
Linux Arm Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

ARM LINUX 2.6 AND UPPER

Please check <ftp://ftp.arm.linux.org.uk/pub/armlinux> for updates.

1.1 Compilation of kernel

In order to compile ARM Linux, you will need a compiler capable of gen-
erating ARM ELF code with GNU extensions. GCC 3.3 is known to be a
good compiler. Fortunately, you needn’t guess. The kernel will report
an error if your compiler is a recognized offender.

To build ARM Linux natively, you shouldn’t have to alter the ARCH= line
in the top level Makefile. However, if you don’t have the ARM Linux ELF
tools installed as default, then you should change the CROSS_COMPILE
line as detailed below.

If you wish to cross-compile, then alter the following lines in the top level
make file:

ARCH = <whatever>

with:

ARCH = arm

and:

CROSS_COMPILE=

to:

CROSS_COMPILE=<your-path-to-your-compiler-without-gcc>

eg.:

CROSS_COMPILE=arm-linux-

Do a ‘make config’, followed by ‘make Image’to build the kernel
(arch/arm/boot/Image). A compressed image can be built by doing a
‘make zImage’instead of ‘make Image’.

1

ftp://ftp.arm.linux.org.uk/pub/armlinux

Linux Arm Documentation

1.2 Bug reports etc

Please send patches to the patch system. For more information, see
http://www.arm.linux.org.uk/developer/patches/info.php Always include
some explanation as to what the patch does and why it is needed.

Bug reports should be sent to linux-arm-kernel@lists.arm.linux.org.uk,
or submitted through the web form at http://www.arm.linux.org.uk/
developer/

When sending bug reports, please ensure that they contain all relevant
information, eg. the kernel messages that were printed before/during
the problem, what you were doing, etc.

1.3 Include files

Several new include directories have been created under include/asm-
arm, which are there to reduce the clutter in the top-level directory.
These directories, and their purpose is listed below:

arch-* machine/platform specific header files
hard-
ware

driver-internal ARM specific data structures/definitions

mach descriptions of generic ARM to specific machine interfaces
proc-* processor dependent header files (currently only two cate-

gories)

1.4 Machine/Platform support

The ARM tree contains support for a lot of different machine types. To
continue supporting these differences, it has become necessary to split
machine-specific parts by directory. For this, the machine category is
used to select which directories and files get included (we will use $(MA-
CHINE) to refer to the category)

To this end, we now have arch/arm/mach-$(MACHINE) directories which
are designed to house the non-driver files for a particular machine
(eg, PCI, memory management, architecture definitions etc). For
all future machines, there should be a corresponding arch/arm/mach-
$(MACHINE)/include/mach directory.

2 Chapter 1. ARM Linux 2.6 and upper

http://www.arm.linux.org.uk/developer/patches/info.php
mailto:linux-arm-kernel@lists.arm.linux.org.uk
http://www.arm.linux.org.uk/developer/
http://www.arm.linux.org.uk/developer/

Linux Arm Documentation

1.5 Modules

Although modularisation is supported (and required for the FP emula-
tor), each module on an ARM2/ARM250/ARM3 machine when is loaded
will take memory up to the next 32k boundary due to the size of the
pages. Therefore, is modularisation on these machines really worth it?

However, ARM6 and up machines allow modules to take multiples of 4k,
and as such Acorn RiscPCs and other architectures using these proces-
sors can make good use of modularisation.

1.6 ADFS Image files

You can access image files on your ADFS partitions by mounting the
ADFS partition, and then using the loopback device driver. You must
have losetup installed.

Please note that the PCEmulator DOS partitions have a partition table
at the start, and as such, you will have to give ‘-o offset’to losetup.

1.7 Request to developers

When writing device drivers which include a separate assembler file,
please include it in with the C file, and not the arch/arm/lib directory.
This allows the driver to be compiled as a loadable module without re-
quiring half the code to be compiled into the kernel image.

In general, try to avoid using assembler unless it is really necessary. It
makes drivers far less easy to port to other hardware.

1.8 ST506 hard drives

The ST506 hard drive controllers seem to be working fine (if a little
slowly). At the moment they will only work off the controllers on an
A4x0’s motherboard, but for it to work off a Podule just requires some-
one with a podule to add the addresses for the IRQ mask and the HDC
base to the source.

As of 31/3/96 it works with two drives (you should get the ADFS *con-
figure harddrive set to 2). I’ve got an internal 20MB and a great big
external 5.25”FH 64MB drive (who could ever want more :-)).
I’ve just got 240K/s off it (a dd with bs=128k); thats about half of what
RiscOS gets; but it’s a heck of a lot better than the 50K/s I was getting
last week :-)

Known bug: Drive data errors can cause a hang; including cases where
the controller has fixed the error using ECC. (Possibly ONLY in that case
⋯hmm).

