
Linux Block Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

BFQ (BUDGET FAIR QUEUEING)

BFQ is a proportional-share I/O scheduler, with some extra low-latency capabili-
ties. In addition to cgroups support (blkio or io controllers), BFQ’s main features
are:

• BFQ guarantees a high system and application responsiveness, and a low
latency for time-sensitive applications, such as audio or video players;

• BFQ distributes bandwidth, and not just time, among processes or groups
(switching back to time distribution when needed to keep throughput high).

In its default configuration, BFQ privileges latency over throughput. So, when
needed for achieving a lower latency, BFQ builds schedules that may lead to a
lower throughput. If your main or only goal, for a given device, is to achieve
the maximum-possible throughput at all times, then do switch off all low-latency
heuristics for that device, by setting low_latency to 0. See Section 3 for details on
how to configure BFQ for the desired tradeoff between latency and throughput, or
on how to maximize throughput.

As every I/O scheduler, BFQ adds some overhead to per-I/O-request processing. To
give an idea of this overhead, the total, single-lock-protected, per-request process-
ing time of BFQ—i.e., the sum of the execution times of the request insertion, dis-
patch and completion hooks—is, e.g., 1.9 us on an Intel Core i7-2760QM@2.40GHz
(dated CPU for notebooks; time measured with simple code instrumentation, and
using the throughput-sync.sh script of the S suite [1], in performance-profiling
mode). To put this result into context, the total, single-lock-protected, per-request
execution time of the lightest I/O scheduler available in blk-mq, mq-deadline, is
0.7 us (mq-deadline is ~800 LOC, against ~10500 LOC for BFQ).

Scheduling overhead further limits the maximum IOPS that a CPU can process
(already limited by the execution of the rest of the I/O stack). To give an idea
of the limits with BFQ, on slow or average CPUs, here are, first, the limits of
BFQ for three different CPUs, on, respectively, an average laptop, an old desktop,
and a cheap embedded system, in case full hierarchical support is enabled (i.e.,
CONFIG_BFQ_GROUP_IOSCHED is set), but CONFIG_BFQ_CGROUP_DEBUG is
not set (Section 4-2): - Intel i7-4850HQ: 400 KIOPS - AMD A8-3850: 250 KIOPS -
ARM CortexTM-A53 Octa-core: 80 KIOPS

If CONFIG_BFQ_CGROUP_DEBUG is set (and of course full hierarchical support
is enabled), then the sustainable throughput with BFQ decreases, because all
blkio.bfq* statistics are created and updated (Section 4-2). For BFQ, this leads to
the following maximum sustainable throughputs, on the same systems as above:

1

mailto:i7-2760QM@2.40GHz

Linux Block Documentation

- Intel i7-4850HQ: 310 KIOPS - AMD A8-3850: 200 KIOPS - ARM CortexTM-A53
Octa-core: 56 KIOPS

BFQ works for multi-queue devices too.

1.1 1. When may BFQ be useful?

BFQ provides the following benefits on personal and server systems.

1.1.1 1-1 Personal systems

Low latency for interactive applications

Regardless of the actual background workload, BFQ guarantees that, for inter-
active tasks, the storage device is virtually as responsive as if it was idle. For
example, even if one or more of the following background workloads are being
executed:

• one or more large files are being read, written or copied,

• a tree of source files is being compiled,

• one or more virtual machines are performing I/O,

• a software update is in progress,

• indexing daemons are scanning filesystems and updating their databases,

starting an application or loading a file from within an application takes about the
same time as if the storage device was idle. As a comparison, with CFQ, NOOP
or DEADLINE, and in the same conditions, applications experience high latencies,
or even become unresponsive until the background workload terminates (also on
SSDs).

Low latency for soft real-time applications

Also soft real-time applications, such as audio and video players/streamers, enjoy
a low latency and a low drop rate, regardless of the background I/O workload. As
a consequence, these applications do not suffer from almost any glitch due to the
background workload.

Higher speed for code-development tasks

If some additional workload happens to be executed in parallel, then BFQ exe-
cutes the I/O-related components of typical code-development tasks (compilation,
checkout, merge, ⋯) much more quickly than CFQ, NOOP or DEADLINE.

2 Chapter 1. BFQ (Budget Fair Queueing)

Linux Block Documentation

High throughput

On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and up to
150% higher throughput than DEADLINE and NOOP, with all the sequential work-
loads considered in our tests. With random workloads, and with all the workloads
on flash-based devices, BFQ achieves, instead, about the same throughput as the
other schedulers.

Strong fairness, bandwidth and delay guarantees

BFQ distributes the device throughput, and not just the device time, among I/O-
bound applications in proportion their weights, with any workload and regardless
of the device parameters. From these bandwidth guarantees, it is possible to com-
pute tight per-I/O-request delay guarantees by a simple formula. If not configured
for strict service guarantees, BFQ switches to time-based resource sharing (only)
for applications that would otherwise cause a throughput loss.

1.1.2 1-2 Server systems

Most benefits for server systems follow from the same service properties as above.
In particular, regardless of whether additional, possibly heavy workloads are being
served, BFQ guarantees:

• audio and video-streaming with zero or very low jitter and drop rate;

• fast retrieval of WEB pages and embedded objects;

• real-time recording of data in live-dumping applications (e.g., packet log-
ging);

• responsiveness in local and remote access to a server.

1.2 2. How does BFQ work?

BFQ is a proportional-share I/O scheduler, whose general structure, plus a lot of
code, are borrowed from CFQ.

• Each process doing I/O on a device is associated with a weight and a
(bfq_)queue.

• BFQ grants exclusive access to the device, for a while, to one queue (process)
at a time, and implements this service model by associating every queue with
a budget, measured in number of sectors.

– After a queue is granted access to the device, the budget of the queue is
decremented, on each request dispatch, by the size of the request.

– The in-service queue is expired, i.e., its service is suspended, only if one
of the following events occurs: 1) the queue finishes its budget, 2) the
queue empties, 3) a “budget timeout”fires.
∗ The budget timeout prevents processes doing random I/O from hold-
ing the device for too long and dramatically reducing throughput.

1.2. 2. How does BFQ work? 3

Linux Block Documentation

∗ Actually, as in CFQ, a queue associated with a process issuing sync
requests may not be expired immediately when it empties. In con-
trast, BFQ may idle the device for a short time interval, giving the
process the chance to go on being served if it issues a new request
in time. Device idling typically boosts the throughput on rotational
devices and on non-queueing flash-based devices, if processes do syn-
chronous and sequential I/O. In addition, under BFQ, device idling is
also instrumental in guaranteeing the desired throughput fraction to
processes issuing sync requests (see the description of the slice_idle
tunable in this document, or [1, 2], for more details).

· With respect to idling for service guarantees, if several processes
are competing for the device at the same time, but all processes
and groups have the same weight, then BFQ guarantees the ex-
pected throughput distribution without ever idling the device.
Throughput is thus as high as possible in this common scenario.

∗ On flash-based storagewith internal queueing of commands (typically
NCQ), device idling happens to be always detrimental for through-
put. So, with these devices, BFQ performs idling only when strictly
needed for service guarantees, i.e., for guaranteeing low latency or
fairness. In these cases, overall throughput may be sub-optimal. No
solution currently exists to provide both strong service guarantees
and optimal throughput on devices with internal queueing.

– If low-latency mode is enabled (default configuration), BFQ executes
some special heuristics to detect interactive and soft real-time applica-
tions (e.g., video or audio players/streamers), and to reduce their latency.
The most important action taken to achieve this goal is to give to the
queues associated with these applications more than their fair share of
the device throughput. For brevity, we call just“weight-raising”the whole
sets of actions taken by BFQ to privilege these queues. In particular, BFQ
provides a milder form of weight-raising for interactive applications, and
a stronger form for soft real-time applications.

– BFQ automatically deactivates idling for queues born in a burst of queue
creations. In fact, these queues are usually associated with the processes
of applications and services that benefit mostly from a high throughput.
Examples are systemd during boot, or git grep.

– As CFQ, BFQ merges queues performing interleaved I/O, i.e., performing
random I/O that becomes mostly sequential if merged. Differently from
CFQ, BFQ achieves this goal with a more reactive mechanism, called
Early Queue Merge (EQM). EQM is so responsive in detecting inter-
leaved I/O (cooperating processes), that it enables BFQ to achieve a high
throughput, by queue merging, even for queues for which CFQ needs
a different mechanism, preemption, to get a high throughput. As such
EQM is a unified mechanism to achieve a high throughput with inter-
leaved I/O.

– Queues are scheduled according to a variant of WF2Q+, named B-
WF2Q+, and implemented using an augmented rb-tree to preserve an
O(log N) overall complexity. See [2] for more details. B-WF2Q+ is also
ready for hierarchical scheduling, details in Section 4.

4 Chapter 1. BFQ (Budget Fair Queueing)

Linux Block Documentation

– B-WF2Q+ guarantees a tight deviation with respect to an ideal, perfectly
fair, and smooth service. In particular, B-WF2Q+ guarantees that each
queue receives a fraction of the device throughput proportional to its
weight, even if the throughput fluctuates, and regardless of: the device
parameters, the current workload and the budgets assigned to the queue.

– The last, budget-independence, property (although probably counterin-
tuitive in the first place) is definitely beneficial, for the following reasons:

∗ First, with any proportional-share scheduler, the maximum deviation
with respect to an ideal service is proportional to the maximum bud-
get (slice) assigned to queues. As a consequence, BFQ can keep this
deviation tight not only because of the accurate service of B-WF2Q+,
but also because BFQ does not need to assign a larger budget to a
queue to let the queue receive a higher fraction of the device through-
put.

∗ Second, BFQ is free to choose, for every process (queue), the bud-
get that best fits the needs of the process, or best leverages the I/O
pattern of the process. In particular, BFQ updates queue budgets
with a simple feedback-loop algorithm that allows a high through-
put to be achieved, while still providing tight latency guarantees to
time-sensitive applications. When the in-service queue expires, this
algorithm computes the next budget of the queue so as to:

· Let large budgets be eventually assigned to the queues associated
with I/O-bound applications performing sequential I/O: in fact, the
longer these applications are served once got access to the device,
the higher the throughput is.

· Let small budgets be eventually assigned to the queues associ-
ated with time-sensitive applications (which typically perform spo-
radic and short I/O), because, the smaller the budget assigned to
a queue waiting for service is, the sooner B-WF2Q+will serve that
queue (Subsec 3.3 in [2]).

• If several processes are competing for the device at the same time, but all pro-
cesses and groups have the same weight, then BFQ guarantees the expected
throughput distribution without ever idling the device. It uses preemption
instead. Throughput is then much higher in this common scenario.

• ioprio classes are served in strict priority order, i.e., lower-priority queues
are not served as long as there are higher-priority queues. Among queues in
the same class, the bandwidth is distributed in proportion to the weight of
each queue. A very thin extra bandwidth is however guaranteed to the Idle
class, to prevent it from starving.

1.2. 2. How does BFQ work? 5

Linux Block Documentation

1.3 3. What are BFQ’s tunables and how to properly
configure BFQ?

Most BFQ tunables affect service guarantees (basically latency and fairness) and
throughput. For full details on how to choose the desired tradeoff between ser-
vice guarantees and throughput, see the parameters slice_idle, strict_guarantees
and low_latency. For details on how to maximise throughput, see slice_idle, time-
out_sync and max_budget. The other performance-related parameters have been
inherited from, and have been preserved mostly for compatibility with CFQ. So
far, no performance improvement has been reported after changing the latter pa-
rameters in BFQ.

In particular, the tunables back_seek-max, back_seek_penalty, fifo_expire_async
and fifo_expire_sync below are the same as in CFQ. Their description is just copied
from that for CFQ. Some considerations in the description of slice_idle are copied
from CFQ too.

1.3.1 per-process ioprio and weight

Unless the cgroups interface is used (see “4. BFQ group scheduling”), weights
can be assigned to processes only indirectly, through I/O priorities, and according
to the relation: weight = (IOPRIO_BE_NR - ioprio) * 10.

Beware that, if low-latency is set, then BFQ automatically raises the weight of
the queues associated with interactive and soft real-time applications. Unset this
tunable if you need/want to control weights.

1.3.2 slice_idle

This parameter specifies how long BFQ should idle for next I/O request, when
certain sync BFQ queues become empty. By default slice_idle is a non-zero value.
Idling has a double purpose: boosting throughput andmaking sure that the desired
throughput distribution is respected (see the description of how BFQ works, and,
if needed, the papers referred there).

As for throughput, idling can be very helpful on highly seeky media like single
spindle SATA/SAS disks where we can cut down on overall number of seeks and
see improved throughput.

Setting slice_idle to 0 will remove all the idling on queues and one should see
an overall improved throughput on faster storage devices like multiple SATA/SAS
disks in hardware RAID configuration, as well as flash-based storage with internal
command queueing (and parallelism).

So depending on storage and workload, it might be useful to set slice_idle=0.
In general for SATA/SAS disks and software RAID of SATA/SAS disks keeping
slice_idle enabled should be useful. For any configurations where there are mul-
tiple spindles behind single LUN (Host based hardware RAID controller or for
storage arrays), or with flash-based fast storage, setting slice_idle=0 might end
up in better throughput and acceptable latencies.

6 Chapter 1. BFQ (Budget Fair Queueing)

Linux Block Documentation

Idling is however necessary to have service guarantees enforced in case of differ-
entiated weights or differentiated I/O-request lengths. To see why, suppose that a
given BFQ queue A must get several I/O requests served for each request served
for another queue B. Idling ensures that, if A makes a new I/O request slightly after
becoming empty, then no request of B is dispatched in the middle, and thus A does
not lose the possibility to get more than one request dispatched before the next
request of B is dispatched. Note that idling guarantees the desired differentiated
treatment of queues only in terms of I/O-request dispatches. To guarantee that the
actual service order then corresponds to the dispatch order, the strict_guarantees
tunable must be set too.

There is an important flipside for idling: apart from the above cases where it is
beneficial also for throughput, idling can severely impact throughput. One impor-
tant case is random workload. Because of this issue, BFQ tends to avoid idling
as much as possible, when it is not beneficial also for throughput (as detailed in
Section 2). As a consequence of this behavior, and of further issues described for
the strict_guarantees tunable, short-term service guarantees may be occasionally
violated. And, in some cases, these guarantees may be more important than guar-
anteeing maximum throughput. For example, in video playing/streaming, a very
low drop rate may be more important than maximum throughput. In these cases,
consider setting the strict_guarantees parameter.

1.3.3 slice_idle_us

Controls the same tuning parameter as slice_idle, but in microseconds. Either
tunable can be used to set idling behavior. Afterwards, the other tunable will
reflect the newly set value in sysfs.

1.3.4 strict_guarantees

If this parameter is set (default: unset), then BFQ

• always performs idling when the in-service queue becomes empty;

• forces the device to serve one I/O request at a time, by dispatching a new
request only if there is no outstanding request.

In the presence of differentiated weights or I/O-request sizes, both the above con-
ditions are needed to guarantee that every BFQ queue receives its allotted share
of the bandwidth. The first condition is needed for the reasons explained in the
description of the slice_idle tunable. The second condition is needed because all
modern storage devices reorder internally-queued requests, which may trivially
break the service guarantees enforced by the I/O scheduler.

Setting strict_guarantees may evidently affect throughput.

1.3. 3. What are BFQ’s tunables and how to properly configure BFQ? 7

Linux Block Documentation

1.3.5 back_seek_max

This specifies, given in Kbytes, the maximum “distance”for backward seeking.
The distance is the amount of space from the current head location to the sectors
that are backward in terms of distance.

This parameter allows the scheduler to anticipate requests in the “backward”
direction and consider them as being the “next”if they are within this distance
from the current head location.

1.3.6 back_seek_penalty

This parameter is used to compute the cost of backward seeking. If the backward
distance of request is just 1/back_seek_penalty from a “front”request, then the
seeking cost of two requests is considered equivalent.

So scheduler will not bias toward one or the other request (otherwise scheduler
will bias toward front request). Default value of back_seek_penalty is 2.

1.3.7 fifo_expire_async

This parameter is used to set the timeout of asynchronous requests. Default value
of this is 248ms.

1.3.8 fifo_expire_sync

This parameter is used to set the timeout of synchronous requests. Default value
of this is 124ms. In case to favor synchronous requests over asynchronous one,
this value should be decreased relative to fifo_expire_async.

