
Linux Arm64 Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

ACPI TABLES

The expectations of individual ACPI tables are discussed in the list that follows.

If a section number is used, it refers to a section number in the ACPI specification
where the object is defined. If“Signature Reserved”is used, the table signature
(the first four bytes of the table) is the only portion of the table recognized by
the specification, and the actual table is defined outside of the UEFI Forum (see
Section 5.2.6 of the specification).

For ACPI on arm64, tables also fall into the following categories:

• Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT

• Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT

• Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
MCHI, MPST, MSCT, NFIT, PMTT, RASF, SBST, SLIT, SPMI, SRAT, STAO,
TCPA, TPM2, UEFI, XENV

• Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT, MSDM,
OEMx, PSDT, RSDT, SLIC, WAET, WDAT, WDRT, WPBT

Table Usage for ARMv8 Linux
BERT Section 18.3 (signature == “BERT”)

Boot Error Record Table
Must be supplied if RAS support is pro-
vided by the platform. It is recom-
mended this table be supplied.

BOOT Signature Reserved (signature ==
“BOOT”)
simple BOOT flag table
Microsoft only table, will not be sup-
ported.

BGRT Section 5.2.22 (signature == “BGRT”
)
Boot Graphics Resource Table
Optional, not currently supported,
with no real use-case for an ARM
server.

Continued on next page

1

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
CPEP Section 5.2.18 (signature == “CPEP”

)
Corrected Platform Error Polling
table
Optional, not currently supported, and
not recommended until such time as
ARM-compatible hardware is avail-
able, and the specification suitably
modified.

CSRT Signature Reserved (signature ==
“CSRT”)
Core System Resources Table
Optional, not currently supported.

DBG2 Signature Reserved (signature ==
“DBG2”)
DeBuG port table 2
License has changed and should be us-
able. Optional if used instead of early-
con=<device> on the command line.

DBGP Signature Reserved (signature ==
“DBGP”)
DeBuG Port table
Microsoft only table, will not be sup-
ported.

DSDT Section 5.2.11.1 (signature ==“DSDT”
)
Differentiated System Description
Table
A DSDT is required; see also SSDT.
ACPI tables contain only one DSDT
but can contain one or more SSDTs,
which are optional. Each SSDT can
only add to the ACPI namespace, but
cannot modify or replace anything in
the DSDT.

DMAR Signature Reserved (signature ==
“DMAR”)
DMA Remapping table
x86 only table, will not be supported.

DRTM Signature Reserved (signature ==
“DRTM”)
Dynamic Root of Trust for Mea-
surement table
Optional, not currently supported.

Continued on next page

2 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
ECDT Section 5.2.16 (signature == “ECDT”

)
Embedded Controller Description
Table
Optional, not currently supported, but
could be used on ARM if and only if
one uses the GPE_BIT field to repre-
sent an IRQ number, since there are
no GPE blocks defined in hardware re-
duced mode. This would need to be
modified in the ACPI specification.

EINJ Section 18.6 (signature == “EINJ”)
Error Injection table
This table is very useful for testing
platform response to error conditions;
it allows one to inject an error into
the system as if it had actually oc-
curred. However, this table should not
be shipped with a production system; it
should be dynamically loaded and exe-
cuted with the ACPICA tools only dur-
ing testing.

ERST Section 18.5 (signature == “ERST”)
Error Record Serialization Table
On a platform supports RAS, this ta-
ble must be supplied if it is not UEFI-
based; if it is UEFI-based, this table
may be supplied. When this table is not
present, UEFI run time service will be
utilized to save and retrieve hardware
error information to and from a persis-
tent store.

ETDT Signature Reserved (signature ==
“ETDT”)
Event Timer Description Table
Obsolete table, will not be supported.

FACS Section 5.2.10 (signature == “FACS”
)
Firmware ACPI Control Structure
It is unlikely that this table will be terri-
bly useful. If it is provided, the Global
Lock will NOT be used since it is not
part of the hardware reduced profile,
and only 64-bit address fields will be
considered valid.

Continued on next page

3

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
FADT Section 5.2.9 (signature ==“FACP”)

Fixed ACPI Description Table Re-
quired for arm64.
The HW_REDUCED_ACPI flag must be
set. All of the fields that are to be
ignored when HW_REDUCED_ACPI is
set are expected to be set to zero.
If an FACS table is provided, the
X_FIRMWARE_CTRL field is to be
used, not FIRMWARE_CTRL.
If PSCI is used (as is recommended),
make sure that ARM_BOOT_ARCH
is filled in properly - that the
PSCI_COMPLIANT flag is set and
that PSCI_USE_HVC is set or unset as
needed (see table 5-37).
For the DSDT that is also required, the
X_DSDT field is to be used, not the
DSDT field.

FPDT Section 5.2.23 (signature == “FPDT”
)
Firmware Performance Data Table
Optional, not currently supported.

GTDT Section 5.2.24 (signature == “GTDT”
)
Generic Timer Description Table
Required for arm64.

HEST Section 18.3.2 (signature == “HEST”
)
Hardware Error Source Table
ARM-specific error sources have been
defined; please use those or the PCI
types such as type 6 (AER Root Port),
7 (AER Endpoint), or 8 (AER Bridge),
or use type 9 (Generic Hardware Er-
ror Source). Firmware first error han-
dling is possible if and only if Trusted
Firmware is being used on arm64.
Must be supplied if RAS support is pro-
vided by the platform. It is recom-
mended this table be supplied.

HPET Signature Reserved (signature ==
“HPET”)
High Precision Event timer Table
x86 only table, will not be supported.

Continued on next page

4 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
IBFT Signature Reserved (signature ==

“IBFT”)
iSCSI Boot Firmware Table
Microsoft defined table, support TBD.

IORT Signature Reserved (signature ==
“IORT”)
Input Output Remapping Table
arm64 only table, required in order
to describe IO topology, SMMUs, and
GIC ITSs, and how those various com-
ponents are connected together, such
as identifying which components are
behind which SMMUs/ITSs. This table
will only be required on certain SBSA
platforms (e.g., when using GICv3-ITS
and an SMMU); on SBSA Level 0 plat-
forms, it remains optional.

IVRS Signature Reserved (signature ==
“IVRS”)
I/O Virtualization Reporting Struc-
ture
x86_64 (AMD) only table, will not be
supported.

LPIT Signature Reserved (signature ==
“LPIT”)
Low Power Idle Table
x86 only table as of ACPI 5.1; start-
ing with ACPI 6.0, processor descrip-
tions and power states on ARM plat-
forms should use the DSDT and de-
fine processor container devices (_HID
ACPI0010, Section 8.4, and more
specifically 8.4.3 and and 8.4.4).

MADT Section 5.2.12 (signature ==“APIC”)
Multiple APIC Description Table
Required for arm64. Only the GIC in-
terrupt controller structures should be
used (types 0xA - 0xF).

MCFG Signature Reserved (signature ==
“MCFG”)
Memory-mapped ConFiGuration
space
If the platform supports PCI/PCIe, an
MCFG table is required.

Continued on next page

5

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
MCHI Signature Reserved (signature ==

“MCHI”)
Management Controller Host In-
terface table
Optional, not currently supported.

MPST Section 5.2.21 (signature ==“MPST”
)
Memory Power State Table
Optional, not currently supported.

MSCT Section 5.2.19 (signature ==“MSCT”
)
Maximum System Characteristic
Table
Optional, not currently supported.

MSDM Signature Reserved (signature ==
“MSDM”)
Microsoft Data Management table
Microsoft only table, will not be sup-
ported.

NFIT Section 5.2.25 (signature ==“NFIT”)
NVDIMM Firmware Interface Table
Optional, not currently supported.

OEMx Signature of “OEMx”only
OEM Specific Tables
All tables starting with a signature
of “OEM”are reserved for OEM use.
Since these are not meant to be of gen-
eral use but are limited to very specific
end users, they are not recommended
for use and are not supported by the
kernel for arm64.

PCCT Section 14.1 (signature == “PCCT)
Platform Communications Channel
Table
Recommend for use on arm64; use
of PCC is recommended when us-
ing CPPC to control performance and
power for platform processors.

PMTT Section 5.2.21.12 (signature ==
“PMTT”)
Platform Memory Topology Table
Optional, not currently supported.

PSDT Section 5.2.11.3 (signature ==“PSDT”
)
Persistent System Description Ta-
ble
Obsolete table, will not be supported.

Continued on next page

6 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
RASF Section 5.2.20 (signature == “RASF”

)
RAS Feature table
Optional, not currently supported.

RSDP Section 5.2.5 (signature ==“RSD PTR”
)
Root System Description PoinTeR
Required for arm64.

RSDT Section 5.2.7 (signature ==“RSDT”)
Root System Description Table
Since this table can only provide 32-bit
addresses, it is deprecated on arm64,
and will not be used. If provided, it will
be ignored.

SBST Section 5.2.14 (signature == “SBST”
)
Smart Battery Subsystem Table
Optional, not currently supported.

SLIC Signature Reserved (signature ==
“SLIC”)
Software LIcensing table
Microsoft only table, will not be sup-
ported.

SLIT Section 5.2.17 (signature ==“SLIT”)
System Locality distance Informa-
tion Table
Optional in general, but required for
NUMA systems.

SPCR Signature Reserved (signature ==
“SPCR”)
Serial Port Console Redirection ta-
ble
Required for arm64.

SPMI Signature Reserved (signature ==
“SPMI”)
Server Platform Management In-
terface table
Optional, not currently supported.

SRAT Section 5.2.16 (signature == “SRAT”
)
System Resource Affinity Table
Optional, but if used, only the GICC
Affinity structures are read. To support
arm64 NUMA, this table is required.

Continued on next page

7

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
SSDT Section 5.2.11.2 (signature ==“SSDT”

)
Secondary System Description Ta-
ble
These tables are a continuation of the
DSDT; these are recommended for use
with devices that can be added to a
running system, but can also serve the
purpose of dividing up device descrip-
tions into more manageable pieces.
An SSDT can only ADD to the ACPI
namespace. It cannot modify or re-
place existing device descriptions al-
ready in the namespace.
These tables are optional, however.
ACPI tables should contain only one
DSDT but can contain many SSDTs.

STAO Signature Reserved (signature ==
“STAO”)
_STA Override table
Optional, but only necessary in virtual-
ized environments in order to hide de-
vices from guest OSs.

TCPA Signature Reserved (signature ==
“TCPA”)
Trusted Computing Platform Al-
liance table
Optional, not currently supported, and
may need changes to fully interoperate
with arm64.

TPM2 Signature Reserved (signature ==
“TPM2”)
Trusted Platform Module 2 table
Optional, not currently supported, and
may need changes to fully interoperate
with arm64.

UEFI Signature Reserved (signature ==
“UEFI”)
UEFI ACPI data table
Optional, not currently supported. No
known use case for arm64, at present.

WAET Signature Reserved (signature ==
“WAET”)
Windows ACPI Emulated devices
Table
Microsoft only table, will not be sup-
ported.

Continued on next page

8 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 1 – continued from previous page
Table Usage for ARMv8 Linux
WDAT Signature Reserved (signature ==

“WDAT”)
Watch Dog Action Table
Microsoft only table, will not be sup-
ported.

WDRT Signature Reserved (signature ==
“WDRT”)
Watch Dog Resource Table
Microsoft only table, will not be sup-
ported.

WPBT Signature Reserved (signature ==
“WPBT”)
Windows Platform Binary Table
Microsoft only table, will not be sup-
ported.

XENV Signature Reserved (signature ==
“XENV”)
Xen project table
Optional, used only by Xen at present.

XSDT Section 5.2.8 (signature ==“XSDT”)
eXtended SystemDescription Table
Required for arm64.

1.1 ACPI Objects

The expectations on individual ACPI objects that are likely to be used are shown
in the list that follows; any object not explicitly mentioned below should be used
as needed for a particular platform or particular subsystem, such as power man-
agement or PCI.

1.1. ACPI Objects 9

Linux Arm64 Documentation

Name Section Usage for ARMv8 Linux
_CCA 6.2.17 This method must be de-

fined for all bus masters
on arm64 - there are no
assumptions made about
whether such devices
are cache coherent or
not. The _CCA value is
inherited by all descen-
dants of these devices
so it does not need to be
repeated. Without _CCA
on arm64, the kernel
does not know what to
do about setting up DMA
for the device.
NB: thismethod provides
default cache coherency
attributes; the presence
of an SMMU can be
used to modify that,
however. For example,
a master could default
to non-coherent, but
be made coherent with
the appropriate SMMU
configuration (see Table
17 of the IORT specifi-
cation, ARM Document
DEN 0049B).

_CID 6.1.2 Use as needed, see also
_HID.

_CLS 6.1.3 Use as needed, see also
_HID.

_CPC 8.4.7.1 Use as needed, power
management specific.
CPPC is recommended
on arm64.

_CRS 6.2.2 Required on arm64.
_CSD 8.4.2.2 Use as needed, used only

in conjunction with _CST.
_CST 8.4.2.1 Low power idle states

(8.4.4) are recom-
mended instead of
C-states.
Continued on next page

10 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 2 – continued from previous page
Name Section Usage for ARMv8 Linux
_DDN 6.1.4 This field can be used for

a device name. How-
ever, it is meant for
DOS device names (e.g.,
COM1), so be careful of
its use across OSes.

_DSD 6.2.5 To be used with caution.
If this object is used, try
to use it within the con-
straints already defined
by the Device Proper-
ties UUID. Only in rare
circumstances should it
be necessary to create a
new _DSD UUID.
In either case, submit
the _DSD definition
along with any driver
patches for discussion,
especially when device
properties are used.
A driver will not be
considered complete
without a correspond-
ing _DSD description.
Once approved by kernel
maintainers, the UUID
or device properties
must then be registered
with the UEFI Forum;
this may cause some it-
eration as more than one
OS will be registering
entries.

_DSM 9.1.1 Do not use this method.
It is not standardized,
the return values are not
well documented, and it
is currently a frequent
source of error.

_GL 5.7.1 This object is not to
be used in hardware re-
duced mode, and there-
fore should not be used
on arm64.
Continued on next page

1.1. ACPI Objects 11

Linux Arm64 Documentation

Table 2 – continued from previous page
Name Section Usage for ARMv8 Linux
_GLK 6.5.7 This object requires a

global lock be defined;
there is no global lock
on arm64 since it runs in
hardware reduced mode.
Hence, do not use this
object on arm64.

_GPE 5.3.1 This namespace is for
x86 use only. Do not use
it on arm64.

_HID 6.1.5 This is the primary object
to use in device probing,
though _CID and _CLS
may also be used.

_INI 6.5.1 Not required, but can be
useful in setting up de-
vices when UEFI leaves
them in a state that may
not be what the driver
expects before it starts
probing.

_LPI 8.4.4.3 Recommended for use
with processor defini-
tions (_HID ACPI0010)
on arm64. See also _RDI.

_MLS 6.1.7 Highly recommended for
use in internationaliza-
tion.

_OFF 7.2.2 It is recommended to de-
fine this method for any
device that can be turned
on or off.

_ON 7.2.3 It is recommended to de-
fine this method for any
device that can be turned
on or off.

