
Linux Cdrom Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

A LINUX CD-ROM STANDARD

Author David van Leeuwen <david@ElseWare.cistron.nl>
Date 12 March 1999
Updated by Erik Andersen (andersee@debian.org)
Updated by Jens Axboe (axboe@image.dk)

1.1 Introduction

Linux is probably the Unix-like operating system that supports the widest variety
of hardware devices. The reasons for this are presumably

• The large list of hardware devices available for the many platforms that Linux
now supports (i.e., i386-PCs, Sparc Suns, etc.)

• The open design of the operating system, such that anybody can write a driver
for Linux.

• There is plenty of source code around as examples of how to write a driver.

The openness of Linux, and the many different types of available hardware has al-
lowed Linux to support many different hardware devices. Unfortunately, the very
openness that has allowed Linux to support all these different devices has also
allowed the behavior of each device driver to differ significantly from one device
to another. This divergence of behavior has been very significant for CD-ROM
devices; the way a particular drive reacts to a standard ioctl() call varies greatly
from one device driver to another. To avoid making their drivers totally inconsis-
tent, the writers of Linux CD-ROM drivers generally created new device drivers by
understanding, copying, and then changing an existing one. Unfortunately, this
practice did not maintain uniform behavior across all the Linux CD-ROM drivers.

This document describes an effort to establish Uniform behavior across all the dif-
ferent CD-ROM device drivers for Linux. This document also defines the various
ioctl()’s, and how the low-level CD-ROM device drivers should implement them.
Currently (as of the Linux 2.1.x development kernels) several low-level CD-ROM
device drivers, including both IDE/ATAPI and SCSI, now use this Uniform inter-
face.

When the CD-ROM was developed, the interface between the CD-ROM drive and
the computer was not specified in the standards. As a result, many different CD-
ROM interfaces were developed. Some of them had their own proprietary design

1

mailto:david@ElseWare.cistron.nl
mailto:andersee@debian.org
mailto:axboe@image.dk

Linux Cdrom Documentation

(Sony, Mitsumi, Panasonic, Philips), other manufacturers adopted an existing elec-
trical interface and changed the functionality (CreativeLabs/SoundBlaster, Teac,
Funai) or simply adapted their drives to one or more of the already existing electri-
cal interfaces (Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and most
of the NoName manufacturers). In cases where a new drive really brought its own
interface or used its own command set and flow control scheme, either a separate
driver had to be written, or an existing driver had to be enhanced. History has
delivered us CD-ROM support for many of these different interfaces. Nowadays,
almost all new CD-ROM drives are either IDE/ATAPI or SCSI, and it is very unlikely
that any manufacturer will create a new interface. Even finding drives for the old
proprietary interfaces is getting difficult.

When (in the 1.3.70’s) I looked at the existing software interface, which was
expressed through cdrom.h, it appeared to be a rather wild set of commands and
data formats1. It seemed that many features of the software interface had been
added to accommodate the capabilities of a particular drive, in an ad hoc manner.
More importantly, it appeared that the behavior of the standard commands was
different for most of the different drivers: e. g., some drivers close the tray if an
open() call occurs when the tray is open, while others do not. Some drivers lock the
door upon opening the device, to prevent an incoherent file system, but others don’
t, to allow software ejection. Undoubtedly, the capabilities of the different drives
vary, but even when two drives have the same capability their drivers’behavior
was usually different.

I decided to start a discussion on how tomake all the Linux CD-ROMdrivers behave
more uniformly. I began by contacting the developers of the many CD-ROM drivers
found in the Linux kernel. Their reactions encouraged me to write the Uniform
CD-ROM Driver which this document is intended to describe. The implementation
of the Uniform CD-ROM Driver is in the file cdrom.c. This driver is intended to
be an additional software layer that sits on top of the low-level device drivers for
each CD-ROM drive. By adding this additional layer, it is possible to have all the
different CD-ROM devices behave exactly the same (insofar as the underlying
hardware will allow).

The goal of the Uniform CD-ROM Driver is not to alienate driver developers who-
have not yet taken steps to support this effort. The goal of Uniform CD-ROM
Driver is simply to give people writing application programs for CD-ROM drives
one Linux CD-ROM interface with consistent behavior for all CD-ROM devices.
In addition, this also provides a consistent interface between the low-level device
driver code and the Linux kernel. Care is taken that 100% compatibility exists
with the data structures and programmer’s interface defined in cdrom.h. This
guide was written to help CD-ROM driver developers adapt their code to use the
Uniform CD-ROM Driver code defined in cdrom.c.

Personally, I think that the most important hardware interfaces are the IDE/ATAPI
drives and, of course, the SCSI drives, but as prices of hardware drop continuously,
it is also likely that people may have more than one CD-ROM drive, possibly of
mixed types. It is important that these drives behave in the sameway. In December
1994, one of the cheapest CD-ROM drives was a Philips cm206, a double-speed
proprietary drive. In the months that I was busy writing a Linux driver for it,
proprietary drives became obsolete and IDE/ATAPI drives became the standard.

1 I cannot recollect what kernel version I looked at, then, presumably 1.2.13 and 1.3.34 —the
latest kernel that I was indirectly involved in.

2 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

At the time of the last update to this document (November 1997) it is becoming
difficult to even find anything less than a 16 speed CD-ROM drive, and 24 speed
drives are common.

1.2 Standardizing through another software level

At the time this document was conceived, all drivers directly implemented the CD-
ROM ioctl() calls through their own routines. This led to the danger of different
drivers forgetting to do important things like checking that the user was giving the
driver valid data. More importantly, this led to the divergence of behavior, which
has already been discussed.

For this reason, the Uniform CD-ROM Driver was created to enforce consistent
CD-ROM drive behavior, and to provide a common set of services to the various
low-level CD-ROM device drivers. The Uniform CD-ROM Driver now provides an-
other software-level, that separates the ioctl() and open() implementation from
the actual hardware implementation. Note that this effort has made few changes
which will affect a user’s application programs. The greatest change involved
moving the contents of the various low-level CD-ROM drivers’header files to the
kernel’s cdrom directory. This was done to help ensure that the user is only
presented with only one cdrom interface, the interface defined in cdrom.h.

CD-ROM drives are specific enough (i. e., different from other block-devices such
as floppy or hard disc drives), to define a set of common CD-ROM device oper-
ations, <cdrom-device>_dops. These operations are different from the classical
block-device file operations, <block-device>_fops.

The routines for the Uniform CD-ROM Driver interface level are implemented in
the file cdrom.c. In this file, the Uniform CD-ROMDriver interfaces with the kernel
as a block device by registering the following general struct file_operations:

struct file_operations cdrom_fops = {
NULL, /∗ lseek ∗/
block _read , /∗ read—general block-dev read ∗/
block _write, /∗ write—general block-dev write ∗/
NULL, /∗ readdir ∗/
NULL, /∗ select ∗/
cdrom_ioctl, /∗ ioctl ∗/
NULL, /∗ mmap ∗/
cdrom_open, /∗ open ∗/
cdrom_release, /∗ release ∗/
NULL, /∗ fsync ∗/
NULL, /∗ fasync ∗/
cdrom_media_changed, /∗ media change ∗/
NULL /∗ revalidate ∗/

};

Every active CD-ROM device shares this struct. The routines declared above are
all implemented in cdrom.c, since this file is the place where the behavior of all
CD-ROM-devices is defined and standardized. The actual interface to the various
types of CD-ROM hardware is still performed by various low-level CD-ROM-device
drivers. These routines simply implement certain capabilities that are common
to all CD-ROM (and really, all removable-media devices).

1.2. Standardizing through another software level 3

Linux Cdrom Documentation

Registration of a low-level CD-ROM device driver is now done through the general
routines in cdrom.c, not through the Virtual File System (VFS) any more. The
interface implemented in cdrom.c is carried out through two general structures
that contain information about the capabilities of the driver, and the specific drives
on which the driver operates. The structures are:

cdrom_device_ops This structure contains information about the low-level driver
for a CD-ROM device. This structure is conceptually connected to the major
number of the device (although some drivers may have different major num-
bers, as is the case for the IDE driver).

cdrom_device_info This structure contains information about a particular CD-
ROM drive, such as its device name, speed, etc. This structure is conceptually
connected to the minor number of the device.