1.3.9 low_latency

This parameter is used to enable/disable BFQ’s low latency mode. By default, low
latency mode is enabled. If enabled, interactive and soft real-time applications
are privileged and experience a lower latency, as explained in more detail in the
description of how BFQ works.

DISABLE this mode if you need full control on bandwidth distribution. In fact, if
it is enabled, then BFQ automatically increases the bandwidth share of privileged
applications, as the main means to guarantee a lower latency to them.

In addition, as already highlighted at the beginning of this document, DISABLE
this mode if your only goal is to achieve a high throughput. In fact, privileging the
I/O of some application over the rest may entail a lower throughput. To achieve
the highest-possible throughput on a non-rotational device, setting slice_idle to 0
may be needed too (at the cost of giving up any strong guarantee on fairness and
low latency).

8 Chapter 1. BFQ (Budget Fair Queueing)

Linux Block Documentation

1.3.10 timeout_sync

Maximum amount of device time that can be given to a task (queue) once it has
been selected for service. On devices with costly seeks, increasing this time usu-
ally increases maximum throughput. On the opposite end, increasing this time
coarsens the granularity of the short-term bandwidth and latency guarantees, es-
pecially if the following parameter is set to zero.

1.3.11 max_budget

Maximum amount of service, measured in sectors, that can be provided to a BFQ
queue once it is set in service (of course within the limits of the above timeout). Ac-
cording to what said in the description of the algorithm, larger values increase the
throughput in proportion to the percentage of sequential I/O requests issued. The
price of larger values is that they coarsen the granularity of short-term bandwidth
and latency guarantees.

The default value is 0, which enables auto-tuning: BFQ sets max_budget to the
maximum number of sectors that can be served during timeout_sync, according
to the estimated peak rate.

For specific devices, some users have occasionally reported to have reached a
higher throughput by setting max_budget explicitly, i.e., by setting max_budget to
a higher value than 0. In particular, they have set max_budget to higher values
than those to which BFQ would have set it with auto-tuning. An alternative way to
achieve this goal is to just increase the value of timeout_sync, leaving max_budget
equal to 0.

1.4 4. Group scheduling with BFQ

BFQ supports both cgroups-v1 and cgroups-v2 io controllers, namely blkio and io.
In particular, BFQ supports weight-based proportional share. To activate cgroups
support, set BFQ_GROUP_IOSCHED.

1.4.1 4-1 Service guarantees provided

With BFQ, proportional share means true proportional share of the device band-
width, according to group weights. For example, a group with weight 200 gets
twice the bandwidth, and not just twice the time, of a group with weight 100.

BFQ supports hierarchies (group trees) of any depth. Bandwidth is distributed
among groups and processes in the expected way: for each group, the children of
the group share the whole bandwidth of the group in proportion to their weights.
In particular, this implies that, for each leaf group, every process of the group
receives the same share of the whole group bandwidth, unless the ioprio of the
process is modified.

The resource-sharing guarantee for a group may partially or totally switch from
bandwidth to time, if providing bandwidth guarantees to the group lowers the
throughput too much. This switch occurs on a per-process basis: if a process of

1.4. 4. Group scheduling with BFQ 9

Linux Block Documentation

a leaf group causes throughput loss if served in such a way to receive its share of
the bandwidth, then BFQ switches back to just time-based proportional share for
that process.

1.4.2 4-2 Interface

To get proportional sharing of bandwidth with BFQ for a given device, BFQ must
of course be the active scheduler for that device.

Within each group directory, the names of the files associated with BFQ-specific
cgroup parameters and stats begin with the“bfq.”prefix. So, with cgroups-v1 or
cgroups-v2, the full prefix for BFQ-specific files is“blkio.bfq.”or“io.bfq.”For exam-
ple, the group parameter to set the weight of a group with BFQ is blkio.bfq.weight
or io.bfq.weight.

As for cgroups-v1 (blkio controller), the exact set of stat files created, and kept
up-to-date by bfq, depends on whether CONFIG_BFQ_CGROUP_DEBUG is set. If
it is set, then bfq creates all the stat files documented in Documentation/admin-
guide/cgroup-v1/blkio-controller.rst. If, instead, CONFIG_BFQ_CGROUP_DEBUG
is not set, then bfq creates only the files:

blkio.bfq.io_service_bytes
blkio.bfq.io_service_bytes_recursive
blkio.bfq.io_serviced
blkio.bfq.io_serviced_recursive

The value of CONFIG_BFQ_CGROUP_DEBUG greatly influences the max-
imum throughput sustainable with bfq, because updating the blkio.bfq.*
stats is rather costly, especially for some of the stats enabled by CON-
FIG_BFQ_CGROUP_DEBUG.

1.4.3 Parameters to set

For each group, there is only the following parameter to set.

weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the group inside
its parent. Available values: 1..1000 (default 100). The linear mapping between
ioprio and weights, described at the beginning of the tunable section, is still valid,
but all weights higher than IOPRIO_BE_NR*10 are mapped to ioprio 0.

Recall that, if low-latency is set, then BFQ automatically raises the weight of the
queues associated with interactive and soft real-time applications. Unset this tun-
able if you need/want to control weights.

[1] P. Valente, A. Avanzini, “Evolution of the BFQ Storage I/O Scheduler”, Pro-
ceedings of the First Workshop on Mobile System Technologies (MST-2015),
May 2015.

http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf

[2] P. Valente and M. Andreolini, “Improving Application Responsiveness with
the BFQ Disk I/O Scheduler”, Proceedings of the 5th Annual International
Systems and Storage Conference (SYSTOR ‘12), June 2012.
Slightly extended version:

10 Chapter 1. BFQ (Budget Fair Queueing)

http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf

Linux Block Documentation

http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.pdf

[3] https://github.com/Algodev-github/S

1.4. 4. Group scheduling with BFQ 11

http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.pdf
https://github.com/Algodev-github/S

Linux Block Documentation

12 Chapter 1. BFQ (Budget Fair Queueing)

CHAPTER

TWO

NOTES ON THE GENERIC BLOCK LAYER REWRITE IN
LINUX 2.5

Note: It seems that there are lot of outdated stuff here. This seems to be written
somewhat as a task list. Yet, eventually, something here might still be useful.

Notes Written on Jan 15, 2002:

• Jens Axboe <jens.axboe@oracle.com>

• Suparna Bhattacharya <suparna@in.ibm.com>

Last Updated May 2, 2002

September 2003: Updated I/O Scheduler portions
• Nick Piggin <npiggin@kernel.dk>

2.1 Introduction

These are some notes describing some aspects of the 2.5 block layer in the context
of the bio rewrite. The idea is to bring out some of the key changes and a glimpse
of the rationale behind those changes.

Please mail corrections & suggestions to suparna@in.ibm.com.

2.2 Credits

2.5 bio rewrite:
• Jens Axboe <jens.axboe@oracle.com>

Many aspects of the generic block layer redesign were driven by and evolved over
discussions, prior patches and the collective experience of several people. See
sections 8 and 9 for a list of some related references.

The following people helped with review comments and inputs for this document:

• Christoph Hellwig <hch@infradead.org>

• Arjan van de Ven <arjanv@redhat.com>

• Randy Dunlap <rdunlap@xenotime.net>

13

mailto:jens.axboe@oracle.com
mailto:suparna@in.ibm.com
mailto:npiggin@kernel.dk
mailto:suparna@in.ibm.com
mailto:jens.axboe@oracle.com
mailto:hch@infradead.org
mailto:arjanv@redhat.com
mailto:rdunlap@xenotime.net

Linux Block Documentation

• Andre Hedrick <andre@linux-ide.org>

The following people helped with fixes/contributions to the bio patches while it
was still work-in-progress:

• David S. Miller <davem@redhat.com>

2.3 Bio Notes

Let us discuss the changes in the context of how some overall goals for the block
layer are addressed.

2.4 1. Scope for tuning the generic logic to satisfy vari-
ous requirements

The block layer design supports adaptable abstractions to handle common pro-
cessing with the ability to tune the logic to an appropriate extent depending on
the nature of the device and the requirements of the caller. One of the objec-
tives of the rewrite was to increase the degree of tunability and to enable higher
level code to utilize underlying device/driver capabilities to the maximum extent
for better i/o performance. This is important especially in the light of ever improv-
ing hardware capabilities and application/middleware software designed to take
advantage of these capabilities.

2.4.1 1.1 Tuning based on low level device / driver capabilities

Sophisticated devices with large built-in caches, intelligent i/o scheduling opti-
mizations, highmemory DMA support, etc may find some of the generic processing
an overhead, while for less capable devices the generic functionality is essential
for performance or correctness reasons. Knowledge of some of the capabilities
or parameters of the device should be used at the generic block layer to take the
right decisions on behalf of the driver.

How is this achieved ?

Tuning at a per-queue level:

i. Per-queue limits/values exported to the generic layer by the driver

Various parameters that the generic i/o scheduler logic uses are set at a per-queue
level (e.gmaximum request size, maximumnumber of segments in a scatter-gather
list, logical block size)

Some parameters that were earlier available as global arrays indexed by ma-
jor/minor are now directly associated with the queue. Some of these may move
into the block device structure in the future. Some characteristics have been in-
corporated into a queue flags field rather than separate fields in themselves. There
are blk_queue_xxx functions to set the parameters, rather than update the fields
directly

Some new queue property settings:

14 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

mailto:andre@linux-ide.org
mailto:davem@redhat.com

Linux Block Documentation

blk_queue_bounce_limit(q, u64 dma_address) Enable I/O to high-
mem pages, dma_address being the limit. No highmem default.

blk_queue_max_sectors(q, max_sectors) Sets two variables that
limit the size of the request.

• The request queue’s max_sectors, which is a soft size in units
of 512 byte sectors, and could be dynamically varied by the core
kernel.

• The request queue’s max_hw_sectors, which is a hard limit and
reflects the maximum size request a driver can handle in units
of 512 byte sectors.

The default for both max_sectors and max_hw_sectors is 255. The
upper limit of max_sectors is 1024.

blk_queue_max_phys_segments(q, max_segments) Maximumphys-
ical segments you can handle in a request. 128 default (driver limit).
(See 3.2.2)

blk_queue_max_hw_segments(q, max_segments) Maximum dma
segments the hardware can handle in a request. 128 default (host
adapter limit, after dma remapping). (See 3.2.2)

blk_queue_max_segment_size(q, max_seg_size) Maximum size of a
clustered segment, 64kB default.

blk_queue_logical_block_size(q, logical_block_size) Lowest possi-
ble sector size that the hardware can operate on, 512 bytes default.

New queue flags:

• QUEUE_FLAG_CLUSTER (see 3.2.2)

• QUEUE_FLAG_QUEUED (see 3.2.4)

ii. High-mem i/o capabilities are now considered the default

The generic bounce buffer logic, present in 2.4, where the block layer would by
default copyin/out i/o requests on high-memory buffers to low-memory buffers as-
suming that the driver wouldn’t be able to handle it directly, has been changed in
2.5. The bounce logic is now applied only for memory ranges for which the device
cannot handle i/o. A driver can specify this by setting the queue bounce limit for
the request queue for the device (blk_queue_bounce_limit()). This avoids the in-
efficiencies of the copyin/out where a device is capable of handling high memory
i/o.

In order to enable high-memory i/o where the device is capable of supporting it, the
pci dma mapping routines and associated data structures have now been modified
to accomplish a direct page -> bus translation, without requiring a virtual address
mapping (unlike the earlier scheme of virtual address -> bus translation). So this
works uniformly for high-memory pages (which do not have a corresponding kernel
virtual address space mapping) and low-memory pages.

Note: Please refer to Documentation/DMA-API-HOWTO.txt for a discussion on PCI
high mem DMA aspects and mapping of scatter gather lists, and support for 64 bit
PCI.

2.4. 1. Scope for tuning the generic logic to satisfy various requirements15

Linux Block Documentation

Special handling is required only for cases where i/o needs to happen on pages at
physical memory addresses beyond what the device can support. In these cases,
a bounce bio representing a buffer from the supported memory range is used for
performing the i/o with copyin/copyout as needed depending on the type of the
operation. For example, in case of a read operation, the data read has to be copied
to the original buffer on i/o completion, so a callback routine is set up to do this,
while for write, the data is copied from the original buffer to the bounce buffer
prior to issuing the operation. Since an original buffer may be in a high memory
area that’s not mapped in kernel virtual addr, a kmap operation may be required
for performing the copy, and special care may be needed in the completion path
as it may not be in irq context. Special care is also required (by way of GFP flags)
when allocating bounce buffers, to avoid certain highmem deadlock possibilities.

It is also possible that a bounce buffer may be allocated from high-memory area
that’s not mapped in kernel virtual addr, but within the range that the device can
use directly; so the bounce page may need to be kmapped during copy operations.
[Note: This does not hold in the current implementation, though]

There are some situations when pages from highmemorymay need to be kmapped,
even if bounce buffers are not necessary. For example a device may need to abort
DMA operations and revert to PIO for the transfer, in which case a virtual map-
ping of the page is required. For SCSI it is also done in some scenarios where
the low level driver cannot be trusted to handle a single sg entry correctly. The
driver is expected to perform the kmaps as needed on such occasions as appropri-
ate. A driver could also use the blk_queue_bounce() routine on its own to bounce
highmem i/o to low memory for specific requests if so desired.

iii. The i/o scheduler algorithm itself can be replaced/set as appropriate

As in 2.4, it is possible to plugin a brand new i/o scheduler for a particular queue
or pick from (copy) existing generic schedulers and replace/override certain por-
tions of it. The 2.5 rewrite provides improved modularization of the i/o scheduler.
There are more pluggable callbacks, e.g for init, add request, extract request,
which makes it possible to abstract specific i/o scheduling algorithm aspects and
details outside of the generic loop. It also makes it possible to completely hide the
implementation details of the i/o scheduler from block drivers.

I/O scheduler wrappers are to be used instead of accessing the queue directly. See
section 4. The I/O scheduler for details.

2.4.2 1.2 Tuning Based on High level code capabilities

i. Application capabilities for raw i/o

This comes from some of the high-performance database/middleware require-
ments where an application prefers to make its own i/o scheduling decisions based
on an understanding of the access patterns and i/o characteristics

ii. High performance filesystems or other higher level kernel code’s capabilities
Kernel components like filesystems could also take their own i/o scheduling deci-
sions for optimizing performance. Journalling filesystems may need some control
over i/o ordering.

What kind of support exists at the generic block layer for this ?

16 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

The flags and rw fields in the bio structure can be used for some tuning from above
e.g indicating that an i/o is just a readahead request, or priority settings (currently
unused). As far as user applications are concerned they would need an additional
mechanism either via open flags or ioctls, or some other upper level mechanism
to communicate such settings to block.

1.2.1 Request Priority/Latency

Todo/Under discussion:

Arjan's proposed request priority scheme allows higher levels some broad
control (high/med/low) over the priority of an i/o request vs other␣
↪→pending
requests in the queue. For example it allows reads for bringing in an
executable page on demand to be given a higher priority over pending write
requests which haven't aged too much on the queue. Potentially this␣
↪→priority
could even be exposed to applications in some manner, providing higher␣
↪→level
tunability. Time based aging avoids starvation of lower priority
requests. Some bits in the bi_opf flags field in the bio structure are
intended to be used for this priority information.

2.4.3 1.3 Direct Access to Low level Device/Driver Capabilities (By-
pass mode)

(e.g Diagnostics, Systems Management)

There are situations where high-level code needs to have direct access to the low
level device capabilities or requires the ability to issue commands to the device
bypassing some of the intermediate i/o layers. These could, for example, be spe-
cial control commands issued through ioctl interfaces, or could be raw read/write
commands that stress the drive’s capabilities for certain kinds of fitness tests.
Having direct interfaces at multiple levels without having to pass through upper
layers makes it possible to perform bottom up validation of the i/o path, layer by
layer, starting from the media.

The normal i/o submission interfaces, e.g submit_bio, could be bypassed for spe-
cially crafted requests which such ioctl or diagnostics interfaces would typically
use, and the elevator add_request routine can instead be used to directly insert
such requests in the queue or preferably the blk_do_rq routine can be used to
place the request on the queue and wait for completion. Alternatively, sometimes
the caller might just invoke a lower level driver specific interface with the request
as a parameter.