_OS 5.7.3 This method will re-
turn “Linux”by default
(this is the value of the
macro ACPI_OS_NAME
on Linux). The com-
mand line parameter
acpi_os=<string> can
be used to set it to some
other value.
Continued on next page

12 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 2 – continued from previous page
Name Section Usage for ARMv8 Linux
_OSC 6.2.11 This method can be a

global method in ACPI
(i.e., _SB._OSC), or it
may be associated with
a specific device (e.g.,
_SB.DEV0._OSC), or
both. When used as
a global method, only
capabilities published
in the ACPI specifica-
tion are allowed. When
used as a device-specific
method, the process de-
scribed for using _DSD
MUST be used to create
an _OSC definition; out-
of-process use of _OSC is
not allowed. That is, sub-
mit the device-specific
_OSC usage description
as part of the kernel
driver submission, get it
approved by the kernel
community, then reg-
ister it with the UEFI
Forum.

_OSI 5.7.2 Deprecated on ARM64.
As far as ACPI firmware
is concerned, _OSI is not
to be used to determine
what sort of system is be-
ing used or what func-
tionality is provided. The
_OSC method is to be
used instead.

_PDC 8.4.1 Deprecated, do not use
on arm64.

_PIC 5.8.1 The method should not
be used. On arm64,
the only interrupt model
available is GIC.

_PR 5.3.1 This namespace is for
x86 use only on legacy
systems. Do not use it on
arm64.

_PRT 6.2.13 Required as part of the
definition of all PCI root
devices.
Continued on next page

1.1. ACPI Objects 13

Linux Arm64 Documentation

Table 2 – continued from previous page
Name Section Usage for ARMv8 Linux
_PRx 7.3.8-11 Use as needed; power

management specific. If
_PR0 is defined, _PR3
must also be defined.

_PSx 7.3.2-5 Use as needed; power
management specific. If
_PS0 is defined, _PS3
must also be defined. If
clocks or regulators need
adjusting to be consis-
tent with power usage,
change them in these
methods.

_RDI 8.4.4.4 Recommended for use
with processor defini-
tions (_HID ACPI0010)
on arm64. This should
only be used in conjunc-
tion with _LPI.

_REV 5.7.4 Always returns the lat-
est version of ACPI sup-
ported.

_SB 5.3.1 Required on arm64; all
devices must be defined
in this namespace.

_SLI 6.2.15 Use is recommended
when SLIT table is in
use.

_STA 6.3.7, 7.2.4 It is recommended to de-
fine this method for any
device that can be turned
on or off. See also
the STAO table that pro-
vides overrides to hide
devices in virtualized en-
vironments.

_SRS 6.2.16 Use as needed; see also
_PRS.

_STR 6.1.10 Recommended for con-
veying device names to
end users; this is pre-
ferred over using _DDN.

_SUB 6.1.9 Use as needed; _HID or
_CID are preferred.

_SUN 6.1.11 Use as needed, but rec-
ommended.
Continued on next page

14 Chapter 1. ACPI Tables

Linux Arm64 Documentation

Table 2 – continued from previous page
Name Section Usage for ARMv8 Linux
_SWS 7.4.3 Use as needed; power

management specific;
this may require speci-
fication changes for use
on arm64.

_UID 6.1.12 Recommended for distin-
guishing devices of the
same class; define it if at
all possible.

1.2 ACPI Event Model

Do not use GPE block devices; these are not supported in the hardware reduced
profile used by arm64. Since there are no GPE blocks defined for use on ARM
platforms, ACPI events must be signaled differently.

There are two options: GPIO-signaled interrupts (Section 5.6.5), and interrupt-
signaled events (Section 5.6.9). Interrupt-signaled events are a new feature in
the ACPI 6.1 specification. Either - or both - can be used on a given platform,
and which to use may be dependent of limitations in any given SoC. If possible,
interrupt-signaled events are recommended.

1.3 ACPI Processor Control

Section 8 of the ACPI specification changed significantly in version 6.0. Proces-
sors should now be defined as Device objects with _HID ACPI0007; do not use the
deprecated Processor statement in ASL. All multiprocessor systems should also
define a hierarchy of processors, done with Processor Container Devices (see Sec-
tion 8.4.3.1, _HID ACPI0010); do not use processor aggregator devices (Section
8.5) to describe processor topology. Section 8.4 of the specification describes the
semantics of these object definitions and how they interrelate.

Most importantly, the processor hierarchy defined also defines the low power idle
states that are available to the platform, alongwith the rules for determining which
processors can be turned on or off and the circumstances that control that. With-
out this information, the processors will run in whatever power state they were
left in by UEFI.

Note too, that the processor Device objects defined and the entries in the MADT
for GICs are expected to be in synchronization. The _UID of the Device object must
correspond to processor IDs used in the MADT.

It is recommended that CPPC (8.4.5) be used as the primary model for processor
performance control on arm64. C-states and P-states may become available at
some point in the future, but most current design work appears to favor CPPC.

Further, it is essential that the ARMv8 SoC provide a fully functional implementa-
tion of PSCI; this will be the only mechanism supported by ACPI to control CPU

1.2. ACPI Event Model 15

Linux Arm64 Documentation

power state. Booting of secondary CPUs using the ACPI parking protocol is possi-
ble, but discouraged, since only PSCI is supported for ARM servers.

1.4 ACPI System Address Map Interfaces

In Section 15 of the ACPI specification, several methods are mentioned as possible
mechanisms for conveyingmemory resource information to the kernel. For arm64,
wewill only support UEFI for booting with ACPI, hence the UEFI GetMemoryMap()
boot service is the only mechanism that will be used.

1.5 ACPI Platform Error Interfaces (APEI)

The APEI tables supported are described above.

APEI requires the equivalent of an SCI and an NMI on ARMv8. The SCI is used to
notify the OSPM of errors that have occurred but can be corrected and the system
can continue correct operation, even if possibly degraded. The NMI is used to
indicate fatal errors that cannot be corrected, and require immediate attention.

Since there is no direct equivalent of the x86 SCI or NMI, arm64 handles these
slightly differently. The SCI is handled as a high priority interrupt; given that these
are corrected (or correctable) errors being reported, this is sufficient. The NMI
is emulated as the highest priority interrupt possible. This implies some caution
must be used since there could be interrupts at higher privilege levels or even
interrupts at the same priority as the emulated NMI. In Linux, this should not be
the case but one should be aware it could happen.

1.6 ACPI Objects Not Supported on ARM64

While this may change in the future, there are several classes of objects that can
be defined, but are not currently of general interest to ARM servers. Some of
these objects have x86 equivalents, and may actually make sense in ARM servers.
However, there is either no hardware available at present, or there may not even
be a non-ARM implementation yet. Hence, they are not currently supported.

The following classes of objects are not supported:

• Section 9.2: ambient light sensor devices

• Section 9.3: battery devices

• Section 9.4: lids (e.g., laptop lids)

• Section 9.8.2: IDE controllers

• Section 9.9: floppy controllers

• Section 9.10: GPE block devices

• Section 9.15: PC/AT RTC/CMOS devices

• Section 9.16: user presence detection devices

16 Chapter 1. ACPI Tables

Linux Arm64 Documentation

• Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT

• Section 9.18: time and alarm devices (see 9.15)

• Section 10: power source and power meter devices

• Section 11: thermal management

• Section 12: embedded controllers interface

• Section 13: SMBus interfaces

This also means that there is no support for the following objects:

Name Section Name Section
_ALC 9.3.4 _FDM 9.10.3
_ALI 9.3.2 _FIX 6.2.7
_ALP 9.3.6 _GAI 10.4.5
_ALR 9.3.5 _GHL 10.4.7
_ALT 9.3.3 _GTM 9.9.2.1.1
_BCT 10.2.2.10 _LID 9.5.1
_BDN 6.5.3 _PAI 10.4.4
_BIF 10.2.2.1 _PCL 10.3.2
_BIX 10.2.2.1 _PIF 10.3.3
_BLT 9.2.3 _PMC 10.4.1
_BMA 10.2.2.4 _PMD 10.4.8
_BMC 10.2.2.12 _PMM 10.4.3
_BMD 10.2.2.11 _PRL 10.3.4
_BMS 10.2.2.5 _PSR 10.3.1
_BST 10.2.2.6 _PTP 10.4.2
_BTH 10.2.2.7 _SBS 10.1.3
_BTM 10.2.2.9 _SHL 10.4.6
_BTP 10.2.2.8 _STM 9.9.2.1.1
_DCK 6.5.2 _UPD 9.16.1
_EC 12.12 _UPP 9.16.2
_FDE 9.10.1 _WPC 10.5.2
_FDI 9.10.2 _WPP 10.5.3

1.6. ACPI Objects Not Supported on ARM64 17

Linux Arm64 Documentation

18 Chapter 1. ACPI Tables

CHAPTER

TWO

ACTIVITY MONITORS UNIT (AMU) EXTENSION IN
AARCH64 LINUX

Author: Ionela Voinescu <ionela.voinescu@arm.com>

Date: 2019-09-10

This document briefly describes the provision of Activity Monitors Unit support in
AArch64 Linux.

2.1 Architecture overview

The activity monitors extension is an optional extension introduced by the
ARMv8.4 CPU architecture.

The activity monitors unit, implemented in each CPU, provides performance coun-
ters intended for system management use. The AMU extension provides a system
register interface to the counter registers and also supports an optional external
memory-mapped interface.

Version 1 of the Activity Monitors architecture implements a counter group of four
fixed and architecturally defined 64-bit event counters.

• CPU cycle counter: increments at the frequency of the CPU.

• Constant counter: increments at the fixed frequency of the system clock.

• Instructions retired: increments with every architecturally executed instruc-
tion.

• Memory stall cycles: counts instruction dispatch stall cycles caused bymisses
in the last level cache within the clock domain.

When in WFI or WFE these counters do not increment.

The Activity Monitors architecture provides space for up to 16 architected event
counters. Future versions of the architecture may use this space to implement
additional architected event counters.

Additionally, version 1 implements a counter group of up to 16 auxiliary 64-bit
event counters.

On cold reset all counters reset to 0.

19

mailto:ionela.voinescu@arm.com

Linux Arm64 Documentation

2.2 Basic support

The kernel can safely run a mix of CPUs with and without support for the activ-
ity monitors extension. Therefore, when CONFIG_ARM64_AMU_EXTN is selected
we unconditionally enable the capability to allow any late CPU (secondary or hot-
plugged) to detect and use the feature.

When the feature is detected on a CPU, we flag the availability of the feature but
this does not guarantee the correct functionality of the counters, only the presence
of the extension.

Firmware (code running at higher exception levels, e.g. arm-tf) support is needed
to:

• Enable access for lower exception levels (EL2 and EL1) to the AMU registers.

• Enable the counters. If not enabled these will read as 0.

• Save/restore the counters before/after the CPU is being put/brought up from
the ‘off’power state.

When using kernels that have this feature enabled but boot with broken firmware
the user may experience panics or lockups when accessing the counter registers.
Even if these symptoms are not observed, the values returned by the register reads
might not correctly reflect reality. Most commonly, the counters will read as 0,
indicating that they are not enabled.

If proper support is not provided in firmware it’s best to disable CON-
FIG_ARM64_AMU_EXTN. To be noted that for security reasons, this does not by-
pass the setting of AMUSERENR_EL0 to trap accesses from EL0 (userspace) to
EL1 (kernel). Therefore, firmware should still ensure accesses to AMU registers
are not trapped in EL2/EL3.

The fixed counters of AMUv1 are accessible though the following system register
definitions:

• SYS_AMEVCNTR0_CORE_EL0

• SYS_AMEVCNTR0_CONST_EL0

• SYS_AMEVCNTR0_INST_RET_EL0

• SYS_AMEVCNTR0_MEM_STALL_EL0

Auxiliary platform specific counters can be accessed using
SYS_AMEVCNTR1_EL0(n), where n is a value between 0 and 15.

Details can be found in: arch/arm64/include/asm/sysreg.h.

20 Chapter 2. Activity Monitors Unit (AMU) extension in AArch64 Linux

Linux Arm64 Documentation

2.3 Userspace access

Currently, access from userspace to the AMU registers is disabled due to:

• Security reasons: they might expose information about code executed in se-
cure mode.

• Purpose: AMU counters are intended for system management use.

Also, the presence of the feature is not visible to userspace.

2.4 Virtualization

Currently, access from userspace (EL0) and kernelspace (EL1) on the KVM guest
side is disabled due to:

• Security reasons: they might expose information about code executed by
other guests or the host.

Any attempt to access the AMU registers will result in an UNDEFINED exception
being injected into the guest.

2.3. Userspace access 21

Linux Arm64 Documentation

22 Chapter 2. Activity Monitors Unit (AMU) extension in AArch64 Linux

CHAPTER

THREE

ACPI ON ARMV8 SERVERS

ACPI can be used for ARMv8 general purpose servers designed to follow the ARM
SBSA (Server Base System Architecture) [0] and SBBR (Server Base Boot Require-
ments) [1] specifications. Please note that the SBBR can be retrieved simply by
visiting [1], but the SBSA is currently only available to those with an ARM login
due to ARM IP licensing concerns.

The ARMv8 kernel implements the reduced hardware model of ACPI version 5.1
or later. Links to the specification and all external documents it refers to are
managed by the UEFI Forum. The specification is available at http://www.uefi.
org/specifications and documents referenced by the specification can be found via
http://www.uefi.org/acpi.

If an ARMv8 system does not meet the requirements of the SBSA and SBBR, or
cannot be described using the mechanisms defined in the required ACPI specifi-
cations, then ACPI may not be a good fit for the hardware.

While the documents mentioned above set out the requirements for building
industry-standard ARMv8 servers, they also apply to more than one operating sys-
tem. The purpose of this document is to describe the interaction between ACPI
and Linux only, on an ARMv8 system – that is, what Linux expects of ACPI and
what ACPI can expect of Linux.

3.1 Why ACPI on ARM?

Before examining the details of the interface between ACPI and Linux, it is useful
to understand why ACPI is being used. Several technologies already exist in Linux
for describing non-enumerable hardware, after all. In this section we summarize a
blog post [2] from Grant Likely that outlines the reasoning behind ACPI on ARMv8
servers. Actually, we snitch a good portion of the summary text almost directly, to
be honest.

The short form of the rationale for ACPI on ARM is:

• ACPI’s byte code (AML) allows the platform to encode hardware behavior,
while DT explicitly does not support this. For hardware vendors, being able
to encode behavior is a key tool used in supporting operating system releases
on new hardware.

• ACPI’s OSPM defines a power management model that constrains what the
platform is allowed to do into a specific model, while still providing flexibility
in hardware design.

23

http://www.uefi.org/specifications
http://www.uefi.org/specifications
http://www.uefi.org/acpi

Linux Arm64 Documentation

• In the enterprise server environment, ACPI has established bindings (such as
for RAS) which are currently used in production systems. DT does not. Such
bindings could be defined in DT at some point, but doing so means ARM and
x86 would end up using completely different code paths in both firmware and
the kernel.