Registering a particular CD-ROM drive with the Uniform CD-ROM Driver is done
by the low-level device driver though a call to:

register_cdrom(struct cdrom_device_info * <device>_info)

The device information structure, <device>_info, contains all the information
needed for the kernel to interface with the low-level CD-ROM device driver. One
of the most important entries in this structure is a pointer to the cdrom_device_ops
structure of the low-level driver.

The device operations structure, cdrom_device_ops, contains a list of pointers to
the functions which are implemented in the low-level device driver. When cdrom.c
accesses a CD-ROM device, it does it through the functions in this structure. It is
impossible to know all the capabilities of future CD-ROM drives, so it is expected
that this list may need to be expanded from time to time as new technologies
are developed. For example, CD-R and CD-R/W drives are beginning to become
popular, and support will soon need to be added for them. For now, the current
struct is:

struct cdrom_device_ops {
int (*open)(struct cdrom_device_info *, int)
void (*release)(struct cdrom_device_info *);
int (*drive_status)(struct cdrom_device_info *, int);
unsigned int (*check_events)(struct cdrom_device_info *,

unsigned int, int);
int (*media_changed)(struct cdrom_device_info *, int);
int (*tray_move)(struct cdrom_device_info *, int);
int (*lock_door)(struct cdrom_device_info *, int);
int (*select_speed)(struct cdrom_device_info *, int);
int (*select_disc)(struct cdrom_device_info *, int);
int (*get_last_session) (struct cdrom_device_info *,

struct cdrom_multisession *);
int (*get_mcn)(struct cdrom_device_info *, struct cdrom_mcn *);
int (*reset)(struct cdrom_device_info *);
int (*audio_ioctl)(struct cdrom_device_info *,

unsigned int, void *);
const int capability; /* capability flags */
int (*generic_packet)(struct cdrom_device_info *,

struct packet_command *);
};

4 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

When a low-level device driver implements one of these capabilities, it should add
a function pointer to this struct. When a particular function is not implemented,
however, this struct should contain a NULL instead. The capability flags specify
the capabilities of the CD-ROM hardware and/or low-level CD-ROM driver when a
CD-ROM drive is registered with the Uniform CD-ROM Driver.

Note that most functions have fewer parameters than their blkdev_fops counter-
parts. This is because very little of the information in the structures inode and
file is used. For most drivers, the main parameter is the struct cdrom_device_info,
from which the major and minor number can be extracted. (Most low-level CD-
ROM drivers don’t even look at the major and minor number though, since
many of them only support one device.) This will be available through dev in
cdrom_device_info described below.

The drive-specific, minor-like information that is registered with cdrom.c, cur-
rently contains the following fields:

struct cdrom_device_info {
const struct cdrom_device_ops * ops; /* device operations for␣

↪→this major */
struct list_head list; /* linked list of all device_

↪→info */
struct gendisk * disk; /* matching block layer disk␣

↪→*/
void * handle; /* driver-dependent data */

int mask; /* mask of capability:␣
↪→disables them */

int speed; /* maximum speed for reading␣
↪→data */

int capacity; /* number of discs in a␣
↪→jukebox */

unsigned int options:30; /* options flags */
unsigned mc_flags:2; /* media-change buffer␣

↪→flags */
unsigned int vfs_events; /* cached events for vfs␣

↪→path */
unsigned int ioctl_events; /* cached events for ioctl␣

↪→path */
int use_count; /* number of times device␣

↪→is opened */
char name[20]; /* name of the device type␣

↪→*/

__u8 sanyo_slot : 2; /* Sanyo 3-CD changer␣
↪→support */

__u8 keeplocked : 1; /* CDROM_LOCKDOOR status */
__u8 reserved : 5; /* not used yet */
int cdda_method; /* see CDDA_* flags */
__u8 last_sense; /* saves last sense key */
__u8 media_written; /* dirty flag, DVD+RW␣

↪→bookkeeping */
unsigned short mmc3_profile; /* current MMC3 profile */
int for_data; /* unknown:TBD */
int (*exit)(struct cdrom_device_info *);/* unknown:TBD */

(continues on next page)

1.2. Standardizing through another software level 5

Linux Cdrom Documentation

(continued from previous page)
int mrw_mode_page; /* which MRW mode page is␣

↪→in use */
};

Using this struct, a linked list of the registered minor devices is built, using the
next field. The device number, the device operations struct and specifications of
properties of the drive are stored in this structure.

The mask flags can be used to mask out some of the capabilities listed in ops-
>capability, if a specific drive doesn’t support a feature of the driver. The value
speed specifies the maximum head-rate of the drive, measured in units of normal
audio speed (176kB/sec raw data or 150kB/sec file system data). The parameters
are declared const because they describe properties of the drive, which don’t
change after registration.

A few registers contain variables local to the CD-ROM drive. The flags options are
used to specify how the general CD-ROM routines should behave. These various
flags registers should provide enough flexibility to adapt to the different users’
wishes (and not the arbitrary wishes of the author of the low-level device driver,
as is the case in the old scheme). The register mc_flags is used to buffer the
information from media_changed() to two separate queues. Other data that is
specific to a minor drive, can be accessed through handle, which can point to a
data structure specific to the low-level driver. The fields use_count, next, options
and mc_flags need not be initialized.

The intermediate software layer that cdrom.c forms will perform some additional
bookkeeping. The use count of the device (the number of processes that have the
device opened) is registered in use_count. The function cdrom_ioctl() will verify
the appropriate user-memory regions for read and write, and in case a location
on the CD is transferred, it will sanitize the format by making requests to the
low-level drivers in a standard format, and translating all formats between the
user-software and low level drivers. This relieves much of the drivers’memory
checking and format checking and translation. Also, the necessary structures will
be declared on the program stack.

The implementation of the functions should be as defined in the following sec-
tions. Two functions must be implemented, namely open() and release(). Other
functions may be omitted, their corresponding capability flags will be cleared upon
registration. Generally, a function returns zero on success and negative on error.
A function call should return only after the command has completed, but of course
waiting for the device should not use processor time.

int open(struct cdrom_device_info *cdi, int purpose)

Open() should try to open the device for a specific purpose, which can be either:

• Open for reading data, as done by mount() (2), or the user commands dd or
cat.

• Open for ioctl commands, as done by audio-CD playing programs.

Notice that any strategic code (closing tray upon open(), etc.) is done by the calling
routine in cdrom.c, so the low-level routine should only be concerned with proper
initialization, such as spinning up the disc, etc.

6 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

void release(struct cdrom_device_info *cdi)

Device-specific actions should be taken such as spinning down the device. How-
ever, strategic actions such as ejection of the tray, or unlocking the door, should be
left over to the general routine cdrom_release(). This is the only function returning
type void.

int drive_status(struct cdrom_device_info *cdi, int slot_nr)

The function drive_status, if implemented, should provide information on the sta-
tus of the drive (not the status of the disc, which may or may not be in the drive). If
the drive is not a changer, slot_nr should be ignored. In cdrom.h the possibilities
are listed:

CDS_NO_INFO /* no information available */
CDS_NO_DISC /* no disc is inserted, tray is closed */
CDS_TRAY_OPEN /* tray is opened */
CDS_DRIVE_NOT_READY /* something is wrong, tray is moving? */
CDS_DISC_OK /* a disc is loaded and everything is fine */

int media_changed(struct cdrom_device_info *cdi, int disc_nr)

This function is very similar to the original function in $struct file_operations*. It
returns 1 if the medium of the device cdi->dev has changed since the last call,
and 0 otherwise. The parameter disc_nr identifies a specific slot in a juke-box,
it should be ignored for single-disc drives. Note that by re-routing this function
through cdrom_media_changed(), we can implement separate queues for the VFS
and a new ioctl() function that can report device changes to software (e. g., an
auto-mounting daemon).

int tray_move(struct cdrom_device_info *cdi, int position)

This function, if implemented, should control the tray movement. (No other func-
tion should control this.) The parameter position controls the desired direction of
movement:

• 0 Close tray

• 1 Open tray

This function returns 0 upon success, and a non-zero value upon error. Note that if
the tray is already in the desired position, no action need be taken, and the return
value should be 0.

int lock_door(struct cdrom_device_info *cdi, int lock)

This function (and no other code) controls locking of the door, if the drive allows
this. The value of lock controls the desired locking state:

• 0 Unlock door, manual opening is allowed

• 1 Lock door, tray cannot be ejected manually

This function returns 0 upon success, and a non-zero value upon error. Note that if
the door is already in the requested state, no action need be taken, and the return
value should be 0.