If the request is a means for passing on special information associated with the
command, then such information is associated with the request->special field
(rather than misuse the request->buffer field which is meant for the request data
buffer’s virtual mapping).
For passing request data, the caller must build up a bio descriptor representing
the concerned memory buffer if the underlying driver interprets bio segments
or uses the block layer end*request* functions for i/o completion. Alternatively

2.4. 1. Scope for tuning the generic logic to satisfy various requirements17

Linux Block Documentation

one could directly use the request->buffer field to specify the virtual address of
the buffer, if the driver expects buffer addresses passed in this way and ignores
bio entries for the request type involved. In the latter case, the driver would
modify and manage the request->buffer, request->sector and request->nr_sectors
or request->current_nr_sectors fields itself rather than using the block layer
end_request or end_that_request_first completion interfaces. (See 2.3 or Docu-
mentation/block/request.rst for a brief explanation of the request structure fields)

[TBD: end_that_request_last should be usable even in this case;
Perhaps an end_that_direct_request_first routine could be implemented to␣
↪→make
handling direct requests easier for such drivers; Also for drivers that
expect bios, a helper function could be provided for setting up a bio
corresponding to a data buffer]

<JENS: I dont understand the above, why is end_that_request_first() not
usable? Or _last for that matter. I must be missing something>

<SUP: What I meant here was that if the request doesn't have a bio, then
end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
and hence can't be used for advancing request state settings on the
completion of partial transfers. The driver has to modify these fields
directly by hand.
This is because end_that_request_first only iterates over the bio list,
and always returns 0 if there are none associated with the request.
_last works OK in this case, and is not a problem, as I mentioned earlier

>

1.3.1 Pre-built Commands

A request can be created with a pre-built custom command to be sent directly
to the device. The cmd block in the request structure has room for filling in the
command bytes. (i.e rq->cmd is now 16 bytes in size, and meant for command pre-
building, and the type of the request is now indicated through rq->flags instead of
via rq->cmd)

The request structure flags can be set up to indicate the type of request in such
cases (REQ_PC: direct packet command passed to driver, REQ_BLOCK_PC: packet
command issued via blk_do_rq, REQ_SPECIAL: special request).

It can help to pre-build device commands for requests in advance. Drivers can now
specify a request prepare function (q->prep_rq_fn) that the block layer would in-
voke to pre-build device commands for a given request, or perform other prepara-
tory processing for the request. This is routine is called by elv_next_request(), i.e.
typically just before servicing a request. (The prepare function would not be called
for requests that have RQF_DONTPREP enabled)

Aside: Pre-building could possibly even be done early, i.e before placing the re-
quest on the queue, rather than construct the command on the fly in the
driver while servicing the request queue when it may affect latencies in in-
terrupt context or responsiveness in general. One way to add early pre-
building would be to do it whenever we fail to merge on a request. Now
REQ_NOMERGE is set in the request flags to skip this one in the future,
which means that it will not change before we feed it to the device. So the

18 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

pre-builder hook can be invoked there.

2.5 2. Flexible and generic but minimalist i/o struc-
ture/descriptor

2.5.1 2.1 Reason for a new structure and requirements addressed

Prior to 2.5, buffer heads were used as the unit of i/o at the generic block layer,
and the low level request structure was associated with a chain of buffer heads for
a contiguous i/o request. This led to certain inefficiencies when it came to large i/o
requests and readv/writev style operations, as it forced such requests to be broken
up into small chunks before being passed on to the generic block layer, only to be
merged by the i/o scheduler when the underlying device was capable of handling
the i/o in one shot. Also, using the buffer head as an i/o structure for i/os that
didn’t originate from the buffer cache unnecessarily added to the weight of the
descriptors which were generated for each such chunk.

The following were some of the goals and expectations considered in the redesign
of the block i/o data structure in 2.5.

1. Should be appropriate as a descriptor for both raw and buffered i/o - avoid
cache related fields which are irrelevant in the direct/page i/o path, or filesys-
tem block size alignment restrictions which may not be relevant for raw i/o.

2. Ability to represent high-memory buffers (which do not have a virtual address
mapping in kernel address space).

3. Ability to represent large i/os w/o unnecessarily breaking them up (i.e greater
than PAGE_SIZE chunks in one shot)

4. At the same time, ability to retain independent identity of i/os from different
sources or i/o units requiring individual completion (e.g. for latency reasons)

5. Ability to represent an i/o involving multiple physical memory segments (in-
cluding non-page aligned page fragments, as specified via readv/writev) with-
out unnecessarily breaking it up, if the underlying device is capable of han-
dling it.

6. Preferably should be based on a memory descriptor structure that can be
passed around different types of subsystems or layers, maybe even network-
ing, without duplication or extra copies of data/descriptor fields themselves
in the process

7. Ability to handle the possibility of splits/merges as the structure passes
through layered drivers (lvm, md, evms), with minimal overhead.

The solution was to define a new structure (bio) for the block layer, instead of
using the buffer head structure (bh) directly, the idea being avoidance of some
associated baggage and limitations. The bio structure is uniformly used for all i/o
at the block layer ; it forms a part of the bh structure for buffered i/o, and in the
case of raw/direct i/o kiobufs are mapped to bio structures.

2.5. 2. Flexible and generic but minimalist i/o structure/descriptor 19

Linux Block Documentation

2.5.2 2.2 The bio struct

The bio structure uses a vector representation pointing to an array of tuples of
<page, offset, len> to describe the i/o buffer, and has various other fields describ-
ing i/o parameters and state that needs to be maintained for performing the i/o.

Notice that this representation means that a bio has no virtual address mapping
at all (unlike buffer heads).

struct bio_vec {
struct page *bv_page;
unsigned short bv_len;
unsigned short bv_offset;

};

/*
* main unit of I/O for the block layer and lower layers (ie drivers)
*/

struct bio {
struct bio *bi_next; /* request queue link */
struct block_device *bi_bdev; /* target device */
unsigned long bi_flags; /* status, command, etc */
unsigned long bi_opf; /* low bits: r/w, high: priority */

unsigned int bi_vcnt; /* how may bio_vec's */
struct bvec_iter bi_iter; /* current index into bio_vec array␣

↪→*/

unsigned int bi_size; /* total size in bytes */
unsigned short bi_hw_segments; /* segments after DMA remapping */
unsigned int bi_max; /* max bio_vecs we can hold

used as index into pool */
struct bio_vec *bi_io_vec; /* the actual vec list */
bio_end_io_t *bi_end_io; /* bi_end_io (bio) */
atomic_t bi_cnt; /* pin count: free when it hits zero */
void *bi_private;

};

With this multipage bio design:

• Large i/os can be sent down in one go using a bio_vec list consisting of an
array of <page, offset, len> fragments (similar to the way fragments are rep-
resented in the zero-copy network code)

• Splitting of an i/o request acrossmultiple devices (as in the case of lvm or raid)
is achieved by cloning the bio (where the clone points to the same bi_io_vec
array, but with the index and size accordingly modified)

• A linked list of bios is used as before for unrelated merges1 - this avoids real-
locs and makes independent completions easier to handle.

• Code that traverses the req list can find all the segments of a bio by using
rq_for_each_segment. This handles the fact that a request has multiple bios,
each of which can have multiple segments.

1 unrelated merges – a request ends up containing two or more bios that didn’t originate from
the same place.

20 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

• Drivers which can’t process a large bio in one shot can use the bi_iter field to
keep track of the next bio_vec entry to process. (e.g a 1MB bio_vec needs to
be handled in max 128kB chunks for IDE) [TBD: Should preferably also have
a bi_voffset and bi_vlen to avoid modifying bi_offset an len fields]

bi_end_io() i/o callback gets called on i/o completion of the entire bio.

At a lower level, drivers build a scatter gather list from the merged bios. The
scatter gather list is in the form of an array of <page, offset, len> entries with
their corresponding dma address mappings filled in at the appropriate time. As
an optimization, contiguous physical pages can be covered by a single entry
where <page> refers to the first page and <len> covers the range of pages (up
to 16 contiguous pages could be covered this way). There is a helper routine
(blk_rq_map_sg) which drivers can use to build the sg list.

Note: Right now the only user of bios withmore than one page is ll_rw_kio, which in
turn means that only raw I/O uses it (direct i/o may not work right now). The intent
however is to enable clustering of pages etc to become possible. The pagebuf
abstraction layer from SGI also uses multi-page bios, but that is currently not
included in the stock development kernels. The same is true of Andrew Morton’s
work-in-progress multipage bio writeout and readahead patches.

2.5.3 2.3 Changes in the Request Structure

The request structure is the structure that gets passed down to low level drivers.
The block layer make_request function builds up a request structure, places it on
the queue and invokes the drivers request_fn. The driver makes use of block layer
helper routine elv_next_request to pull the next request off the queue. Control
or diagnostic functions might bypass block and directly invoke underlying driver
entry points passing in a specially constructed request structure.

Only some relevant fields (mainly those which changed or may be referred to
in some of the discussion here) are listed below, not necessarily in the order in
which they occur in the structure (see include/linux/blkdev.h) Refer to Documenta-
tion/block/request.rst for details about all the request structure fields and a quick
reference about the layers which are supposed to use or modify those fields:

struct request {
struct list_head queuelist; /* Not meant to be directly accessed by

the driver.
Used by q->elv_next_request_fn
rq->queue is gone
*/

.

.
unsigned char cmd[16]; /* prebuilt command data block */
unsigned long flags; /* also includes earlier rq->cmd settings */
.
.
sector_t sector; /* this field is now of type sector_t instead of int

preparation for 64 bit sectors */
.
.

(continues on next page)

2.5. 2. Flexible and generic but minimalist i/o structure/descriptor 21

Linux Block Documentation

(continued from previous page)
/* Number of scatter-gather DMA addr+len pairs after
* physical address coalescing is performed.
*/

unsigned short nr_phys_segments;

/* Number of scatter-gather addr+len pairs after
* physical and DMA remapping hardware coalescing is performed.
* This is the number of scatter-gather entries the driver
* will actually have to deal with after DMA mapping is done.
*/

unsigned short nr_hw_segments;

/* Various sector counts */
unsigned long nr_sectors; /* no. of sectors left: driver modifiable␣

↪→*/
unsigned long hard_nr_sectors; /* block internal copy of above */
unsigned int current_nr_sectors; /* no. of sectors left in the

current segment:driver modifiable␣
↪→*/

unsigned long hard_cur_sectors; /* block internal copy of the above␣
↪→*/

.

.
int tag; /* command tag associated with request */
void *special; /* same as before */
char *buffer; /* valid only for low memory buffers up to

current_nr_sectors */
.
.
struct bio *bio, *biotail; /* bio list instead of bh */
struct request_list *rl;

}

See the req_ops and req_flag_bits definitions for an explanation of the various flags
available. Some bits are used by the block layer or i/o scheduler.

The behaviour of the various sector counts are almost the same as before, except
that since we have multi-segment bios, current_nr_sectors refers to the numbers
of sectors in the current segment being processed which could be one of the many
segments in the current bio (i.e i/o completion unit). The nr_sectors value refers to
the total number of sectors in the whole request that remain to be transferred (no
change). The purpose of the hard_xxx values is for block to remember these counts
every time it hands over the request to the driver. These values are updated by
block on end_that_request_first, i.e. every time the driver completes a part of the
transfer and invokes block end*request helpers to mark this. The driver should not
modify these values. The block layer sets up the nr_sectors and current_nr_sectors
fields (based on the corresponding hard_xxx values and the number of bytes trans-
ferred) and updates it on every transfer that invokes end_that_request_first. It
does the same for the buffer, bio, bio->bi_iter fields too.

The buffer field is just a virtual address mapping of the current segment of the i/o
buffer in cases where the buffer resides in low-memory. For high memory i/o, this
field is not valid and must not be used by drivers.

Code that sets up its own request structures and passes them down to a driver

22 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

needs to be careful about interoperation with the block layer helper functions
which the driver uses. (Section 1.3)

2.6 3. Using bios

2.6.1 3.1 Setup/Teardown

There are routines for managing the allocation, and reference counting, and free-
ing of bios (bio_alloc, bio_get, bio_put).

This makes use of Ingo Molnar’s mempool implementation, which enables subsys-
tems like bio to maintain their own reservememory pools for guaranteed deadlock-
free allocations during extreme VM load. For example, the VM subsystem makes
use of the block layer to writeout dirty pages in order to be able to free up mem-
ory space, a case which needs careful handling. The allocation logic draws from
the preallocated emergency reserve in situations where it cannot allocate through
normal means. If the pool is empty and it can wait, then it would trigger action
that would help free up memory or replenish the pool (without deadlocking) and
wait for availability in the pool. If it is in IRQ context, and hence not in a position
to do this, allocation could fail if the pool is empty. In general mempool always
first tries to perform allocation without having to wait, even if it means digging
into the pool as long it is not less that 50% full.

On a free, memory is released to the pool or directly freed depending on the current
availability in the pool. The mempool interface lets the subsystem specify the
routines to be used for normal alloc and free. In the case of bio, these routines
make use of the standard slab allocator.

The caller of bio_alloc is expected to taken certain steps to avoid deadlocks, e.g.
avoid trying to allocate more memory from the pool while already holding memory
obtained from the pool.

[TBD: This is a potential issue, though a rare possibility
in the bounce bio allocation that happens in the current code, since
it ends up allocating a second bio from the same pool while
holding the original bio]

Memory allocated from the pool should be released back within a limited amount
of time (in the case of bio, that would be after the i/o is completed). This ensures
that if part of the pool has been used up, some work (in this case i/o) must already
be in progress and memory would be available when it is over. If allocating from
multiple pools in the same code path, the order or hierarchy of allocation needs to
be consistent, just the way one deals with multiple locks.

The bio_alloc routine also needs to allocate the bio_vec_list (bvec_alloc()) for
a non-clone bio. There are the 6 pools setup for different size biovecs, so
bio_alloc(gfp_mask, nr_iovecs) will allocate a vec_list of the given size from these
slabs.

The bio_get() routine may be used to hold an extra reference on a bio prior to i/o
submission, if the bio fields are likely to be accessed after the i/o is issued (since
the bio may otherwise get freed in case i/o completion happens in the meantime).

2.6. 3. Using bios 23

Linux Block Documentation

The bio_clone_fast() routine may be used to duplicate a bio, where the clone shares
the bio_vec_list with the original bio (i.e. both point to the same bio_vec_list). This
would typically be used for splitting i/o requests in lvm or md.

2.6.2 3.2 Generic bio helper Routines

3.2.1 Traversing segments and completion units in a request

The macro rq_for_each_segment() should be used for traversing the bios in the
request list (drivers should avoid directly trying to do it themselves). Using these
helpers should also make it easier to cope with block changes in the future.

struct req_iterator iter;
rq_for_each_segment(bio_vec, rq, iter)

/* bio_vec is now current segment */

I/O completion callbacks are per-bio rather than per-segment, so drivers that tra-
verse bio chains on completion need to keep that in mind. Drivers which don’t
make a distinction between segments and completion units would need to be re-
organized to support multi-segment bios.

3.2.2 Setting up DMA scatterlists

The blk_rq_map_sg() helper routine would be used for setting up scatter gather
lists from a request, so a driver need not do it on its own.

nr_segments = blk_rq_map_sg(q, rq, scatterlist);

The helper routine provides a level of abstraction which makes it easier to modify
the internals of request to scatterlist conversion down the line without breaking
drivers. The blk_rq_map_sg routine takes care of several things like collapsing
physically contiguous segments (if QUEUE_FLAG_CLUSTER is set) and correct
segment accounting to avoid exceeding the limits which the i/o hardware can han-
dle, based on various queue properties.

• Prevents a clustered segment from crossing a 4GB mem boundary

• Avoids building segments that would exceed the number of physical memory
segments that the driver can handle (phys_segments) and the number that
the underlying hardware can handle at once, accounting for DMA remapping
(hw_segments) (i.e. IOMMU aware limits).