• Choosing a single interface to describe the abstraction between a platform
and an OS is important. Hardware vendors would not be required to imple-
ment both DT and ACPI if they want to support multiple operating systems.
And, agreeing on a single interface instead of being fragmented into per OS
interfaces makes for better interoperability overall.

• The new ACPI governance process works well and Linux is now at the same
table as hardware vendors and other OS vendors. In fact, there is no longer
any reason to feel that ACPI only belongs to Windows or that Linux is in any
way secondary to Microsoft in this arena. The move of ACPI governance into
the UEFI forum has significantly opened up the specification development
process, and currently, a large portion of the changes being made to ACPI
are being driven by Linux.

Key to the use of ACPI is the support model. For servers in general, the responsi-
bility for hardware behaviour cannot solely be the domain of the kernel, but rather
must be split between the platform and the kernel, in order to allow for orderly
change over time. ACPI frees the OS from needing to understand all the minute
details of the hardware so that the OS doesn’t need to be ported to each and ev-
ery device individually. It allows the hardware vendors to take responsibility for
power management behaviour without depending on an OS release cycle which is
not under their control.

ACPI is also important because hardware and OS vendors have already worked
out the mechanisms for supporting a general purpose computing ecosystem. The
infrastructure is in place, the bindings are in place, and the processes are in place.
DT does exactly what Linux needs it to when working with vertically integrated
devices, but there are no good processes for supporting what the server vendors
need. Linux could potentially get there with DT, but doing so really just duplicates
something that already works. ACPI already does what the hardware vendors
need, Microsoft won’t collaborate on DT, and hardware vendors would still end
up providing two completely separate firmware interfaces – one for Linux and one
for Windows.

3.2 Kernel Compatibility

One of the primary motivations for ACPI is standardization, and using that to pro-
vide backward compatibility for Linux kernels. In the server market, software and
hardware are often used for long periods. ACPI allows the kernel and firmware
to agree on a consistent abstraction that can be maintained over time, even as
hardware or software change. As long as the abstraction is supported, systems
can be updated without necessarily having to replace the kernel.

When a Linux driver or subsystem is first implemented using ACPI, it by defini-
tion ends up requiring a specific version of the ACPI specification – it’s baseline.
ACPI firmware must continue to work, even though it may not be optimal, with

24 Chapter 3. ACPI on ARMv8 Servers

Linux Arm64 Documentation

the earliest kernel version that first provides support for that baseline version of
ACPI. There may be a need for additional drivers, but adding new functionality
(e.g., CPU power management) should not break older kernel versions. Further,
ACPI firmware must also work with the most recent version of the kernel.

3.3 Relationship with Device Tree

ACPI support in drivers and subsystems for ARMv8 should never be mutually ex-
clusive with DT support at compile time.

At boot time the kernel will only use one description method depending on param-
eters passed from the boot loader (including kernel bootargs).

Regardless of whether DT or ACPI is used, the kernel must always be capable
of booting with either scheme (in kernels with both schemes enabled at compile
time).

3.4 Booting using ACPI tables

The only defined method for passing ACPI tables to the kernel on ARMv8 is via the
UEFI system configuration table. Just so it is explicit, this means that ACPI is only
supported on platforms that boot via UEFI.

When an ARMv8 system boots, it can either have DT information, ACPI tables,
or in some very unusual cases, both. If no command line parameters are used,
the kernel will try to use DT for device enumeration; if there is no DT present,
the kernel will try to use ACPI tables, but only if they are present. In neither is
available, the kernel will not boot. If acpi=force is used on the command line,
the kernel will attempt to use ACPI tables first, but fall back to DT if there are no
ACPI tables present. The basic idea is that the kernel will not fail to boot unless it
absolutely has no other choice.

Processing of ACPI tables may be disabled by passing acpi=off on the kernel com-
mand line; this is the default behavior.

In order for the kernel to load and use ACPI tables, the UEFI implementationMUST
set the ACPI_20_TABLE_GUID to point to the RSDP table (the table with the ACPI
signature “RSD PTR “). If this pointer is incorrect and acpi=force is used, the
kernel will disable ACPI and try to use DT to boot instead; the kernel has, in effect,
determined that ACPI tables are not present at that point.

If the pointer to the RSDP table is correct, the table will be mapped into the kernel
by the ACPI core, using the address provided by UEFI.

The ACPI core will then locate and map in all other ACPI tables provided by using
the addresses in the RSDP table to find the XSDT (eXtended System Description
Table). The XSDT in turn provides the addresses to all other ACPI tables provided
by the system firmware; the ACPI core will then traverse this table and map in the
tables listed.

The ACPI core will ignore any provided RSDT (Root System Description Table).
RSDTs have been deprecated and are ignored on arm64 since they only allow for
32-bit addresses.

3.3. Relationship with Device Tree 25

Linux Arm64 Documentation

Further, the ACPI core will only use the 64-bit address fields in the FADT (Fixed
ACPI Description Table). Any 32-bit address fields in the FADT will be ignored on
arm64.

Hardware reduced mode (see Section 4.1 of the ACPI 6.1 specification) will be
enforced by the ACPI core on arm64. Doing so allows the ACPI core to run less
complex code since it no longer has to provide support for legacy hardware from
other architectures. Any fields that are not to be used for hardware reduced mode
must be set to zero.

For the ACPI core to operate properly, and in turn provide the information the
kernel needs to configure devices, it expects to find the following tables (all section
numbers refer to the ACPI 6.1 specification):

• RSDP (Root System Description Pointer), section 5.2.5

• XSDT (eXtended System Description Table), section 5.2.8

• FADT (Fixed ACPI Description Table), section 5.2.9

• DSDT (Differentiated System Description Table), section 5.2.11.1

• MADT (Multiple APIC Description Table), section 5.2.12

• GTDT (Generic Timer Description Table), section 5.2.24

• If PCI is supported, the MCFG (Memory mapped ConFiGuration Table), sec-
tion 5.2.6, specifically Table 5-31.

• If booting without a console=<device> kernel parameter is supported, the
SPCR (Serial Port Console Redirection table), section 5.2.6, specifically Table
5-31.

• If necessary to describe the I/O topology, SMMUs and GIC ITSs, the IORT
(Input Output Remapping Table, section 5.2.6, specifically Table 5-31).

• If NUMA is supported, the SRAT (System Resource Affinity Table) and SLIT
(System Locality distance Information Table), sections 5.2.16 and 5.2.17, re-
spectively.

If the above tables are not all present, the kernel may or may not be able to boot
properly since it may not be able to configure all of the devices available. This
list of tables is not meant to be all inclusive; in some environments other tables
may be needed (e.g., any of the APEI tables from section 18) to support specific
functionality.

3.5 ACPI Detection

Drivers should determine their probe() type by checking for a null value for
ACPI_HANDLE, or checking .of_node, or other information in the device structure.
This is detailed further in the “Driver Recommendations”section.
In non-driver code, if the presence of ACPI needs to be detected at run time, then
check the value of acpi_disabled. If CONFIG_ACPI is not set, acpi_disabled will
always be 1.

26 Chapter 3. ACPI on ARMv8 Servers

Linux Arm64 Documentation

3.6 Device Enumeration

Device descriptions in ACPI should use standard recognized ACPI interfaces.
These may contain less information than is typically provided via a Device Tree
description for the same device. This is also one of the reasons that ACPI can
be useful – the driver takes into account that it may have less detailed informa-
tion about the device and uses sensible defaults instead. If done properly in the
driver, the hardware can change and improve over time without the driver having
to change at all.

Clocks provide an excellent example. In DT, clocks need to be specified and the
drivers need to take them into account. In ACPI, the assumption is that UEFI will
leave the device in a reasonable default state, including any clock settings. If for
some reason the driver needs to change a clock value, this can be done in an ACPI
method; all the driver needs to do is invoke the method and not concern itself with
what the method needs to do to change the clock. Changing the hardware can
then take place over time by changing what the ACPI method does, and not the
driver.

In DT, the parameters needed by the driver to set up clocks as in the example
above are known as“bindings”; in ACPI, these are known as“Device Properties”
and provided to a driver via the _DSD object.

ACPI tables are described with a formal language called ASL, the ACPI Source
Language (section 19 of the specification). This means that there are always mul-
tiple ways to describe the same thing – including device properties. For example,
device properties could use an ASL construct that looks like this: Name(KEY0,
“value0”). An ACPI device driver would then retrieve the value of the property by
evaluating the KEY0 object. However, using Name() this way has multiple prob-
lems: (1) ACPI limits names (“KEY0”) to four characters unlike DT; (2) there is
no industry wide registry that maintains a list of names, minimizing re-use; (3)
there is also no registry for the definition of property values (“value0”), again
making re-use difficult; and (4) how does one maintain backward compatibility as
new hardware comes out? The _DSD method was created to solve precisely these
sorts of problems; Linux drivers should ALWAYS use the _DSD method for device
properties and nothing else.

The _DSM object (ACPI Section 9.14.1) could also be used for conveying device
properties to a driver. Linux drivers should only expect it to be used if _DSD cannot
represent the data required, and there is no way to create a newUUID for the _DSD
object. Note that there is even less regulation of the use of _DSM than there is of
_DSD. Drivers that depend on the contents of _DSM objects will be more difficult
to maintain over time because of this; as of this writing, the use of _DSM is the
cause of quite a few firmware problems and is not recommended.

Drivers should look for device properties in the _DSD object ONLY; the _DSD ob-
ject is described in the ACPI specification section 6.2.5, but this only describes
how to define the structure of an object returned via _DSD, and how specific data
structures are defined by specific UUIDs. Linux should only use the _DSD Device
Properties UUID [5]:

• UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301

• http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.

3.6. Device Enumeration 27

http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf

Linux Arm64 Documentation

pdf

The UEFI Forum provides amechanism for registering device properties [4] so that
they may be used across all operating systems supporting ACPI. Device properties
that have not been registered with the UEFI Forum should not be used.

Before creating new device properties, check to be sure that they have not been
defined before and either registered in the Linux kernel documentation as DT bind-
ings, or the UEFI Forum as device properties. While we do not want to simply
move all DT bindings into ACPI device properties, we can learn from what has
been previously defined.

If it is necessary to define a new device property, or if it makes sense to synthesize
the definition of a binding so it can be used in any firmware, both DT bindings
and ACPI device properties for device drivers have review processes. Use them
both. When the driver itself is submitted for review to the Linux mailing lists, the
device property definitions needed must be submitted at the same time. A driver
that supports ACPI and uses device properties will not be considered complete
without their definitions. Once the device property has been accepted by the Linux
community, it must be registered with the UEFI Forum [4], which will review it
again for consistency within the registry. This may require iteration. The UEFI
Forum, though, will always be the canonical site for device property definitions.

It may make sense to provide notice to the UEFI Forum that there is the intent
to register a previously unused device property name as a means of reserving
the name for later use. Other operating system vendors will also be submitting
registration requests and this may help smooth the process.

Once registration and review have been completed, the kernel provides an inter-
face for looking up device properties in a manner independent of whether DT or
ACPI is being used. This API should be used [6]; it can eliminate some duplication
of code paths in driver probing functions and discourage divergence between DT
bindings and ACPI device properties.

3.7 Programmable Power Control Resources

Programmable power control resources include such resources as voltage/current
providers (regulators) and clock sources.

With ACPI, the kernel clock and regulator framework is not expected to be used
at all.

The kernel assumes that power control of these resources is represented with
Power Resource Objects (ACPI section 7.1). The ACPI core will then handle cor-
rectly enabling and disabling resources as they are needed. In order to get that to
work, ACPI assumes each device has defined D-states and that these can be con-
trolled through the optional ACPI methods _PS0, _PS1, _PS2, and _PS3; in ACPI,
_PS0 is the method to invoke to turn a device full on, and _PS3 is for turning a
device full off.

There are two options for using those Power Resources. They can:

• be managed in a _PSx method which gets called on entry to power state Dx.

28 Chapter 3. ACPI on ARMv8 Servers

http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf

Linux Arm64 Documentation

• be declared separately as power resources with their own _ON and _OFF
methods. They are then tied back to D-states for a particular device via
_PRx which specifies which power resources a device needs to be on while in
Dx. Kernel then tracks number of devices using a power resource and calls
_ON/_OFF as needed.

The kernel ACPI code will also assume that the _PSx methods follow the normal
ACPI rules for such methods:

• If either _PS0 or _PS3 is implemented, then the other method must also be
implemented.

• If a device requires usage or setup of a power resource when on, the ASL
should organize that it is allocated/enabled using the _PS0 method.

• Resources allocated or enabled in the _PS0 method should be disabled or
de-allocated in the _PS3 method.

• Firmware will leave the resources in a reasonable state before handing over
control to the kernel.

Such code in _PSxmethods will of course be very platform specific. But, this allows
the driver to abstract out the interface for operating the device and avoid having
to read special non-standard values from ACPI tables. Further, abstracting the
use of these resources allows the hardware to change over time without requiring
updates to the driver.

3.8 Clocks

ACPI makes the assumption that clocks are initialized by the firmware – UEFI,
in this case – to some working value before control is handed over to the kernel.
This has implications for devices such as UARTs, or SoC-driven LCD displays, for
example.

When the kernel boots, the clocks are assumed to be set to reasonable working val-
ues. If for some reason the frequency needs to change – e.g., throttling for power
management – the device driver should expect that process to be abstracted out
into some ACPI method that can be invoked (please see the ACPI specification for
further recommendations on standard methods to be expected). The only excep-
tions to this are CPU clocks where CPPC provides a much richer interface than
ACPI methods. If the clocks are not set, there is no direct way for Linux to control
them.

If an SoC vendor wants to provide fine-grained control of the system clocks, they
could do so by providing ACPI methods that could be invoked by Linux drivers.
However, this is NOT recommended and Linux drivers should NOT use such meth-
ods, even if they are provided. Such methods are not currently standardized in the
ACPI specification, and using them could tie a kernel to a very specific SoC, or tie
an SoC to a very specific version of the kernel, both of which we are trying to avoid.

3.8. Clocks 29

Linux Arm64 Documentation

3.9 Driver Recommendations

DO NOT remove any DT handling when adding ACPI support for a driver. The
same device may be used on many different systems.

DO try to structure the driver so that it is data-driven. That is, set up a struct
containing internal per-device state based on defaults and whatever else must be
discovered by the driver probe function. Then, have the rest of the driver operate
off of the contents of that struct. Doing so should allow most divergence between
ACPI and DT functionality to be kept local to the probe function instead of being
scattered throughout the driver. For example:

static int device_probe_dt(struct platform_device *pdev)
{

/* DT specific functionality */
...

}

static int device_probe_acpi(struct platform_device *pdev)
{

/* ACPI specific functionality */
...

}

static int device_probe(struct platform_device *pdev)
{

...
struct device_node node = pdev->dev.of_node;
...

if (node)
ret = device_probe_dt(pdev);

else if (ACPI_HANDLE(&pdev->dev))
ret = device_probe_acpi(pdev);

else
/* other initialization */
...

/* Continue with any generic probe operations */
...