1.2. Standardizing through another software level 7

Linux Cdrom Documentation

int select_speed(struct cdrom_device_info *cdi, int speed)

Some CD-ROM drives are capable of changing their head-speed. There are several
reasons for changing the speed of a CD-ROM drive. Badly pressed CD-ROM s may
benefit from less-than-maximum head rate. Modern CD-ROM drives can obtain
very high head rates (up to 24x is common). It has been reported that these drives
canmake reading errors at these high speeds, reducing the speed can prevent data
loss in these circumstances. Finally, some of these drives can make an annoyingly
loud noise, which a lower speed may reduce.

This function specifies the speed at which data is read or audio is played back.
The value of speed specifies the head-speed of the drive, measured in units
of standard cdrom speed (176kB/sec raw data or 150kB/sec file system data).
So to request that a CD-ROM drive operate at 300kB/sec you would call the
CDROM_SELECT_SPEED ioctl with speed=2. The special value 0 means auto-
selection, i. e., maximum data-rate or real-time audio rate. If the drive doesn’t
have this auto-selection capability, the decision should be made on the current disc
loaded and the return value should be positive. A negative return value indicates
an error.

int select_disc(struct cdrom_device_info *cdi, int number)

If the drive can store multiple discs (a juke-box) this function will perform disc
selection. It should return the number of the selected disc on success, a negative
value on error. Currently, only the ide-cd driver supports this functionality.

int get_last_session(struct cdrom_device_info *cdi,
struct cdrom_multisession *ms_info)

This function should implement the old corresponding ioctl(). For device cdi->dev,
the start of the last session of the current disc should be returned in the pointer
argument ms_info. Note that routines in cdrom.c have sanitized this argument: its
requested format will always be of the type CDROM_LBA (linear block address-
ing mode), whatever the calling software requested. But sanitization goes even
further: the low-level implementation may return the requested information in
CDROM_MSF format if it wishes so (setting the ms_info->addr_format field ap-
propriately, of course) and the routines in cdrom.c will make the transformation if
necessary. The return value is 0 upon success.

int get_mcn(struct cdrom_device_info *cdi,
struct cdrom_mcn *mcn)

Some discs carry a Media Catalog Number (MCN), also called Universal Product
Code (UPC). This number should reflect the number that is generally found in the
bar-code on the product. Unfortunately, the few discs that carry such a number
on the disc don’t even use the same format. The return argument to this function
is a pointer to a pre-declared memory region of type struct cdrom_mcn. The MCN
is expected as a 13-character string, terminated by a null-character.

int reset(struct cdrom_device_info *cdi)

This call should perform a hard-reset on the drive (although in circumstances that
a hard-reset is necessary, a drive may very well not listen to commands anymore).

8 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

Preferably, control is returned to the caller only after the drive has finished reset-
ting. If the drive is no longer listening, it may be wise for the underlying low-level
cdrom driver to time out.

int audio_ioctl(struct cdrom_device_info *cdi,
unsigned int cmd, void *arg)

Some of the CD-ROM-ioctl()’s defined in cdrom.h can be implemented by the rou-
tines described above, and hence the function cdrom_ioctl will use those. How-
ever, most ioctl()’s deal with audio-control. We have decided to leave these to
be accessed through a single function, repeating the arguments cmd and arg.
Note that the latter is of type void, rather than unsigned long int. The routine
cdrom_ioctl() does do some useful things, though. It sanitizes the address for-
mat type to CDROM_MSF (Minutes, Seconds, Frames) for all audio calls. It also
verifies the memory location of arg, and reserves stack-memory for the argument.
This makes implementation of the audio_ioctl() much simpler than in the old driver
scheme. For example, you may look up the function cm206_audio_ioctl() cm206.c
that should be updated with this documentation.

An unimplemented ioctl should return -ENOSYS, but a harmless request (e. g.,
CDROMSTART) may be ignored by returning 0 (success). Other errors should be
according to the standards, whatever they are. When an error is returned by the
low-level driver, the Uniform CD-ROMDriver tries whenever possible to return the
error code to the calling program. (We may decide to sanitize the return value in
cdrom_ioctl() though, in order to guarantee a uniform interface to the audio-player
software.)

int dev_ioctl(struct cdrom_device_info *cdi,
unsigned int cmd, unsigned long arg)

Some ioctl()’s seem to be specific to certain CD-ROM drives. That is, they are
introduced to service some capabilities of certain drives. In fact, there are 6 dif-
ferent ioctl()’s for reading data, either in some particular kind of format, or audio
data. Not many drives support reading audio tracks as data, I believe this is be-
cause of protection of copyrights of artists. Moreover, I think that if audio-tracks
are supported, it should be done through the VFS and not via ioctl()’s. A problem
here could be the fact that audio-frames are 2352 bytes long, so either the audio-
file-system should ask for 75264 bytes at once (the least common multiple of 512
and 2352), or the drivers should bend their backs to cope with this incoherence
(to which I would be opposed). Furthermore, it is very difficult for the hardware
to find the exact frame boundaries, since there are no synchronization headers in
audio frames. Once these issues are resolved, this code should be standardized in
cdrom.c.

Because there are so many ioctl()’s that seem to be introduced to satisfy certain
drivers2, any non-standard ioctl()s are routed through the call dev_ioctl(). In prin-
ciple, private ioctl()’s should be numbered after the device’s major number, and
not the general CD-ROM ioctl number, 0x53. Currently the non-supported ioctl()’
s are:

CDROMREADMODE1, CDROMREADMODE2, CDROMREADAU-
DIO, CDROMREADRAW, CDROMREADCOOKED, CDROMSEEK,

2 Is there software around that actually uses these? I’d be interested!

1.2. Standardizing through another software level 9

Linux Cdrom Documentation

CDROMPLAY-BLK and CDROM-READALL

1.2.1 CD-ROM capabilities

Instead of just implementing some ioctl calls, the interface in cdrom.c supplies
the possibility to indicate the capabilities of a CD-ROM drive. This can be done
by ORing any number of capability-constants that are defined in cdrom.h at the
registration phase. Currently, the capabilities are any of:

CDC_CLOSE_TRAY /* can close tray by software control */
CDC_OPEN_TRAY /* can open tray */
CDC_LOCK /* can lock and unlock the door */
CDC_SELECT_SPEED /* can select speed, in units of * sim*150 ,kB/s */
CDC_SELECT_DISC /* drive is juke-box */
CDC_MULTI_SESSION /* can read sessions *> rm1* */
CDC_MCN /* can read Media Catalog Number */
CDC_MEDIA_CHANGED /* can report if disc has changed */
CDC_PLAY_AUDIO /* can perform audio-functions (play, pause, etc)␣
↪→*/
CDC_RESET /* hard reset device */
CDC_IOCTLS /* driver has non-standard ioctls */
CDC_DRIVE_STATUS /* driver implements drive status */

The capability flag is declared const, to prevent drivers from accidentally tamper-
ing with the contents. The capability fags actually inform cdrom.c of what the
driver can do. If the drive found by the driver does not have the capability, is can
be masked out by the cdrom_device_info variable mask. For instance, the SCSI
CD-ROM driver has implemented the code for loading and ejecting CD-ROM’s,
and hence its corresponding flags in capability will be set. But a SCSI CD-ROM
drive might be a caddy system, which can’t load the tray, and hence for this drive
the cdrom_device_info struct will have set the CDC_CLOSE_TRAY bit in mask.

In the file cdrom.c you will encounter many constructions of the type:

if (cdo->capability & ∼cdi->mask & CDC _⟨capability⟩) ...

There is no ioctl to set the mask⋯The reason is that I think it is better to control
the behavior rather than the capabilities.