Routines which the low level driver can use to set up the segment limits:

blk_queue_max_hw_segments() : Sets an upper limit of the maximum number of
hw data segments in a request (i.e. the maximum number of address/length pairs
the host adapter can actually hand to the device at once)

blk_queue_max_phys_segments() : Sets an upper limit on the maximum number
of physical data segments in a request (i.e. the largest sized scatter list a driver
could handle)

24 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

3.2.3 I/O completion

The existing generic block layer helper routines end_request,
end_that_request_first and end_that_request_last can be used for i/o completion
(and setting things up so the rest of the i/o or the next request can be kicked of)
as before. With the introduction of multi-page bio support, end_that_request_first
requires an additional argument indicating the number of sectors completed.

3.2.4 Implications for drivers that do not interpret bios

(don’t handle multiple segments)
Drivers that do not interpret bios e.g those which do not handle multiple seg-
ments and do not support i/o into high memory addresses (require bounce buffers)
and expect only virtually mapped buffers, can access the rq->buffer field. As be-
fore the driver should use current_nr_sectors to determine the size of remain-
ing data in the current segment (that is the maximum it can transfer in one
go unless it interprets segments), and rely on the block layer end_request, or
end_that_request_first/last to take care of all accounting and transparent map-
ping of the next bio segment when a segment boundary is crossed on completion
of a transfer. (The end*request* functions should be used if only if the request has
come down from block/bio path, not for direct access requests which only specify
rq->buffer without a valid rq->bio)

2.6.3 3.3 I/O Submission

The routine submit_bio() is used to submit a single io. Higher level i/o routines
make use of this:

(a) Buffered i/o:

The routine submit_bh() invokes submit_bio() on a bio corresponding to the bh,
allocating the bio if required. ll_rw_block() uses submit_bh() as before.

(b) Kiobuf i/o (for raw/direct i/o):

The ll_rw_kio() routine breaks up the kiobuf into page sized chunks and maps the
array to one or more multi-page bios, issuing submit_bio() to perform the i/o on
each of these.

The embedded bh array in the kiobuf structure has been removed and no preallo-
cation of bios is done for kiobufs. [The intent is to remove the blocks array as well,
but it’s currently in there to kludge around direct i/o.] Thus kiobuf allocation has
switched back to using kmalloc rather than vmalloc.

Todo/Observation:

A single kiobuf structure is assumed to correspond to a contiguous range
of data, so brw_kiovec() invokes ll_rw_kio for each kiobuf in a kiovec. So
right now it wouldn’t work for direct i/o on non-contiguous blocks. This
is to be resolved. The eventual direction is to replace kiobuf by kvec’s.
Badari Pulavarty has a patch to implement direct i/o correctly using bio
and kvec.

2.6. 3. Using bios 25

Linux Block Documentation

(c) Page i/o:

Todo/Under discussion:

Andrew Morton’s multi-page bio patches attempt to issue multi-page
writeouts (and reads) from the page cache, by directly building up large
bios for submission completely bypassing the usage of buffer heads. This
work is still in progress.

Christoph Hellwig had some code that uses bios for page-io (rather than
bh). This isn’t included in bio as yet. Christoph was also working on a
design for representing virtual/real extents as an entity and modifying
some of the address space ops interfaces to utilize this abstraction rather
than buffer_heads. (This is somewhat along the lines of the SGI XFS
pagebuf abstraction, but intended to be as lightweight as possible).

(d) Direct access i/o:

Direct access requests that do not contain bios would be submitted differently as
discussed earlier in section 1.3.

Aside:

Kvec i/o:

Ben LaHaise’s aio code uses a slightly different structure instead of
kiobufs, called a kvec_cb. This contains an array of <page, offset, len>
tuples (very much like the networking code), together with a callback
function and data pointer. This is embedded into a brw_cb structure
when passed to brw_kvec_async().

Now it should be possible to directly map these kvecs to a bio. Just as
while cloning, in this case rather than PRE_BUILT bio_vecs, we set the
bi_io_vec array pointer to point to the veclet array in kvecs.

TBD: In order for this to work, some changes are needed in thewaymulti-
page bios are handled today. The values of the tuples in such a vector
passed in from higher level code should not be modified by the block
layer in the course of its request processing, since that would make it
hard for the higher layer to continue to use the vector descriptor (kvec)
after i/o completes. Instead, all such transient state should either be
maintained in the request structure, and passed on in some way to the
endio completion routine.

2.7 4. The I/O scheduler

I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
queue and specific I/O schedulers. Unless stated otherwise, elevator is used to
refer to both parts and I/O scheduler to specific I/O schedulers.

Block layer implements generic dispatch queue in block/*.c. The generic dispatch
queue is responsible for requeueing, handling non-fs requests and all other sub-
tleties.

Specific I/O schedulers are responsible for ordering normal filesystem requests.
They can also choose to delay certain requests to improve throughput or whatever

26 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

purpose. As the plural form indicates, there are multiple I/O schedulers. They can
be built as modules but at least one should be built inside the kernel. Each queue
can choose different one and can also change to another one dynamically.

A block layer call to the i/o scheduler follows the convention elv_xxx(). This calls
elevator_xxx_fn in the elevator switch (block/elevator.c). Oh, xxx and xxx might
not match exactly, but use your imagination. If an elevator doesn’t implement a
function, the switch does nothing or some minimal house keeping work.

2.7.1 4.1. I/O scheduler API

The functions an elevator may implement are: (* are mandatory)

2.7. 4. The I/O scheduler 27

Linux Block Documentation

ele-
va-
tor_merge_fn

called to query requests for merge with a bio

ele-
va-
tor_merge_req_fn

called when two requests get merged. the one which gets merged into
the other one will be never seen by I/O scheduler again. IOW, after being
merged, the request is gone.

ele-
va-
tor_merged_fn

called when a request in the scheduler has been involved in a merge. It
is used in the deadline scheduler for example, to reposition the request
if its sorting order has changed.

ele-
va-
tor_allow_merge_fn

called whenever the block layer determines that a bio can be merged into
an existing request safely. The io scheduler may still want to stop a merge
at this point if it results in some sort of conflict internally, this hook allows
it to do that. Note however that two requests can still be merged at later
time. Currently the io scheduler has no way to prevent that. It can only
learn about the fact from elevator_merge_req_fn callback.

ele-
va-
tor_dispatch_fn*

fills the dispatch queue with ready requests. I/O schedulers are free to
postpone requests by not filling the dispatch queue unless @force is non-
zero. Once dispatched, I/O schedulers are not allowed to manipulate the
requests - they belong to generic dispatch queue.

ele-
va-
tor_add_req_fn*

called to add a new request into the scheduler

ele-
va-
tor_former_req_fn
ele-
va-
tor_latter_req_fn

These return the request before or after the one specified in disk sort
order. Used by the block layer to find merge possibilities.

ele-
va-
tor_completed_req_fn

called when a request is completed.

ele-
va-
tor_set_req_fn
ele-
va-
tor_put_req_fn

Must be used to allocate and free any elevator specific storage for a re-
quest.

ele-
va-
tor_activate_req_fn

Called when device driver first sees a request. I/O schedulers can use
this callback to determine when actual execution of a request starts.

ele-
va-
tor_deactivate_req_fn

Called when device driver decides to delay a request by requeueing it.

ele-
va-
tor_init_fn*
ele-
va-
tor_exit_fn

Allocate and free any elevator specific storage for a queue.

28 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

2.7.2 4.2 Request flows seen by I/O schedulers

All requests seen by I/O schedulers strictly follow one of the following three flows.

set_req_fn ->

i. add_req_fn -> (merged_fn ->)* -> dispatch_fn -> activate_req_fn ->
(deactivate_req_fn -> activate_req_fn ->)* -> completed_req_fn

ii. add_req_fn -> (merged_fn ->)* -> merge_req_fn

iii. [none]

-> put_req_fn

2.7.3 4.3 I/O scheduler implementation

The generic i/o scheduler algorithm attempts to sort/merge/batch requests for op-
timal disk scan and request servicing performance (based on generic principles
and device capabilities), optimized for:

i. improved throughput

ii. improved latency

iii. better utilization of h/w & CPU time

Characteristics:

i. Binary tree AS and deadline i/o schedulers use red black binary trees for disk
position sorting and searching, and a fifo linked list for time-based searching. This
gives good scalability and good availability of information. Requests are almost
always dispatched in disk sort order, so a cache is kept of the next request in sort
order to prevent binary tree lookups.

This arrangement is not a generic block layer characteristic however, so elevators
may implement queues as they please.

ii. Merge hash AS and deadline use a hash table indexed by the last sector of a
request. This enables merging code to quickly look up“back merge”candidates,
even when multiple I/O streams are being performed at once on one disk.

“Front merges”, a new request being merged at the front of an existing request,
are far less common than “back merges”due to the nature of most I/O patterns.
Front merges are handled by the binary trees in AS and deadline schedulers.

iii. Plugging the queue to batch requests in anticipation of opportunities for
merge/sort optimizations

Plugging is an approach that the current i/o scheduling algorithm resorts to so that
it collects up enough requests in the queue to be able to take advantage of the sort-
ing/merging logic in the elevator. If the queue is empty when a request comes in,
then it plugs the request queue (sort of like plugging the bath tub of a vessel to
get fluid to build up) till it fills up with a few more requests, before starting to ser-
vice the requests. This provides an opportunity to merge/sort the requests before
passing them down to the device. There are various conditions when the queue is
unplugged (to open up the flow again), either through a scheduled task or could
be on demand. For example wait_on_buffer sets the unplugging going through

2.7. 4. The I/O scheduler 29

Linux Block Documentation

sync_buffer() running blk_run_address_space(mapping). Or the caller can do it
explicity through blk_unplug(bdev). So in the read case, the queue gets explicitly
unplugged as part of waiting for completion on that buffer.

Aside: This is kind of controversial territory, as it’s not clear if plugging is always
the right thing to do. Devices typically have their own queues, and allowing a
big queue to build up in software, while letting the device be idle for a while
may not always make sense. The trick is to handle the fine balance between
when to plug and when to open up. Also now that we have multi-page bios
being queued in one shot, we may not need to wait to merge a big request
from the broken up pieces coming by.

2.7.4 4.4 I/O contexts

I/O contexts provide a dynamically allocated per process data area. They may be
used in I/O schedulers, and in the block layer (could be used for IO statis, priorities
for example). See *io_context in block/ll_rw_blk.c, and as-iosched.c for an example
of usage in an i/o scheduler.

2.8 5. Scalability related changes

2.8.1 5.1 Granular Locking: io_request_lock replaced by a per-
queue lock

The global io_request_lock has been removed as of 2.5, to avoid the scalability
bottleneck it was causing, and has been replaced by more granular locking. The
request queue structure has a pointer to the lock to be used for that queue. As a
result, locking can now be per-queue, with a provision for sharing a lock across
queues if necessary (e.g the scsi layer sets the queue lock pointers to the corre-
sponding adapter lock, which results in a per host locking granularity). The lock-
ing semantics are the same, i.e. locking is still imposed by the block layer, grab-
bing the lock before request_fn execution which it means that lots of older drivers
should still be SMP safe. Drivers are free to drop the queue lock themselves, if
required. Drivers that explicitly used the io_request_lock for serialization need to
be modified accordingly. Usually it’s as easy as adding a global lock:
static DEFINE_SPINLOCK(my_driver_lock);

and passing the address to that lock to blk_init_queue().

30 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

2.8.2 5.2 64 bit sector numbers (sector_t prepares for 64 bit sup-
port)

The sector number used in the bio structure has been changed to sector_t, which
could be defined as 64 bit in preparation for 64 bit sector support.

2.9 6. Other Changes/Implications

2.9.1 6.1 Partition re-mapping handled by the generic block layer

In 2.5 some of the gendisk/partition related code has been reorganized. Now the
generic block layer performs partition-remapping early and thus provides drivers
with a sector number relative to whole device, rather than having to take partition
number into account in order to arrive at the true sector number. The routine
blk_partition_remap() is invoked by generic_make_request even before invoking
the queue specific make_request_fn, so the i/o scheduler also gets to operate on
whole disk sector numbers. This should typically not require changes to block
drivers, it just never gets to invoke its own partition sector offset calculations
since all bios sent are offset from the beginning of the device.

2.10 7. A Few Tips on Migration of older drivers

Old-style drivers that just use CURRENT and ignores clustered requests, may
not need much change. The generic layer will automatically handle clustered re-
quests, multi-page bios, etc for the driver.

For a low performance driver or hardware that is PIO driven or just doesn’t support
scatter-gather changes should be minimal too.

The following are some points to keep in mind when converting old drivers to bio.

Drivers should use elv_next_request to pick up requests and are no longer sup-
posed to handle looping directly over the request list. (struct request->queue has
been removed)

Now end_that_request_first takes an additional number_of_sectors argument. It
used to handle always just the first buffer_head in a request, now it will loop and
handle as many sectors (on a bio-segment granularity) as specified.

Now bh->b_end_io is replaced by bio->bi_end_io, but most of the time the right
thing to use is bio_endio(bio) instead.

If the driver is dropping the io_request_lock from its request_fn strategy, then it
just needs to replace that with q->queue_lock instead.

As described in Sec 1.1, drivers can set max sector size, max segment size etc
per queue now. Drivers that used to define their own merge functions i to handle
things like this can now just use the blk_queue_* functions at blk_init_queue time.

Drivers no longer have to map a {partition, sector offset} into the correct absolute
location anymore, this is done by the block layer, so where a driver received a
request ala this before:

2.9. 6. Other Changes/Implications 31

Linux Block Documentation

rq->rq_dev = mk_kdev(3, 5); /* /dev/hda5 */
rq->sector = 0; /* first sector on hda5 */

it will now see:

rq->rq_dev = mk_kdev(3, 0); /* /dev/hda */
rq->sector = 123128; /* offset from start of disk */

As mentioned, there is no virtual mapping of a bio. For DMA, this is not a prob-
lem as the driver probably never will need a virtual mapping. Instead it needs a
bus mapping (dma_map_page for a single segment or use dma_map_sg for scatter
gather) to be able to ship it to the driver. For PIO drivers (or drivers that need to
revert to PIO transfer once in a while (IDE for example)), where the CPU is doing
the actual data transfer a virtual mapping is needed. If the driver supports high-
mem I/O, (Sec 1.1, (ii)) it needs to use kmap_atomic or similar to temporarily map
a bio into the virtual address space.

2.11 8. Prior/Related/Impacted patches

2.11.1 8.1. Earlier kiobuf patches (sct/axboe/chait/hch/mkp)

• orig kiobuf & raw i/o patches (now in 2.4 tree)

• direct kiobuf based i/o to devices (no intermediate bh’s)
• page i/o using kiobuf

• kiobuf splitting for lvm (mkp)

• elevator support for kiobuf request merging (axboe)

2.11.2 8.2. Zero-copy networking (Dave Miller)

2.11.3 8.3. SGI XFS - pagebuf patches - use of kiobufs

2.11.4 8.4. Multi-page pioent patch for bio (Christoph Hellwig)

2.11.5 8.5. Direct i/o implementation (Andrea Arcangeli) since
2.4.10-pre11

2.11.6 8.6. Async i/o implementation patch (Ben LaHaise)

2.11.7 8.7. EVMS layering design (IBM EVMS team)

2.11.8 8.8. Larger page cache size patch (Ben LaHaise) and Large
page size (Daniel Phillips)

=> larger contiguous physical memory buffers

32 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

Linux Block Documentation

2.11.9 8.9. VM reservations patch (Ben LaHaise)

2.11.10 8.10. Write clustering patches ? (Marcelo/Quintela/Riel ?)

2.11.11 8.11. Block device in page cache patch (Andrea Archangeli)
- now in 2.4.10+

2.11.12 8.12. Multiple block-size transfers for faster raw i/o (Shail-
abh Nagar, Badari)

2.11.13 8.13 Priority based i/o scheduler - prepatches (Arjan van de
Ven)

2.11.14 8.14 IDE Taskfile i/o patch (Andre Hedrick)

2.11.15 8.15 Multi-page writeout and readahead patches (Andrew
Morton)

2.11.16 8.16 Direct i/o patches for 2.5 using kvec and bio (Badari
Pulavarthy)

2.12 9. Other References

2.12.1 9.1 The Splice I/O Model

Larry McVoy (and subsequent discussions on lkml, and Linus’comments - Jan 2001

2.12.2 9.2 Discussions about kiobuf and bh design

On lkml between sct, linus, alan et al - Feb-March 2001 (many of the initial
thoughts that led to bio were brought up in this discussion thread)

2.12.3 9.3 Discussions on mempool on lkml - Dec 2001.