}

DO keep the MODULE_DEVICE_TABLE entries together in the driver to make it
clear the different names the driver is probed for, both from DT and from ACPI:

static struct of_device_id virtio_mmio_match[] = {
{ .compatible = "virtio,mmio", },
{ }

};
MODULE_DEVICE_TABLE(of, virtio_mmio_match);

static const struct acpi_device_id virtio_mmio_acpi_match[] = {
{ "LNRO0005", },
{ }

};
MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);

30 Chapter 3. ACPI on ARMv8 Servers

Linux Arm64 Documentation

3.10 ASWG

The ACPI specification changes regularly. During the year 2014, for instance,
version 5.1 was released and version 6.0 substantially completed, with most of
the changes being driven by ARM-specific requirements. Proposed changes are
presented and discussed in the ASWG (ACPI Specification Working Group) which
is a part of the UEFI Forum. The current version of the ACPI specification is 6.1
release in January 2016.

Participation in this group is open to all UEFI members. Please see http://www.
uefi.org/workinggroup for details on group membership.

It is the intent of the ARMv8 ACPI kernel code to follow the ACPI specification
as closely as possible, and to only implement functionality that complies with the
released standards from UEFI ASWG. As a practical matter, there will be vendors
that provide bad ACPI tables or violate the standards in someway. If this is because
of errors, quirks and fix-ups may be necessary, but will be avoided if possible.
If there are features missing from ACPI that preclude it from being used on a
platform, ECRs (Engineering Change Requests) should be submitted to ASWG and
go through the normal approval process; for those that are not UEFI members,
many other members of the Linux community are and would likely be willing to
assist in submitting ECRs.

3.11 Linux Code

Individual items specific to Linux on ARM, contained in the the Linux source code,
are in the list that follows:

ACPI_OS_NAME This macro defines the string to be returned when an ACPI
method invokes the _OS method. On ARM64 systems, this macro will be
“Linux”by default. The command line parameter acpi_os=<string> can be
used to set it to some other value. The default value for other architectures
is “Microsoft Windows NT”, for example.

3.12 ACPI Objects

Detailed expectations for ACPI tables and object are listed in the file Documenta-
tion/arm64/acpi_object_usage.rst.

3.13 References

[0] http://silver.arm.com document ARM-DEN-0029, or newer: “Server Base
System Architecture”, version 2.3, dated 27 Mar 2014

[1] http://infocenter.arm.com/help/topic/com.arm.doc.den0044a/Server_Base_Boot_Requirements.pdf
Document ARM-DEN-0044A, or newer: “Server Base Boot Requirements,
System Software on ARM Platforms”, dated 16 Aug 2014

3.10. ASWG 31

http://www.uefi.org/workinggroup
http://www.uefi.org/workinggroup
http://silver.arm.com
http://infocenter.arm.com/help/topic/com.arm.doc.den0044a/Server_Base_Boot_Requirements.pdf

Linux Arm64 Documentation

[2] http://www.secretlab.ca/archives/151, 10 Jan 2015, Copyright (c) 2015,
Linaro Ltd., written by Grant Likely.

[3] AMD ACPI for Seattle platform documentation http://amd-dev.
wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.
pdf

[4] http://www.uefi.org/acpi please see the link for the “ACPI _DSD Device
Property Registry Instructions”

[5] http://www.uefi.org/acpi please see the link for the“_DSD (Device Specific
Data) Implementation Guide”

[6] Kernel code for the unified device property interface can be found in in-
clude/linux/property.h and drivers/base/property.c.

3.14 Authors

• Al Stone <al.stone@linaro.org>

• Graeme Gregory <graeme.gregory@linaro.org>

• Hanjun Guo <hanjun.guo@linaro.org>

• Grant Likely <grant.likely@linaro.org>, for the“Why ACPI on ARM?”section

32 Chapter 3. ACPI on ARMv8 Servers

http://www.secretlab.ca/archives/151
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.pdf
http://www.uefi.org/acpi
http://www.uefi.org/acpi
mailto:al.stone@linaro.org
mailto:graeme.gregory@linaro.org
mailto:hanjun.guo@linaro.org
mailto:grant.likely@linaro.org

CHAPTER

FOUR

BOOTING AARCH64 LINUX

Author: Will Deacon <will.deacon@arm.com>

Date : 07 September 2012

This document is based on the ARM booting document by Russell King and is
relevant to all public releases of the AArch64 Linux kernel.

The AArch64 exception model is made up of a number of exception levels (EL0 -
EL3), with EL0 and EL1 having a secure and a non-secure counterpart. EL2 is the
hypervisor level and exists only in non-secure mode. EL3 is the highest priority
level and exists only in secure mode.

For the purposes of this document, we will use the term boot loader simply to
define all software that executes on the CPU(s) before control is passed to the
Linux kernel. This may include secure monitor and hypervisor code, or it may just
be a handful of instructions for preparing a minimal boot environment.

Essentially, the boot loader should provide (as a minimum) the following:

1. Setup and initialise the RAM

2. Setup the device tree

3. Decompress the kernel image

4. Call the kernel image

4.1 1. Setup and initialise RAM

Requirement: MANDATORY

The boot loader is expected to find and initialise all RAM that the kernel will use
for volatile data storage in the system. It performs this in a machine dependent
manner. (It may use internal algorithms to automatically locate and size all RAM,
or it may use knowledge of the RAM in the machine, or any other method the boot
loader designer sees fit.)

33

mailto:will.deacon@arm.com

Linux Arm64 Documentation

4.2 2. Setup the device tree

Requirement: MANDATORY

The device tree blob (dtb) must be placed on an 8-byte boundary and must not
exceed 2 megabytes in size. Since the dtb will be mapped cacheable using blocks
of up to 2 megabytes in size, it must not be placed within any 2M region which
must be mapped with any specific attributes.

NOTE: versions prior to v4.2 also require that the DTB be placed within the 512
MB region starting at text_offset bytes below the kernel Image.

4.3 3. Decompress the kernel image

Requirement: OPTIONAL

The AArch64 kernel does not currently provide a decompressor and therefore re-
quires decompression (gzip etc.) to be performed by the boot loader if a com-
pressed Image target (e.g. Image.gz) is used. For bootloaders that do not imple-
ment this requirement, the uncompressed Image target is available instead.

4.4 4. Call the kernel image

Requirement: MANDATORY

The decompressed kernel image contains a 64-byte header as follows:

u32 code0; /* Executable code */
u32 code1; /* Executable code */
u64 text_offset; /* Image load offset, little endian */
u64 image_size; /* Effective Image size, little endian */
u64 flags; /* kernel flags, little endian */
u64 res2 = 0; /* reserved */
u64 res3 = 0; /* reserved */
u64 res4 = 0; /* reserved */
u32 magic = 0x644d5241; /* Magic number, little endian, "ARM\x64" */
u32 res5; /* reserved (used for PE COFF offset) */

Header notes:

• As of v3.17, all fields are little endian unless stated otherwise.

• code0/code1 are responsible for branching to stext.

• when booting through EFI, code0/code1 are initially skipped. res5 is an offset
to the PE header and the PE header has the EFI entry point (efi_stub_entry).
When the stub has done its work, it jumps to code0 to resume the normal boot
process.

• Prior to v3.17, the endianness of text_offset was not specified. In these cases
image_size is zero and text_offset is 0x80000 in the endianness of the ker-
nel. Where image_size is non-zero image_size is little-endian and must be re-
spected. Where image_size is zero, text_offset can be assumed to be 0x80000.

34 Chapter 4. Booting AArch64 Linux

Linux Arm64 Documentation

• The flags field (introduced in v3.17) is a little-endian 64-bit field composed as
follows:

Bit 0 Kernel endianness. 1 if BE, 0 if LE.
Bit 1-2 Kernel Page size.

– 0 - Unspecified.
– 1 - 4K
– 2 - 16K
– 3 - 64K

Bit 3 Kernel physical placement
0 2MB aligned base should

be as close as possible
to the base of DRAM,
since memory below it
is not accessible via the
linear mapping

1 2MB aligned base may
be anywhere in physical
memory

Bits 4-63 Reserved.

• When image_size is zero, a bootloader should attempt to keep as much mem-
ory as possible free for use by the kernel immediately after the end of the
kernel image. The amount of space required will vary depending on selected
features, and is effectively unbound.

The Image must be placed text_offset bytes from a 2MB aligned base address any-
where in usable system RAM and called there. The region between the 2 MB
aligned base address and the start of the image has no special significance to the
kernel, and may be used for other purposes. At least image_size bytes from the
start of the image must be free for use by the kernel. NOTE: versions prior to
v4.6 cannot make use of memory below the physical offset of the Image so it is
recommended that the Image be placed as close as possible to the start of system
RAM.

If an initrd/initramfs is passed to the kernel at boot, it must reside entirely within
a 1 GB aligned physical memory window of up to 32 GB in size that fully covers
the kernel Image as well.

Any memory described to the kernel (even that below the start of the image) which
is not marked as reserved from the kernel (e.g., with a memreserve region in the
device tree) will be considered as available to the kernel.

Before jumping into the kernel, the following conditions must be met:

• Quiesce all DMA capable devices so that memory does not get corrupted by
bogus network packets or disk data. This will save you many hours of debug.

• Primary CPU general-purpose register settings:

– x0 = physical address of device tree blob (dtb) in system RAM.

– x1 = 0 (reserved for future use)

4.4. 4. Call the kernel image 35

Linux Arm64 Documentation

– x2 = 0 (reserved for future use)
– x3 = 0 (reserved for future use)

• CPU mode

All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError, IRQ
and FIQ). The CPU must be in either EL2 (RECOMMENDED in order to have
access to the virtualisation extensions) or non-secure EL1.

• Caches, MMUs

The MMU must be off.

The instruction cache may be on or off, and must not hold any stale entries
corresponding to the loaded kernel image.

The address range corresponding to the loaded kernel image must be cleaned
to the PoC. In the presence of a system cache or other coherent masters with
caches enabled, this will typically require cache maintenance by VA rather
than set/way operations. System caches which respect the architected cache
maintenance by VA operations must be configured and may be enabled. Sys-
tem caches which do not respect architected cache maintenance by VA oper-
ations (not recommended) must be configured and disabled.

• Architected timers

CNTFRQ must be programmed with the timer frequency and CNTVOFF must
be programmed with a consistent value on all CPUs. If entering the kernel at
EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0) set where available.

• Coherency

All CPUs to be booted by the kernel must be part of the same coherency do-
main on entry to the kernel. This may require IMPLEMENTATION DEFINED
initialisation to enable the receiving of maintenance operations on each CPU.

• System registers

All writable architected system registers at the exception level where the ker-
nel image will be entered must be initialised by software at a higher exception
level to prevent execution in an UNKNOWN state.

– SCR_EL3.FIQ must have the same value across all CPUs the kernel is
executing on.

– The value of SCR_EL3.FIQ must be the same as the one present at boot
time whenever the kernel is executing.

For systems with a GICv3 interrupt controller to be used in v3 mode: - If EL3
is present:

– ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
– ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
– ICC_CTLR_EL3.PMHE (bit 6) must be set to the same value across all
CPUs the kernel is executing on, and must stay constant for the lifetime
of the kernel.

– If the kernel is entered at EL1:

36 Chapter 4. Booting AArch64 Linux

Linux Arm64 Documentation

∗ ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1

∗ ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.

– The DT or ACPI tables must describe a GICv3 interrupt controller.
For systems with a GICv3 interrupt controller to be used in compatibility (v2)
mode:

– If EL3 is present:
ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.

– If the kernel is entered at EL1:
ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.

– The DT or ACPI tables must describe a GICv2 interrupt controller.
For CPUs with pointer authentication functionality:

– If EL3 is present:
∗ SCR_EL3.APK (bit 16) must be initialised to 0b1

∗ SCR_EL3.API (bit 17) must be initialised to 0b1

– If the kernel is entered at EL1:
∗ HCR_EL2.APK (bit 40) must be initialised to 0b1

∗ HCR_EL2.API (bit 41) must be initialised to 0b1

For CPUs with Activity Monitors Unit v1 (AMUv1) extension present:

– If EL3 is present:
∗ CPTR_EL3.TAM (bit 30) must be initialised to 0b0

∗ CPTR_EL2.TAM (bit 30) must be initialised to 0b0

∗ AMCNTENSET0_EL0 must be initialised to 0b1111

∗ AMCNTENSET1_EL0 must be initialised to a platform specific value
having 0b1 set for the corresponding bit for each of the auxiliary
counters present.

– If the kernel is entered at EL1:
∗ AMCNTENSET0_EL0 must be initialised to 0b1111

∗ AMCNTENSET1_EL0 must be initialised to a platform specific value
having 0b1 set for the corresponding bit for each of the auxiliary
counters present.

The requirements described above for CPU mode, caches, MMUs, architected
timers, coherency and system registers apply to all CPUs. All CPUs must enter
the kernel in the same exception level.

The boot loader is expected to enter the kernel on each CPU in the following man-
ner:

• The primary CPU must jump directly to the first instruction of the kernel im-
age. The device tree blob passed by this CPUmust contain an‘enable-method’

4.4. 4. Call the kernel image 37

Linux Arm64 Documentation

property for each cpu node. The supported enable-methods are described be-
low.

It is expected that the bootloader will generate these device tree properties
and insert them into the blob prior to kernel entry.

• CPUs with a“spin-table”enable-method must have a‘cpu-release-addr’prop-
erty in their cpu node. This property identifies a naturally-aligned 64-bit zero-
initalised memory location.

These CPUs should spin outside of the kernel in a reserved area of memory
(communicated to the kernel by a /memreserve/ region in the device tree)
polling their cpu-release-addr location, which must be contained in the re-
served region. A wfe instruction may be inserted to reduce the overhead of
the busy-loop and a sev will be issued by the primary CPU. When a read of
the location pointed to by the cpu-release-addr returns a non-zero value, the
CPUmust jump to this value. The value will be written as a single 64-bit little-
endian value, so CPUs must convert the read value to their native endianness
before jumping to it.

• CPUs with a “psci”enable method should remain outside of the kernel (i.e.
outside of the regions of memory described to the kernel in the memory node,
or in a reserved area of memory described to the kernel by a /memreserve/
region in the device tree). The kernel will issue CPU_ON calls as described
in ARM document number ARM DEN 0022A (“Power State Coordination In-
terface System Software on ARM processors”) to bring CPUs into the kernel.
The device tree should contain a ‘psci’node, as described in Documenta-
tion/devicetree/bindings/arm/psci.yaml.

• Secondary CPU general-purpose register settings

– x0 = 0 (reserved for future use)
– x1 = 0 (reserved for future use)
– x2 = 0 (reserved for future use)
– x3 = 0 (reserved for future use)

38 Chapter 4. Booting AArch64 Linux

CHAPTER

FIVE

ARM64 CPU FEATURE REGISTERS

Author: Suzuki K Poulose <suzuki.poulose@arm.com>

This file describes the ABI for exporting the AArch64 CPU ID/feature registers
to userspace. The availability of this ABI is advertised via the HWCAP_CPUID in
HWCAPs.