1.2.2 Options

A final flag register controls the behavior of the CD-ROM drives, in order to sat-
isfy different users’wishes, hopefully independently of the ideas of the respective
author who happened to have made the drive’s support available to the Linux
community. The current behavior options are:

CDO_AUTO_CLOSE /* try to close tray upon device open() */
CDO_AUTO_EJECT /* try to open tray on last device close() */
CDO_USE_FFLAGS /* use file_pointer->f_flags to indicate purpose for␣
↪→open() */
CDO_LOCK /* try to lock door if device is opened */
CDO_CHECK_TYPE /* ensure disc type is data if opened for data */

10 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

The initial value of this register is CDO_AUTO_CLOSE | CDO_USE_FFLAGS |
CDO_LOCK, reflecting my own view on user interface and software standards. Be-
fore you protest, there are two new ioctl()’s implemented in cdrom.c, that allow
you to control the behavior by software. These are:

CDROM_SET_OPTIONS /* set options specified in (int)arg */
CDROM_CLEAR_OPTIONS /* clear options specified in (int)arg */

One option needs some more explanation: CDO_USE_FFLAGS. In the next new-
section we explain what the need for this option is.

A software package setcd, available from the Debian distribution and sun-
site.unc.edu, allows user level control of these flags.

1.3 The need to know the purpose of opening the CD-
ROM device

Traditionally, Unix devices can be used in two different modes, either by read-
ing/writing to the device file, or by issuing controlling commands to the device, by
the device’s ioctl() call. The problem with CD-ROM drives, is that they can be
used for two entirely different purposes. One is to mount removable file systems,
CD-ROM’s, the other is to play audio CD’s. Audio commands are implemented
entirely through ioctl()’s, presumably because the first implementation (SUN?)
has been such. In principle there is nothing wrong with this, but a good control of
the CD player demands that the device can always be opened in order to give the
ioctl commands, regardless of the state the drive is in.

On the other hand, when used as a removable-media disc drive (what the original
purpose of CD-ROM s is) we would like to make sure that the disc drive is ready
for operation upon opening the device. In the old scheme, some CD-ROM drivers
don’t do any integrity checking, resulting in a number of i/o errors reported by
the VFS to the kernel when an attempt for mounting a CD-ROM on an empty drive
occurs. This is not a particularly elegant way to find out that there is no CD-ROM
inserted; it more-or-less looks like the old IBM-PC trying to read an empty floppy
drive for a couple of seconds, after which the system complains it can’t read
from it. Nowadays we can sense the existence of a removable medium in a drive,
and we believe we should exploit that fact. An integrity check on opening of the
device, that verifies the availability of a CD-ROM and its correct type (data), would
be desirable.

These two ways of using a CD-ROM drive, principally for data and secondarily for
playing audio discs, have different demands for the behavior of the open() call.
Audio use simply wants to open the device in order to get a file handle which
is needed for issuing ioctl commands, while data use wants to open for correct
and reliable data transfer. The only way user programs can indicate what their
purpose of opening the device is, is through the flags parameter (see open(2)).
For CD-ROM devices, these flags aren’t implemented (some drivers implement
checking for write-related flags, but this is not strictly necessary if the device file
has correct permission flags). Most option flags simply don’t make sense to CD-
ROM devices: O_CREAT, O_NOCTTY, O_TRUNC, O_APPEND, and O_SYNC have
no meaning to a CD-ROM.

1.3. The need to know the purpose of opening the CD-ROM device 11

Linux Cdrom Documentation

We therefore propose to use the flag O_NONBLOCK to indicate that the device is
opened just for issuing ioctl commands. Strictly, the meaning of O_NONBLOCK is
that opening and subsequent calls to the device don’t cause the calling process
to wait. We could interpret this as don’t wait until someone has inserted some
valid data-CD-ROM. Thus, our proposal of the implementation for the open() call
for CD-ROM s is:

• If no other flags are set than O_RDONLY, the device is opened for data trans-
fer, and the return value will be 0 only upon successful initialization of the
transfer. The call may even induce some actions on the CD-ROM, such as
closing the tray.

• If the option flag O_NONBLOCK is set, opening will always be successful, un-
less the whole device doesn’t exist. The drive will take no actions whatsoever.

1.3.1 And what about standards?

You might hesitate to accept this proposal as it comes from the Linux community,
and not from some standardizing institute. What about SUN, SGI, HP and all those
other Unix and hardware vendors? Well, these companies are in the lucky position
that they generally control both the hardware and software of their supported
products, and are large enough to set their own standard. They do not have to
deal with a dozen or more different, competing hardware configurations3.

We believe that using O_NONBLOCK to indicate that a device is being opened for
ioctl commands only can be easily introduced in the Linux community. All the CD-
player authors will have to be informed, we can even send in our own patches to the
programs. The use of O_NONBLOCK has most likely no influence on the behavior
of the CD-players on other operating systems than Linux. Finally, a user can always
revert to old behavior by a call to ioctl(file_descriptor, CDROM_CLEAR_OPTIONS,
CDO_USE_FFLAGS).

1.3.2 The preferred strategy of open()

The routines in cdrom.c are designed in such a way that run-time configuration
of the behavior of CD-ROM devices (of any type) can be carried out, by the
CDROM_SET/CLEAR_OPTIONS ioctls. Thus, various modes of operation can be
set:

CDO_AUTO_CLOSE | CDO_USE_FFLAGS | CDO_LOCK This is the default set-
ting. (With CDO_CHECK_TYPE it will be better, in the future.) If the device
is not yet opened by any other process, and if the device is being opened for
data (O_NONBLOCK is not set) and the tray is found to be open, an attempt
to close the tray is made. Then, it is verified that a disc is in the drive and, if
CDO_CHECK_TYPE is set, that it contains tracks of type data mode 1. Only if

3 Incidentally, I think that SUN’s approach to mounting CD-ROM s is very good in origin: under
Solaris a volume-daemon automatically mounts a newly inserted CD-ROM under /cdrom/*<volume-
name>*.
In my opinion they should have pushed this further and have every CD-ROM on the local area

network be mounted at the similar location, i. e., no matter in which particular machine you insert
a CD-ROM, it will always appear at the same position in the directory tree, on every system. When
I wanted to implement such a user-program for Linux, I came across the differences in behavior of
the various drivers, and the need for an ioctl informing about media changes.

12 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

all tests are passed is the return value zero. The door is locked to prevent file
system corruption. If the drive is opened for audio (O_NONBLOCK is set), no
actions are taken and a value of 0 will be returned.

CDO_AUTO_CLOSE | CDO_AUTO_EJECT | CDO_LOCK This mimics the behav-
ior of the current sbpcd-driver. The option flags are ignored, the tray is closed
on the first open, if necessary. Similarly, the tray is opened on the last re-
lease, i. e., if a CD-ROM is unmounted, it is automatically ejected, such that
the user can replace it.

We hope that these option can convince everybody (both driver maintainers and
user program developers) to adopt the new CD-ROM driver scheme and option
flag interpretation.

1.4 Description of routines in cdrom.c

Only a few routines in cdrom.c are exported to the drivers. In this new section we
will discuss these, as well as the functions that take over’the CD-ROM interface
to the kernel. The header file belonging to `cdrom.c is called cdrom.h. Formerly,
some of the contents of this file were placed in the file ucdrom.h, but this file has
now been merged back into cdrom.h.

struct file_operations cdrom_fops

The contents of this structure were described in cdrom_api. A pointer to this struc-
ture is assigned to the fops field of the struct gendisk.

int register_cdrom(struct cdrom_device_info *cdi)

This function is used in about the same way one registers cdrom_fops with the ker-
nel, the device operations and information structures, as described in cdrom_api,
should be registered with the Uniform CD-ROM Driver:

register_cdrom(&<device>_info);

This function returns zero upon success, and non-zero upon failure. The structure
<device>_info should have a pointer to the driver’s <device>_dops, as in:
struct cdrom_device_info <device>_info = {

<device>_dops;
...