2.12. 9. Other References 33

Linux Block Documentation

34 Chapter 2. Notes on the Generic Block Layer Rewrite in Linux 2.5

CHAPTER

THREE

IMMUTABLE BIOVECS AND BIOVEC ITERATORS

Kent Overstreet <kmo@daterainc.com>

As of 3.13, biovecs should never be modified after a bio has been submitted. In-
stead, we have a new struct bvec_iter which represents a range of a biovec - the
iterator will be modified as the bio is completed, not the biovec.

More specifically, old code that needed to partially complete a bio would update
bi_sector and bi_size, and advance bi_idx to the next biovec. If it ended up part-
way through a biovec, it would increment bv_offset and decrement bv_len by the
number of bytes completed in that biovec.

In the new scheme of things, everything that must be mutated in order to partially
complete a bio is segregated into struct bvec_iter: bi_sector, bi_size and bi_idx
have been moved there; and instead of modifying bv_offset and bv_len, struct
bvec_iter has bi_bvec_done, which represents the number of bytes completed in
the current bvec.

There are a bunch of new helper macros for hiding the gory details - in particular,
presenting the illusion of partially completed biovecs so that normal code doesn’
t have to deal with bi_bvec_done.

• Driver code should no longer refer to biovecs directly; we now have
bio_iovec() and bio_iter_iovec() macros that return literal struct biovecs, con-
structed from the raw biovecs but taking into account bi_bvec_done and
bi_size.

bio_for_each_segment() has been updated to take a bvec_iter argument
instead of an integer (that corresponded to bi_idx); for a lot of code
the conversion just required changing the types of the arguments to
bio_for_each_segment().

• Advancing a bvec_iter is done with bio_advance_iter(); bio_advance() is a
wrapper around bio_advance_iter() that operates on bio->bi_iter, and also
advances the bio integrity’s iter if present.
There is a lower level advance function - bvec_iter_advance() - which takes a
pointer to a biovec, not a bio; this is used by the bio integrity code.

35

mailto:kmo@daterainc.com

Linux Block Documentation

3.1 What’s all this get us?

Having a real iterator, and making biovecs immutable, has a number of advan-
tages:

• Before, iterating over bios was very awkward when you weren’t processing
exactly one bvec at a time - for example, bio_copy_data() in block/bio.c, which
copies the contents of one bio into another. Because the biovecs wouldn’t
necessarily be the same size, the old code was tricky convoluted - it had to
walk two different bios at the same time, keeping both bi_idx and and offset
into the current biovec for each.

The new code is much more straightforward - have a look. This sort of pattern
comes up in a lot of places; a lot of drivers were essentially open coding bvec
iterators before, and having common implementation considerably simplifies
a lot of code.

• Before, any code that might need to use the biovec after the bio had been
completed (perhaps to copy the data somewhere else, or perhaps to resubmit
it somewhere else if there was an error) had to save the entire bvec array -
again, this was being done in a fair number of places.

• Biovecs can be shared between multiple bios - a bvec iter can represent an ar-
bitrary range of an existing biovec, both starting and ending midway through
biovecs. This is what enables efficient splitting of arbitrary bios. Note that
this means we _only_ use bi_size to determine when we’ve reached the end of
a bio, not bi_vcnt - and the bio_iovec() macro takes bi_size into account when
constructing biovecs.

• Splitting bios is now much simpler. The old bio_split() didn’t even work on
bios with more than a single bvec! Now, we can efficiently split arbitrary size
bios - because the new bio can share the old bio’s biovec.
Care must be taken to ensure the biovec isn’t freed while the split bio is still
using it, in case the original bio completes first, though. Using bio_chain()
when splitting bios helps with this.

• Submitting partially completed bios is now perfectly fine - this comes up oc-
casionally in stacking block drivers and various code (e.g. md and bcache)
had some ugly workarounds for this.

It used to be the case that submitting a partially completed bio would work
fine to _most_ devices, but since accessing the raw bvec array was the norm,
not all drivers would respect bi_idx and those would break. Now, since all
drivers _must_ go through the bvec iterator - and have been audited to make
sure they are - submitting partially completed bios is perfectly fine.

36 Chapter 3. Immutable biovecs and biovec iterators

Linux Block Documentation

3.2 Other implications:

• Almost all usage of bi_idx is now incorrect and has been removed; instead,
where previously you would have used bi_idx you’d now use a bvec_iter,
probably passing it to one of the helper macros.

I.e. instead of using bio_iovec_idx() (or bio->bi_iovec[bio->bi_idx]), you now
use bio_iter_iovec(), which takes a bvec_iter and returns a literal struct
bio_vec - constructed on the fly from the raw biovec but taking into account
bi_bvec_done (and bi_size).

• bi_vcnt can’t be trusted or relied upon by driver code - i.e. anything that
doesn’t actually own the bio. The reason is twofold: firstly, it’s not actually
needed for iterating over the bio anymore - we only use bi_size. Secondly,
when cloning a bio and reusing (a portion of) the original bio’s biovec, in
order to calculate bi_vcnt for the new bio we’d have to iterate over all the
biovecs in the new bio - which is silly as it’s not needed.
So, don’t use bi_vcnt anymore.

• The current interface allows the block layer to split bios as needed, so we
could eliminate a lot of complexity particularly in stacked drivers. Code that
creates bios can then create whatever size bios are convenient, and more
importantly stacked drivers don’t have to deal with both their own bio size
limitations and the limitations of the underlying devices. Thus there’s no
need to define ->merge_bvec_fn() callbacks for individual block drivers.

3.3 Usage of helpers:

• The following helpers whose names have the suffix of _all can only be used
on non-BIO_CLONED bio. They are usually used by filesystem code. Drivers
shouldn’t use them because the bio may have been split before it reached
the driver.

bio_for_each_segment_all()
bio_for_each_bvec_all()
bio_first_bvec_all()
bio_first_page_all()
bio_last_bvec_all()

• The following helpers iterate over single-page segment. The passed ‘struct
bio_vec’will contain a single-page IO vector during the iteration:
bio_for_each_segment()
bio_for_each_segment_all()

• The following helpers iterate over multi-page bvec. The passed ‘struct
bio_vec’will contain a multi-page IO vector during the iteration:
bio_for_each_bvec()
bio_for_each_bvec_all()
rq_for_each_bvec()

3.2. Other implications: 37

Linux Block Documentation

38 Chapter 3. Immutable biovecs and biovec iterators

CHAPTER

FOUR

GENERIC BLOCK DEVICE CAPABILITY

This file documents the sysfs file block/<disk>/capability.

capability is a bitfield, printed in hexadecimal, indicating which capabilities a
specific block device supports:

genhd capability flags
GENHD_FL_REMOVABLE (0x0001): indicates that the block device gives access to
removable media. When set, the device remains present even when media is not
inserted. Must not be set for devices which are removed entirely when the media
is removed.

GENHD_FL_CD (0x0008): the block device is a CD-ROM-style device. Affects re-
sponses to the CDROM_GET_CAPABILITY ioctl.

GENHD_FL_UP (0x0010): indicates that the block device is “up”, with a similar
meaning to network interfaces.

GENHD_FL_SUPPRESS_PARTITION_INFO (0x0020): don’t include partition informa-
tion in /proc/partitions or in the output of printk_all_partitions(). Used for the
null block device and some MMC devices.

GENHD_FL_EXT_DEVT (0x0040): the driver supports extended dynamic dev_t, i.e.
it wants extended device numbers (BLOCK_EXT_MAJOR). This affects the maximum
number of partitions.

GENHD_FL_NATIVE_CAPACITY (0x0080): based on information in the partition table,
the device’s capacity has been extended to its native capacity; i.e. the device has
hidden capacity used by one of the partitions (this is a flag used so that native
capacity is only ever unlocked once).

GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE (0x0100): event polling is blocked
whenever a writer holds an exclusive lock.

GENHD_FL_NO_PART_SCAN (0x0200): partition scanning is disabled. Used for loop
devices in their default settings and some MMC devices.

GENHD_FL_HIDDEN (0x0400): the block device is hidden; it doesn’t produce
events, doesn’t appear in sysfs, and doesn’t have an associated bdev. Im-
plies GENHD_FL_SUPPRESS_PARTITION_INFO and GENHD_FL_NO_PART_SCAN. Used
for multipath devices.

39

Linux Block Documentation

40 Chapter 4. Generic Block Device Capability

CHAPTER

FIVE

EMBEDDED DEVICE COMMAND LINE PARTITION PARSING

The“blkdevparts”command line option adds support for reading the block device
partition table from the kernel command line.

It is typically used for fixed block (eMMC) embedded devices. It has no MBR, so
saves storage space. Bootloader can be easily accessed by absolute address of
data on the block device. Users can easily change the partition.

The format for the command line is just like mtdparts:

blkdevparts=<blkdev-def>[;<blkdev-def>]
<blkdev-def> := <blkdev-id>:<partdef>[,<partdef>] <partdef> :=

<size>[@<offset>](part-name)

<blkdev-id> block device disk name. Embedded device uses fixed block device.
Its disk name is also fixed, such as: mmcblk0, mmcblk1, mmcblk0boot0.

<size> partition size, in bytes, such as: 512, 1m, 1G. size may contain an optional
suffix of (upper or lower case):

K, M, G, T, P, E.

“-”is used to denote all remaining space.
<offset> partition start address, in bytes. offset may contain an optional suffix of

(upper or lower case):

K, M, G, T, P, E.

(part-name) partition name. Kernel sends uevent with“PARTNAME”. Applica-
tion can create a link to block device partition with the name “PARTNAME”
. User space application can access partition by partition name.

Example:

eMMC disk names are “mmcblk0”and “mmcblk0boot0”.
bootargs:

'blkdevparts=mmcblk0:1G(data0),1G(data1),-;mmcblk0boot0:1m(boot),-
↪→(kernel)'

dmesg:

mmcblk0: p1(data0) p2(data1) p3()
mmcblk0boot0: p1(boot) p2(kernel)

41

Linux Block Documentation

42 Chapter 5. Embedded device command line partition parsing

CHAPTER

SIX

DATA INTEGRITY

6.1 1. Introduction

Modern filesystems feature checksumming of data andmetadata to protect against
data corruption. However, the detection of the corruption is done at read time
which could potentially be months after the data was written. At that point the
original data that the application tried to write is most likely lost.

The solution is to ensure that the disk is actually storing what the application
meant it to. Recent additions to both the SCSI family protocols (SBC Data Integrity
Field, SCC protection proposal) as well as SATA/T13 (External Path Protection)
try to remedy this by adding support for appending integrity metadata to an I/O.
The integrity metadata (or protection information in SCSI terminology) includes
a checksum for each sector as well as an incrementing counter that ensures the
individual sectors are written in the right order. And for some protection schemes
also that the I/O is written to the right place on disk.

Current storage controllers and devices implement various protective measures,
for instance checksumming and scrubbing. But these technologies are working in
their own isolated domains or at best between adjacent nodes in the I/O path. The
interesting thing about DIF and the other integrity extensions is that the protection
format is well defined and every node in the I/O path can verify the integrity of
the I/O and reject it if corruption is detected. This allows not only corruption
prevention but also isolation of the point of failure.

6.2 2. The Data Integrity Extensions

As written, the protocol extensions only protect the path between controller and
storage device. However, many controllers actually allow the operating system
to interact with the integrity metadata (IMD). We have been working with several
FC/SAS HBA vendors to enable the protection information to be transferred to and
from their controllers.

The SCSI Data Integrity Field works by appending 8 bytes of protection informa-
tion to each sector. The data + integrity metadata is stored in 520 byte sectors
on disk. Data + IMD are interleaved when transferred between the controller and
target. The T13 proposal is similar.

Because it is highly inconvenient for operating systems to deal with 520 (and 4104)
byte sectors, we approached several HBA vendors and encouraged them to allow

43

Linux Block Documentation

separation of the data and integrity metadata scatter-gather lists.

The controller will interleave the buffers on write and split them on read. This
means that Linux can DMA the data buffers to and from host memory without
changes to the page cache.

Also, the 16-bit CRC checksummandated by both the SCSI and SATA specs is some-
what heavy to compute in software. Benchmarks found that calculating this check-
sum had a significant impact on system performance for a number of workloads.
Some controllers allow a lighter-weight checksum to be used when interfacing
with the operating system. Emulex, for instance, supports the TCP/IP checksum
instead. The IP checksum received from the OS is converted to the 16-bit CRC
when writing and vice versa. This allows the integrity metadata to be generated
by Linux or the application at very low cost (comparable to software RAID5).

The IP checksum is weaker than the CRC in terms of detecting bit errors. How-
ever, the strength is really in the separation of the data buffers and the integrity
metadata. These two distinct buffers must match up for an I/O to complete.

The separation of the data and integrity metadata buffers as well as the choice in
checksums is referred to as the Data Integrity Extensions. As these extensions are
outside the scope of the protocol bodies (T10, T13), Oracle and its partners are
trying to standardize them within the Storage Networking Industry Association.

6.3 3. Kernel Changes

The data integrity framework in Linux enables protection information to be pinned
to I/Os and sent to/received from controllers that support it.

The advantage to the integrity extensions in SCSI and SATA is that they enable us
to protect the entire path from application to storage device. However, at the same
time this is also the biggest disadvantage. It means that the protection information
must be in a format that can be understood by the disk.

Generally Linux/POSIX applications are agnostic to the intricacies of the storage
devices they are accessing. The virtual filesystem switch and the block layer make
things like hardware sector size and transport protocols completely transparent
to the application.

However, this level of detail is required when preparing the protection information
to send to a disk. Consequently, the very concept of an end-to-end protection
scheme is a layering violation. It is completely unreasonable for an application to
be aware whether it is accessing a SCSI or SATA disk.

The data integrity support implemented in Linux attempts to hide this from the
application. As far as the application (and to some extent the kernel) is concerned,
the integrity metadata is opaque information that’s attached to the I/O.
The current implementation allows the block layer to automatically generate the
protection information for any I/O. Eventually the intent is to move the integrity
metadata calculation to userspace for user data. Metadata and other I/O that
originates within the kernel will still use the automatic generation interface.

Some storage devices allow each hardware sector to be tagged with a 16-bit value.
The owner of this tag space is the owner of the block device. I.e. the filesystem in

44 Chapter 6. Data Integrity

Linux Block Documentation

most cases. The filesystem can use this extra space to tag sectors as they see fit.
Because the tag space is limited, the block interface allows tagging bigger chunks
by way of interleaving. This way, 8*16 bits of information can be attached to a
typical 4KB filesystem block.

This also means that applications such as fsck and mkfs will need access to manip-
ulate the tags from user space. A passthrough interface for this is being worked
on.

6.4 4. Block Layer Implementation Details

6.4.1 4.1 Bio

The data integrity patches add a new field to struct bio when CON-
FIG_BLK_DEV_INTEGRITY is enabled. bio_integrity(bio) returns a pointer to a
struct bip which contains the bio integrity payload. Essentially a bip is a trimmed
down struct bio which holds a bio_vec containing the integrity metadata and the
required housekeeping information (bvec pool, vector count, etc.)

A kernel subsystem can enable data integrity protection on a bio by calling
bio_integrity_alloc(bio). This will allocate and attach the bip to the bio.

Individual pages containing integrity metadata can subsequently be attached us-
ing bio_integrity_add_page().

bio_free() will automatically free the bip.

6.4.2 4.2 Block Device

Because the format of the protection data is tied to the physical disk, each block
device has been extended with a block integrity profile (struct blk_integrity). This
optional profile is registered with the block layer using blk_integrity_register().

The profile contains callback functions for generating and verifying the protection
data, as well as getting and setting application tags. The profile also contains a
few constants to aid in completing, merging and splitting the integrity metadata.

Layered block devices will need to pick a profile that’s appropriate for all sub-
devices. blk_integrity_compare() can help with that. DM and MD linear, RAID0
and RAID1 are currently supported. RAID4/5/6 will require extra work due to the
application tag.

6.4. 4. Block Layer Implementation Details 45

Linux Block Documentation

6.5 5.0 Block Layer Integrity API

6.5.1 5.1 Normal Filesystem

The normal filesystem is unaware that the underlying block device is
capable of sending/receiving integrity metadata. The IMD will be auto-
matically generated by the block layer at submit_bio() time in case of a
WRITE. A READ request will cause the I/O integrity to be verified upon
completion.