5.1 1. Motivation

The ARM architecture defines a set of feature registers, which describe the ca-
pabilities of the CPU/system. Access to these system registers is restricted from
EL0 and there is no reliable way for an application to extract this information to
make better decisions at runtime. There is limited information available to the
application via HWCAPs, however there are some issues with their usage.

a) Any change to the HWCAPs requires an update to userspace (e.g libc) to de-
tect the new changes, which can take a long time to appear in distributions.
Exposing the registers allows applications to get the information without re-
quiring updates to the toolchains.

b) Access to HWCAPs is sometimes limited (e.g prior to libc, or when ld is ini-
tialised at startup time).

c) HWCAPs cannot represent non-boolean information effectively. The architec-
ture defines a canonical format for representing features in the ID registers;
this is well defined and is capable of representing all valid architecture vari-
ations.

5.2 2. Requirements

a) Safety:

Applications should be able to use the information provided by the infras-
tructure to run safely across the system. This has greater implications on a
system with heterogeneous CPUs. The infrastructure exports a value that is
safe across all the available CPU on the system.

e.g, If at least one CPU doesn’t implement CRC32 instructions, while oth-
ers do, we should report that the CRC32 is not implemented. Otherwise an
application could crash when scheduled on the CPU which doesn’t support
CRC32.

39

mailto:suzuki.poulose@arm.com

Linux Arm64 Documentation

b) Security:

Applications should only be able to receive information that is relevant to
the normal operation in userspace. Hence, some of the fields are masked
out(i.e, made invisible) and their values are set to indicate the feature is‘not
supported’. See Section 4 for the list of visible features. Also, the kernel may
manipulate the fields based on what it supports. e.g, If FP is not supported by
the kernel, the values could indicate that the FP is not available (even when
the CPU provides it).

c) Implementation Defined Features

The infrastructure doesn’t expose any register which is IMPLEMENTATION
DEFINED as per ARMv8-A Architecture.

d) CPU Identification:

MIDR_EL1 is exposed to help identify the processor. On a heterogeneous
system, this could be racy (just like getcpu()). The process could be migrated
to another CPU by the time it uses the register value, unless the CPU affin-
ity is set. Hence, there is no guarantee that the value reflects the proces-
sor that it is currently executing on. The REVIDR is not exposed due to this
constraint, as REVIDR makes sense only in conjunction with the MIDR. Alter-
nately, MIDR_EL1 and REVIDR_EL1 are exposed via sysfs at:

/sys/devices/system/cpu/cpu$ID/regs/identification/
\- midr
\- revidr

5.3 3. Implementation

The infrastructure is built on the emulation of the ‘MRS’instruction. Accessing
a restricted system register from an application generates an exception and ends
up in SIGILL being delivered to the process. The infrastructure hooks into the ex-
ception handler and emulates the operation if the source belongs to the supported
system register space.

The infrastructure emulates only the following system register space:

Op0=3, Op1=0, CRn=0, CRm=0,4,5,6,7

(See Table C5-6 ‘System instruction encodings for non-Debug System register
accesses’in ARMv8 ARM DDI 0487A.h, for the list of registers).

The following rules are applied to the value returned by the infrastructure:

a) The value of an ‘IMPLEMENTATION DEFINED’field is set to 0.
b) The value of a reserved field is populated with the reserved value as defined
by the architecture.

c) The value of a‘visible’field holds the systemwide safe value for the particular
feature (except for MIDR_EL1, see section 4).

d) All other fields (i.e, invisible fields) are set to indicate the feature is missing
(as defined by the architecture).

40 Chapter 5. ARM64 CPU Feature Registers

Linux Arm64 Documentation

5.4 4. List of registers with visible features

1) ID_AA64ISAR0_EL1 - Instruction Set Attribute Register 0

Name bits visible
RNDR [63-60] y
TS [55-52] y
FHM [51-48] y
DP [47-44] y
SM4 [43-40] y
SM3 [39-36] y
SHA3 [35-32] y
RDM [31-28] y
ATOMICS [23-20] y
CRC32 [19-16] y
SHA2 [15-12] y
SHA1 [11-8] y
AES [7-4] y

2) ID_AA64PFR0_EL1 - Processor Feature Register 0

Name bits visible
DIT [51-48] y
SVE [35-32] y
GIC [27-24] n
AdvSIMD [23-20] y
FP [19-16] y
EL3 [15-12] n
EL2 [11-8] n
EL1 [7-4] n
EL0 [3-0] n

3) ID_AA64PFR1_EL1 - Processor Feature Register 1

Name bits visible
SSBS [7-4] y
BT [3-0] y

4) MIDR_EL1 - Main ID Register

Name bits visible
Implementer [31-24] y
Variant [23-20] y
Architecture [19-16] y
PartNum [15-4] y
Revision [3-0] y

NOTE: The‘visible’fields of MIDR_EL1 will contain the value
as available on the CPU where it is fetched and is not a system

5.4. 4. List of registers with visible features 41

Linux Arm64 Documentation

wide safe value.

5) ID_AA64ISAR1_EL1 - Instruction set attribute register 1

Name bits visible
I8MM [55-52] y
DGH [51-48] y
BF16 [47-44] y
SB [39-36] y
FRINTTS [35-32] y
GPI [31-28] y
GPA [27-24] y
LRCPC [23-20] y
FCMA [19-16] y
JSCVT [15-12] y
API [11-8] y
APA [7-4] y
DPB [3-0] y

6) ID_AA64MMFR2_EL1 - Memory model feature register 2

Name bits visible
AT [35-32] y

7) ID_AA64ZFR0_EL1 - SVE feature ID register 0

Name bits visible
F64MM [59-56] y
F32MM [55-52] y
I8MM [47-44] y
SM4 [43-40] y
SHA3 [35-32] y
BF16 [23-20] y
BitPerm [19-16] y
AES [7-4] y
SVEVer [3-0] y

5.5 Appendix I: Example

/*
* Sample program to demonstrate the MRS emulation ABI.
*
* Copyright (C) 2015-2016, ARM Ltd
*
* Author: Suzuki K Poulose <suzuki.poulose@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as

(continues on next page)

42 Chapter 5. ARM64 CPU Feature Registers

Linux Arm64 Documentation

(continued from previous page)
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/

#include <asm/hwcap.h>
#include <stdio.h>
#include <sys/auxv.h>

#define get_cpu_ftr(id) ({ \
unsigned long __val; \
asm("mrs %0, "#id : "=r" (__val)); \
printf("%-20s: 0x%016lx\n", #id, __val); \

})

int main(void)
{

if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) {
fputs("CPUID registers unavailable\n", stderr);
return 1;

}

get_cpu_ftr(ID_AA64ISAR0_EL1);
get_cpu_ftr(ID_AA64ISAR1_EL1);
get_cpu_ftr(ID_AA64MMFR0_EL1);
get_cpu_ftr(ID_AA64MMFR1_EL1);
get_cpu_ftr(ID_AA64PFR0_EL1);
get_cpu_ftr(ID_AA64PFR1_EL1);
get_cpu_ftr(ID_AA64DFR0_EL1);
get_cpu_ftr(ID_AA64DFR1_EL1);

get_cpu_ftr(MIDR_EL1);
get_cpu_ftr(MPIDR_EL1);
get_cpu_ftr(REVIDR_EL1);

#if 0
/* Unexposed register access causes SIGILL */
get_cpu_ftr(ID_MMFR0_EL1);

#endif

return 0;
}

5.5. Appendix I: Example 43

Linux Arm64 Documentation

44 Chapter 5. ARM64 CPU Feature Registers

CHAPTER

SIX

ARM64 ELF HWCAPS

This document describes the usage and semantics of the arm64 ELF hwcaps.

6.1 1. Introduction

Some hardware or software features are only available on some CPU implementa-
tions, and/or with certain kernel configurations, but have no architected discovery
mechanism available to userspace code at EL0. The kernel exposes the presence
of these features to userspace through a set of flags called hwcaps, exposed in the
auxilliary vector.

Userspace software can test for features by acquiring the AT_HWCAP or
AT_HWCAP2 entry of the auxiliary vector, and testing whether the relevant flags
are set, e.g.:

bool floating_point_is_present(void)
{

unsigned long hwcaps = getauxval(AT_HWCAP);
if (hwcaps & HWCAP_FP)

return true;

return false;
}

Where software relies on a feature described by a hwcap, it should check the
relevant hwcap flag to verify that the feature is present before attempting to make
use of the feature.

Features cannot be probed reliably through other means. When a feature is not
available, attempting to use it may result in unpredictable behaviour, and is not
guaranteed to result in any reliable indication that the feature is unavailable, such
as a SIGILL.

45

Linux Arm64 Documentation

6.2 2. Interpretation of hwcaps

The majority of hwcaps are intended to indicate the presence of features which
are described by architected ID registers inaccessible to userspace code at EL0.
These hwcaps are defined in terms of ID register fields, and should be interpreted
with reference to the definition of these fields in the ARM Architecture Reference
Manual (ARM ARM).

Such hwcaps are described below in the form:

Functionality implied by idreg.field == val.

Such hwcaps indicate the availability of functionality that the ARM ARM defines
as being present when idreg.field has value val, but do not indicate that idreg.field
is precisely equal to val, nor do they indicate the absence of functionality implied
by other values of idreg.field.

Other hwcaps may indicate the presence of features which cannot be described
by ID registers alone. These may be described without reference to ID registers,
and may refer to other documentation.

6.3 3. The hwcaps exposed in AT_HWCAP

HWCAP_FP Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000.

HWCAP_ASIMD Functionality implied by ID_AA64PFR0_EL1.AdvSIMD ==
0b0000.

HWCAP_EVTSTRM The generic timer is configured to generate events at a fre-
quency of approximately 100KHz.

HWCAP_AES Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.

HWCAP_PMULL Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0010.
HWCAP_SHA1 Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001.
HWCAP_SHA2 Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001.
HWCAP_CRC32 Functionality implied by ID_AA64ISAR0_EL1.CRC32 ==

0b0001.

HWCAP_ATOMICS Functionality implied by ID_AA64ISAR0_EL1.Atomic ==
0b0010.

HWCAP_FPHP Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001.

HWCAP_ASIMDHP Functionality implied by ID_AA64PFR0_EL1.AdvSIMD ==
0b0001.

HWCAP_CPUID EL0 access to certain ID registers is available, to the extent de-
scribed by Documentation/arm64/cpu-feature-registers.rst.

These ID registers may imply the availability of features.

HWCAP_ASIMDRDM Functionality implied by ID_AA64ISAR0_EL1.RDM ==
0b0001.

46 Chapter 6. ARM64 ELF hwcaps

Linux Arm64 Documentation

HWCAP_JSCVT Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001.

HWCAP_FCMA Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001.

HWCAP_LRCPC Functionality implied by ID_AA64ISAR1_EL1.LRCPC ==
0b0001.

HWCAP_DCPOP Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.

HWCAP_SHA3 Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.
HWCAP_SM3 Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001.
HWCAP_SM4 Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDDP Functionality implied by ID_AA64ISAR0_EL1.DP ==

0b0001.

HWCAP_SHA512 Functionality implied by ID_AA64ISAR0_EL1.SHA2 ==
0b0010.

HWCAP_SVE Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.

HWCAP_ASIMDFHM Functionality implied by ID_AA64ISAR0_EL1.FHM ==
0b0001.

HWCAP_DIT Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.

HWCAP_USCAT Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.

HWCAP_ILRCPC Functionality implied by ID_AA64ISAR1_EL1.LRCPC ==
0b0010.

HWCAP_FLAGM Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.

HWCAP_SSBS Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.

HWCAP_SB Functionality implied by ID_AA64ISAR1_EL1.SB == 0b0001.

HWCAP_PACA Functionality implied by ID_AA64ISAR1_EL1.APA ==
0b0001 or ID_AA64ISAR1_EL1.API == 0b0001, as described by
Documentation/arm64/pointer-authentication.rst.

HWCAP_PACG Functionality implied by ID_AA64ISAR1_EL1.GPA ==
0b0001 or ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
Documentation/arm64/pointer-authentication.rst.

HWCAP2_DCPODP

Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.

HWCAP2_SVE2

Functionality implied by ID_AA64ZFR0_EL1.SVEVer == 0b0001.

HWCAP2_SVEAES

Functionality implied by ID_AA64ZFR0_EL1.AES == 0b0001.

HWCAP2_SVEPMULL

Functionality implied by ID_AA64ZFR0_EL1.AES == 0b0010.

HWCAP2_SVEBITPERM

6.3. 3. The hwcaps exposed in AT_HWCAP 47

Linux Arm64 Documentation

Functionality implied by ID_AA64ZFR0_EL1.BitPerm == 0b0001.

HWCAP2_SVESHA3

Functionality implied by ID_AA64ZFR0_EL1.SHA3 == 0b0001.

HWCAP2_SVESM4

Functionality implied by ID_AA64ZFR0_EL1.SM4 == 0b0001.

HWCAP2_FLAGM2

Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0010.

HWCAP2_FRINT

Functionality implied by ID_AA64ISAR1_EL1.FRINTTS == 0b0001.

HWCAP2_SVEI8MM

Functionality implied by ID_AA64ZFR0_EL1.I8MM == 0b0001.

HWCAP2_SVEF32MM

Functionality implied by ID_AA64ZFR0_EL1.F32MM == 0b0001.

HWCAP2_SVEF64MM

Functionality implied by ID_AA64ZFR0_EL1.F64MM == 0b0001.

HWCAP2_SVEBF16

Functionality implied by ID_AA64ZFR0_EL1.BF16 == 0b0001.

HWCAP2_I8MM

Functionality implied by ID_AA64ISAR1_EL1.I8MM == 0b0001.

HWCAP2_BF16

Functionality implied by ID_AA64ISAR1_EL1.BF16 == 0b0001.

HWCAP2_DGH

Functionality implied by ID_AA64ISAR1_EL1.DGH == 0b0001.

HWCAP2_RNG

Functionality implied by ID_AA64ISAR0_EL1.RNDR == 0b0001.

HWCAP2_BTI

Functionality implied by ID_AA64PFR0_EL1.BT == 0b0001.

6.4 4. Unused AT_HWCAP bits

For interoperation with userspace, the kernel guarantees that bits 62 and 63 of
AT_HWCAP will always be returned as 0.

48 Chapter 6. ARM64 ELF hwcaps

CHAPTER

SEVEN

HUGETLBPAGE ON ARM64

Hugepage relies on making efficient use of TLBs to improve performance of ad-
dress translations. The benefit depends on both -

• the size of hugepages

• size of entries supported by the TLBs

The ARM64 port supports two flavours of hugepages.

7.1 1) Block mappings at the pud/pmd level

These are regular hugepages where a pmd or a pud page table entry points to a
block of memory. Regardless of the supported size of entries in TLB, block map-
pings reduce the depth of page table walk needed to translate hugepage addresses.

7.2 2) Using the Contiguous bit

The architecture provides a contiguous bit in the translation table entries (D4.5.3,
ARM DDI 0487C.a) that hints to the MMU to indicate that it is one of a contiguous
set of entries that can be cached in a single TLB entry.

The contiguous bit is used in Linux to increase the mapping size at the pmd and
pte (last) level. The number of supported contiguous entries varies by page size
and level of the page table.