}

Note that a driver must have one static structure, <device>_dops, while it may
have as many structures <device>_info as there are minor devices active. Regis-
ter_cdrom() builds a linked list from these.

void unregister_cdrom(struct cdrom_device_info *cdi)

Unregistering device cdi with minor number MINOR(cdi->dev) removes the minor
device from the list. If it was the last registered minor for the low-level driver, this
disconnects the registered device-operation routines from the CD-ROM interface.
This function returns zero upon success, and non-zero upon failure.

1.4. Description of routines in cdrom.c 13

Linux Cdrom Documentation

int cdrom_open(struct inode * ip, struct file * fp)

This function is not called directly by the low-level drivers, it is listed in the stan-
dard cdrom_fops. If the VFS opens a file, this function becomes active. A strategy
is implemented in this routine, taking care of all capabilities and options that are
set in the cdrom_device_ops connected to the device. Then, the program flow is
transferred to the device_dependent open() call.

void cdrom_release(struct inode *ip, struct file *fp)

This function implements the reverse-logic of cdrom_open(), and then calls the
device-dependent release() routine. When the use-count has reached 0, the allo-
cated buffers are flushed by calls to sync_dev(dev) and invalidate_buffers(dev).

int cdrom_ioctl(struct inode *ip, struct file *fp,
unsigned int cmd, unsigned long arg)

This function handles all the standard ioctl requests for CD-ROM devices in a uni-
form way. The different calls fall into three categories: ioctl()’s that can be di-
rectly implemented by device operations, ones that are routed through the call au-
dio_ioctl(), and the remaining ones, that are presumable device-dependent. Gen-
erally, a negative return value indicates an error.

1.4.1 Directly implemented ioctl()’s

The following old CD-ROM ioctl()’s are implemented by directly calling device-
operations in cdrom_device_ops, if implemented and not masked:

CDROMMULTISESSION Requests the last session on a CD-ROM.

CDROMEJECT Open tray.

CDROMCLOSETRAY Close tray.

CDROMEJECT_SW If argnot=0, set behavior to auto-close (close tray on first
open) and auto-eject (eject on last release), otherwise set behavior to non-
moving on open() and release() calls.

CDROM_GET_MCN Get the Media Catalog Number from a CD.

1.4.2 Ioctl*s routed through *audio_ioctl()

The following set of ioctl()’s are all implemented through a call to
the cdrom_fops function audio_ioctl(). Memory checks and allocation
are performed in cdrom_ioctl(), and also sanitization of address format
(CDROM_LBA/CDROM_MSF) is done.

CDROMSUBCHNL Get sub-channel data in argument arg of type struct
cdrom_subchnl *.

CDROMREADTOCHDR Read Table of Contents header, in arg of type struct
cdrom_tochdr *.

14 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

CDROMREADTOCENTRY Read a Table of Contents entry in arg and specified
by arg of type struct cdrom_tocentry *.

CDROMPLAYMSF Play audio fragment specified in Minute, Second, Frame for-
mat, delimited by arg of type struct cdrom_msf *.

CDROMPLAYTRKIND Play audio fragment in track-index format delimited by
arg of type struct cdrom_ti *.

CDROMVOLCTRL Set volume specified by arg of type struct cdrom_volctrl *.
CDROMVOLREAD Read volume into by arg of type struct cdrom_volctrl *.

CDROMSTART Spin up disc.

CDROMSTOP Stop playback of audio fragment.

CDROMPAUSE Pause playback of audio fragment.

CDROMRESUME Resume playing.

1.4.3 New ioctl()’s in cdrom.c

The following ioctl()’s have been introduced to allow user programs to control the
behavior of individual CD-ROM devices. New ioctl commands can be identified by
the underscores in their names.

CDROM_SET_OPTIONS Set options specified by arg. Returns the option flag
register after modification. Use arg = rm0 for reading the current flags.

CDROM_CLEAR_OPTIONS Clear options specified by arg. Returns the option
flag register after modification.

CDROM_SELECT_SPEED Select head-rate speed of disc specified as by arg in
units of standard cdrom speed (176,kB/sec raw data or 150kB/sec file system
data). The value 0 means auto-select, i. e., play audio discs at real time and
data discs at maximum speed. The value arg is checked against the maximum
head rate of the drive found in the cdrom_dops.

CDROM_SELECT_DISC Select disc numbered arg from a juke-box.

First disc is numbered 0. The number arg is checked against the maximum
number of discs in the juke-box found in the cdrom_dops.

CDROM_MEDIA_CHANGED Returns 1 if a disc has been changed since the last
call. Note that calls to cdrom_media_changed by the VFS are treated by an
independent queue, so bothmechanismswill detect amedia change once. For
juke-boxes, an extra argument arg specifies the slot for which the information
is given. The special value CDSL_CURRENT requests that information about
the currently selected slot be returned.

CDROM_DRIVE_STATUS Returns the status of the drive by a call to
drive_status(). Return values are defined in cdrom_drive_status. Note that
this call doesn’t return information on the current playing activity of the
drive; this can be polled through an ioctl call to CDROMSUBCHNL. For juke-
boxes, an extra argument arg specifies the slot for which (possibly limited)
information is given. The special value CDSL_CURRENT requests that infor-
mation about the currently selected slot be returned.

1.4. Description of routines in cdrom.c 15

Linux Cdrom Documentation

CDROM_DISC_STATUS Returns the type of the disc currently in the drive. It
should be viewed as a complement to CDROM_DRIVE_STATUS. This ioctl can
provide some information about the current disc that is inserted in the drive.
This functionality used to be implemented in the low level drivers, but is now
carried out entirely in Uniform CD-ROM Driver.

The history of development of the CD’s use as a carrier medium for various
digital information has lead to many different disc types. This ioctl is useful
only in the case that CDs have emph {only one} type of data on them. While
this is often the case, it is also very common for CDs to have some tracks with
data, and some tracks with audio. Because this is an existing interface, rather
than fixing this interface by changing the assumptions it was made under,
thereby breaking all user applications that use this function, the Uniform CD-
ROM Driver implements this ioctl as follows: If the CD in question has audio
tracks on it, and it has absolutely no CD-I, XA, or data tracks on it, it will be
reported as CDS_AUDIO. If it has both audio and data tracks, it will return
CDS_MIXED. If there are no audio tracks on the disc, and if the CD in question
has any CD-I tracks on it, it will be reported as CDS_XA_2_2. Failing that, if
the CD in question has any XA tracks on it, it will be reported as CDS_XA_2_1.
Finally, if the CD in question has any data tracks on it, it will be reported as
a data CD (CDS_DATA_1).

This ioctl can return:

CDS_NO_INFO /* no information available */
CDS_NO_DISC /* no disc is inserted, or tray is opened */
CDS_AUDIO /* Audio disc (2352 audio bytes/frame) */
CDS_DATA_1 /* data disc, mode 1 (2048 user bytes/frame) */
CDS_XA_2_1 /* mixed data (XA), mode 2, form 1 (2048 user bytes)␣
↪→*/
CDS_XA_2_2 /* mixed data (XA), mode 2, form 1 (2324 user bytes)␣
↪→*/
CDS_MIXED /* mixed audio/data disc */

For some information concerning frame layout of the various disc types, see
a recent version of cdrom.h.

CDROM_CHANGER_NSLOTS Returns the number of slots in a juke-box.

CDROMRESET Reset the drive.

CDROM_GET_CAPABILITY Returns the capability flags for the drive. Refer to
section cdrom_capabilities for more information on these flags.

CDROM_LOCKDOOR Locks the door of the drive. arg == 0 unlocks the door,
any other value locks it.

CDROM_DEBUG Turns on debugging info. Only root is allowed to do this. Same
semantics as CDROM_LOCKDOOR.

16 Chapter 1. A Linux CD-ROM standard

Linux Cdrom Documentation

1.4.4 Device dependent ioctl()’s

Finally, all other ioctl()’s are passed to the function dev_ioctl(), if implemented.
No memory allocation or verification is carried out.

1.5 How to update your driver

• Make a backup of your current driver.

• Get hold of the files cdrom.c and cdrom.h, they should be in the directory tree
that came with this documentation.

• Make sure you include cdrom.h.

• Change the 3rd argument of register_blkdev from &<your-drive>_fops to
&cdrom_fops.

