where the
range is taken

struct memblock_type * type_b pointer to memblock_type which excludes
memory from being taken

phys_addr_t * out_start ptr to phys_addr_t for start address of the range, can
be NULL

phys_addr_t * out_end ptr to phys_addr_t for end address of the range, can be
NULL

int * out_nid ptr to int for nid of the range, can be NULL

5.9. Boot time memory management 685

Linux Core-api Documentation

Description
Finds the next range from type_a which is not marked as unsuitable in type_b.

Reverse of __next_mem_range().

int __init_memblock memblock_set_node(phys_addr_t base,
phys_addr_t size, struct mem-
block_type * type, int nid)

set node ID on memblock regions

Parameters
phys_addr_t base base of area to set node ID for

phys_addr_t size size of area to set node ID for

struct memblock_type * type memblock type to set node ID for

int nid node ID to set

Description
Set the nid of memblock type regions in [base, base+ size) to nid. Regions which
cross the area boundaries are split as necessary.

Return
0 on success, -errno on failure.

void __init_memblock __next_mem_pfn_range_in_zone(u64 * idx, struct
zone * zone,
unsigned long
* out_spfn, un-
signed long
* out_epfn)

iterator for for_each_*_range_in_zone()

Parameters
u64 * idx pointer to u64 loop variable

struct zone * zone zone in which all of the memory blocks reside

unsigned long * out_spfn ptr to ulong for start pfn of the range, can be NULL

unsigned long * out_epfn ptr to ulong for end pfn of the range, can be NULL

Description
This function is meant to be a zone/pfn specific wrapper for the
for_each_mem_range type iterators. Specifically they are used in the de-
ferred memory init routines and as such we were duplicating much of this logic
throughout the code. So instead of having it in multiple locations it seemed like it
would make more sense to centralize this to one new iterator that does everything
they need.

phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
phys_addr_t align,
phys_addr_t start,
phys_addr_t end, int nid,
bool exact_nid)

686 Chapter 5. Memory management

Linux Core-api Documentation

allocate boot memory block

Parameters
phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size
phys_addr_t start the lower bound of the memory region to allocate (phys ad-

dress)

phys_addr_t end the upper bound of the memory region to allocate (phys ad-
dress)

int nid nid of the free area to find, NUMA_NO_NODE for any node

bool exact_nid control the allocation fall back to other nodes

Description
The allocation is performed from memory region limited by mem-
block.current_limit if end == MEMBLOCK_ALLOC_ACCESSIBLE.

If the specified node can not hold the requested memory and exact_nid is false,
the allocation falls back to any node in the system.

For systems with memory mirroring, the allocation is attempted first from the
regions with mirroring enabled and then retried from any memory region.

In addition, function sets the min_count to 0 using kmemleak_alloc_phys for allo-
cated boot memory block, so that it is never reported as leaks.

Return
Physical address of allocated memory block on success, 0 on failure.

phys_addr_t memblock_phys_alloc_range(phys_addr_t size,
phys_addr_t align,
phys_addr_t start,
phys_addr_t end)

allocate a memory block inside specified range

Parameters
phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size
phys_addr_t start the lower bound of the memory region to allocate (physical

address)

phys_addr_t end the upper bound of the memory region to allocate (physical ad-
dress)

Description
Allocate size bytes in the between start and end.
Return
physical address of the allocated memory block on success, 0 on failure.

5.9. Boot time memory management 687

Linux Core-api Documentation

phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size,
phys_addr_t align, int nid)

allocate a memory block from specified MUMA node

Parameters
phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size
int nid nid of the free area to find, NUMA_NO_NODE for any node

Description
Allocates memory block from the specified NUMA node. If the node has no avail-
able memory, attempts to allocated from any node in the system.

Return
physical address of the allocated memory block on success, 0 on failure.

void * memblock_alloc_internal(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr,
phys_addr_t max_addr, int nid,
bool exact_nid)

allocate boot memory block

Parameters
phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size
phys_addr_t min_addr the lower bound of the memory region to allocate (phys

address)

phys_addr_t max_addr the upper bound of the memory region to allocate (phys
address)

int nid nid of the free area to find, NUMA_NO_NODE for any node

bool exact_nid control the allocation fall back to other nodes

Description
Allocates memory block using memblock_alloc_range_nid() and converts the re-
turned physical address to virtual.

Themin_addr limit is dropped if it can not be satisfied and the allocation will fall
back to memory below min_addr. Other constraints, such as node and mirrored
memory will be handled again in memblock_alloc_range_nid().

Return
Virtual address of allocated memory block on success, NULL on failure.

void * memblock_alloc_exact_nid_raw(phys_addr_t size,
phys_addr_t align,
phys_addr_t min_addr,
phys_addr_t max_addr, int nid)

allocate boot memory block on the exact node without zeroing memory

Parameters

688 Chapter 5. Memory management

Linux Core-api Documentation

phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size
phys_addr_t min_addr the lower bound of the memory region from where the

allocation is preferred (phys address)

phys_addr_t max_addr the upper bound of the memory region from where the
allocation is preferred (phys address), or MEMBLOCK_ALLOC_ACCESSIBLE to al-
locate only from memory limited by memblock.current_limit value

int nid nid of the free area to find, NUMA_NO_NODE for any node

Description
Public function, provides additional debug information (including caller info), if
enabled. Does not zero allocated memory.

Return
Virtual address of allocated memory block on success, NULL on failure.

void * memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr,
phys_addr_t max_addr, int nid)

allocate boot memory block without zeroing memory and without panicking

Parameters
phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size
phys_addr_t min_addr the lower bound of the memory region from where the

allocation is preferred (phys address)

phys_addr_t max_addr the upper bound of the memory region from where the
allocation is preferred (phys address), or MEMBLOCK_ALLOC_ACCESSIBLE to al-
locate only from memory limited by memblock.current_limit value

int nid nid of the free area to find, NUMA_NO_NODE for any node

Description
Public function, provides additional debug information (including caller info), if
enabled. Does not zero allocated memory, does not panic if request cannot be
satisfied.

Return
Virtual address of allocated memory block on success, NULL on failure.

void * memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr,
phys_addr_t max_addr, int nid)

allocate boot memory block

Parameters
phys_addr_t size size of memory block to be allocated in bytes

phys_addr_t align alignment of the region and block’s size

5.9. Boot time memory management 689

Linux Core-api Documentation

phys_addr_t min_addr the lower bound of the memory region from where the
allocation is preferred (phys address)

phys_addr_t max_addr the upper bound of the memory region from where the
allocation is preferred (phys address), or MEMBLOCK_ALLOC_ACCESSIBLE to al-
locate only from memory limited by memblock.current_limit value

int nid nid of the free area to find, NUMA_NO_NODE for any node

Description
Public function, provides additional debug information (including caller info), if
enabled. This function zeroes the allocated memory.