The following hugepage sizes are supported -

• CONT PTE PMD CONT PMD PUD

4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G

49

Linux Arm64 Documentation

50 Chapter 7. HugeTLBpage on ARM64

CHAPTER

EIGHT

LEGACY INSTRUCTIONS

The arm64 port of the Linux kernel provides infrastructure to support emulation
of instructions which have been deprecated, or obsoleted in the architecture. The
infrastructure code uses undefined instruction hooks to support emulation. Where
available it also allows turning on the instruction execution in hardware.

The emulation mode can be controlled by writing to sysctl nodes (/proc/sys/abi).
The following explains the different execution behaviours and the corresponding
values of the sysctl nodes -

• Undef Value: 0
Generates undefined instruction abort. Default for instructions that have
been obsoleted in the architecture, e.g., SWP

• Emulate Value: 1
Uses software emulation. To aid migration of software, in this mode usage
of emulated instruction is traced as well as rate limited warnings are issued.
This is the default for deprecated instructions, .e.g., CP15 barriers

• Hardware Execution Value: 2

Although marked as deprecated, some implementations may support the en-
abling/disabling of hardware support for the execution of these instructions.
Using hardware execution generally provides better performance, but at the
loss of ability to gather runtime statistics about the use of the deprecated
instructions.

The default mode depends on the status of the instruction in the architecture.
Deprecated instructions should default to emulation while obsolete instructions
must be undefined by default.

Note: Instruction emulation may not be possible in all cases. See individual in-
struction notes for further information.

51

Linux Arm64 Documentation

8.1 Supported legacy instructions

• SWP{B}

Node /proc/sys/abi/swp
Status Obsolete
Default Undef (0)

• CP15 Barriers

Node /proc/sys/abi/cp15_barrier
Status Deprecated
Default Emulate (1)

• SETEND

Node /proc/sys/abi/setend
Status Deprecated
Default Emulate (1)*

Note: All the cpus on the system must have mixed endian support
at EL0 for this feature to be enabled. If a new CPU - which doesn’t
support mixed endian - is hotplugged in after this feature has been
enabled, there could be unexpected results in the application.

52 Chapter 8. Legacy instructions

CHAPTER

NINE

MEMORY LAYOUT ON AARCH64 LINUX

Author: Catalin Marinas <catalin.marinas@arm.com>

This document describes the virtual memory layout used by the AArch64 Linux
kernel. The architecture allows up to 4 levels of translation tables with a 4KB
page size and up to 3 levels with a 64KB page size.

AArch64 Linux uses either 3 levels or 4 levels of translation tables with the 4KB
page configuration, allowing 39-bit (512GB) or 48-bit (256TB) virtual addresses,
respectively, for both user and kernel. With 64KB pages, only 2 levels of translation
tables, allowing 42-bit (4TB) virtual address, are used but the memory layout is
the same.

ARMv8.2 adds optional support for Large Virtual Address space. This is only avail-
able when running with a 64KB page size and expands the number of descriptors
in the first level of translation.

User addresses have bits 63:48 set to 0 while the kernel addresses have the same
bits set to 1. TTBRx selection is given by bit 63 of the virtual address. The swap-
per_pg_dir contains only kernel (global) mappings while the user pgd contains only
user (non-global) mappings. The swapper_pg_dir address is written to TTBR1 and
never written to TTBR0.

AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit):

Start End Size Use

0000000000000000 0000ffffffffffff 256TB user
ffff000000000000 ffff7fffffffffff 128TB kernel␣
↪→logical memory map
ffff800000000000 ffff9fffffffffff 32TB kasan shadow␣
↪→region
ffffa00000000000 ffffa00007ffffff 128MB bpf jit␣
↪→region
ffffa00008000000 ffffa0000fffffff 128MB modules
ffffa00010000000 fffffdffbffeffff ~93TB vmalloc
fffffdffbfff0000 fffffdfffe5f8fff ~998MB [guard␣
↪→region]
fffffdfffe5f9000 fffffdfffe9fffff 4124KB fixed␣
↪→mappings
fffffdfffea00000 fffffdfffebfffff 2MB [guard␣
↪→region]
fffffdfffec00000 fffffdffffbfffff 16MB PCI I/O space
fffffdffffc00000 fffffdffffdfffff 2MB [guard␣
↪→region]

(continues on next page)

53

mailto:catalin.marinas@arm.com

Linux Arm64 Documentation

(continued from previous page)
fffffdffffe00000 ffffffffffdfffff 2TB vmemmap
ffffffffffe00000 ffffffffffffffff 2MB [guard␣
↪→region]

AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW sup-
port):

Start End Size Use

0000000000000000 000fffffffffffff 4PB user
fff0000000000000 fff7ffffffffffff 2PB kernel␣
↪→logical memory map
fff8000000000000 fffd9fffffffffff 1440TB [gap]
fffda00000000000 ffff9fffffffffff 512TB kasan shadow␣
↪→region
ffffa00000000000 ffffa00007ffffff 128MB bpf jit␣
↪→region
ffffa00008000000 ffffa0000fffffff 128MB modules
ffffa00010000000 fffff81ffffeffff ~88TB vmalloc
fffff81fffff0000 fffffc1ffe58ffff ~3TB [guard␣
↪→region]
fffffc1ffe590000 fffffc1ffe9fffff 4544KB fixed␣
↪→mappings
fffffc1ffea00000 fffffc1ffebfffff 2MB [guard␣
↪→region]
fffffc1ffec00000 fffffc1fffbfffff 16MB PCI I/O space
fffffc1fffc00000 fffffc1fffdfffff 2MB [guard␣
↪→region]
fffffc1fffe00000 ffffffffffdfffff 3968GB vmemmap
ffffffffffe00000 ffffffffffffffff 2MB [guard␣
↪→region]

Translation table lookup with 4KB pages:

+--------+--------+--------+--------+--------+--------+--------+--------+
|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+--------+--------+--------+--------+--------+--------+--------+--------+
| | | | | |
| | | | | v
| | | | | [11:0] in-page offset
| | | | +-> [20:12] L3 index
| | | +-----------> [29:21] L2 index
| | +---------------------> [38:30] L1 index
| +-------------------------------> [47:39] L0 index
+---> [63] TTBR0/1

Translation table lookup with 64KB pages:

+--------+--------+--------+--------+--------+--------+--------+--------+
|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+--------+--------+--------+--------+--------+--------+--------+--------+
| | | | |
| | | | v
| | | | [15:0] in-page offset
| | | +----------> [28:16] L3 index

(continues on next page)

54 Chapter 9. Memory Layout on AArch64 Linux

Linux Arm64 Documentation

(continued from previous page)
| | +--------------------------> [41:29] L2 index
| +-------------------------------> [47:42] L1 index (48-
↪→bit)
| [51:42] L1 index (52-
↪→bit)
+---> [63] TTBR0/1

When using KVM without the Virtualization Host Extensions, the hypervisor maps
kernel pages in EL2 at a fixed (and potentially random) offset from the linear map-
ping. See the kern_hyp_va macro and kvm_update_va_mask function for more de-
tails. MMIO devices such as GICv2 gets mapped next to the HYP idmap page, as do
vectors when ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.

When using KVM with the Virtualization Host Extensions, no additional mappings
are created, since the host kernel runs directly in EL2.

9.1 52-bit VA support in the kernel

If the ARMv8.2-LVA optional feature is present, and we are running with a 64KB
page size; then it is possible to use 52-bits of address space for both userspace and
kernel addresses. However, any kernel binary that supports 52-bit must also be
able to fall back to 48-bit at early boot time if the hardware feature is not present.

This fallback mechanism necessitates the kernel .text to be in the higher addresses
such that they are invariant to 48/52-bit VAs. Due to the kasan shadow being a
fraction of the entire kernel VA space, the end of the kasan shadow must also be
in the higher half of the kernel VA space for both 48/52-bit. (Switching from 48-bit
to 52-bit, the end of the kasan shadow is invariant and dependent on ~0UL, whilst
the start address will “grow”towards the lower addresses).
In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET is kept con-
stant at 0xFFF0000000000000 (corresponding to 52-bit), this obviates the need
for an extra variable read. The physvirt offset and vmemmap offsets are computed
at early boot to enable this logic.

As a single binary will need to support both 48-bit and 52-bit VA spaces, the
VMEMMAP must be sized large enough for 52-bit VAs and also must be sized
large enough to accommodate a fixed PAGE_OFFSET.

Most code in the kernel should not need to consider the VA_BITS, for code that
does need to know the VA size the variables are defined as follows:

VA_BITS constant the maximum VA space size

VA_BITS_MIN constant the minimum VA space size

vabits_actual variable the actual VA space size

Maximum and minimum sizes can be useful to ensure that buffers are sized large
enough or that addresses are positioned close enough for the “worst”case.

9.1. 52-bit VA support in the kernel 55

Linux Arm64 Documentation

9.2 52-bit userspace VAs

To maintain compatibility with software that relies on the ARMv8.0 VA space
maximum size of 48-bits, the kernel will, by default, return virtual addresses to
userspace from a 48-bit range.

Software can“opt-in”to receiving VAs from a 52-bit space by specifying an mmap
hint parameter that is larger than 48-bit.

For example:

maybe_high_address = mmap(~0UL, size, prot, flags,...);

It is also possible to build a debug kernel that returns addresses from a 52-bit
space by enabling the following kernel config options:

CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y

Note that this option is only intended for debugging applications and should not
be used in production.

56 Chapter 9. Memory Layout on AArch64 Linux

CHAPTER

TEN

POINTER AUTHENTICATION IN AARCH64 LINUX

Author: Mark Rutland <mark.rutland@arm.com>

Date: 2017-07-19

This document briefly describes the provision of pointer authentication function-
ality in AArch64 Linux.

10.1 Architecture overview

The ARMv8.3 Pointer Authentication extension adds primitives that can be used
to mitigate certain classes of attack where an attacker can corrupt the contents of
some memory (e.g. the stack).

The extension uses a Pointer Authentication Code (PAC) to determine whether
pointers have been modified unexpectedly. A PAC is derived from a pointer, an-
other value (such as the stack pointer), and a secret key held in system registers.

The extension adds instructions to insert a valid PAC into a pointer, and to ver-
ify/remove the PAC from a pointer. The PAC occupies a number of high-order bits
of the pointer, which varies dependent on the configured virtual address size and
whether pointer tagging is in use.

A subset of these instructions have been allocated from the HINT encoding space.
In the absence of the extension (or when disabled), these instructions behave as
NOPs. Applications and libraries using these instructions operate correctly re-
gardless of the presence of the extension.

The extension provides five separate keys to generate PACs - two for instruction
addresses (APIAKey, APIBKey), two for data addresses (APDAKey, APDBKey), and
one for generic authentication (APGAKey).

57

mailto:mark.rutland@arm.com

Linux Arm64 Documentation

10.2 Basic support

When CONFIG_ARM64_PTR_AUTH is selected, and relevant HW support is
present, the kernel will assign random key values to each process at exec*() time.
The keys are shared by all threads within the process, and are preserved across
fork().

Presence of address authentication functionality is advertised via HWCAP_PACA,
and generic authentication functionality via HWCAP_PACG.

The number of bits that the PAC occupies in a pointer is 55 minus the virtual
address size configured by the kernel. For example, with a virtual address size of
48, the PAC is 7 bits wide.

Recent versions of GCC can compile code with APIAKey-based return address pro-
tection when passed the -msign-return-address option. This uses instructions in
the HINT space (unless -march=armv8.3-a or higher is also passed), and such code
can run on systems without the pointer authentication extension.

In addition to exec(), keys can also be reinitialized to random values using the
PR_PAC_RESET_KEYS prctl. A bitmask of PR_PAC_APIAKEY, PR_PAC_APIBKEY,
PR_PAC_APDAKEY, PR_PAC_APDBKEY and PR_PAC_APGAKEY specifies which
keys are to be reinitialized; specifying 0 means “all keys”.

10.3 Debugging

When CONFIG_ARM64_PTR_AUTH is selected, and HW support for address au-
thentication is present, the kernel will expose the position of TTBR0 PAC bits in the
NT_ARM_PAC_MASK regset (struct user_pac_mask), which userspace can acquire
via PTRACE_GETREGSET.

The regset is exposed only whenHWCAP_PACA is set. Separatemasks are exposed
for data pointers and instruction pointers, as the set of PAC bits can vary between
the two. Note that the masks apply to TTBR0 addresses, and are not valid to apply
to TTBR1 addresses (e.g. kernel pointers).

Additionally, when CONFIG_CHECKPOINT_RESTORE is also set, the kernel
will expose the NT_ARM_PACA_KEYS and NT_ARM_PACG_KEYS regsets (struct
user_pac_address_keys and struct user_pac_generic_keys). These can be used to
get and set the keys for a thread.

10.4 Virtualization

Pointer authentication is enabled in KVM guest when each virtual cpu is initialised
by passing flags KVM_ARM_VCPU_PTRAUTH_[ADDRESS/GENERIC] and request-
ing these two separate cpu features to be enabled. The current KVM guest imple-
mentation works by enabling both features together, so both these userspace flags
are checked before enabling pointer authentication. The separate userspace flag
will allow to have no userspace ABI changes if support is added in the future to
allow these two features to be enabled independently of one another.

58 Chapter 10. Pointer authentication in AArch64 Linux

Linux Arm64 Documentation

As Arm Architecture specifies that Pointer Authentication feature is implemented
along with the VHE feature so KVM arm64 ptrauth code relies on VHE mode to be
present.

Additionally, when these vcpu feature flags are not set then KVM will filter out the
Pointer Authentication system key registers from KVM_GET/SET_REG_* ioctls and
mask those features from cpufeature ID register. Any attempt to use the Pointer
Authentication instructions will result in an UNDEFINED exception being injected
into the guest.

10.4. Virtualization 59

Linux Arm64 Documentation

60 Chapter 10. Pointer authentication in AArch64 Linux

CHAPTER

ELEVEN

SILICON ERRATA AND SOFTWARE WORKAROUNDS

Author: Will Deacon <will.deacon@arm.com>

Date : 27 November 2015

It is an unfortunate fact of life that hardware is often produced with so-called
“errata”, which can cause it to deviate from the architecture under specific cir-
cumstances. For hardware produced by ARM, these errata are broadly classified
into the following categories:

Category
A

A critical error without a viable workaround.

Category
B

A significant or critical error with an acceptable
workaround.

Category
C

A minor error that is not expected to occur under normal
operation.

For more information, consult one of the “Software Developers Errata Notice”
documents available on infocenter.arm.com (registration required).

As far as Linux is concerned, Category B errata may require some special treat-
ment in the operating system. For example, avoiding a particular sequence of
code, or configuring the processor in a particular way. A less common situation
may require similar actions in order to declassify a Category A erratum into a Cat-
egory C erratum. These are collectively known as “software workarounds”and
are only required in the minority of cases (e.g. those cases that both require a
non-secure workaround and can be triggered by Linux).

For software workarounds that may adversely impact systems unaffected by the
erratum in question, a Kconfig entry is added under“Kernel Features”->“ARM
errata workarounds via the alternatives framework”. These are enabled by default
and patched in at runtime when an affected CPU is detected. For less-intrusive
workarounds, a Kconfig option is not available and the code is structured (prefer-
ably with a comment) in such a way that the erratum will not be hit.