• Just after that line, add the following to register with the Uniform CD-ROM
Driver:

register_cdrom(&<your-drive>_info);*

Similarly, add a call to unregister_cdrom() at the appropriate place.

• Copy an example of the device-operations struct to your source, e. g., from
cm206.c cm206_dops, and change all entries to names corresponding to your
driver, or names you just happen to like. If your driver doesn’t support a
certain function, make the entry NULL. At the entry capability you should list
all capabilities your driver currently supports. If your driver has a capability
that is not listed, please send me a message.

• Copy the cdrom_device_info declaration from the same example driver, and
modify the entries according to your needs. If your driver dynamically deter-
mines the capabilities of the hardware, this structure should also be declared
dynamically.

• Implement all functions in your <device>_dops structure, according to pro-
totypes listed in cdrom.h, and specifications given in cdrom_api. Most likely
you have already implemented the code in a large part, and you will almost
certainly need to adapt the prototype and return values.

• Rename your <device>_ioctl() function to audio_ioctl and change the proto-
type a little. Remove entries listed in the first part in cdrom_ioctl, if your code
was OK, these are just calls to the routines you adapted in the previous step.

• You may remove all remaining memory checking code in the audio_ioctl()
function that deals with audio commands (these are listed in the second part
of cdrom_ioctl. There is no need for memory allocation either, so most case*s
in the *switch statement look similar to:

case CDROMREADTOCENTRY:
get_toc_entry\bigl((struct cdrom_tocentry *) arg);

1.5. How to update your driver 17

Linux Cdrom Documentation

• All remaining ioctl cases must be moved to a separate function,
<device>_ioctl, the device-dependent ioctl()’s. Note that memory checking
and allocation must be kept in this code!

• Change the prototypes of <device>_open() and <device>_release(), and re-
move any strategic code (i. e., tray movement, door locking, etc.).

• Try to recompile the drivers. We advise you to use modules, both for cdrom.o
and your driver, as debugging is much easier this way.

1.6 Thanks

Thanks to all the people involved. First, Erik Andersen, who has taken over the
torch in maintaining cdrom.c and integrating much CD-ROM-related code in the
2.1-kernel. Thanks to Scott Snyder and Gerd Knorr, who were the first to im-
plement this interface for SCSI and IDE-CD drivers and added many ideas for
extension of the data structures relative to kernel~2.0. Further thanks to Heiko
Eißfeldt, Thomas Quinot, Jon Tombs, Ken Pizzini, Eberhard Mönkeberg and An-
drew Kroll, the Linux CD-ROM device driver developers who were kind enough
to give suggestions and criticisms during the writing. Finally of course, I want to
thank Linus Torvalds for making this possible in the first place.

18 Chapter 1. A Linux CD-ROM standard

CHAPTER

TWO

IDE-CD DRIVER DOCUMENTATION

Originally by scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
Carrying on the torch is Erik Andersen <andersee@debian.org>
New maintainers (19 Oct 1998) Jens Axboe <axboe@image.dk>

2.1 1. Introduction

The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
CDROM drives which attach to an IDE interface. Note that some CDROM ven-
dors (including Mitsumi, Sony, Creative, Aztech, and Goldstar) have made both
ATAPI-compliant drives and drives which use a proprietary interface. If your drive
uses one of those proprietary interfaces, this driver will not work with it (but one
of the other CDROM drivers probably will). This driver will not work with ATAPI
drives which attach to the parallel port. In addition, there is at least one drive
(CyCDROM CR520ie) which attaches to the IDE port but is not ATAPI; this driver
will not work with drives like that either (but see the aztcd driver).

This driver provides the following features:

• Reading from data tracks, and mounting ISO 9660 filesystems.

• Playing audio tracks. Most of the CDROM player programs floating around
should work; I usually use Workman.

• Multisession support.

• On drives which support it, reading digital audio data directly from audio
tracks. The program cdda2wav can be used for this. Note, however, that
only some drives actually support this.

• There is now support for CDROM changers which comply with the ATAPI
2.6 draft standard (such as the NEC CDR-251). This additional functionality
includes a function call to query which slot is the currently selected slot, a
function call to query which slots contain CDs, etc. A sample program which
demonstrates this functionality is appended to the end of this file. The Sanyo
3-disc changer (which does not conform to the standard) is also now sup-
ported. Please note the driver refers to the first CD as slot # 0.

19

mailto:snyder@fnald0.fnal.gov
mailto:andersee@debian.org
mailto:axboe@image.dk

Linux Cdrom Documentation

2.2 2. Installation

0. The ide-cd relies on the ide disk driver. See Documentation/ide/ide.rst for
up-to-date information on the ide driver.

1. Make sure that the ide and ide-cd drivers are compiled into the kernel you’re
using. When configuring the kernel, in the section entitled“Floppy, IDE, and
other block devices”, say either Y (which will compile the support directly
into the kernel) or M (to compile support as a module which can be loaded
and unloaded) to the options:

ATA/ATAPI/MFM/RLL support
Include IDE/ATAPI CDROM support

Depending on what type of IDE interface you have, you may need to specify
additional configuration options. See Documentation/ide/ide.rst.

2. You should also ensure that the iso9660 filesystem is either compiled into the
kernel or available as a loadable module. You can see if a filesystem is known
to the kernel by catting /proc/filesystems.

3. The CDROM drive should be connected to the host on an IDE interface. Each
interface on a system is defined by an I/O port address and an IRQ number,
the standard assignments being 0x1f0 and 14 for the primary interface and
0x170 and 15 for the secondary interface. Each interface can control up to
two devices, where each device can be a hard drive, a CDROM drive, a floppy
drive, or a tape drive. The two devices on an interface are called master and
slave; this is usually selectable via a jumper on the drive.

Linux names these devices as follows. The master and slave devices on the
primary IDE interface are called hda and hdb, respectively. The drives on the
secondary interface are called hdc and hdd. (Interfaces at other locations get
other letters in the third position; see Documentation/ide/ide.rst.)

If you want your CDROM drive to be found automatically by the driver, you
should make sure your IDE interface uses either the primary or secondary ad-
dresses mentioned above. In addition, if the CDROM drive is the only device
on the IDE interface, it should be jumpered as master. (If for some reason you
cannot configure your system in this manner, you can probably still use the
driver. You may have to pass extra configuration information to the kernel
when you boot, however. See Documentation/ide/ide.rst for more informa-
tion.)

4. Boot the system. If the drive is recognized, you should see a message which
looks like:

hdb: NEC CD-ROM DRIVE:260, ATAPI CDROM drive

If you do not see this, see section 5 below.

5. You may want to create a symbolic link /dev/cdrom pointing to the actual
device. You can do this with the command:

ln -s /dev/hdX /dev/cdrom

20 Chapter 2. IDE-CD driver documentation

Linux Cdrom Documentation

where X should be replaced by the letter indicating where your drive is in-
stalled.

6. You should be able to see any error messages from the driver with the dmesg
command.

2.3 3. Basic usage

An ISO 9660 CDROM can be mounted by putting the disc in the drive and typing
(as root):

mount -t iso9660 /dev/cdrom /mnt/cdrom

where it is assumed that /dev/cdrom is a link pointing to the actual device (as de-
scribed in step 5 of the last section) and /mnt/cdrom is an empty directory. You
should now be able to see the contents of the CDROM under the /mnt/cdrom direc-
tory. If you want to eject the CDROM, you must first dismount it with a command
like:

umount /mnt/cdrom

Note that audio CDs cannot be mounted.

Some distributions set up /etc/fstab to always try to mount a CDROM filesystem on
bootup. It is not required to mount the CDROM in this manner, though, and it may
be a nuisance if you change CDROMs often. You should feel free to remove the
cdrom line from /etc/fstab and mount CDROMs manually if that suits you better.

Multisession and photocd discs should work with no special handling. The hpcd-
toppm package (ftp.gwdg.de:/pub/linux/hpcdtoppm/) may be useful for reading
photocds.

To play an audio CD, you should first unmount and remove any data CDROM. Any
of the CDROM player programs should then work (workman, workbone, cdplayer,
etc.).