Return
Virtual address of allocated memory block on success, NULL on failure.

void __memblock_free_late(phys_addr_t base, phys_addr_t size)
free pages directly to buddy allocator

Parameters
phys_addr_t base phys starting address of the boot memory block

phys_addr_t size size of the boot memory block in bytes

Description
This is only useful when the memblock allocator has already been torn down, but
we are still initializing the system. Pages are released directly to the buddy allo-
cator.

bool __init_memblock memblock_is_region_memory(phys_addr_t base,
phys_addr_t size)

check if a region is a subset of memory

Parameters
phys_addr_t base base of region to check

phys_addr_t size size of region to check

Description
Check if the region [base, base + size) is a subset of a memory block.
Return
0 if false, non-zero if true

bool __init_memblock memblock_is_region_reserved(phys_addr_t base,
phys_addr_t size)

check if a region intersects reserved memory

Parameters
phys_addr_t base base of region to check

phys_addr_t size size of region to check

Description
Check if the region [base, base + size) intersects a reserved memory block.

690 Chapter 5. Memory management

Linux Core-api Documentation

Return
True if they intersect, false if not.

unsigned long memblock_free_all(void)
release free pages to the buddy allocator

Parameters
void no arguments

Return
the number of pages actually released.

5.10 GFP masks used from FS/IO context

Date May, 2018
Author Michal Hocko <mhocko@kernel.org>

5.10.1 Introduction

Code paths in the filesystem and IO stacks must be careful when allocating mem-
ory to prevent recursion deadlocks caused by direct memory reclaim calling back
into the FS or IO paths and blocking on already held resources (e.g. locks - most
commonly those used for the transaction context).

The traditional way to avoid this deadlock problem is to clear __GFP_FS respec-
tively __GFP_IO (note the latter implies clearing the first as well) in the gfp mask
when calling an allocator. GFP_NOFS respectively GFP_NOIO can be used as
shortcut. It turned out though that above approach has led to abuses when the
restricted gfp mask is used “just in case”without a deeper consideration which
leads to problems because an excessive use of GFP_NOFS/GFP_NOIO can lead to
memory over-reclaim or other memory reclaim issues.

5.10.2 New API

Since 4.12 we do have a generic scope API for both NOFS and NOIO
context memalloc_nofs_save, memalloc_nofs_restore respectively
memalloc_noio_save, memalloc_noio_restore which allow to mark a scope
to be a critical section from a filesystem or I/O point of view. Any allocation from
that scope will inherently drop __GFP_FS respectively __GFP_IO from the given
mask so no memory allocation can recurse back in the FS/IO.

unsigned int memalloc_nofs_save(void)
Marks implicit GFP_NOFS allocation scope.

Parameters
void no arguments

Description

5.10. GFP masks used from FS/IO context 691

mailto:mhocko@kernel.org

Linux Core-api Documentation

This functions marks the beginning of the GFP_NOFS allocation scope. All further
allocations will implicitly drop __GFP_FS flag and so they are safe for the FS critical
section from the allocation recursion point of view. Use memalloc_nofs_restore to
end the scope with flags returned by this function.

This function is safe to be used from any context.

void memalloc_nofs_restore(unsigned int flags)
Ends the implicit GFP_NOFS scope.

Parameters
unsigned int flags Flags to restore.

Description
Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. Al-
ways make sure that that the given flags is the return value from the pairing
memalloc_nofs_save call.

unsigned int memalloc_noio_save(void)
Marks implicit GFP_NOIO allocation scope.

Parameters
void no arguments

Description
This functions marks the beginning of the GFP_NOIO allocation scope. All further
allocations will implicitly drop __GFP_IO flag and so they are safe for the IO critical
section from the allocation recursion point of view. Use memalloc_noio_restore to
end the scope with flags returned by this function.

This function is safe to be used from any context.

void memalloc_noio_restore(unsigned int flags)
Ends the implicit GFP_NOIO scope.

Parameters
unsigned int flags Flags to restore.

Description
Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. Al-
ways make sure that that the given flags is the return value from the pairing
memalloc_noio_save call.

FS/IO code then simply calls the appropriate save function before any critical sec-
tion with respect to the reclaim is started - e.g. lock shared with the reclaim
context or when a transaction context nesting would be possible via reclaim. The
restore function should be called when the critical section ends. All that ideally
along with an explanation what is the reclaim context for easier maintenance.

Please note that the proper pairing of save/restore functions allows nesting so it
is safe to call memalloc_noio_save or memalloc_noio_restore respectively from
an existing NOIO or NOFS scope.

692 Chapter 5. Memory management

Linux Core-api Documentation

5.10.3 What about __vmalloc(GFP_NOFS)

vmalloc doesn’t support GFP_NOFS semantic because there are hardcoded
GFP_KERNEL allocations deep inside the allocator which are quite non-trivial to
fix up. That means that calling vmalloc with GFP_NOFS/GFP_NOIO is almost al-
ways a bug. The good news is that the NOFS/NOIO semantic can be achieved by
the scope API.

In the ideal world, upper layers should already mark dangerous contexts and so
no special care is required and vmalloc should be called without any problems.
Sometimes if the context is not really clear or there are layering violations then
the recommended way around that is to wrap vmalloc by the scope API with a
comment explaining the problem.

5.10. GFP masks used from FS/IO context 693

Linux Core-api Documentation

694 Chapter 5. Memory management

CHAPTER

SIX

INTERFACES FOR KERNEL DEBUGGING

6.1 The object-lifetime debugging infrastructure

Author Thomas Gleixner

6.1.1 Introduction

debugobjects is a generic infrastructure to track the life time of kernel objects and
validate the operations on those.

debugobjects is useful to check for the following error patterns:

• Activation of uninitialized objects

• Initialization of active objects

• Usage of freed/destroyed objects

debugobjects is not changing the data structure of the real object so it can be
compiled in with a minimal runtime impact and enabled on demand with a kernel
command line option.

6.1.2 Howto use debugobjects

A kernel subsystem needs to provide a data structure which describes the object
type and add calls into the debug code at appropriate places. The data structure to
describe the object type needs at minimum the name of the object type. Optional
functions can and should be provided to fixup detected problems so the kernel can
continue to work and the debug information can be retrieved from a live system
instead of hard core debugging with serial consoles and stack trace transcripts
from the monitor.

The debug calls provided by debugobjects are:

• debug_object_init

• debug_object_init_on_stack

• debug_object_activate

• debug_object_deactivate

• debug_object_destroy

695

Linux Core-api Documentation

• debug_object_free

• debug_object_assert_init

Each of these functions takes the address of the real object and a pointer to the
object type specific debug description structure.