IMD generation and verification can be toggled using the:

/sys/block/<bdev>/integrity/write_generate

and:

/sys/block/<bdev>/integrity/read_verify

flags.

6.5.2 5.2 Integrity-Aware Filesystem

A filesystem that is integrity-aware can prepare I/Os with IMD attached.
It can also use the application tag space if this is supported by the block
device.

bool bio_integrity_prep(bio);

To generate IMD for WRITE and to set up buffers for READ, the
filesystem must call bio_integrity_prep(bio).

Prior to calling this function, the bio data direction and start sec-
tor must be set, and the bio should have all data pages added. It
is up to the caller to ensure that the bio does not change while
I/O is in progress. Complete bio with error if prepare failed for
some reson.

6.5.3 5.3 Passing Existing Integrity Metadata

Filesystems that either generate their own integrity metadata or are ca-
pable of transferring IMD from user space can use the following calls:

struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);

Allocates the bio integrity payload and hangs it off of the bio.
nr_pages indicate how many pages of protection data need to
be stored in the integrity bio_vec list (similar to bio_alloc()).

The integrity payload will be freed at bio_free() time.

int bio_integrity_add_page(bio, page, len, offset);

Attaches a page containing integrity metadata to an existing
bio. The bio must have an existing bip, i.e. bio_integrity_alloc()

46 Chapter 6. Data Integrity

Linux Block Documentation

must have been called. For a WRITE, the integrity metadata
in the pages must be in a format understood by the target de-
vice with the notable exception that the sector numbers will be
remapped as the request traverses the I/O stack. This implies
that the pages added using this call will be modified during I/O!
The first reference tag in the integrity metadata must have a
value of bip->bip_sector.

Pages can be added using bio_integrity_add_page() as long as
there is room in the bip bio_vec array (nr_pages).

Upon completion of a READ operation, the attached pages will
contain the integrity metadata received from the storage de-
vice. It is up to the receiver to process them and verify data
integrity upon completion.

6.5.4 5.4 Registering A Block Device As Capable Of Exchanging In-
tegrity Metadata

To enable integrity exchange on a block device the gendisk must be reg-
istered as capable:

int blk_integrity_register(gendisk, blk_integrity);

The blk_integrity struct is a template and should contain the
following:

static struct blk_integrity my_profile = {
.name = "STANDARDSBODY-TYPE-VARIANT-

↪→CSUM",
.generate_fn = my_generate_fn,
.verify_fn = my_verify_fn,
.tuple_size = sizeof(struct my_tuple_

↪→size),
.tag_size = <tag bytes per hw sector>,

};

‘name’is a text string which will be visible in sysfs. This is part of
the userland API so chose it carefully and never change it. The
format is standards body-type-variant. E.g. T10-DIF-TYPE1-IP
or T13-EPP-0-CRC.

‘generate_fn’generates appropriate integrity metadata (for
WRITE).

‘verify_fn’verifies that the data buffer matches the integrity
metadata.

‘tuple_size’must be set to match the size of the integrity meta-
data per sector. I.e. 8 for DIF and EPP.

‘tag_size’must be set to identify how many bytes of tag space
are available per hardware sector. For DIF this is either 2 or 0
depending on the value of the Control Mode Page ATO bit.

6.5. 5.0 Block Layer Integrity API 47

Linux Block Documentation

2007-12-24 Martin K. Petersen <martin.petersen@oracle.com>

48 Chapter 6. Data Integrity

mailto:martin.petersen@oracle.com

CHAPTER

SEVEN

DEADLINE IO SCHEDULER TUNABLES

This little file attempts to document how the deadline io scheduler works. In par-
ticular, it will clarify the meaning of the exposed tunables that may be of interest
to power users.

7.1 Selecting IO schedulers

Refer to Documentation/block/switching-sched.rst for information on selecting an
io scheduler on a per-device basis.

7.2 read_expire (in ms)

The goal of the deadline io scheduler is to attempt to guarantee a start service
time for a request. As we focus mainly on read latencies, this is tunable. When
a read request first enters the io scheduler, it is assigned a deadline that is the
current time + the read_expire value in units of milliseconds.

7.3 write_expire (in ms)

Similar to read_expire mentioned above, but for writes.

7.4 fifo_batch (number of requests)

Requests are grouped into batches of a particular data direction (read or write)
which are serviced in increasing sector order. To limit extra seeking, deadline ex-
piries are only checked between batches. fifo_batch controls the maximum num-
ber of requests per batch.

This parameter tunes the balance between per-request latency and aggregate
throughput. When low latency is the primary concern, smaller is better (where
a value of 1 yields first-come first-served behaviour). Increasing fifo_batch gener-
ally improves throughput, at the cost of latency variation.

49

Linux Block Documentation

7.5 writes_starved (number of dispatches)

When we have to move requests from the io scheduler queue to the block device
dispatch queue, we always give a preference to reads. However, we don’t want
to starve writes indefinitely either. So writes_starved controls how many times
we give preference to reads over writes. When that has been done writes_starved
number of times, we dispatch some writes based on the same criteria as reads.

7.6 front_merges (bool)

Sometimes it happens that a request enters the io scheduler that is contiguous with
a request that is already on the queue. Either it fits in the back of that request, or
it fits at the front. That is called either a back merge candidate or a front merge
candidate. Due to the way files are typically laid out, back merges are much more
common than front merges. For some work loads, you may even know that it is
a waste of time to spend any time attempting to front merge requests. Setting
front_merges to 0 disables this functionality. Front merges may still occur due to
the cached last_merge hint, but since that comes at basically 0 cost we leave that
on. We simply disable the rbtree front sector lookup when the io scheduler merge
function is called.

Nov 11 2002, Jens Axboe <jens.axboe@oracle.com>

50 Chapter 7. Deadline IO scheduler tunables

mailto:jens.axboe@oracle.com

CHAPTER

EIGHT

INLINE ENCRYPTION

8.1 Background

Inline encryption hardware sits logically between memory and the disk, and can
en/decrypt data as it goes in/out of the disk. Inline encryption hardware has a
fixed number of“keyslots”- slots into which encryption contexts (i.e. the encryp-
tion key, encryption algorithm, data unit size) can be programmed by the kernel
at any time. Each request sent to the disk can be tagged with the index of a
keyslot (and also a data unit number to act as an encryption tweak), and the inline
encryption hardware will en/decrypt the data in the request with the encryption
context programmed into that keyslot. This is very different from full disk encryp-
tion solutions like self encrypting drives/TCG OPAL/ATA Security standards, since
with inline encryption, any block on disk could be encrypted with any encryption
context the kernel chooses.

8.2 Objective

We want to support inline encryption (IE) in the kernel. To allow for testing, we
also want a crypto API fallback when actual IE hardware is absent. We also want
IE to work with layered devices like dm and loopback (i.e. we want to be able to
use the IE hardware of the underlying devices if present, or else fall back to crypto
API en/decryption).

8.3 Constraints and notes

• IE hardware has a limited number of“keyslots”that can be programmed with
an encryption context (key, algorithm, data unit size, etc.) at any time. One
can specify a keyslot in a data request made to the device, and the device
will en/decrypt the data using the encryption context programmed into that
specified keyslot. When possible, we want to make multiple requests with the
same encryption context share the same keyslot.

• We need a way for upper layers like filesystems to specify an encryption con-
text to use for en/decrypting a struct bio, and a device driver (like UFS) needs
to be able to use that encryption context when it processes the bio.

• We need a way for device drivers to expose their inline encryption capabilities
in a unified way to the upper layers.

51

Linux Block Documentation

8.4 Design

We add a struct bio_crypt_ctx to struct bio that can represent an encryption
context, because we need to be able to pass this encryption context from the upper
layers (like the fs layer) to the device driver to act upon.

While IE hardware works on the notion of keyslots, the FS layer has no knowl-
edge of keyslots - it simply wants to specify an encryption context to use while
en/decrypting a bio.

We introduce a keyslot manager (KSM) that handles the translation from encryp-
tion contexts specified by the FS to keyslots on the IE hardware. This KSM also
serves as the way IE hardware can expose its capabilities to upper layers. The
generic mode of operation is: each device driver that wants to support IE will con-
struct a KSM and set it up in its struct request_queue. Upper layers that want to
use IE on this device can then use this KSM in the device’s struct request_queue
to translate an encryption context into a keyslot. The presence of the KSM in the
request queue shall be used to mean that the device supports IE.

The KSM uses refcounts to track which keyslots are idle (either they have no en-
cryption context programmed, or there are no in-flight struct bios referencing that
keyslot). When a new encryption context needs a keyslot, it tries to find a keyslot
that has already been programmed with the same encryption context, and if there
is no such keyslot, it evicts the least recently used idle keyslot and programs the
new encryption context into that one. If no idle keyslots are available, then the
caller will sleep until there is at least one.

8.5 blk-mq changes, other block layer changes and blk-
crypto-fallback

We add a pointer to a bi_crypt_context and keyslot to struct request. These
will be referred to as the crypto fields for the request. This keyslot is the
keyslot into which the bi_crypt_context has been programmed in the KSM of
the request_queue that this request is being sent to.

We introduce block/blk-crypto-fallback.c, which allows upper layers to re-
main blissfully unaware of whether or not real inline encryption hardware is
present underneath. When a bio is submitted with a target request_queue that
doesn’t support the encryption context specified with the bio, the block layer will
en/decrypt the bio with the blk-crypto-fallback.

If the bio is a WRITE bio, a bounce bio is allocated, and the data in the bio is en-
crypted stored in the bounce bio - blk-mq will then proceed to process the bounce
bio as if it were not encrypted at all (except when blk-integrity is concerned).
blk-crypto-fallback sets the bounce bio’s bi_end_io to an internal function
that cleans up the bounce bio and ends the original bio.

If the bio is a READ bio, the bio’s bi_end_io (and also bi_private) is saved and
overwritten by blk-crypto-fallback to bio_crypto_fallback_decrypt_bio.
The bio’s bi_crypt_context is also overwritten with NULL, so that to the rest
of the stack, the bio looks as if it was a regular bio that never had an encryp-
tion context specified. bio_crypto_fallback_decrypt_bio will decrypt the bio,

52 Chapter 8. Inline Encryption

Linux Block Documentation

restore the original bi_end_io (and also bi_private) and end the bio again.

Regardless of whether real inline encryption hardware is used or the blk-crypto-
fallback is used, the ciphertext written to disk (and hence the on-disk format of
data) will be the same (assuming the hardware’s implementation of the algorithm
being used adheres to spec and functions correctly).

If a request queue’s inline encryption hardware claimed to support the en-
cryption context specified with a bio, then it will not be handled by the
blk-crypto-fallback. We will eventually reach a point in blk-mq when a struct
request needs to be allocated for that bio. At that point, blk-mq tries to program
the encryption context into the request_queue’s keyslot_manager, and obtain a
keyslot, which it stores in its newly added keyslot field. This keyslot is released
when the request is completed.

When the first bio is added to a request, blk_crypto_rq_bio_prep is called,
which sets the request’s crypt_ctx to a copy of the bio’s bi_crypt_context.
bio_crypt_do_front_merge is called whenever a subsequent bio is merged to the
front of the request, which updates the crypt_ctx of the request so that it matches
the newly merged bio’s bi_crypt_context. In particular, the request keeps a copy
of the bi_crypt_context of the first bio in its bio-list (blk-mq needs to be careful
to maintain this invariant during bio and request merges).

To make it possible for inline encryption to work with request queue based layered
devices, when a request is cloned, its crypto fields are cloned as well. When
the cloned request is submitted, blk-mq programs the bi_crypt_context of the
request into the clone’s request_queue’s keyslot manager, and stores the returned
keyslot in the clone’s keyslot.

8.6 API presented to users of the block layer

struct blk_crypto_key represents a crypto key (the raw key, size of the key, the
crypto algorithm to use, the data unit size to use, and the number of bytes required
to represent data unit numbers that will be specified with the bi_crypt_context).

blk_crypto_init_key allows upper layers to initialize such a blk_crypto_key.

bio_crypt_set_ctx should be called on any bio that a user of the block layer
wants en/decrypted via inline encryption (or the blk-crypto-fallback, if hardware
support isn’t available for the desired crypto configuration). This function takes
the blk_crypto_key and the data unit number (DUN) to use when en/decrypting
the bio.

blk_crypto_config_supported allows upper layers to query whether or not the
an encryption context passed to request queue can be handled by blk-crypto (either
by real inline encryption hardware, or by the blk-crypto-fallback). This is useful
e.g. when blk-crypto-fallback is disabled, and the upper layer wants to use an
algorithm that may not supported by hardware - this function lets the upper layer
know ahead of time that the algorithm isn’t supported, and the upper layer can
fallback to something else if appropriate.

blk_crypto_start_using_key - Upper layers must call this function on
blk_crypto_key and a request_queue before using the key with any bio headed
for that request_queue. This function ensures that either the hardware supports

8.6. API presented to users of the block layer 53

Linux Block Documentation

the key’s crypto settings, or the crypto API fallback has transforms for the needed
mode allocated and ready to go. Note that this function may allocate an skcipher,
and must not be called from the data path, since allocating skciphers from the
data path can deadlock.

blk_crypto_evict_keymust be called by upper layers before a blk_crypto_key is
freed. Further, it must only be called only once there are no more in-flight requests
that use that blk_crypto_key. blk_crypto_evict_key will ensure that a key is
removed from any keyslots in inline encryption hardware that the key might have
been programmed into (or the blk-crypto-fallback).

8.7 API presented to device drivers

A :c:type:struct blk_keyslot_manager should be set up by device drivers in the
request_queue of the device. The device driver needs to call blk_ksm_init on the
blk_keyslot_manager, which specifying the number of keyslots supported by the
hardware.

The device driver also needs to tell the KSM how to actually manipulate the IE
hardware in the device to do things like programming the crypto key into the
IE hardware into a particular keyslot. All this is achieved through the struct
blk_ksm_ll_ops field in the KSM that the device driver must fill up after initing
the blk_keyslot_manager.

The KSM also handles runtime power management for the device when applicable
(e.g. when it wants to program a crypto key into the IE hardware, the device must
be runtime powered on) - so the device driver must also set the dev field in the ksm
to point to the struct device for the KSM to use for runtime power management.

blk_ksm_reprogram_all_keys can be called by device drivers if the device needs
each and every of its keyslots to be reprogrammed with the key it “should have”
at the point in time when the function is called. This is useful e.g. if a device loses
all its keys on runtime power down/up.

blk_ksm_destroy should be called to free up all resources used by a keyslot man-
ager upon blk_ksm_init, once the blk_keyslot_manager is no longer needed.

8.8 Layered Devices

Request queue based layered devices like dm-rq that wish to support IE need to
create their own keyslot manager for their request queue, and expose whatever
functionality they choose. When a layered device wants to pass a clone of that
request to another request_queue, blk-crypto will initialize and prepare the clone
as necessary - see blk_crypto_insert_cloned_request in blk-crypto.c.

54 Chapter 8. Inline Encryption

Linux Block Documentation

8.9 Future Optimizations for layered devices

Creating a keyslot manager for a layered device uses up memory for each keyslot,
and in general, a layered device merely passes the request on to a “child”de-
vice, so the keyslots in the layered device itself are completely unused, and don’t
need any refcounting or keyslot programming. We can instead define a new type of
KSM; the“passthrough KSM”, that layered devices can use to advertise an unlim-
ited number of keyslots, and support for any encryption algorithms they choose,
while not actually using any memory for each keyslot. Another use case for the
“passthrough KSM”is for IE devices that do not have a limited number of keyslots.

8.10 Interaction between inline encryption and blk in-
tegrity

At the time of this patch, there is no real hardware that supports both these fea-
tures. However, these features do interact with each other, and it’s not completely
trivial to make them both work together properly. In particular, when a WRITE
bio wants to use inline encryption on a device that supports both features, the bio
will have an encryption context specified, after which its integrity information is
calculated (using the plaintext data, since the encryption will happen while data
is being written), and the data and integrity info is sent to the device. Obviously,
the integrity info must be verified before the data is encrypted. After the data is
encrypted, the device must not store the integrity info that it received with the
plaintext data since that might reveal information about the plaintext data. As
such, it must re-generate the integrity info from the ciphertext data and store that
on disk instead. Another issue with storing the integrity info of the plaintext data
is that it changes the on disk format depending on whether hardware inline en-
cryption support is present or the kernel crypto API fallback is used (since if the
fallback is used, the device will receive the integrity info of the ciphertext, not that
of the plaintext).