1.5. Modules 3

Linux Arm Documentation

1.9 1772 Floppy

This also seems to work OK, but hasn’t been stressed much lately. It
hasn’t got any code for disc change detection in there at the moment
which could be a bit of a problem! Suggestions on the correct way to do
this are welcome.

1.10 CONFIG_MACH_ and CONFIG_ARCH_

A change was made in 2003 to the macro names for new machines.
Historically, CONFIG_ARCH_ was used for the bonafide architecture,
e.g. SA1100, as well as implementations of the architecture, e.g. Assa-
bet. It was decided to change the implementation macros to read CON-
FIG_MACH_ for clarity. Moreover, a retroactive fixup has not been made
because it would complicate patching.

Previous registrations may be found online.

<http://www.arm.linux.org.uk/developer/machines/>

1.11 Kernel entry (head.S)

The initial entry into the kernel is via head.S, which uses machine inde-
pendent code. The machine is selected by the value of ‘r1’on entry,
which must be kept unique.

Due to the large number of machines which the ARM port of Linux pro-
vides for, we have a method to manage this which ensures that we don’
t end up duplicating large amounts of code.

We group machine (or platform) support code into machine classes.
A class typically based around one or more system on a chip de-
vices, and acts as a natural container around the actual implementa-
tions. These classes are given directories - arch/arm/mach-<class> and
arch/arm/mach-<class> - which contain the source files to/include/mach
support the machine class. This directories also contain any machine
specific supporting code.

For example, the SA1100 class is based upon the SA1100 and SA1110
SoC devices, and contains the code to support the way the on-board and
off- board devices are used, or the device is setup, and provides that
machine specific “personality.”
For platforms that support device tree (DT), the machine selection is
controlled at runtime by passing the device tree blob to the kernel. At
compile-time, support for themachine typemust be selected. This allows
for a single multiplatform kernel build to be used for several machine
types.

For platforms that do not use device tree, this machine selection is con-
trolled by the machine type ID, which acts both as a run-time and a

4 Chapter 1. ARM Linux 2.6 and upper

http://www.arm.linux.org.uk/developer/machines/

Linux Arm Documentation

compile-time code selection method. You can register a new machine
via the web site at:

<http://www.arm.linux.org.uk/developer/machines/>

Note: Please do not register a machine type for DT-only platforms. If
your platform is DT-only, you do not need a registered machine type.

—
Russell King (15/03/2004)

1.11. Kernel entry (head.S) 5

http://www.arm.linux.org.uk/developer/machines/

Linux Arm Documentation

6 Chapter 1. ARM Linux 2.6 and upper

CHAPTER

TWO

BOOTING ARM LINUX

Author: Russell King

Date : 18 May 2002

The following documentation is relevant to 2.4.18-rmk6 and beyond.

In order to boot ARM Linux, you require a boot loader, which is a small program
that runs before the main kernel. The boot loader is expected to initialise various
devices, and eventually call the Linux kernel, passing information to the kernel.

Essentially, the boot loader should provide (as a minimum) the following:

1. Setup and initialise the RAM.

2. Initialise one serial port.

3. Detect the machine type.

4. Setup the kernel tagged list.

5. Load initramfs.

6. Call the kernel image.

2.1 1. Setup and initialise RAM

Existing boot loaders: MANDATORY
New boot loaders: MANDATORY
The boot loader is expected to find and initialise all RAM that the kernel will use
for volatile data storage in the system. It performs this in a machine dependent
manner. (It may use internal algorithms to automatically locate and size all RAM,
or it may use knowledge of the RAM in the machine, or any other method the boot
loader designer sees fit.)

7

Linux Arm Documentation

2.2 2. Initialise one serial port

Existing boot loaders: OPTIONAL, RECOMMENDED
New boot loaders: OPTIONAL, RECOMMENDED
The boot loader should initialise and enable one serial port on the target. This al-
lows the kernel serial driver to automatically detect which serial port it should use
for the kernel console (generally used for debugging purposes, or communication
with the target.)

As an alternative, the boot loader can pass the relevant ‘console=’option to
the kernel via the tagged lists specifying the port, and serial format options as
described in

Documentation/admin-guide/kernel-parameters.rst.

2.3 3. Detect the machine type

Existing boot loaders: OPTIONAL
New boot loaders: MANDATORY except for DT-only platforms
The boot loader should detect the machine type its running on by some method.
Whether this is a hard coded value or some algorithm that looks at the con-
nected hardware is beyond the scope of this document. The boot loader must
ultimately be able to provide a MACH_TYPE_xxx value to the kernel. (see
linux/arch/arm/tools/mach-types). This should be passed to the kernel in register
r1.

For DT-only platforms, the machine type will be determined by device tree. set the
machine type to all ones (~0). This is not strictly necessary, but assures that it will
not match any existing types.

2.4 4. Setup boot data

Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED
New boot loaders: MANDATORY
The boot loader must provide either a tagged list or a dtb image for passing con-
figuration data to the kernel. The physical address of the boot data is passed to
the kernel in register r2.