This approach can make it slightly onerous to determine exactly which errata
are worked around in an arbitrary kernel source tree, so this file acts as a reg-
istry of software workarounds in the Linux Kernel and will be updated when new
workarounds are committed and backported to stable kernels.

61

mailto:will.deacon@arm.com

Linux Arm64 Documentation

Implementor Component Erratum ID Kconfig
Allwinner A64/R18 UNKNOWN1 SUN50I_ERRATUM_UNKNOWN1

ARM Cortex-A53 #826319 ARM64_ERRATUM_826319
ARM Cortex-A53 #827319 ARM64_ERRATUM_827319
ARM Cortex-A53 #824069 ARM64_ERRATUM_824069
ARM Cortex-A53 #819472 ARM64_ERRATUM_819472
ARM Cortex-A53 #845719 ARM64_ERRATUM_845719
ARM Cortex-A53 #843419 ARM64_ERRATUM_843419
ARM Cortex-A55 #1024718 ARM64_ERRATUM_1024718
ARM Cortex-A55 #1530923 ARM64_ERRATUM_1530923
ARM Cortex-A57 #832075 ARM64_ERRATUM_832075
ARM Cortex-A57 #852523 N/A
ARM Cortex-A57 #834220 ARM64_ERRATUM_834220
ARM Cortex-A57 #1319537 ARM64_ERRATUM_1319367
ARM Cortex-A72 #853709 N/A
ARM Cortex-A72 #1319367 ARM64_ERRATUM_1319367
ARM Cortex-A73 #858921 ARM64_ERRATUM_858921
ARM Cortex-A76 #1188873,1418040 ARM64_ERRATUM_1418040
ARM Cortex-A76 #1165522 ARM64_ERRATUM_1165522
ARM Cortex-A76 #1286807 ARM64_ERRATUM_1286807
ARM Cortex-A76 #1463225 ARM64_ERRATUM_1463225
ARM Neoverse-N1 #1188873,1418040 ARM64_ERRATUM_1418040
ARM Neoverse-N1 #1349291 N/A
ARM Neoverse-N1 #1542419 ARM64_ERRATUM_1542419
ARM MMU-500 #841119,826419 N/A

Broadcom Brahma-B53 N/A ARM64_ERRATUM_845719
Broadcom Brahma-B53 N/A ARM64_ERRATUM_843419

Cavium ThunderX ITS #22375,24313 CAVIUM_ERRATUM_22375
Cavium ThunderX ITS #23144 CAVIUM_ERRATUM_23144
Cavium ThunderX GICv3 #23154 CAVIUM_ERRATUM_23154
Cavium ThunderX GICv3 #38539 N/A
Cavium ThunderX Core #27456 CAVIUM_ERRATUM_27456
Cavium ThunderX Core #30115 CAVIUM_ERRATUM_30115
Cavium ThunderX SMMUv2 #27704 N/A
Cavium ThunderX2 SMMUv3 #74 N/A
Cavium ThunderX2 SMMUv3 #126 N/A
Cavium ThunderX2 Core #219 CAVIUM_TX2_ERRATUM_219

Freescale/NXP LS2080A/LS1043A A-008585 FSL_ERRATUM_A008585

Hisilicon Hip0{5,6,7} #161010101 HISILICON_ERRATUM_161010101
Hisilicon Hip0{6,7} #161010701 N/A
Hisilicon Hip0{6,7} #161010803 N/A
Hisilicon Hip07 #161600802 HISILICON_ERRATUM_161600802
Hisilicon Hip08 SMMU PMCG #162001800 N/A

Continued on next page

62 Chapter 11. Silicon Errata and Software Workarounds

Linux Arm64 Documentation

Table 1 – continued from previous page
Implementor Component Erratum ID Kconfig

Qualcomm Tech. Kryo/Falkor v1 E1003 QCOM_FALKOR_ERRATUM_1003
Qualcomm Tech. Kryo/Falkor v1 E1009 QCOM_FALKOR_ERRATUM_1009
Qualcomm Tech. QDF2400 ITS E0065 QCOM_QDF2400_ERRATUM_0065
Qualcomm Tech. Falkor v{1,2} E1041 QCOM_FALKOR_ERRATUM_1041
Qualcomm Tech. Kryo4xx Gold N/A ARM64_ERRATUM_1463225
Qualcomm Tech. Kryo4xx Gold N/A ARM64_ERRATUM_1418040
Qualcomm Tech. Kryo4xx Silver N/A ARM64_ERRATUM_1530923
Qualcomm Tech. Kryo4xx Silver N/A ARM64_ERRATUM_1024718

Fujitsu A64FX E#010001 FUJITSU_ERRATUM_010001

63

Linux Arm64 Documentation

64 Chapter 11. Silicon Errata and Software Workarounds

CHAPTER

TWELVE

SCALABLE VECTOR EXTENSION SUPPORT FOR AARCH64
LINUX

Author: Dave Martin <Dave.Martin@arm.com>

Date: 4 August 2017

This document outlines briefly the interface provided to userspace by Linux in
order to support use of the ARM Scalable Vector Extension (SVE).

This is an outline of the most important features and issues only and not intended
to be exhaustive.

This document does not aim to describe the SVE architecture or programmer’s
model. To aid understanding, a minimal description of relevant programmer’s
model features for SVE is included in Appendix A.

12.1 1. General

• SVE registers Z0..Z31, P0..P15 and FFR and the current vector length VL,
are tracked per-thread.

• The presence of SVE is reported to userspace via HWCAP_SVE in the aux
vector AT_HWCAP entry. Presence of this flag implies the presence of the SVE
instructions and registers, and the Linux-specific system interfaces described
in this document. SVE is reported in /proc/cpuinfo as “sve”.

• Support for the execution of SVE instructions in userspace can also be de-
tected by reading the CPU ID register ID_AA64PFR0_EL1 using an MRS in-
struction, and checking that the value of the SVE field is nonzero. [3]

It does not guarantee the presence of the system interfaces described in the
following sections: software that needs to verify that those interfaces are
present must check for HWCAP_SVE instead.

• On hardware that supports the SVE2 extensions, HWCAP2_SVE2 will also be
reported in the AT_HWCAP2 aux vector entry. In addition to this, optional
extensions to SVE2 may be reported by the presence of:

HWCAP2_SVE2 HWCAP2_SVEAES HWCAP2_SVEPMULL HW-
CAP2_SVEBITPERM HWCAP2_SVESHA3 HWCAP2_SVESM4

This list may be extended over time as the SVE architecture evolves.

65

mailto:Dave.Martin@arm.com

Linux Arm64 Documentation

These extensions are also reported via the CPU ID register
ID_AA64ZFR0_EL1, which userspace can read using an MRS instruction.
See elf_hwcaps.txt and cpu-feature-registers.txt for details.

• Debuggers should restrict themselves to interacting with the target via
the NT_ARM_SVE regset. The recommended way of detecting support
for this regset is to connect to a target process first and then attempt a
ptrace(PTRACE_GETREGSET, pid, NT_ARM_SVE, &iov).

• Whenever SVE scalable register values (Zn, Pn, FFR) are exchanged in mem-
ory between userspace and the kernel, the register value is encoded in mem-
ory in an endianness-invariant layout, with bits [(8 * i + 7) : (8 * i)] encoded
at byte offset i from the start of the memory representation. This affects for
example the signal frame (struct sve_context) and ptrace interface (struct
user_sve_header) and associated data.

Beware that on big-endian systems this results in a different byte order than
for the FPSIMD V-registers, which are stored as single host-endian 128-bit
values, with bits [(127 - 8 * i) : (120 - 8 * i)] of the register encoded at byte
offset i. (struct fpsimd_context, struct user_fpsimd_state).

12.2 2. Vector length terminology

The size of an SVE vector (Z) register is referred to as the “vector length”.
To avoid confusion about the units used to express vector length, the kernel adopts
the following conventions:

• Vector length (VL) = size of a Z-register in bytes

• Vector quadwords (VQ) = size of a Z-register in units of 128 bits

(So, VL = 16 * VQ.)

The VQ convention is used where the underlying granularity is important, such
as in data structure definitions. In most other situations, the VL convention is
used. This is consistent with the meaning of the“VL”pseudo-register in the SVE
instruction set architecture.

12.3 3. System call behaviour

• On syscall, V0..V31 are preserved (as without SVE). Thus, bits [127:0] of
Z0..Z31 are preserved. All other bits of Z0..Z31, and all of P0..P15 and FFR
become unspecified on return from a syscall.

• The SVE registers are not used to pass arguments to or receive results from
any syscall.

• In practice the affected registers/bits will be preserved or will be replaced
with zeros on return from a syscall, but userspace should not make assump-
tions about this. The kernel behaviour may vary on a case-by-case basis.

• All other SVE state of a thread, including the currently configured vector
length, the state of the PR_SVE_VL_INHERIT flag, and the deferred vector

66 Chapter 12. Scalable Vector Extension support for AArch64 Linux

Linux Arm64 Documentation

length (if any), is preserved across all syscalls, subject to the specific excep-
tions for execve() described in section 6.

In particular, on return from a fork() or clone(), the parent and new child
process or thread share identical SVE configuration, matching that of the
parent before the call.

12.4 4. Signal handling

• A new signal frame record sve_context encodes the SVE registers on signal
delivery. [1]

• This record is supplementary to fpsimd_context. The FPSR and FPCR reg-
isters are only present in fpsimd_context. For convenience, the content of
V0..V31 is duplicated between sve_context and fpsimd_context.

• The signal frame record for SVE always contains basic metadata, in particular
the thread’s vector length (in sve_context.vl).

• The SVE registers may or may not be included in the record, de-
pending on whether the registers are live for the thread. The
registers are present if and only if: sve_context.head.size >=
SVE_SIG_CONTEXT_SIZE(sve_vq_from_vl(sve_context.vl)).

• If the registers are present, the remainder of the record has a vl-dependent
size and layout. Macros SVE_SIG_* are defined [1] to facilitate access to the
members.

• Each scalable register (Zn, Pn, FFR) is stored in an endianness-invariant lay-
out, with bits [(8 * i + 7) : (8 * i)] stored at byte offset i from the start of the
register’s representation in memory.

• If the SVE context is too big to fit in sigcontext.__reserved[], then extra space
is allocated on the stack, an extra_context record is written in __reserved[]
referencing this space. sve_context is then written in the extra space. Refer
to [1] for further details about this mechanism.

12.5 5. Signal return

When returning from a signal handler:

• If there is no sve_context record in the signal frame, or if the record is present
but contains no register data as desribed in the previous section, then the SVE
registers/bits become non-live and take unspecified values.

• If sve_context is present in the signal frame and contains full register data, the
SVE registers become live and are populated with the specified data. How-
ever, for backward compatibility reasons, bits [127:0] of Z0..Z31 are always
restored from the corresponding members of fpsimd_context.vregs[] and not
from sve_context. The remaining bits are restored from sve_context.

• Inclusion of fpsimd_context in the signal frame remains mandatory, irrespec-
tive of whether sve_context is present or not.

12.4. 4. Signal handling 67

Linux Arm64 Documentation

• The vector length cannot be changed via signal return. If sve_context.vl in
the signal frame does not match the current vector length, the signal return
attempt is treated as illegal, resulting in a forced SIGSEGV.

12.6 6. prctl extensions

Some new prctl() calls are added to allow programs to manage the SVE vector
length:

prctl(PR_SVE_SET_VL, unsigned long arg)

Sets the vector length of the calling thread and related flags, where arg
== vl | flags. Other threads of the calling process are unaffected.

vl is the desired vector length, where sve_vl_valid(vl) must be true.

flags:

PR_SVE_VL_INHERIT

Inherit the current vector length across execve(). Oth-
erwise, the vector length is reset to the system default
at execve(). (See Section 9.)

PR_SVE_SET_VL_ONEXEC

Defer the requested vector length change until the next
execve() performed by this thread.

The effect is equivalent to implicit exceution of the fol-
lowing call immediately after the next execve() (if any)
by the thread:

prctl(PR_SVE_SET_VL, arg &
~PR_SVE_SET_VL_ONEXEC)

This allows launching of a new program with a different
vector length, while avoiding runtime side effects in the
caller.

Without PR_SVE_SET_VL_ONEXEC, the requested
change takes effect immediately.

Return value: a nonnegative on success, or a negative value on error:

EINVAL: SVE not supported, invalid vector length requested, or
invalid flags.

On success:

• Either the calling thread’s vector length or the deferred vector
length to be applied at the next execve() by the thread (dependent
on whether PR_SVE_SET_VL_ONEXEC is present in arg), is set to
the largest value supported by the system that is less than or equal
to vl. If vl == SVE_VL_MAX, the value set will be the largest value
supported by the system.

68 Chapter 12. Scalable Vector Extension support for AArch64 Linux

Linux Arm64 Documentation

• Any previously outstanding deferred vector length change in the
calling thread is cancelled.

• The returned value describes the resulting configuration, en-
coded as for PR_SVE_GET_VL. The vector length reported in
this value is the new current vector length for this thread if
PR_SVE_SET_VL_ONEXEC was not present in arg; otherwise, the
reported vector length is the deferred vector length that will be ap-
plied at the next execve() by the calling thread.

• Changing the vector length causes all of P0..P15, FFR and all bits
of Z0..Z31 except for Z0 bits [127:0] .. Z31 bits [127:0] to be-
come unspecified. Calling PR_SVE_SET_VL with vl equal to the
thread’s current vector length, or calling PR_SVE_SET_VL with the
PR_SVE_SET_VL_ONEXEC flag, does not constitute a change to the
vector length for this purpose.

prctl(PR_SVE_GET_VL)

Gets the vector length of the calling thread.

The following flag may be OR-ed into the result:

PR_SVE_VL_INHERIT

Vector length will be inherited across execve().

There is no way to determine whether there is an outstanding deferred
vector length change (which would only normally be the case between a
fork() or vfork() and the corresponding execve() in typical use).

To extract the vector length from the result, and it with
PR_SVE_VL_LEN_MASK.

Return value: a nonnegative value on success, or a negative value on error:
EINVAL: SVE not supported.

12.7 7. ptrace extensions

• A new regset NT_ARM_SVE is defined for use with PTRACE_GETREGSET and
PTRACE_SETREGSET.

Refer to [2] for definitions.

The regset data starts with struct user_sve_header, containing:

size

Size of the complete regset, in bytes. This depends on vl and
possibly on other things in the future.

If a call to PTRACE_GETREGSET requests less data than the
value of size, the caller can allocate a larger buffer and retry in
order to read the complete regset.

max_size

12.7. 7. ptrace extensions 69

Linux Arm64 Documentation

Maximum size in bytes that the regset can grow to for the target
thread. The regset won’t grow bigger than this even if the target
thread changes its vector length etc.

vl

Target thread’s current vector length, in bytes.
max_vl

Maximum possible vector length for the target thread.

flags

either

SVE_PT_REGS_FPSIMD

SVE registers are not live (GETREGSET) or are
to be made non-live (SETREGSET).