Because there isn’t any real hardware yet, it seems prudent to assume that hard-
ware implementations might not implement both features together correctly, and
disallow the combination for now. Whenever a device supports integrity, the ker-
nel will pretend that the device does not support hardware inline encryption (by es-
sentially setting the keyslot manager in the request_queue of the device to NULL).
When the crypto API fallback is enabled, this means that all bios with and encryp-
tion context will use the fallback, and IO will complete as usual. When the fallback
is disabled, a bio with an encryption context will be failed.

8.9. Future Optimizations for layered devices 55

Linux Block Documentation

56 Chapter 8. Inline Encryption

CHAPTER

NINE

BLOCK IO PRIORITIES

9.1 Intro

With the introduction of cfq v3 (aka cfq-ts or time sliced cfq), basic io priorities
are supported for reads on files. This enables users to io nice processes or pro-
cess groups, similar to what has been possible with cpu scheduling for ages. This
document mainly details the current possibilities with cfq; other io schedulers do
not support io priorities thus far.

9.2 Scheduling classes

CFQ implements three generic scheduling classes that determine how io is served
for a process.

IOPRIO_CLASS_RT: This is the realtime io class. This scheduling class is given
higher priority than any other in the system, processes from this class are given
first access to the disk every time. Thus it needs to be used with some care, one io
RT process can starve the entire system. Within the RT class, there are 8 levels of
class data that determine exactly how much time this process needs the disk for
on each service. In the future this might change to be more directly mappable to
performance, by passing in a wanted data rate instead.

IOPRIO_CLASS_BE: This is the best-effort scheduling class, which is the default
for any process that hasn’t set a specific io priority. The class data determines
how much io bandwidth the process will get, it’s directly mappable to the cpu
nice levels just more coarsely implemented. 0 is the highest BE prio level, 7 is the
lowest. The mapping between cpu nice level and io nice level is determined as:
io_nice = (cpu_nice + 20) / 5.

IOPRIO_CLASS_IDLE: This is the idle scheduling class, processes running at this
level only get io time when no one else needs the disk. The idle class has no class
data, since it doesn’t really apply here.

57

Linux Block Documentation

9.3 Tools

See below for a sample ionice tool. Usage:

ionice -c<class> -n<level> -p<pid>

If pid isn’t given, the current process is assumed. IO priority settings are inherited
on fork, so you can use ionice to start the process at a given level:

ionice -c2 -n0 /bin/ls

will run ls at the best-effort scheduling class at the highest priority. For a running
process, you can give the pid instead:

ionice -c1 -n2 -p100

will change pid 100 to run at the realtime scheduling class, at priority 2.

ionice.c tool:

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <getopt.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <asm/unistd.h>

extern int sys_ioprio_set(int, int, int);
extern int sys_ioprio_get(int, int);

#if defined(__i386__)
#define __NR_ioprio_set 289
#define __NR_ioprio_get 290
#elif defined(__ppc__)
#define __NR_ioprio_set 273
#define __NR_ioprio_get 274
#elif defined(__x86_64__)
#define __NR_ioprio_set 251
#define __NR_ioprio_get 252
#elif defined(__ia64__)
#define __NR_ioprio_set 1274
#define __NR_ioprio_get 1275
#else
#error "Unsupported arch"
#endif

static inline int ioprio_set(int which, int who, int ioprio)
{

return syscall(__NR_ioprio_set, which, who, ioprio);
}

static inline int ioprio_get(int which, int who)
{

return syscall(__NR_ioprio_get, which, who);
}

(continues on next page)

58 Chapter 9. Block io priorities

Linux Block Documentation

(continued from previous page)

enum {
IOPRIO_CLASS_NONE,
IOPRIO_CLASS_RT,
IOPRIO_CLASS_BE,
IOPRIO_CLASS_IDLE,

};

enum {
IOPRIO_WHO_PROCESS = 1,
IOPRIO_WHO_PGRP,
IOPRIO_WHO_USER,

};

#define IOPRIO_CLASS_SHIFT 13

const char *to_prio[] = { "none", "realtime", "best-effort", "idle", };

int main(int argc, char *argv[])
{

int ioprio = 4, set = 0, ioprio_class = IOPRIO_CLASS_BE;
int c, pid = 0;

while ((c = getopt(argc, argv, "+n:c:p:")) != EOF) {
switch (c) {
case 'n':

ioprio = strtol(optarg, NULL, 10);
set = 1;
break;

case 'c':
ioprio_class = strtol(optarg, NULL, 10);
set = 1;
break;

case 'p':
pid = strtol(optarg, NULL, 10);
break;

}
}

switch (ioprio_class) {
case IOPRIO_CLASS_NONE:

ioprio_class = IOPRIO_CLASS_BE;
break;

case IOPRIO_CLASS_RT:
case IOPRIO_CLASS_BE:

break;
case IOPRIO_CLASS_IDLE:

ioprio = 7;
break;

default:
printf("bad prio class %d\n", ioprio_class);
return 1;

}

if (!set) {
if (!pid && argv[optind])

(continues on next page)

9.3. Tools 59

Linux Block Documentation

(continued from previous page)
pid = strtol(argv[optind], NULL, 10);

ioprio = ioprio_get(IOPRIO_WHO_PROCESS, pid);

printf("pid=%d, %d\n", pid, ioprio);

if (ioprio == -1)
perror("ioprio_get");

else {
ioprio_class = ioprio >> IOPRIO_CLASS_SHIFT;
ioprio = ioprio & 0xff;
printf("%s: prio %d\n", to_prio[ioprio_class],␣

↪→ioprio);
}

} else {
if (ioprio_set(IOPRIO_WHO_PROCESS, pid, ioprio | ioprio_

↪→class << IOPRIO_CLASS_SHIFT) == -1) {
perror("ioprio_set");
return 1;

}

if (argv[optind])
execvp(argv[optind], &argv[optind]);

}

return 0;
}

March 11 2005, Jens Axboe <jens.axboe@oracle.com>

60 Chapter 9. Block io priorities

mailto:jens.axboe@oracle.com

CHAPTER

TEN

KYBER I/O SCHEDULER TUNABLES

The only two tunables for the Kyber scheduler are the target latencies for reads
and synchronous writes. Kyber will throttle requests in order to meet these target
latencies.

10.1 read_lat_nsec

Target latency for reads (in nanoseconds).

10.2 write_lat_nsec

Target latency for synchronous writes (in nanoseconds).

61

Linux Block Documentation

62 Chapter 10. Kyber I/O scheduler tunables

CHAPTER

ELEVEN

NULL BLOCK DEVICE DRIVER

11.1 Overview

The null block device (/dev/nullb*) is used for benchmarking the various block-
layer implementations. It emulates a block device of X gigabytes in size. It does
not execute any read/write operation, just mark them as complete in the request
queue. The following instances are possible:

Multi-queue block-layer

• Request-based.

• Configurable submission queues per device.

No block-layer (Known as bio-based)

• Bio-based. IO requests are submitted directly to the device driver.

• Directly accepts bio data structure and returns them.

All of them have a completion queue for each core in the system.

11.2 Module parameters

queue_mode=[0-2]: Default: 2-Multi-queue Selects which block-layer the
module should instantiate with.

0 Bio-based
1 Single-queue (deprecated)
2 Multi-queue

home_node=[0–nr_nodes]: Default: NUMA_NO_NODE Selects what CPU
node the data structures are allocated from.

gb=[Size in GB]: Default: 250GB The size of the device reported to the system.

bs=[Block size (in bytes)]: Default: 512 bytes The block size reported to the
system.

nr_devices=[Number of devices]: Default: 1 Number of block devices instan-
tiated. They are instantiated as /dev/nullb0, etc.

63

Linux Block Documentation

irqmode=[0-2]: Default: 1-Soft-irq The completion mode used for completing
IOs to the block-layer.

0 None.
1 Soft-irq. Uses IPI to complete IOs across CPU nodes. Simulates the

overhead when IOs are issued from another CPU node than the home
the device is connected to.

2 Timer: Waits a specific period (completion_nsec) for each IO before
completion.

completion_nsec=[ns]: Default: 10,000ns Combined with irqmode=2
(timer). The time each completion event must wait.

submit_queues=[1..nr_cpus]: Default: 1 The number of submission queues
attached to the device driver. If unset, it defaults to 1. For multi-queue,
it is ignored when use_per_node_hctx module parameter is 1.

hw_queue_depth=[0..qdepth]: Default: 64 The hardware queue depth of the
device.

11.2.1 Multi-queue specific parameters

use_per_node_hctx=[0/1]: Default: 0 Number of hardware context queues.

0 The number of submit queues are set to the value of the submit_queues
parameter.

1 The multi-queue block layer is instantiated with a hardware dispatch
queue for each CPU node in the system.

no_sched=[0/1]: Default: 0 Enable/disable the io scheduler.

0 nullb* use default blk-mq io scheduler
1 nullb* doesn’t use io scheduler

blocking=[0/1]: Default: 0 Blocking behavior of the request queue.

0 Register as a non-blocking blk-mq driver device.
1 Register as a blocking blk-mq driver device, null_blk will set the

BLK_MQ_F_BLOCKING flag, indicating that it sometimes/always needs
to block in its ->queue_rq() function.

shared_tags=[0/1]: Default: 0 Sharing tags between devices.

0 Tag set is not shared.
1 Tag set shared between devices for blk-mq. Only makes sense with

nr_devices > 1, otherwise there’s no tag set to share.

zoned=[0/1]: Default: 0 Device is a random-access or a zoned block device.

64 Chapter 11. Null block device driver

Linux Block Documentation

0 Block device is exposed as a random-access block device.
1 Block device is exposed as a host-managed zoned block device. Re-

quires CONFIG_BLK_DEV_ZONED.

zone_size=[MB]: Default: 256 Per zone size when exposed as a zoned block
device. Must be a power of two.

zone_nr_conv=[nr_conv]: Default: 0 The number of conventional zones to cre-
ate when block device is zoned. If zone_nr_conv >= nr_zones, it will be re-
duced to nr_zones - 1.

11.2. Module parameters 65

Linux Block Documentation

66 Chapter 11. Null block device driver

CHAPTER

TWELVE

BLOCK LAYER SUPPORT FOR PERSISTENT
RESERVATIONS

The Linux kernel supports a user space interface for simplified Persistent Reserva-
tions which map to block devices that support these (like SCSI). Persistent Reser-
vations allow restricting access to block devices to specific initiators in a shared
storage setup.

This document gives a general overview of the support ioctl commands. For a
more detailed reference please refer the the SCSI Primary Commands standard,
specifically the section on Reservations and the“PERSISTENT RESERVE IN”and
“PERSISTENT RESERVE OUT”commands.
All implementations are expected to ensure the reservations survive a power loss
and cover all connections in a multi path environment. These behaviors are op-
tional in SPC but will be automatically applied by Linux.

12.1 The following types of reservations are supported:

• PR_WRITE_EXCLUSIVE Only the initiator that owns the reservation can
write to the device. Any initiator can read from the device.

• PR_EXCLUSIVE_ACCESS Only the initiator that owns the reservation can
access the device.

• PR_WRITE_EXCLUSIVE_REG_ONLY Only initiators with a registered key
can write to the device, Any initiator can read from the device.

• PR_EXCLUSIVE_ACCESS_REG_ONLY Only initiators with a registered key
can access the device.

• PR_WRITE_EXCLUSIVE_ALL_REGS

Only initiators with a registered key can write to the device, Any
initiator can read from the device. All initiators with a registered
key are considered reservation holders. Please reference the SPC
spec on the meaning of a reservation holder if you want to use this
type.

• PR_EXCLUSIVE_ACCESS_ALL_REGS Only initiators with a registered key
can access the device. All initiators with a registered key are considered
reservation holders. Please reference the SPC spec on the meaning of a
reservation holder if you want to use this type.

67

Linux Block Documentation

12.2 The following ioctl are supported:

12.2.1 1. IOC_PR_REGISTER

This ioctl command registers a new reservation if the new_key argument is non-
null. If no existing reservation exists old_key must be zero, if an existing reserva-
tion should be replaced old_key must contain the old reservation key.

If the new_key argument is 0 it unregisters the existing reservation passed in
old_key.

12.2.2 2. IOC_PR_RESERVE

This ioctl command reserves the device and thus restricts access for other
devices based on the type argument. The key argument must be the ex-
isting reservation key for the device as acquired by the IOC_PR_REGISTER,
IOC_PR_REGISTER_IGNORE, IOC_PR_PREEMPT or IOC_PR_PREEMPT_ABORT
commands.

12.2.3 3. IOC_PR_RELEASE

This ioctl command releases the reservation specified by key and flags and thus
removes any access restriction implied by it.

12.2.4 4. IOC_PR_PREEMPT

This ioctl command releases the existing reservation referred to by old_key and
replaces it with a new reservation of type for the reservation key new_key.

12.2.5 5. IOC_PR_PREEMPT_ABORT

This ioctl command works like IOC_PR_PREEMPT except that it also aborts any
outstanding command sent over a connection identified by old_key.

12.2.6 6. IOC_PR_CLEAR

This ioctl command unregisters both key and any other reservation key registered
with the device and drops any existing reservation.

68 Chapter 12. Block layer support for Persistent Reservations

Linux Block Documentation

12.3 Flags

All the ioctls have a flag field. Currently only one flag is supported:

• PR_FL_IGNORE_KEY Ignore the existing reservation key. This is commonly
supported for IOC_PR_REGISTER, and some implementation may sup-
port the flag for IOC_PR_RESERVE.

For all unknown flags the kernel will return -EOPNOTSUPP.

12.3. Flags 69

Linux Block Documentation

70 Chapter 12. Block layer support for Persistent Reservations

CHAPTER

THIRTEEN

QUEUE SYSFS FILES

This text file will detail the queue files that are located in the sysfs tree for each
block device. Note that stacked devices typically do not export any settings, since
their queue merely functions are a remapping target. These files are the ones
found in the /sys/block/xxx/queue/ directory.

Files denoted with a RO postfix are readonly and the RW postfix means read-write.

13.1 add_random (RW)

This file allows to turn off the disk entropy contribution. Default value of this file
is ‘1’(on).

13.2 chunk_sectors (RO)

This has different meaning depending on the type of the block device. For a RAID
device (dm-raid), chunk_sectors indicates the size in 512B sectors of the RAID vol-
ume stripe segment. For a zoned block device, either host-aware or host-managed,
chunk_sectors indicates the size in 512B sectors of the zones of the device, with
the eventual exception of the last zone of the device which may be smaller.

13.3 dax (RO)

This file indicates whether the device supports Direct Access (DAX), used by CPU-
addressable storage to bypass the pagecache. It shows ‘1’if true, ‘0’if not.

13.4 discard_granularity (RO)

This shows the size of internal allocation of the device in bytes, if reported by the
device. A value of ‘0’means device does not support the discard functionality.

71

Linux Block Documentation

13.5 discard_max_hw_bytes (RO)

Devices that support discard functionality may have internal limits on the num-
ber of bytes that can be trimmed or unmapped in a single operation. The dis-
card_max_bytes parameter is set by the device driver to the maximum number of
bytes that can be discarded in a single operation. Discard requests issued to the
device must not exceed this limit. A discard_max_bytes value of 0 means that the
device does not support discard functionality.

13.6 discard_max_bytes (RW)

While discard_max_hw_bytes is the hardware limit for the device, this setting is
the software limit. Some devices exhibit large latencies when large discards are
issued, setting this value lower will make Linux issue smaller discards and poten-
tially help reduce latencies induced by large discard operations.

13.7 discard_zeroes_data (RO)

Obsolete. Always zero.

13.8 fua (RO)

Whether or not the block driver supports the FUA flag for write requests. FUA
stands for Force Unit Access. If the FUA flag is set that means that write requests
must bypass the volatile cache of the storage device.

13.9 hw_sector_size (RO)

This is the hardware sector size of the device, in bytes.