Each detected error is reported in the statistics and a limited number of errors are
printk’ed including a full stack trace.
The statistics are available via /sys/kernel/debug/debug_objects/stats. They pro-
vide information about the number of warnings and the number of successful fix-
ups along with information about the usage of the internal tracking objects and
the state of the internal tracking objects pool.

6.1.3 Debug functions

void debug_object_init(void * addr, struct debug_obj_descr * descr)
debug checks when an object is initialized

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure

This function is called whenever the initialization function of a real object is called.

When the real object is already tracked by debugobjects it is checked, whether
the object can be initialized. Initializing is not allowed for active and destroyed
objects. When debugobjects detects an error, then it calls the fixup_init function of
the object type description structure if provided by the caller. The fixup function
can correct the problem before the real initialization of the object happens. E.g.
it can deactivate an active object in order to prevent damage to the subsystem.

When the real object is not yet tracked by debugobjects, debugobjects allocates
a tracker object for the real object and sets the tracker object state to ODE-
BUG_STATE_INIT. It verifies that the object is not on the callers stack. If it is
on the callers stack then a limited number of warnings including a full stack trace
is printk’ed. The calling code must use debug_object_init_on_stack() and re-
move the object before leaving the function which allocated it. See next section.

void debug_object_init_on_stack(void * addr, struct debug_obj_descr
* descr)

debug checks when an object on stack is initialized

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure

This function is called whenever the initialization function of a real object which
resides on the stack is called.

696 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

When the real object is already tracked by debugobjects it is checked, whether
the object can be initialized. Initializing is not allowed for active and destroyed
objects. When debugobjects detects an error, then it calls the fixup_init function of
the object type description structure if provided by the caller. The fixup function
can correct the problem before the real initialization of the object happens. E.g.
it can deactivate an active object in order to prevent damage to the subsystem.

When the real object is not yet tracked by debugobjects debugobjects allocates
a tracker object for the real object and sets the tracker object state to ODE-
BUG_STATE_INIT. It verifies that the object is on the callers stack.

An object which is on the stack must be removed from the tracker by calling
debug_object_free() before the function which allocates the object returns. Oth-
erwise we keep track of stale objects.

int debug_object_activate(void * addr, struct debug_obj_descr * descr)
debug checks when an object is activated

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure Returns 0 for success, -EINVAL for check failed.

This function is called whenever the activation function of a real object is called.

When the real object is already tracked by debugobjects it is checked, whether the
object can be activated. Activating is not allowed for active and destroyed objects.
When debugobjects detects an error, then it calls the fixup_activate function of the
object type description structure if provided by the caller. The fixup function can
correct the problem before the real activation of the object happens. E.g. it can
deactivate an active object in order to prevent damage to the subsystem.

When the real object is not yet tracked by debugobjects then the fixup_activate
function is called if available. This is necessary to allow the legitimate activation of
statically allocated and initialized objects. The fixup function checks whether the
object is valid and calls the debug_objects_init() function to initialize the tracking
of this object.

When the activation is legitimate, then the state of the associated tracker object
is set to ODEBUG_STATE_ACTIVE.

void debug_object_deactivate(void * addr, struct debug_obj_descr
* descr)

debug checks when an object is deactivated

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure

This function is called whenever the deactivation function of a real object is called.

When the real object is tracked by debugobjects it is checked, whether the object
can be deactivated. Deactivating is not allowed for untracked or destroyed objects.

6.1. The object-lifetime debugging infrastructure 697

Linux Core-api Documentation

When the deactivation is legitimate, then the state of the associated tracker object
is set to ODEBUG_STATE_INACTIVE.

void debug_object_destroy(void * addr, struct debug_obj_descr * descr)
debug checks when an object is destroyed

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure

This function is called to mark an object destroyed. This is useful to prevent the
usage of invalid objects, which are still available in memory: either statically allo-
cated objects or objects which are freed later.

When the real object is tracked by debugobjects it is checked, whether the object
can be destroyed. Destruction is not allowed for active and destroyed objects.
When debugobjects detects an error, then it calls the fixup_destroy function of the
object type description structure if provided by the caller. The fixup function can
correct the problem before the real destruction of the object happens. E.g. it can
deactivate an active object in order to prevent damage to the subsystem.

When the destruction is legitimate, then the state of the associated tracker object
is set to ODEBUG_STATE_DESTROYED.

void debug_object_free(void * addr, struct debug_obj_descr * descr)
debug checks when an object is freed

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure

This function is called before an object is freed.

When the real object is tracked by debugobjects it is checked, whether the object
can be freed. Free is not allowed for active objects. When debugobjects detects an
error, then it calls the fixup_free function of the object type description structure
if provided by the caller. The fixup function can correct the problem before the
real free of the object happens. E.g. it can deactivate an active object in order to
prevent damage to the subsystem.

Note that debug_object_free removes the object from the tracker. Later usage of
the object is detected by the other debug checks.

void debug_object_assert_init(void * addr, struct debug_obj_descr
* descr)

debug checks when object should be init-ed

Parameters
void * addr address of the object

struct debug_obj_descr * descr pointer to an object specific debug descrip-
tion structure

698 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

This function is called to assert that an object has been initialized.

When the real object is not tracked by debugobjects, it calls fixup_assert_init of the
object type description structure provided by the caller, with the hardcoded object
state ODEBUG_NOT_AVAILABLE. The fixup function can correct the problem by
calling debug_object_init and other specific initializing functions.

When the real object is already tracked by debugobjects it is ignored.

6.1.4 Fixup functions

Debug object type description structure

struct debug_obj
representaion of an tracked object

Definition

struct debug_obj {
struct hlist_node node;
enum debug_obj_state state;
unsigned int astate;
void *object;
struct debug_obj_descr *descr;

};

Members
node hlist node to link the object into the tracker list

state tracked object state

astate current active state

object pointer to the real object

descr pointer to an object type specific debug description structure

struct debug_obj_descr
object type specific debug description structure

Definition

struct debug_obj_descr {
const char *name;
void *(*debug_hint)(void *addr);
bool (*is_static_object)(void *addr);
bool (*fixup_init)(void *addr, enum debug_obj_state state);
bool (*fixup_activate)(void *addr, enum debug_obj_state state);
bool (*fixup_destroy)(void *addr, enum debug_obj_state state);
bool (*fixup_free)(void *addr, enum debug_obj_state state);
bool (*fixup_assert_init)(void *addr, enum debug_obj_state state);

};

Members
name name of the object typee

6.1. The object-lifetime debugging infrastructure 699

Linux Core-api Documentation

debug_hint function returning address, which have associated kernel symbol, to
allow identify the object

is_static_object return true if the obj is static, otherwise return false

fixup_init fixup function, which is called when the init check fails. All fixup
functions must return true if fixup was successful, otherwise return false

fixup_activate fixup function, which is called when the activate check fails

fixup_destroy fixup function, which is called when the destroy check fails

fixup_free fixup function, which is called when the free check fails

fixup_assert_init fixup function, which is called when the assert_init check fails

fixup_init

This function is called from the debug code whenever a problem in de-
bug_object_init is detected. The function takes the address of the object and the
state which is currently recorded in the tracker.