The payload is of type struct user_fpsimd_state,
with the same meaning as for NT_PRFPREG,
starting at offset SVE_PT_FPSIMD_OFFSET from
the start of user_sve_header.

Extra data might be appended in the future: the
size of the payload should be obtained using
SVE_PT_FPSIMD_SIZE(vq, flags).

vq should be obtained using sve_vq_from_vl(vl).

or

SVE_PT_REGS_SVE

SVE registers are live (GETREGSET) or are to be
made live (SETREGSET).

The payload contains the SVE register data,
starting at offset SVE_PT_SVE_OFFSET from
the start of user_sve_header, and with size
SVE_PT_SVE_SIZE(vq, flags);

⋯OR-ed with zero or more of the following flags, which
have the same meaning and behaviour as the corresponding
PR_SET_VL_* flags:

SVE_PT_VL_INHERIT

SVE_PT_VL_ONEXEC (SETREGSET only).

• The effects of changing the vector length and/or flags are equivalent to those
documented for PR_SVE_SET_VL.

The caller must make a further GETREGSET call if it needs to knowwhat VL is
actually set by SETREGSET, unless is it known in advance that the requested
VL is supported.

• In the SVE_PT_REGS_SVE case, the size and layout of the payload depends
on the header fields. The SVE_PT_SVE_*() macros are provided to facilitate
access to the members.

70 Chapter 12. Scalable Vector Extension support for AArch64 Linux

Linux Arm64 Documentation

• In either case, for SETREGSET it is permissible to omit the payload, in which
case only the vector length and flags are changed (along with any conse-
quences of those changes).

• For SETREGSET, if an SVE_PT_REGS_SVE payload is present and the re-
quested VL is not supported, the effect will be the same as if the payload
were omitted, except that an EIO error is reported. No attempt is made to
translate the payload data to the correct layout for the vector length actu-
ally set. The thread’s FPSIMD state is preserved, but the remaining bits of
the SVE registers become unspecified. It is up to the caller to translate the
payload layout for the actual VL and retry.

• The effect of writing a partial, incomplete payload is unspecified.

12.8 8. ELF coredump extensions

• A NT_ARM_SVE note will be added to each coredump for each thread of the
dumped process. The contents will be equivalent to the data that would have
been read if a PTRACE_GETREGSET of NT_ARM_SVEwere executed for each
thread when the coredump was generated.

12.9 9. System runtime configuration

• To mitigate the ABI impact of expansion of the signal frame, a policy mecha-
nism is provided for administrators, distro maintainers and developers to set
the default vector length for userspace processes:

/proc/sys/abi/sve_default_vector_length

Writing the text representation of an integer to this file sets the system
default vector length to the specified value, unless the value is greater
than the maximum vector length supported by the system in which case
the default vector length is set to that maximum.

The result can be determined by reopening the file and reading its con-
tents.

At boot, the default vector length is initially set to 64 or the maximum
supported vector length, whichever is smaller. This determines the ini-
tial vector length of the init process (PID 1).

Reading this file returns the current system default vector length.

• At every execve() call, the new vector length of the new process is set to the
system default vector length, unless

– PR_SVE_VL_INHERIT (or equivalently SVE_PT_VL_INHERIT) is set for
the calling thread, or

– a deferred vector length change is pending, established via the
PR_SVE_SET_VL_ONEXEC flag (or SVE_PT_VL_ONEXEC).

• Modifying the system default vector length does not affect the vector length
of any existing process or thread that does not make an execve() call.

12.8. 8. ELF coredump extensions 71

Linux Arm64 Documentation

12.9.1 Appendix A. SVE programmer’s model (informative)

This section provides a minimal description of the additions made by SVE to the
ARMv8-A programmer’s model that are relevant to this document.
Note: This section is for information only and not intended to be complete or to
replace any architectural specification.

12.10 A.1. Registers

In A64 state, SVE adds the following:

• 32 8VL-bit vector registers Z0..Z31 For each Zn, Zn bits [127:0] alias the
ARMv8-A vector register Vn.

A register write using a Vn register name zeros all bits of the corresponding
Zn except for bits [127:0].

• 16 VL-bit predicate registers P0..P15

• 1 VL-bit special-purpose predicate register FFR (the “first-fault register”)
• a VL “pseudo-register”that determines the size of each vector register
The SVE instruction set architecture provides no way to write VL directly.
Instead, it can be modified only by EL1 and above, by writing appropriate
system registers.

• The value of VL can be configured at runtime by EL1 and above: 16 <= VL
<= VLmax, where VL must be a multiple of 16.

• The maximum vector length is determined by the hardware: 16 <= VLmax
<= 256.

(The SVE architecture specifies 256, but permits future architecture revisions
to raise this limit.)

• FPSR and FPCR are retained from ARMv8-A, and interact with SVE floating-
point operations in a similar way to the way in which they interact with ARMv8
floating-point operations:

8VL-1 128 0 bit index
+---- //// -----------------+

Z0 | : V0 |
: :
Z7 | : V7 |
Z8 | : * V8 |
: : :

Z15 | : *V15 |
Z16 | : V16 |

: :
Z31 | : V31 |

+---- //// -----------------+
31 0

VL-1 0 +-------+
+---- //// --+ FPSR | |

P0 | | +-------+
(continues on next page)

72 Chapter 12. Scalable Vector Extension support for AArch64 Linux

Linux Arm64 Documentation

(continued from previous page)
: | | *FPCR | |

P15 | | +-------+
+---- //// --+

FFR | | +-----+
+---- //// --+ VL | |

+-----+

(*) callee-save: This only applies to bits [63:0] of Z-/V-registers. FPCR contains
callee-save and caller-save bits. See [4] for details.

12.11 A.2. Procedure call standard

The ARMv8-A base procedure call standard is extended as follows with respect to
the additional SVE register state:

• All SVE register bits that are not shared with FP/SIMD are caller-save.

• Z8 bits [63:0] .. Z15 bits [63:0] are callee-save.

This follows from the way these bits are mapped to V8..V15, which are caller-
save in the base procedure call standard.

12.11.1 Appendix B. ARMv8-A FP/SIMD programmer’s model

Note: This section is for information only and not intended to be complete or to
replace any architectural specification.

Refer to [4] for for more information.

ARMv8-A defines the following floating-point / SIMD register state:

• 32 128-bit vector registers V0..V31

• 2 32-bit status/control registers FPSR, FPCR

127 0 bit index
+---------------+

V0 | |
: : :

V7 | |
* V8 | |
: : : :
*V15 | |
V16 | |

: : :
V31 | |

+---------------+

31 0
+-------+

FPSR | |
+-------+

*FPCR | |
+-------+

12.11. A.2. Procedure call standard 73

Linux Arm64 Documentation

(*) callee-save: This only applies to bits [63:0] of V-registers. FPCR contains a
mixture of callee-save and caller-save bits.

12.11.2 References

[1] arch/arm64/include/uapi/asm/sigcontext.h AArch64 Linux signal ABI def-
initions

[2] arch/arm64/include/uapi/asm/ptrace.h AArch64 Linux ptrace ABI defini-
tions

[3] Documentation/arm64/cpu-feature-registers.rst

[4] ARM IHI0055C http://infocenter.arm.com/help/topic/com.arm.doc.
ihi0055c/IHI0055C_beta_aapcs64.pdf http://infocenter.arm.com/help/topic/
com.arm.doc.subset.swdev.abi/index.html Procedure Call Standard for the
ARM 64-bit Architecture (AArch64)

74 Chapter 12. Scalable Vector Extension support for AArch64 Linux

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055c/IHI0055C_beta_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055c/IHI0055C_beta_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

CHAPTER

THIRTEEN

AARCH64 TAGGED ADDRESS ABI

Authors: Vincenzo Frascino <vincenzo.frascino@arm.com> Catalin Mari-
nas <catalin.marinas@arm.com>

Date: 21 August 2019

This document describes the usage and semantics of the Tagged Address ABI on
AArch64 Linux.

13.1 1. Introduction

On AArch64 the TCR_EL1.TBI0 bit is set by default, allowing userspace (EL0) to
perform memory accesses through 64-bit pointers with a non-zero top byte. This
document describes the relaxation of the syscall ABI that allows userspace to pass
certain tagged pointers to kernel syscalls.

13.2 2. AArch64 Tagged Address ABI

From the kernel syscall interface perspective and for the purposes of this docu-
ment, a “valid tagged pointer”is a pointer with a potentially non-zero top-byte
that references an address in the user process address space obtained in one of
the following ways:

• mmap() syscall where either:

– flags have the MAP_ANONYMOUS bit set or
– the file descriptor refers to a regular file (including those returned by
memfd_create()) or /dev/zero

• brk() syscall (i.e. the heap area between the initial location of the program
break at process creation and its current location).

• any memory mapped by the kernel in the address space of the process during
creation and with the same restrictions as for mmap() above (e.g. data, bss,
stack).

The AArch64 Tagged Address ABI has two stages of relaxation depending how the
user addresses are used by the kernel:

75

mailto:vincenzo.frascino@arm.com
mailto:catalin.marinas@arm.com

Linux Arm64 Documentation

1. User addresses not accessed by the kernel but used for address space man-
agement (e.g. mprotect(), madvise()). The use of valid tagged point-
ers in this context is allowed with the exception of brk(), mmap() and the
new_address argument to mremap() as these have the potential to alias with
existing user addresses.

NOTE: This behaviour changed in v5.6 and so some earlier kernels may in-
correctly accept valid tagged pointers for the brk(), mmap() and mremap()
system calls.

2. User addresses accessed by the kernel (e.g. write()). This ABI relaxation
is disabled by default and the application thread needs to explicitly enable it
via prctl() as follows:

• PR_SET_TAGGED_ADDR_CTRL: enable or disable the AArch64 Tagged Ad-
dress ABI for the calling thread.

The (unsigned int) arg2 argument is a bit mask describing the control
mode used:

– PR_TAGGED_ADDR_ENABLE: enable AArch64 Tagged Address ABI. De-
fault status is disabled.

Arguments arg3, arg4, and arg5 must be 0.

• PR_GET_TAGGED_ADDR_CTRL: get the status of the AArch64 Tagged Ad-
dress ABI for the calling thread.

Arguments arg2, arg3, arg4, and arg5 must be 0.

The ABI properties described above are thread-scoped, inherited on clone()
and fork() and cleared on exec().

Calling prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0,
0, 0) returns -EINVAL if the AArch64 Tagged Address ABI is globally
disabled by sysctl abi.tagged_addr_disabled=1. The default sysctl
abi.tagged_addr_disabled configuration is 0.

When the AArch64 Tagged Address ABI is enabled for a thread, the following be-
haviours are guaranteed:

• All syscalls except the cases mentioned in section 3 can accept any valid
tagged pointer.

• The syscall behaviour is undefined for invalid tagged pointers: it may result
in an error code being returned, a (fatal) signal being raised, or other modes
of failure.

• The syscall behaviour for a valid tagged pointer is the same as for the corre-
sponding untagged pointer.

A definition of the meaning of tagged pointers on AArch64 can be found in
Documentation/arm64/tagged-pointers.rst.

76 Chapter 13. AArch64 TAGGED ADDRESS ABI

Linux Arm64 Documentation

13.3 3. AArch64 Tagged Address ABI Exceptions

The following system call parameters must be untagged regardless of the ABI re-
laxation:

• prctl() other than pointers to user data either passed directly or indirectly
as arguments to be accessed by the kernel.

• ioctl() other than pointers to user data either passed directly or indirectly
as arguments to be accessed by the kernel.

• shmat() and shmdt().

Any attempt to use non-zero tagged pointers may result in an error code being
returned, a (fatal) signal being raised, or other modes of failure.

13.4 4. Example of correct usage

#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>

#define PR_SET_TAGGED_ADDR_CTRL 55
#define PR_TAGGED_ADDR_ENABLE (1UL << 0)

#define TAG_SHIFT 56

int main(void)
{

int tbi_enabled = 0;
unsigned long tag = 0;
char *ptr;

/* check/enable the tagged address ABI */
if (!prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0))

tbi_enabled = 1;

/* memory allocation */
ptr = mmap(NULL, sysconf(_SC_PAGE_SIZE), PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ptr == MAP_FAILED)

return 1;

/* set a non-zero tag if the ABI is available */
if (tbi_enabled)

tag = rand() & 0xff;
ptr = (char *)((unsigned long)ptr | (tag << TAG_SHIFT));

/* memory access to a tagged address */
strcpy(ptr, "tagged pointer\n");

/* syscall with a tagged pointer */
write(1, ptr, strlen(ptr));

(continues on next page)

13.3. 3. AArch64 Tagged Address ABI Exceptions 77

Linux Arm64 Documentation

(continued from previous page)

return 0;
}

78 Chapter 13. AArch64 TAGGED ADDRESS ABI

CHAPTER

FOURTEEN

TAGGED VIRTUAL ADDRESSES IN AARCH64 LINUX

Author: Will Deacon <will.deacon@arm.com>

Date : 12 June 2013

This document briefly describes the provision of tagged virtual addresses in the
AArch64 translation system and their potential uses in AArch64 Linux.

The kernel configures the translation tables so that translations made via TTBR0
(i.e. userspace mappings) have the top byte (bits 63:56) of the virtual address
ignored by the translation hardware. This frees up this byte for application use.

14.1 Passing tagged addresses to the kernel

All interpretation of userspace memory addresses by the kernel assumes an ad-
dress tag of 0x00, unless the application enables the AArch64 Tagged Address
ABI explicitly (Documentation/arm64/tagged-address-abi.rst).

This includes, but is not limited to, addresses found in:

• pointer arguments to system calls, including pointers in structures passed to
system calls,

• the stack pointer (sp), e.g. when interpreting it to deliver a signal,

• the frame pointer (x29) and frame records, e.g. when interpreting them to
generate a backtrace or call graph.

Using non-zero address tags in any of these locations when the userspace applica-
tion did not enable the AArch64 Tagged Address ABI may result in an error code
being returned, a (fatal) signal being raised, or other modes of failure.

For these reasons, when the AArch64 Tagged Address ABI is disabled, passing non-
zero address tags to the kernel via system calls is forbidden, and using a non-zero
address tag for sp is strongly discouraged.

Programs maintaining a frame pointer and frame records that use non-zero ad-
dress tags may suffer impaired or inaccurate debug and profiling visibility.

79

mailto:will.deacon@arm.com

Linux Arm64 Documentation

14.2 Preserving tags

Non-zero tags are not preserved when delivering signals. This means that signal
handlers in applications making use of tags cannot rely on the tag information for
user virtual addresses being maintained for fields inside siginfo_t. One exception
to this rule is for signals raised in response to watchpoint debug exceptions, where
the tag information will be preserved.

The architecture prevents the use of a tagged PC, so the upper byte will be set to
a sign-extension of bit 55 on exception return.

This behaviour is maintained when the AArch64 Tagged Address ABI is enabled.

14.3 Other considerations

Special care should be taken when using tagged pointers, since it is likely that C
compilers will not hazard two virtual addresses differing only in the upper byte.

80 Chapter 14. Tagged virtual addresses in AArch64 Linux