13.10 io_poll (RW)

When read, this file shows whether polling is enabled (1) or disabled (0). Writing
‘0’to this file will disable polling for this device. Writing any non-zero value will
enable this feature.

72 Chapter 13. Queue sysfs files

Linux Block Documentation

13.11 io_poll_delay (RW)

If polling is enabled, this controls what kind of polling will be performed. It de-
faults to -1, which is classic polling. In this mode, the CPU will repeatedly ask
for completions without giving up any time. If set to 0, a hybrid polling mode is
used, where the kernel will attempt to make an educated guess at when the IO
will complete. Based on this guess, the kernel will put the process issuing IO to
sleep for an amount of time, before entering a classic poll loop. This mode might
be a little slower than pure classic polling, but it will be more efficient. If set to
a value larger than 0, the kernel will put the process issuing IO to sleep for this
amount of microseconds before entering classic polling.

13.12 io_timeout (RW)

io_timeout is the request timeout in milliseconds. If a request does not complete
in this time then the block driver timeout handler is invoked. That timeout handler
can decide to retry the request, to fail it or to start a device recovery strategy.

13.13 iostats (RW)

This file is used to control (on/off) the iostats accounting of the disk.

13.14 logical_block_size (RO)

This is the logical block size of the device, in bytes.

13.15 max_discard_segments (RO)

The maximum number of DMA scatter/gather entries in a discard request.

13.16 max_hw_sectors_kb (RO)

This is the maximum number of kilobytes supported in a single data transfer.

13.11. io_poll_delay (RW) 73

Linux Block Documentation

13.17 max_integrity_segments (RO)

Maximum number of elements in a DMA scatter/gather list with integrity data that
will be submitted by the block layer core to the associated block driver.

13.18 max_sectors_kb (RW)

This is themaximum number of kilobytes that the block layer will allow for a filesys-
tem request. Must be smaller than or equal to the maximum size allowed by the
hardware.

13.19 max_segments (RO)

Maximum number of elements in a DMA scatter/gather list that is submitted to
the associated block driver.

13.20 max_segment_size (RO)

Maximum size in bytes of a single element in a DMA scatter/gather list.

13.21 minimum_io_size (RO)

This is the smallest preferred IO size reported by the device.

13.22 nomerges (RW)

This enables the user to disable the lookup logic involved with IOmerging requests
in the block layer. By default (0) all merges are enabled. When set to 1 only simple
one-hit merges will be tried. When set to 2 no merge algorithms will be tried
(including one-hit or more complex tree/hash lookups).

13.23 nr_requests (RW)

This controls how many requests may be allocated in the block layer for read or
write requests. Note that the total allocated number may be twice this amount,
since it applies only to reads or writes (not the accumulated sum).

To avoid priority inversion through request starvation, a request queuemaintains a
separate request pool per each cgroup when CONFIG_BLK_CGROUP is enabled,
and this parameter applies to each such per-block-cgroup request pool. IOW, if
there are N block cgroups, each request queue may have up to N request pools,
each independently regulated by nr_requests.

74 Chapter 13. Queue sysfs files

Linux Block Documentation

13.24 nr_zones (RO)

For zoned block devices (zoned attribute indicating “host-managed”or “host-
aware”), this indicates the total number of zones of the device. This is always 0
for regular block devices.

13.25 optimal_io_size (RO)

This is the optimal IO size reported by the device.

13.26 physical_block_size (RO)

This is the physical block size of device, in bytes.

13.27 read_ahead_kb (RW)

Maximum number of kilobytes to read-ahead for filesystems on this block device.

13.28 rotational (RW)

This file is used to stat if the device is of rotational type or non-rotational type.

13.29 rq_affinity (RW)

If this option is ‘1’, the block layer will migrate request completions to the cpu
“group”that originally submitted the request. For some workloads this provides
a significant reduction in CPU cycles due to caching effects.

For storage configurations that need to maximize distribution of completion pro-
cessing setting this option to ‘2’forces the completion to run on the requesting
cpu (bypassing the “group”aggregation logic).

13.30 scheduler (RW)

When read, this file will display the current and available IO schedulers for this
block device. The currently active IO scheduler will be enclosed in [] brackets.
Writing an IO scheduler name to this file will switch control of this block device
to that new IO scheduler. Note that writing an IO scheduler name to this file will
attempt to load that IO scheduler module, if it isn’t already present in the system.

13.24. nr_zones (RO) 75

Linux Block Documentation

13.31 write_cache (RW)

When read, this file will display whether the device has write back caching enabled
or not. It will return“write back”for the former case, and“write through”for the
latter. Writing to this file can change the kernels view of the device, but it doesn’
t alter the device state. This means that it might not be safe to toggle the setting
from“write back”to“write through”, since that will also eliminate cache flushes
issued by the kernel.

13.32 write_same_max_bytes (RO)

This is the number of bytes the device can write in a single write-same command.
A value of ‘0’means write-same is not supported by this device.

13.33 wbt_lat_usec (RW)

If the device is registered for writeback throttling, then this file shows the tar-
get minimum read latency. If this latency is exceeded in a given window of time
(see wb_window_usec), then the writeback throttling will start scaling back writes.
Writing a value of‘0’to this file disables the feature. Writing a value of‘-1’to
this file resets the value to the default setting.

13.34 throttle_sample_time (RW)

This is the time window that blk-throttle samples data, in millisecond. blk-throttle
makes decision based on the samplings. Lower time means cgroups have more
smooth throughput, but higher CPU overhead. This exists only when CON-
FIG_BLK_DEV_THROTTLING_LOW is enabled.

13.35 write_zeroes_max_bytes (RO)

For block drivers that support REQ_OP_WRITE_ZEROES, the maximum num-
ber of bytes that can be zeroed at once. The value 0 means that
REQ_OP_WRITE_ZEROES is not supported.

13.36 zoned (RO)

This indicates if the device is a zoned block device and the zone model of the
device if it is indeed zoned. The possible values indicated by zoned are “none”
for regular block devices and “host-aware”or “host-managed”for zoned block
devices. The characteristics of host-aware and host-managed zoned block devices
are described in the ZBC (Zoned Block Commands) and ZAC (Zoned Device ATA
Command Set) standards. These standards also define the“drive-managed”zone
model. However, since drive-managed zoned block devices do not support zone

76 Chapter 13. Queue sysfs files

Linux Block Documentation

commands, they will be treated as regular block devices and zoned will report
“none”.
Jens Axboe <jens.axboe@oracle.com>, February 2009

13.36. zoned (RO) 77

mailto:jens.axboe@oracle.com

Linux Block Documentation

78 Chapter 13. Queue sysfs files

CHAPTER

FOURTEEN

STRUCT REQUEST DOCUMENTATION

Jens Axboe <jens.axboe@oracle.com> 27/05/02

14.1 Short explanation of request members

Classification flags:

D driver member
B block layer member
I I/O scheduler member

Unless an entry contains a D classification, a device driver must not access this
member. Some members may contain D classifications, but should only be access
through certain macros or functions (eg ->flags).

<linux/blkdev.h>

79

mailto:jens.axboe@oracle.com

Linux Block Documentation

Member Flag Comment
struct list_head
queuelist

BI Organization on various internal queues

void
*elevator_private

I I/O scheduler private data

unsigned char
cmd[16]

D Driver can use this for setting up a cdb before exe-
cution, see blk_queue_prep_rq

unsigned long flags DBI Contains info about data direction, request type,
etc.

int rq_status D Request status bits
kdev_t rq_dev DBI Target device
int errors DB Error counts
sector_t sector DBI Target location
unsigned long
hard_nr_sectors

B Used to keep sector sane

unsigned long
nr_sectors

DBI Total number of sectors in request

unsigned long
hard_nr_sectors

B Used to keep nr_sectors sane

unsigned short
nr_phys_segments

DB Number of physical scatter gather segments in a
request

unsigned short
nr_hw_segments

DB Number of hardware scatter gather segments in a
request

unsigned int cur-
rent_nr_sectors

DB Number of sectors in first segment of request

unsigned int
hard_cur_sectors

B Used to keep current_nr_sectors sane

int tag DB TCQ tag, if assigned
void *special D Free to be used by driver
char *buffer D Map of first segment, also see section on bouncing

SECTION
struct completion
*waiting

D Can be used by driver to get signalled on request
completion

struct bio *bio DBI First bio in request
struct bio
*biotail

DBI Last bio in request

struct
request_queue *q

DB Request queue this request belongs to

struct
request_list *rl

B Request list this request came from

80 Chapter 14. struct request documentation

CHAPTER

FIFTEEN

BLOCK LAYER STATISTICS IN /SYS/BLOCK/<DEV>/STAT

This file documents the contents of the /sys/block/<dev>/stat file.

The stat file provides several statistics about the state of block device <dev>.

Q. Why are there multiple statistics in a single file? Doesn’t sysfs normally
contain a single value per file?

A. By having a single file, the kernel can guarantee that the statistics represent
a consistent snapshot of the state of the device. If the statistics were ex-
ported as multiple files containing one statistic each, it would be impossible
to guarantee that a set of readings represent a single point in time.

The stat file consists of a single line of text containing 11 decimal values separated
by whitespace. The fields are summarized in the following table, and described in
more detail below.

81

Linux Block Documentation

Name units description
read I/Os requests number of read I/Os processed
read merges requests number of read I/Os merged with in-queue I/O
read sectors sectors number of sectors read
read ticks millisec-

onds
total wait time for read requests

write I/Os requests number of write I/Os processed
write merges requests number of write I/Os merged with in-queue I/O
write sectors sectors number of sectors written
write ticks millisec-

onds
total wait time for write requests

in_flight requests number of I/Os currently in flight
io_ticks millisec-

onds
total time this block device has been active

time_in_queue millisec-
onds

total wait time for all requests

discard I/Os requests number of discard I/Os processed
discard
merges

requests number of discard I/Os merged with in-queue
I/O

discard sec-
tors

sectors number of sectors discarded

discard ticks millisec-
onds

total wait time for discard requests

flush I/Os requests number of flush I/Os processed
flush ticks millisec-

onds
total wait time for flush requests

15.1 read I/Os, write I/Os, discard I/0s

These values increment when an I/O request completes.

15.2 flush I/Os

These values increment when an flush I/O request completes.

Block layer combines flush requests and executes at most one at a time. This
counts flush requests executed by disk. Not tracked for partitions.

82 Chapter 15. Block layer statistics in /sys/block/<dev>/stat

Linux Block Documentation

15.3 read merges, write merges, discard merges

These values increment when an I/O request is merged with an already-queued
I/O request.

15.4 read sectors, write sectors, discard_sectors

These values count the number of sectors read from, written to, or discarded from
this block device. The“sectors”in question are the standard UNIX 512-byte sec-
tors, not any device- or filesystem-specific block size. The counters are incre-
mented when the I/O completes.

15.5 read ticks, write ticks, discard ticks, flush ticks

These values count the number of milliseconds that I/O requests have waited on
this block device. If there are multiple I/O requests waiting, these values will
increase at a rate greater than 1000/second; for example, if 60 read requests wait
for an average of 30 ms, the read_ticks field will increase by 60*30 = 1800.

15.6 in_flight

This value counts the number of I/O requests that have been issued to the device
driver but have not yet completed. It does not include I/O requests that are in the
queue but not yet issued to the device driver.

15.7 io_ticks

This value counts the number of milliseconds during which the device has had I/O
requests queued.

15.8 time_in_queue

This value counts the number of milliseconds that I/O requests have waited on this
block device. If there are multiple I/O requests waiting, this value will increase as
the product of the number of milliseconds times the number of requests waiting
(see “read ticks”above for an example).

15.3. read merges, write merges, discard merges 83

Linux Block Documentation

84 Chapter 15. Block layer statistics in /sys/block/<dev>/stat

CHAPTER

SIXTEEN

SWITCHING SCHEDULER

Each io queue has a set of io scheduler tunables associated with it. These tunables
control how the io scheduler works. You can find these entries in:

/sys/block/<device>/queue/iosched

assuming that you have sysfs mounted on /sys. If you don’t have sysfs mounted,
you can do so by typing:

mount none /sys -t sysfs

It is possible to change the IO scheduler for a given block device on the fly to
select one of mq-deadline, none, bfq, or kyber schedulers - which can improve
that device’s throughput.
To set a specific scheduler, simply do this:

echo SCHEDNAME > /sys/block/DEV/queue/scheduler

where SCHEDNAME is the name of a defined IO scheduler, and DEV is the device
name (hda, hdb, sga, or whatever you happen to have).

The list of defined schedulers can be found by simply doing a “cat
/sys/block/DEV/queue/scheduler”- the list of valid names will be displayed, with
the currently selected scheduler in brackets:

cat /sys/block/sda/queue/scheduler
[mq-deadline] kyber bfq none
echo none >/sys/block/sda/queue/scheduler
cat /sys/block/sda/queue/scheduler
[none] mq-deadline kyber bfq

85

Linux Block Documentation

86 Chapter 16. Switching Scheduler

CHAPTER

SEVENTEEN

EXPLICIT VOLATILE WRITE BACK CACHE CONTROL

17.1 Introduction

Many storage devices, especially in the consumer market, come with volatile write
back caches. That means the devices signal I/O completion to the operating sys-
tem before data actually has hit the non-volatile storage. This behavior obviously
speeds up various workloads, but it means the operating system needs to force
data out to the non-volatile storage when it performs a data integrity operation
like fsync, sync or an unmount.

The Linux block layer provides two simple mechanisms that let filesystems control
the caching behavior of the storage device. These mechanisms are a forced cache
flush, and the Force Unit Access (FUA) flag for requests.

17.2 Explicit cache flushes

The REQ_PREFLUSH flag can be OR ed into the r/w flags of a bio submitted from
the filesystem and will make sure the volatile cache of the storage device has been
flushed before the actual I/O operation is started. This explicitly guarantees that
previously completed write requests are on non-volatile storage before the flagged
bio starts. In addition the REQ_PREFLUSH flag can be set on an otherwise empty
bio structure, which causes only an explicit cache flush without any dependent I/O.
It is recommend to use the blkdev_issue_flush() helper for a pure cache flush.

17.3 Forced Unit Access

The REQ_FUA flag can be OR ed into the r/w flags of a bio submitted from the
filesystem and will make sure that I/O completion for this request is only signaled
after the data has been committed to non-volatile storage.

87

Linux Block Documentation

17.4 Implementation details for filesystems

Filesystems can simply set the REQ_PREFLUSH and REQ_FUA bits and do not
have to worry if the underlying devices need any explicit cache flushing and how
the Forced Unit Access is implemented. The REQ_PREFLUSH and REQ_FUA flags
may both be set on a single bio.

17.5 Implementation details for make_request_fn based
block drivers

These drivers will always see the REQ_PREFLUSH and REQ_FUA bits as they sit
directly below the submit_bio interface. For remapping drivers the REQ_FUA bits
need to be propagated to underlying devices, and a global flush needs to be imple-
mented for bios with the REQ_PREFLUSH bit set. For real device drivers that do
not have a volatile cache the REQ_PREFLUSH and REQ_FUA bits on non-empty
bios can simply be ignored, and REQ_PREFLUSH requests without data can be
completed successfully without doing any work. Drivers for devices with volatile
caches need to implement the support for these flags themselves without any help
from the block layer.

17.6 Implementation details for request_fn based block
drivers

For devices that do not support volatile write caches there is no driver support re-
quired, the block layer completes empty REQ_PREFLUSH requests before enter-
ing the driver and strips off the REQ_PREFLUSH and REQ_FUA bits from requests
that have a payload. For devices with volatile write caches the driver needs to tell
the block layer that it supports flushing caches by doing:

blk_queue_write_cache(sdkp->disk->queue, true, false);

and handle empty REQ_OP_FLUSH requests in its prep_fn/request_fn. Note that
REQ_PREFLUSH requests with a payload are automatically turned into a sequence
of an empty REQ_OP_FLUSH request followed by the actual write by the block
layer. For devices that also support the FUA bit the block layer needs to be told to
pass through the REQ_FUA bit using:

blk_queue_write_cache(sdkp->disk->queue, true, true);

and the driver must handle write requests that have the REQ_FUA bit set in
prep_fn/request_fn. If the FUA bit is not natively supported the block layer turns
it into an empty REQ_OP_FLUSH request after the actual write.

88 Chapter 17. Explicit volatile write back cache control