Called from debug_object_init when the object state is:

• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The
return value is used to update the statistics.

Note, that the function needs to call the debug_object_init() function again,
after the damage has been repaired in order to keep the state consistent.

fixup_activate

This function is called from the debug code whenever a problem in de-
bug_object_activate is detected.

Called from debug_object_activate when the object state is:

• ODEBUG_STATE_NOTAVAILABLE

• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The
return value is used to update the statistics.

Note that the function needs to call the debug_object_activate() function again
after the damage has been repaired in order to keep the state consistent.

The activation of statically initialized objects is a special case. When
debug_object_activate() has no tracked object for this object address then
fixup_activate() is called with object state ODEBUG_STATE_NOTAVAILABLE. The
fixup function needs to check whether this is a legitimate case of a stati-
cally initialized object or not. In case it is it calls debug_object_init() and
debug_object_activate() to make the object known to the tracker and marked
active. In this case the function should return false because this is not a real fixup.

700 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

fixup_destroy

This function is called from the debug code whenever a problem in de-
bug_object_destroy is detected.

Called from debug_object_destroy when the object state is:

• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The
return value is used to update the statistics.

fixup_free

This function is called from the debug code whenever a problem in de-
bug_object_free is detected. Further it can be called from the debug
checks in kfree/vfree, when an active object is detected from the de-
bug_check_no_obj_freed() sanity checks.

Called from debug_object_free() or debug_check_no_obj_freed() when the ob-
ject state is:

• ODEBUG_STATE_ACTIVE

The function returns true when the fixup was successful, otherwise false. The
return value is used to update the statistics.

fixup_assert_init

This function is called from the debug code whenever a problem in de-
bug_object_assert_init is detected.

Called from debug_object_assert_init() with a hardcoded state ODE-
BUG_STATE_NOTAVAILABLE when the object is not found in the debug bucket.

The function returns true when the fixup was successful, otherwise false. The
return value is used to update the statistics.

Note, this function should make sure debug_object_init() is called before re-
turning.

The handling of statically initialized objects is a special case. The fixup function
should check if this is a legitimate case of a statically initialized object or not. In
this case only debug_object_init() should be called to make the object known to
the tracker. Then the function should return false because this is not a real fixup.

6.1. The object-lifetime debugging infrastructure 701

Linux Core-api Documentation

6.1.5 Known Bugs And Assumptions

None (knock on wood).

6.2 The Linux Kernel Tracepoint API

Author Jason Baron
Author William Cohen

6.2.1 Introduction

Tracepoints are static probe points that are located in strategic points throughout
the kernel.‘Probes’register/unregister with tracepoints via a callbackmechanism.
The‘probes’are strictly typed functions that are passed a unique set of parameters
defined by each tracepoint.

From this simple callback mechanism,‘probes’can be used to profile, debug, and
understand kernel behavior. There are a number of tools that provide a framework
for using ‘probes’. These tools include Systemtap, ftrace, and LTTng.
Tracepoints are defined in a number of header files via various macros. Thus,
the purpose of this document is to provide a clear accounting of the available
tracepoints. The intention is to understand not only what tracepoints are available
but also to understand where future tracepoints might be added.

The API presented has functions of the form: trace_tracepointname(function
parameters). These are the tracepoints callbacks that are found throughout the
code. Registering and unregistering probes with these callback sites is covered in
the Documentation/trace/* directory.

6.2.2 IRQ

void trace_irq_handler_entry(int irq, struct irqaction * action)
called immediately before the irq action handler

Parameters
int irq irq number

struct irqaction * action pointer to struct irqaction

Description
The struct irqaction pointed to by action contains various information about the
handler, including the device name, action->name, and the device id, action-
>dev_id. When used in conjunction with the irq_handler_exit tracepoint, we can
figure out irq handler latencies.

void trace_irq_handler_exit(int irq, struct irqaction * action, int ret)
called immediately after the irq action handler returns

Parameters

702 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

int irq irq number

struct irqaction * action pointer to struct irqaction

int ret return value

Description
If the ret value is set to IRQ_HANDLED, then we know that the corresponding
action->handler successfully handled this irq. Otherwise, the irq might be a
shared irq line, or the irq was not handled successfully. Can be used in conjunction
with the irq_handler_entry to understand irq handler latencies.

void trace_softirq_entry(unsigned int vec_nr)
called immediately before the softirq handler

Parameters
unsigned int vec_nr softirq vector number

Description
When used in combination with the softirq_exit tracepoint we can determine the
softirq handler routine.

void trace_softirq_exit(unsigned int vec_nr)
called immediately after the softirq handler returns

Parameters
unsigned int vec_nr softirq vector number

Description
When used in combination with the softirq_entry tracepoint we can determine the
softirq handler routine.

void trace_softirq_raise(unsigned int vec_nr)
called immediately when a softirq is raised

Parameters
unsigned int vec_nr softirq vector number

Description
When used in combination with the softirq_entry tracepoint we can determine the
softirq raise to run latency.

6.2.3 SIGNAL

void trace_signal_generate(int sig, struct kernel_siginfo * info, struct
task_struct * task, int group, int result)

called when a signal is generated

Parameters
int sig signal number

struct kernel_siginfo * info pointer to struct siginfo

struct task_struct * task pointer to struct task_struct

6.2. The Linux Kernel Tracepoint API 703

Linux Core-api Documentation

int group shared or private

int result TRACE_SIGNAL_*

Description
Current process sends a‘sig’signal to‘task’process with‘info’siginfo. If‘info’
is SEND_SIG_NOINFO or SEND_SIG_PRIV,‘info’is not a pointer and you can’t
access its field. Instead, SEND_SIG_NOINFO means that si_code is SI_USER, and
SEND_SIG_PRIV means that si_code is SI_KERNEL.

void trace_signal_deliver(int sig, struct kernel_siginfo * info, struct
k_sigaction * ka)

called when a signal is delivered

Parameters
int sig signal number

struct kernel_siginfo * info pointer to struct siginfo

struct k_sigaction * ka pointer to struct k_sigaction

Description
A ‘sig’signal is delivered to current process with ‘info’siginfo, and it will be
handled by‘ka’. ka->sa.sa_handler can be SIG_IGN or SIG_DFL. Note that some
signals reported by signal_generate tracepoint can be lost, ignored or modified (by
debugger) before hitting this tracepoint. This means, this can show which signals
are actually delivered, but matching generated signals and delivered signals may
not be correct.