On a few drives, you can read digital audio directly using a program such as
cdda2wav. The only types of drive which I’ve heard support this are Sony and
Toshiba drives. You will get errors if you try to use this function on a drive which
does not support it.

For supported changers, you can use the cdchange program (appended to the end
of this file) to switch between changer slots. Note that the drive should be un-
mounted before attempting this. The program takes two arguments: the CDROM
device, and the slot number to which you wish to change. If the slot number is -1,
the drive is unloaded.

2.3. 3. Basic usage 21

Linux Cdrom Documentation

2.4 4. Common problems

This section discusses some common problems encountered when trying to use the
driver, and some possible solutions. Note that if you are experiencing problems,
you should probably also review Documentation/ide/ide.rst for current information
about the underlying IDE support code. Some of these items apply only to earlier
versions of the driver, but are mentioned here for completeness.

In most cases, you should probably check with dmesg for any errors from the
driver.

a. Drive is not detected during booting.

• Review the configuration instructions above and in Documenta-
tion/ide/ide.rst, and check how your hardware is configured.

• If your drive is the only device on an IDE interface, it should be jumpered
as master, if at all possible.

• If your IDE interface is not at the standard addresses of 0x170 or 0x1f0,
you’ll need to explicitly inform the driver using a lilo option. See Doc-
umentation/ide/ide.rst. (This feature was added around kernel version
1.3.30.)

• If the autoprobing is not finding your drive, you can tell the driver to
assume that one exists by using a lilo option of the form hdX=cdrom,
where X is the drive letter corresponding to where your drive is installed.
Note that if you do this and you see a boot message like:

hdX: ATAPI cdrom (?)

this does _not_ mean that the driver has successfully detected the drive;
rather, it means that the driver has not detected a drive, but is assuming
there’s one there anyway because you told it so. If you actually try to
do I/O to a drive defined at a nonexistent or nonresponding I/O address,
you’ll probably get errors with a status value of 0xff.

• Some IDE adapters require a nonstandard initialization sequence before
they’ll function properly. (If this is the case, there will often be a separate
MS-DOS driver just for the controller.) IDE interfaces on sound cards
often fall into this category.

Support for some interfaces needing extra initialization is provided in
later 1.3.x kernels. You may need to turn on additional kernel configura-
tion options to get them to work; see Documentation/ide/ide.rst.

Even if support is not available for your interface, you may be able to get
it to work with the following procedure. First boot MS-DOS and load the
appropriate drivers. Then warm-boot linux (i.e., without powering off).
If this works, it can be automated by running loadlin from the MS-DOS
autoexec.

b. Timeout/IRQ errors.

• If you always get timeout errors, interrupts from the drive are probably not
making it to the host.

22 Chapter 2. IDE-CD driver documentation

Linux Cdrom Documentation

• IRQ problems may also be indicated by the message IRQ probe failed (<n>)
while booting. If <n> is zero, that means that the system did not see an
interrupt from the drive when it was expecting one (on any feasible IRQ). If
<n> is negative, that means the system saw interrupts on multiple IRQ lines,
when it was expecting to receive just one from the CDROM drive.

• Double-check your hardware configuration to make sure that the IRQ num-
ber of your IDE interface matches what the driver expects. (The usual as-
signments are 14 for the primary (0x1f0) interface and 15 for the secondary
(0x170) interface.) Also be sure that you don’t have some other hardware
which might be conflicting with the IRQ you’re using. Also check the BIOS
setup for your system; some have the ability to disable individual IRQ levels,
and I’ve had one report of a system which was shipped with IRQ 15 disabled
by default.

• Note that many MS-DOS CDROM drivers will still function even if there are
hardware problems with the interrupt setup; they apparently don’t use in-
terrupts.

• If you own a Pioneer DR-A24X, you _will_ get nasty error messages on boot
such as “irq timeout: status=0x50 { DriveReady SeekComplete }”The Pio-
neer DR-A24X CDROM drives are fairly popular these days. Unfortunately,
these drives seem to become very confused when we perform the standard
Linux ATA disk drive probe. If you own one of these drives, you can bypass
the ATA probing which confuses these CDROM drives, by adding append=”
hdX=noprobe hdX=cdrom”to your lilo.conf file and running lilo (again where
X is the drive letter corresponding to where your drive is installed.)

c. System hangups.

• If the system locks up when you try to access the CDROM, the most likely
cause is that you have a buggy IDE adapter which doesn’t properly handle
simultaneous transactions onmultiple interfaces. Themost notorious of these
is the CMD640B chip. This problem can be worked around by specifying the
serialize option when booting. Recent kernels should be able to detect the
need for this automatically in most cases, but the detection is not foolproof.
See Documentation/ide/ide.rst for more information about the serialize option
and the CMD640B.

• Note that many MS-DOS CDROM drivers will work with such buggy hard-
ware, apparently because they never attempt to overlap CDROM operations
with other disk activity.

d. Can’t mount a CDROM.
• If you get errors from mount, it may help to check dmesg to see if there are
any more specific errors from the driver or from the filesystem.

• Make sure there’s a CDROM loaded in the drive, and that’s it’s an ISO
9660 disc. You can’t mount an audio CD.

• With the CDROM in the drive and unmounted, try something like:

cat /dev/cdrom | od | more

If you see a dump, then the drive and driver are probably working OK, and
the problem is at the filesystem level (i.e., the CDROM is not ISO 9660 or has

2.4. 4. Common problems 23

Linux Cdrom Documentation

errors in the filesystem structure).

• If you see not a block device errors, check that the definitions of the device
special files are correct. They should be as follows:

brw-rw---- 1 root disk 3, 0 Nov 11 18:48 /dev/hda
brw-rw---- 1 root disk 3, 64 Nov 11 18:48 /dev/hdb
brw-rw---- 1 root disk 22, 0 Nov 11 18:48 /dev/hdc
brw-rw---- 1 root disk 22, 64 Nov 11 18:48 /dev/hdd

Some early Slackware releases had these defined incorrectly. If these are
wrong, you can remake them by running the script scripts/MAKEDEV.ide.
(You may have to make it executable with chmod first.)

If you have a /dev/cdrom symbolic link, check that it is pointing to the correct
device file.

If you hear people talking of the devices hd1a and hd1b, these were old names
for what are now called hdc and hdd. Those names should be considered
obsolete.

• If mount is complaining that the iso9660 filesystem is not available, but you
know it is (check /proc/filesystems), you probably need a newer version of
mount. Early versions would not always give meaningful error messages.

e. Directory listings are unpredictably truncated, and dmesg shows buffer botch
error messages from the driver.

• There was a bug in the version of the driver in 1.2.x kernels which could cause
this. It was fixed in 1.3.0. If you can’t upgrade, you can probably work around
the problem by specifying a blocksize of 2048 when mounting. (Note that you
won’t be able to directly execute binaries off the CDROM in that case.)

If you see this in kernels later than 1.3.0, please report it as a bug.

f. Data corruption.

• Random data corruption was occasionally observed with the Hitachi CDR-
7730 CDROM. If you experience data corruption, using “hdx=slow”as a
command line parameter may work around the problem, at the expense of
low system performance.