6.2.4 Block IO

void trace_block_touch_buffer(struct buffer_head * bh)
mark a buffer accessed

Parameters
struct buffer_head * bh buffer_head being touched

Description
Called from touch_buffer().

void trace_block_dirty_buffer(struct buffer_head * bh)
mark a buffer dirty

Parameters
struct buffer_head * bh buffer_head being dirtied

Description
Called from mark_buffer_dirty().

void trace_block_rq_requeue(struct request_queue * q, struct request
* rq)

place block IO request back on a queue

Parameters

704 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

struct request_queue * q queue holding operation

struct request * rq block IO operation request

Description
The block operation request rq is being placed back into queue q. For some reason
the request was not completed and needs to be put back in the queue.

void trace_block_rq_complete(struct request * rq, int error, unsigned
int nr_bytes)

block IO operation completed by device driver

Parameters
struct request * rq block operations request

int error status code

unsigned int nr_bytes number of completed bytes

Description
The block_rq_complete tracepoint event indicates that some portion of operation
request has been completed by the device driver. If the rq->bio is NULL, then there
is absolutely no additional work to do for the request. If rq->bio is non-NULL then
there is additional work required to complete the request.

void trace_block_rq_insert(struct request_queue * q, struct request * rq)
insert block operation request into queue

Parameters
struct request_queue * q target queue

struct request * rq block IO operation request

Description
Called immediately before block operation request rq is inserted into queue q.
The fields in the operation request rq struct can be examined to determine which
device and sectors the pending operation would access.

void trace_block_rq_issue(struct request_queue * q, struct request * rq)
issue pending block IO request operation to device driver

Parameters
struct request_queue * q queue holding operation

struct request * rq block IO operation operation request

Description
Called when block operation request rq from queue q is sent to a device driver for
processing.

void trace_block_bio_bounce(struct request_queue * q, struct bio * bio)
used bounce buffer when processing block operation

Parameters
struct request_queue * q queue holding the block operation

6.2. The Linux Kernel Tracepoint API 705

Linux Core-api Documentation

struct bio * bio block operation

Description
A bounce buffer was used to handle the block operation bio in q. This occurs
when hardware limitations prevent a direct transfer of data between the bio data
memory area and the IO device. Use of a bounce buffer requires extra copying of
data and decreases performance.

void trace_block_bio_complete(struct request_queue * q, struct bio * bio)
completed all work on the block operation

Parameters
struct request_queue * q queue holding the block operation

struct bio * bio block operation completed

Description
This tracepoint indicates there is no further work to do on this block IO operation
bio.
void trace_block_bio_backmerge(struct request_queue * q, struct request

* rq, struct bio * bio)
merging block operation to the end of an existing operation

Parameters
struct request_queue * q queue holding operation

struct request * rq request bio is being merged into

struct bio * bio new block operation to merge

Description
Merging block request bio to the end of an existing block request in queue q.
void trace_block_bio_frontmerge(struct request_queue * q, struct request

* rq, struct bio * bio)
merging block operation to the beginning of an existing operation

Parameters
struct request_queue * q queue holding operation

struct request * rq request bio is being merged into

struct bio * bio new block operation to merge

Description
Merging block IO operation bio to the beginning of an existing block operation in
queue q.
void trace_block_bio_queue(struct request_queue * q, struct bio * bio)

putting new block IO operation in queue

Parameters
struct request_queue * q queue holding operation

struct bio * bio new block operation

706 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

Description
About to place the block IO operation bio into queue q.
void trace_block_getrq(struct request_queue * q, struct bio * bio, int rw)

get a free request entry in queue for block IO operations

Parameters
struct request_queue * q queue for operations

struct bio * bio pending block IO operation (can be NULL)

int rw low bit indicates a read (0) or a write (1)

Description
A request struct for queue q has been allocated to handle the block IO operation
bio.
void trace_block_sleeprq(struct request_queue * q, struct bio * bio,

int rw)
waiting to get a free request entry in queue for block IO operation

Parameters
struct request_queue * q queue for operation

struct bio * bio pending block IO operation (can be NULL)

int rw low bit indicates a read (0) or a write (1)

Description
In the case where a request struct cannot be provided for queue q the process
needs to wait for an request struct to become available. This tracepoint event is
generated each time the process goes to sleep waiting for request struct become
available.

void trace_block_plug(struct request_queue * q)
keep operations requests in request queue

Parameters
struct request_queue * q request queue to plug

Description
Plug the request queue q. Do not allow block operation requests to be sent to the
device driver. Instead, accumulate requests in the queue to improve throughput
performance of the block device.

void trace_block_unplug(struct request_queue * q, unsigned int depth,
bool explicit)

release of operations requests in request queue

Parameters
struct request_queue * q request queue to unplug

unsigned int depth number of requests just added to the queue

bool explicit whether this was an explicit unplug, or one from schedule()

6.2. The Linux Kernel Tracepoint API 707

Linux Core-api Documentation

Description
Unplug request queue q because device driver is scheduled to work on elements
in the request queue.

void trace_block_split(struct request_queue * q, struct bio * bio, unsigned
int new_sector)

split a single bio struct into two bio structs

Parameters
struct request_queue * q queue containing the bio

struct bio * bio block operation being split

unsigned int new_sector The starting sector for the new bio

Description
The bio request bio in request queue q needs to be split into two bio requests.
The newly created bio request starts at new_sector. This split may be required
due to hardware limitation such as operation crossing device boundaries in a RAID
system.

void trace_block_bio_remap(struct request_queue * q, struct bio * bio,
dev_t dev, sector_t from)

map request for a logical device to the raw device

Parameters
struct request_queue * q queue holding the operation

struct bio * bio revised operation

dev_t dev device for the operation

sector_t from original sector for the operation

Description
An operation for a logical device has been mapped to the raw block device.

void trace_block_rq_remap(struct request_queue * q, struct request * rq,
dev_t dev, sector_t from)

map request for a block operation request

Parameters
struct request_queue * q queue holding the operation

struct request * rq block IO operation request

dev_t dev device for the operation

sector_t from original sector for the operation

Description
The block operation request rq in q has been remapped. The block operation
request rq holds the current information and from hold the original sector.