2.5 5. cdchange.c

/*
* cdchange.c [-v] <device> [<slot>]
*
* This loads a CDROM from a specified slot in a changer, and displays
* information about the changer status. The drive should be unmounted␣
↪→before
* using this program.
*
* Changer information is displayed if either the -v flag is specified
* or no slot was specified.
*

(continues on next page)

24 Chapter 2. IDE-CD driver documentation

Linux Cdrom Documentation

(continued from previous page)
* Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
* Changer status information, and rewrite for the new Uniform CDROM driver
* interface by Erik Andersen <andersee@debian.org>.
*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/cdrom.h>

int
main (int argc, char **argv)
{

char *program;
char *device;
int fd; /* file descriptor for CD-ROM device */
int status; /* return status for system calls */
int verbose = 0;
int slot=-1, x_slot;
int total_slots_available;

program = argv[0];

++argv;
--argc;

if (argc < 1 || argc > 3) {
fprintf (stderr, "usage: %s [-v] <device> [<slot>]\n",

program);
fprintf (stderr, " Slots are numbered 1 -- n.\n");
exit (1);

}

if (strcmp (argv[0], "-v") == 0) {
verbose = 1;
++argv;
--argc;

}

device = argv[0];

if (argc == 2)
slot = atoi (argv[1]) - 1;

/* open device */
fd = open(device, O_RDONLY | O_NONBLOCK);
if (fd < 0) {

fprintf (stderr, "%s: open failed for `%s`: %s\n",
program, device, strerror (errno));

exit (1);
}

(continues on next page)

2.5. 5. cdchange.c 25

Linux Cdrom Documentation

(continued from previous page)

/* Check CD player status */
total_slots_available = ioctl (fd, CDROM_CHANGER_NSLOTS);
if (total_slots_available <= 1) {

fprintf (stderr, "%s: Device `%s` is not an ATAPI "
"compliant CD changer.\n", program, device);

exit (1);
}

if (slot >= 0) {
if (slot >= total_slots_available) {

fprintf (stderr, "Bad slot number. "
"Should be 1 -- %d.\n",
total_slots_available);

exit (1);
}

/* load */
slot=ioctl (fd, CDROM_SELECT_DISC, slot);
if (slot<0) {

fflush(stdout);
perror ("CDROM_SELECT_DISC ");

exit(1);
}

}

if (slot < 0 || verbose) {

status=ioctl (fd, CDROM_SELECT_DISC, CDSL_CURRENT);
if (status<0) {

fflush(stdout);
perror (" CDROM_SELECT_DISC");
exit(1);

}
slot=status;

printf ("Current slot: %d\n", slot+1);
printf ("Total slots available: %d\n",

total_slots_available);

printf ("Drive status: ");
status = ioctl (fd, CDROM_DRIVE_STATUS, CDSL_CURRENT);
if (status<0) {

perror(" CDROM_DRIVE_STATUS");
} else switch(status) {
case CDS_DISC_OK:

printf ("Ready.\n");
break;

case CDS_TRAY_OPEN:
printf ("Tray Open.\n");
break;

case CDS_DRIVE_NOT_READY:
printf ("Drive Not Ready.\n");
break;

default:
printf ("This Should not happen!\n");

(continues on next page)

26 Chapter 2. IDE-CD driver documentation

Linux Cdrom Documentation

(continued from previous page)
break;

}

for (x_slot=0; x_slot<total_slots_available; x_slot++) {
printf ("Slot %2d: ", x_slot+1);
status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
if (status<0) {

perror(" CDROM_DRIVE_STATUS");
} else switch(status) {
case CDS_DISC_OK:

printf ("Disc present.");
break;

case CDS_NO_DISC:
printf ("Empty slot.");
break;

case CDS_TRAY_OPEN:
printf ("CD-ROM tray open.\n");
break;

case CDS_DRIVE_NOT_READY:
printf ("CD-ROM drive not ready.\n");
break;

case CDS_NO_INFO:
printf ("No Information available.");
break;

default:
printf ("This Should not happen!\n");
break;

}
if (slot == x_slot) {
status = ioctl (fd, CDROM_DISC_STATUS);
if (status<0) {

perror(" CDROM_DISC_STATUS");
}
switch (status) {

case CDS_AUDIO:
printf ("\tAudio disc.\t");
break;

case CDS_DATA_1:
case CDS_DATA_2:

printf ("\tData disc type %d.\t", status-CDS_
↪→DATA_1+1);

break;
case CDS_XA_2_1:
case CDS_XA_2_2:

printf ("\tXA data disc type %d.\t", status-
↪→CDS_XA_2_1+1);

break;
default:

printf ("\tUnknown disc type 0x%x!\t",␣
↪→status);

break;
}
}
status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
if (status<0) {

perror(" CDROM_MEDIA_CHANGED");
(continues on next page)

2.5. 5. cdchange.c 27

Linux Cdrom Documentation

(continued from previous page)
}
switch (status) {
case 1:

printf ("Changed.\n");
break;

default:
printf ("\n");
break;

}
}

}

/* close device */
status = close (fd);
if (status != 0) {

fprintf (stderr, "%s: close failed for `%s`: %s\n",
program, device, strerror (errno));

exit (1);
}

exit (0);
}

28 Chapter 2. IDE-CD driver documentation

CHAPTER

THREE

PACKET WRITING

3.1 Getting started quick

• Select packet support in the block device section and UDF support in the file
system section.

• Compile and install kernel and modules, reboot.

• You need the udftools package (pktsetup, mkudffs, cdrwtool). Download from
http://sourceforge.net/projects/linux-udf/

• Grab a new CD-RW disc and format it (assuming CD-RW is hdc, substitute as
appropriate):

cdrwtool -d /dev/hdc -q

• Setup your writer:

pktsetup dev_name /dev/hdc

• Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy:

mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime

3.2 Packet writing for DVD-RW media

DVD-RW discs can be written to much like CD-RW discs if they are in the so called
“restricted overwrite”mode. To put a disc in restricted overwrite mode, run:
dvd+rw-format /dev/hdc

You can then use the disc the same way you would use a CD-RW disc:

pktsetup dev_name /dev/hdc
mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime

29

http://sourceforge.net/projects/linux-udf/

Linux Cdrom Documentation

3.3 Packet writing for DVD+RW media

According to the DVD+RW specification, a drive supporting DVD+RW discs shall
implement“true random writes with 2KB granularity”, which means that it should
be possible to put any filesystem with a block size >= 2KB on such a disc. For
example, it should be possible to do:

dvd+rw-format /dev/hdc (only needed if the disc has never
been formatted)

mkudffs /dev/hdc
mount /dev/hdc /cdrom -t udf -o rw,noatime

However, some drives don’t follow the specification and expect the host to perform
aligned writes at 32KB boundaries. Other drives do follow the specification, but
suffer bad performance problems if the writes are not 32KB aligned.

Both problems can be solved by using the pktcdvd driver, which always generates
aligned writes:

dvd+rw-format /dev/hdc
pktsetup dev_name /dev/hdc
mkudffs /dev/pktcdvd/dev_name
mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime

3.4 Packet writing for DVD-RAM media

DVD-RAM discs are random writable, so using the pktcdvd driver is not necessary.
However, using the pktcdvd driver can improve performance in the same way it
does for DVD+RW media.

3.5 Notes

• CD-RW media can usually not be overwritten more than about 1000 times, so
to avoid unnecessary wear on the media, you should always use the noatime
mount option.

• Defect management (ie automatic remapping of bad sectors) has not been
implemented yet, so you are likely to get at least some filesystem corruption
if the disc wears out.

• Since the pktcdvd driver makes the disc appear as a regular block device with
a 2KB block size, you can put any filesystem you like on the disc. For example,
run:

/sbin/mke2fs /dev/pktcdvd/dev_name

to create an ext2 filesystem on the disc.

30 Chapter 3. Packet writing

Linux Cdrom Documentation

3.6 Using the pktcdvd sysfs interface

Since Linux 2.6.20, the pktcdvd module has a sysfs interface and can be controlled
by it. For example the“pktcdvd”tool uses this interface. (see http://tom.ist-im-web.
de/download/pktcdvd)

“pktcdvd”works similar to “pktsetup”, e.g.:
pktcdvd -a dev_name /dev/hdc
mkudffs /dev/pktcdvd/dev_name
mount -t udf -o rw,noatime /dev/pktcdvd/dev_name /dvdram
cp files /dvdram
umount /dvdram
pktcdvd -r dev_name

For a description of the sysfs interface look into the file:

Documentation/ABI/testing/sysfs-class-pktcdvd

3.7 Using the pktcdvd debugfs interface

To read pktcdvd device infos in human readable form, do:

cat /sys/kernel/debug/pktcdvd/pktcdvd[0-7]/info

For a description of the debugfs interface look into the file:

Documentation/ABI/testing/debugfs-pktcdvd

3.8 Links

See http://fy.chalmers.se/~appro/linux/DVD+RW/ formore information about DVD
writing.

3.6. Using the pktcdvd sysfs interface 31

http://tom.ist-im-web.de/download/pktcdvd
http://tom.ist-im-web.de/download/pktcdvd
http://fy.chalmers.se/~appro/linux/DVD+RW/