708 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

6.2.5 Workqueue

void trace_workqueue_queue_work(unsigned int req_cpu, struct
pool_workqueue * pwq, struct
work_struct * work)

called when a work gets queued

Parameters
unsigned int req_cpu the requested cpu

struct pool_workqueue * pwq pointer to struct pool_workqueue

struct work_struct * work pointer to struct work_struct

Description
This event occurs when a work is queued immediately or once a delayed work is
actually queued on a workqueue (ie: once the delay has been reached).

void trace_workqueue_activate_work(struct work_struct * work)
called when a work gets activated

Parameters
struct work_struct * work pointer to struct work_struct

Description
This event occurs when a queued work is put on the active queue, which happens
immediately after queueing unless max_active limit is reached.
void trace_workqueue_execute_start(struct work_struct * work)

called immediately before the workqueue callback

Parameters
struct work_struct * work pointer to struct work_struct

Description
Allows to track workqueue execution.

void trace_workqueue_execute_end(struct work_struct * work,
work_func_t function)

called immediately after the workqueue callback

Parameters
struct work_struct * work pointer to struct work_struct

work_func_t function pointer to worker function

Description
Allows to track workqueue execution.

6.2. The Linux Kernel Tracepoint API 709

Linux Core-api Documentation

6.3 Using physical DMA provided by OHCI-1394 FireWire
controllers for debugging

6.3.1 Introduction

Basically all FireWire controllers which are in use today are compliant to the OHCI-
1394 specification which defines the controller to be a PCI bus master which uses
DMA to offload data transfers from the CPU and has a “Physical Response Unit”
which executes specific requests by employing PCI-Busmaster DMA after applying
filters defined by the OHCI-1394 driver.

Once properly configured, remote machines can send these requests to ask the
OHCI-1394 controller to perform read and write requests on physical systemmem-
ory and, for read requests, send the result of the physical memory read back to
the requester.

With that, it is possible to debug issues by reading interesting memory locations
such as buffers like the printk buffer or the process table.

Retrieving a full system memory dump is also possible over the FireWire, using
data transfer rates in the order of 10MB/s or more.

With most FireWire controllers, memory access is limited to the low 4 GB of phys-
ical address space. This can be a problem on IA64 machines where memory is
located mostly above that limit, but it is rarely a problem on more common hard-
ware such as x86, x86-64 and PowerPC.

At least LSI FW643e and FW643e2 controllers are known to support access to
physical addresses above 4 GB, but this feature is currently not enabled by Linux.

Together with a early initialization of the OHCI-1394 controller for debugging, this
facility proved most useful for examining long debugs logs in the printk buffer on
to debug early boot problems in areas like ACPI where the system fails to boot and
other means for debugging (serial port) are either not available (notebooks) or too
slow for extensive debug information (like ACPI).

6.3.2 Drivers

The firewire-ohci driver in drivers/firewire uses filtered physical DMA by de-
fault, which is more secure but not suitable for remote debugging. Pass the re-
mote_dma=1 parameter to the driver to get unfiltered physical DMA.

Because the firewire-ohci driver depends on the PCI enumeration to be completed,
an initialization routine which runs pretty early has been implemented for x86.
This routine runs long before console_init() can be called, i.e. before the printk
buffer appears on the console.

To activate it, enable CONFIG_PROVIDE_OHCI1394_DMA_INIT (Kernel hacking
menu: Remote debugging over FireWire early on boot) and pass the parameter
“ohci1394_dma=early”to the recompiled kernel on boot.

710 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

6.3.3 Tools

firescope - Originally developed by Benjamin Herrenschmidt, Andi Kleen ported it
from PowerPC to x86 and x86_64 and added functionality, firescope can now be
used to view the printk buffer of a remote machine, even with live update.

Bernhard Kaindl enhanced firescope to support accessing 64-bit machines from
32-bit firescope and vice versa: - http://v3.sk/~lkundrak/firescope/

and he implemented fast system dump (alpha version - read README.txt): - http:
//halobates.de/firewire/firedump-0.1.tar.bz2

There is also a gdb proxy for firewire which allows to use gdb to access data which
can be referenced from symbols found by gdb in vmlinux: - http://halobates.de/
firewire/fireproxy-0.33.tar.bz2

The latest version of this gdb proxy (fireproxy-0.34) can communicate (not yet
stable) with kgdb over an memory-based communication module (kgdbom).

6.3.4 Getting Started

The OHCI-1394 specification regulates that the OHCI-1394 controller must disable
all physical DMA on each bus reset.

This means that if you want to debug an issue in a system state where interrupts
are disabled and where no polling of the OHCI-1394 controller for bus resets takes
place, you have to establish any FireWire cable connections and fully initialize all
FireWire hardware __before__ the system enters such state.

Step-by-step instructions for using firescope with early OHCI initialization:

1) Verify that your hardware is supported:

Load the firewire-ohci module and check your kernel logs. You should see a
line similar to:

firewire_ohci 0000:15:00.1: added OHCI v1.0 device as card 2, 4 IR +␣
↪→4 IT
... contexts, quirks 0x11

when loading the driver. If you have no supported controller, many PCI, Card-
Bus and even some Express cards which are fully compliant to OHCI-1394
specification are available. If it requires no driver for Windows operating
systems, it most likely is. Only specialized shops have cards which are not
compliant, they are based on TI PCILynx chips and require drivers for Win-
dows operating systems.

The mentioned kernel log message contains the string“physUB”if the con-
troller implements a writable Physical Upper Bound register. This is required
for physical DMA above 4 GB (but not utilized by Linux yet).

2) Establish a working FireWire cable connection:

Any FireWire cable, as long at it provides electrically and mechanically stable
connection and has matching connectors (there are small 4-pin and large 6-
pin FireWire ports) will do.

6.3. Using physical DMA provided by OHCI-1394 FireWire controllers for
debugging

711

http://v3.sk/~lkundrak/firescope/
http://halobates.de/firewire/firedump-0.1.tar.bz2
http://halobates.de/firewire/firedump-0.1.tar.bz2
http://halobates.de/firewire/fireproxy-0.33.tar.bz2
http://halobates.de/firewire/fireproxy-0.33.tar.bz2

Linux Core-api Documentation

If an driver is running on both machines you should see a line like:

firewire_core 0000:15:00.1: created device fw1: GUID 00061b0020105917,
↪→ S400

on both machines in the kernel log when the cable is plugged in and connects
the two machines.

3) Test physical DMA using firescope:

On the debug host, make sure that /dev/fw* is accessible, then start firescope:

$ firescope
Port 0 (/dev/fw1) opened, 2 nodes detected

FireScope

Target : <unspecified>
Gen : 1
[Ctrl-T] choose target
[Ctrl-H] this menu
[Ctrl-Q] quit

------> Press Ctrl-T now, the output should be similar to:

2 nodes available, local node is: 0
0: ffc0, uuid: 00000000 00000000 [LOCAL]
1: ffc1, uuid: 00279000 ba4bb801

Besides the [LOCAL] node, it must show another node without error message.

4) Prepare for debugging with early OHCI-1394 initialization:

4.1) Kernel compilation and installation on debug target

Compile the kernel to be debugged with CON-
FIG_PROVIDE_OHCI1394_DMA_INIT (Kernel hacking: Provide code for
enabling DMA over FireWire early on boot) enabled and install it on the
machine to be debugged (debug target).

4.2) Transfer the System.map of the debugged kernel to the debug host

Copy the System.map of the kernel be debugged to the debug host (the host
which is connected to the debugged machine over the FireWire cable).

5) Retrieving the printk buffer contents:

With the FireWire cable connected, the OHCI-1394 driver on the de-
bugging host loaded, reboot the debugged machine, booting the kernel
which has CONFIG_PROVIDE_OHCI1394_DMA_INIT enabled, with the op-
tion ohci1394_dma=early.

Then, on the debugging host, run firescope, for example by using -A:

firescope -A System.map-of-debug-target-kernel

Note: -A automatically attaches to the first non-local node. It only works
reliably if only connected two machines are connected using FireWire.

712 Chapter 6. Interfaces for kernel debugging

Linux Core-api Documentation

After having attached to the debug target, press Ctrl-D to view the complete
printk buffer or Ctrl-U to enter auto update mode and get an updated live
view of recent kernel messages logged on the debug target.

Call “firescope -h”to get more information on firescope’s options.

6.3.5 Notes

Documentation and specifications: http://halobates.de/firewire/

FireWire is a trademark of Apple Inc. - for more information please refer to: https:
//en.wikipedia.org/wiki/FireWire

6.3. Using physical DMA provided by OHCI-1394 FireWire controllers for
debugging

713

http://halobates.de/firewire/
https://en.wikipedia.org/wiki/FireWire
https://en.wikipedia.org/wiki/FireWire

Linux Core-api Documentation

714 Chapter 6. Interfaces for kernel debugging

CHAPTER

SEVEN

EVERYTHING ELSE

Documents that don’t fit elsewhere or which have yet to be categorized.

7.1 Reed-Solomon Library Programming Interface

Author Thomas Gleixner

7.1.1 Introduction

The generic Reed-Solomon Library provides encoding, decoding and error correc-
tion functions.

Reed-Solomon codes are used in communication and storage applications to en-
sure data integrity.

This documentation is provided for developers who want to utilize the functions
provided by the library.

7.1.2 Known Bugs And Assumptions

None.

7.1.3 Usage

This chapter provides examples of how to use the library.

Initializing

The init function init_rs returns a pointer to an rs decoder structure, which holds
the necessary information for encoding, decoding and error correction with the
given polynomial. It either uses an existing matching decoder or creates a new
one. On creation all the lookup tables for fast en/decoding are created. The func-
tion may take a while, so make sure not to call it in critical code paths.

715

Linux Core-api Documentation

/* the Reed Solomon control structure */
static struct rs_control *rs_decoder;

/* Symbolsize is 10 (bits)
* Primitive polynomial is x^10+x^3+1
* first consecutive root is 0
* primitive element to generate roots = 1
* generator polynomial degree (number of roots) = 6
*/

rs_decoder = init_rs (10, 0x409, 0, 1, 6);

Encoding

The encoder calculates the Reed-Solomon code over the given data length and
stores the result in the parity buffer. Note that the parity buffer must be initialized
before calling the encoder.

The expanded data can be inverted on the fly by providing a non-zero inversion
mask. The expanded data is XOR’ed with the mask. This is used e.g. for FLASH
ECC, where the all 0xFF is inverted to an all 0x00. The Reed-Solomon code for all
0x00 is all 0x00. The code is inverted before storing to FLASH so it is 0xFF too.
This prevents that reading from an erased FLASH results in ECC errors.

The databytes are expanded to the given symbol size on the fly. There is no support
for encoding continuous bitstreams with a symbol size != 8 at the moment. If it is
necessary it should be not a big deal to implement such functionality.

/* Parity buffer. Size = number of roots */
uint16_t par[6];
/* Initialize the parity buffer */
memset(par, 0, sizeof(par));
/* Encode 512 byte in data8. Store parity in buffer par */
encode_rs8 (rs_decoder, data8, 512, par, 0);

Decoding

The decoder calculates the syndrome over the given data length and the received
parity symbols and corrects errors in the data.

If a syndrome is available from a hardware decoder then the syndrome calculation
is skipped.

The correction of the data buffer can be suppressed by providing a correction
pattern buffer and an error location buffer to the decoder. The decoder stores the
calculated error location and the correction bitmask in the given buffers. This is
useful for hardware decoders which use a weird bit ordering scheme.

The databytes are expanded to the given symbol size on the fly. There is no support
for decoding continuous bitstreams with a symbolsize != 8 at the moment. If it is
necessary it should be not a big deal to implement such functionality.

716 Chapter 7. Everything else

Linux Core-api Documentation

Decoding with syndrome calculation, direct data correction

/* Parity buffer. Size = number of roots */
uint16_t par[6];
uint8_t data[512];
int numerr;
/* Receive data */
.....
/* Receive parity */
.....
/* Decode 512 byte in data8.*/
numerr = decode_rs8 (rs_decoder, data8, par, 512, NULL, 0, NULL, 0, NULL);

Decoding with syndrome given by hardware decoder, direct data correc-
tion

/* Parity buffer. Size = number of roots */
uint16_t par[6], syn[6];
uint8_t data[512];
int numerr;
/* Receive data */
.....
/* Receive parity */
.....
/* Get syndrome from hardware decoder */
.....
/* Decode 512 byte in data8.*/
numerr = decode_rs8 (rs_decoder, data8, par, 512, syn, 0, NULL, 0, NULL);

Decoding with syndrome given by hardware decoder, no direct data cor-
rection.

Note: It’s not necessary to give data and received parity to the decoder.
/* Parity buffer. Size = number of roots */
uint16_t par[6], syn[6], corr[8];
uint8_t data[512];
int numerr, errpos[8];
/* Receive data */
.....
/* Receive parity */
.....
/* Get syndrome from hardware decoder */
.....
/* Decode 512 byte in data8.*/
numerr = decode_rs8 (rs_decoder, NULL, NULL, 512, syn, 0, errpos, 0, corr);
for (i = 0; i < numerr; i++) {

do_error_correction_in_your_buffer(errpos[i], corr[i]);
}

7.1. Reed-Solomon Library Programming Interface 717

Linux Core-api Documentation

Cleanup

The function free_rs frees the allocated resources, if the caller is the last user of
the decoder.

/* Release resources */
free_rs(rs_decoder);

7.1.4 Structures

This chapter contains the autogenerated documentation of the structures which
are used in the Reed-Solomon Library and are relevant for a developer.

struct rs_codec
rs codec data

Definition

struct rs_codec {
int mm;
int nn;
uint16_t *alpha_to;
uint16_t *index_of;
uint16_t *genpoly;
int nroots;
int fcr;
int prim;
int iprim;
int gfpoly;
int (*gffunc)(int);
int users;
struct list_head list;

};

Members
mm Bits per symbol

nn Symbols per block (= (1<<mm)-1)

alpha_to log lookup table

index_of Antilog lookup table

genpoly Generator polynomial

nroots Number of generator roots = number of parity symbols

fcr First consecutive root, index form

prim Primitive element, index form

iprim prim-th root of 1, index form

gfpoly The primitive generator polynominal

gffunc Function to generate the field, if non-canonical representation

users Users of this structure

718 Chapter 7. Everything else

Linux Core-api Documentation

list List entry for the rs codec list

struct rs_control
rs control structure per instance

Definition

struct rs_control {
struct rs_codec *codec;
uint16_t buffers[];

};

Members
codec The codec used for this instance

buffers Internal scratch buffers used in calls to decode_rs()

struct rs_control * init_rs(int symsize, int gfpoly, int fcr, int prim,
int nroots)

Create a RS control struct and initialize it

Parameters
int symsize the symbol size (number of bits)

int gfpoly the extended Galois field generator polynomial coefficients, with the
0th coefficient in the low order bit. The polynomial must be primitive;

int fcr the first consecutive root of the rs code generator polynomial in index
form

int prim primitive element to generate polynomial roots

int nroots RS code generator polynomial degree (number of roots)

Description
Allocations use GFP_KERNEL.

7.1.5 Public Functions Provided

This chapter contains the autogenerated documentation of the Reed-Solomon
functions which are exported.

void free_rs(struct rs_control * rs)
Free the rs control structure

Parameters
struct rs_control * rs The control structure which is not longer used by the

caller

Description
Free the control structure. If rs is the last user of the associated codec, free the
codec as well.

struct rs_control * init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
int nroots, gfp_t gfp)

Create a RS control struct and initialize it

7.1. Reed-Solomon Library Programming Interface 719

Linux Core-api Documentation

Parameters
int symsize the symbol size (number of bits)

int gfpoly the extended Galois field generator polynomial coefficients, with the
0th coefficient in the low order bit. The polynomial must be primitive;

int fcr the first consecutive root of the rs code generator polynomial in index
form

int prim primitive element to generate polynomial roots

int nroots RS code generator polynomial degree (number of roots)

gfp_t gfp Memory allocation flags.

struct rs_control * init_rs_non_canonical(int symsize, int (*gffunc)(int),
int fcr, int prim, int nroots)

Allocate rs control struct for fields with non-canonical representation

Parameters
int symsize the symbol size (number of bits)

int (*)(int) gffunc pointer to function to generate the next field element, or
the multiplicative identity element if given 0. Used instead of gfpoly if gfpoly
is 0

int fcr the first consecutive root of the rs code generator polynomial in index
form

int prim primitive element to generate polynomial roots

int nroots RS code generator polynomial degree (number of roots)

int encode_rs8(struct rs_control * rsc, uint8_t * data, int len, uint16_t * par,
uint16_t invmsk)

Calculate the parity for data values (8bit data width)

Parameters
struct rs_control * rsc the rs control structure

uint8_t * data data field of a given type

int len data length

uint16_t * par parity data, must be initialized by caller (usually all 0)

uint16_t invmsk invert data mask (will be xored on data)

The parity uses a uint16_t data type to enable symbol size > 8. The calling
code must take care of encoding of the syndrome result for storage itself.

int decode_rs8(struct rs_control * rsc, uint8_t * data, uint16_t * par, int len,
uint16_t * s, int no_eras, int * eras_pos, uint16_t invmsk,
uint16_t * corr)

Decode codeword (8bit data width)

Parameters
struct rs_control * rsc the rs control structure

uint8_t * data data field of a given type

720 Chapter 7. Everything else

Linux Core-api Documentation

uint16_t * par received parity data field

int len data length

uint16_t * s syndrome data field, must be in index form (if NULL, syndrome is
calculated)

int no_eras number of erasures

int * eras_pos position of erasures, can be NULL

uint16_t invmsk invert data mask (will be xored on data, not on parity!)

uint16_t * corr buffer to store correction bitmask on eras_pos

The syndrome and parity uses a uint16_t data type to enable symbol size > 8.
The calling code must take care of decoding of the syndrome result and the
received parity before calling this code.

Note
The rs_control struct rsc contains buffers which are used for decoding, so

the caller has to ensure that decoder invocations are serialized.

Returns the number of corrected symbols or -EBADMSG for uncorrectable
errors. The count includes errors in the parity.

int encode_rs16(struct rs_control * rsc, uint16_t * data, int len, uint16_t
* par, uint16_t invmsk)

Calculate the parity for data values (16bit data width)

Parameters
struct rs_control * rsc the rs control structure

uint16_t * data data field of a given type

int len data length

uint16_t * par parity data, must be initialized by caller (usually all 0)

uint16_t invmsk invert data mask (will be xored on data, not on parity!)

Each field in the data array contains up to symbol size bits of valid data.

int decode_rs16(struct rs_control * rsc, uint16_t * data, uint16_t
* par, int len, uint16_t * s, int no_eras, int * eras_pos,
uint16_t invmsk, uint16_t * corr)

Decode codeword (16bit data width)

Parameters
struct rs_control * rsc the rs control structure

uint16_t * data data field of a given type

uint16_t * par received parity data field

int len data length

uint16_t * s syndrome data field, must be in index form (if NULL, syndrome is
calculated)

int no_eras number of erasures

7.1. Reed-Solomon Library Programming Interface 721

Linux Core-api Documentation

int * eras_pos position of erasures, can be NULL

uint16_t invmsk invert data mask (will be xored on data, not on parity!)

uint16_t * corr buffer to store correction bitmask on eras_pos

Each field in the data array contains up to symbol size bits of valid data.

Note
The rc_control struct rsc contains buffers which are used for decoding, so

the caller has to ensure that decoder invocations are serialized.

Returns the number of corrected symbols or -EBADMSG for uncorrectable
errors. The count includes errors in the parity.

7.1.6 Credits

The library code for encoding and decoding was written by Phil Karn.

Copyright 2002, Phil Karn, KA9Q
May be used under the terms of the GNU General Public License (GPL)

The wrapper functions and interfaces are written by Thomas Gleixner.

Many users have provided bugfixes, improvements and helping hands for testing.
Thanks a lot.

The following people have contributed to this document:

Thomas Gleixnertglx@linutronix.de

722 Chapter 7. Everything else

mailto:tglx@linutronix.de