8 Chapter 2. Booting ARM Linux

Linux Arm Documentation

2.5 4a. Setup the kernel tagged list

The boot loader must create and initialise the kernel tagged list. A valid tagged
list starts with ATAG_CORE and ends with ATAG_NONE. The ATAG_CORE tag may
or may not be empty. An empty ATAG_CORE tag has the size field set to ‘2’
(0x00000002). The ATAG_NONE must set the size field to zero.

Any number of tags can be placed in the list. It is undefined whether a repeated
tag appends to the information carried by the previous tag, or whether it replaces
the information in its entirety; some tags behave as the former, others the latter.

The boot loader must pass at a minimum the size and location of the system mem-
ory, and root filesystem location. Therefore, the minimum tagged list should look:

+-----------+
base -> | ATAG_CORE | |

+-----------+ |
| ATAG_MEM | | increasing address
+-----------+ |
| ATAG_NONE | |
+-----------+ v

The tagged list should be stored in system RAM.

The tagged list must be placed in a region of memory where neither the kernel
decompressor nor initrd ‘bootp’program will overwrite it. The recommended
placement is in the first 16KiB of RAM.

2.6 4b. Setup the device tree

The boot loader must load a device tree image (dtb) into system ram at a 64bit
aligned address and initialize it with the boot data. The dtb format is documented
in Documentation/devicetree/booting-without-of.txt. The kernel will look for the
dtb magic value of 0xd00dfeed at the dtb physical address to determine if a dtb
has been passed instead of a tagged list.

The boot loader must pass at a minimum the size and location of the system mem-
ory, and the root filesystem location. The dtb must be placed in a region of memory
where the kernel decompressor will not overwrite it, while remaining within the
region which will be covered by the kernel’s low-memory mapping.
A safe location is just above the 128MiB boundary from start of RAM.

2.5. 4a. Setup the kernel tagged list 9

Linux Arm Documentation

2.7 5. Load initramfs.

Existing boot loaders: OPTIONAL
New boot loaders: OPTIONAL
If an initramfs is in use then, as with the dtb, it must be placed in a region of
memory where the kernel decompressor will not overwrite it while also with the
region which will be covered by the kernel’s low-memory mapping.
A safe location is just above the device tree blob which itself will be loaded just
above the 128MiB boundary from the start of RAM as recommended above.

2.8 6. Calling the kernel image

Existing boot loaders: MANDATORY
New boot loaders: MANDATORY
There are two options for calling the kernel zImage. If the zImage is stored in flash,
and is linked correctly to be run from flash, then it is legal for the boot loader to
call the zImage in flash directly.

The zImage may also be placed in system RAM and called there. The kernel should
be placed in the first 128MiB of RAM. It is recommended that it is loaded above
32MiB in order to avoid the need to relocate prior to decompression, which will
make the boot process slightly faster.

When booting a raw (non-zImage) kernel the constraints are tighter. In this
case the kernel must be loaded at an offset into system equal to TEXT_OFFSET
- PAGE_OFFSET.

In any case, the following conditions must be met:

• Quiesce all DMA capable devices so that memory does not get corrupted by
bogus network packets or disk data. This will save you many hours of debug.

• CPU register settings

– r0 = 0,
– r1 = machine type number discovered in (3) above.
– r2 = physical address of tagged list in system RAM, or physical address
of device tree block (dtb) in system RAM

• CPU mode

All forms of interrupts must be disabled (IRQs and FIQs)

For CPUs which do not include the ARM virtualization extensions, the CPU
must be in SVC mode. (A special exception exists for Angel)

CPUs which include support for the virtualization extensions can be entered
in HYPmode in order to enable the kernel to make full use of these extensions.
This is the recommended boot method for such CPUs, unless the virtualisa-
tions are already in use by a pre-installed hypervisor.

10 Chapter 2. Booting ARM Linux

Linux Arm Documentation

If the kernel is not entered in HYP mode for any reason, it must be entered
in SVC mode.

• Caches, MMUs

The MMU must be off.

Instruction cache may be on or off.

Data cache must be off.

If the kernel is entered in HYPmode, the above requirements apply to the HYP
mode configuration in addition to the ordinary PL1 (privileged kernel modes)
configuration. In addition, all traps into the hypervisor must be disabled, and
PL1 access must be granted for all peripherals and CPU resources for which
this is architecturally possible. Except for entering in HYP mode, the system
configuration should be such that a kernel which does not include support for
the virtualization extensions can boot correctly without extra help.

• The boot loader is expected to call the kernel image by jumping directly to
the first instruction of the kernel image.

On CPUs supporting the ARM instruction set, the entry must be made in ARM
state, even for a Thumb-2 kernel.

On CPUs supporting only the Thumb instruction set such as Cortex-M class
CPUs, the entry must be made in Thumb state.

2.8. 6. Calling the kernel image 11

Linux Arm Documentation

12 Chapter 2. Booting ARM Linux

CHAPTER

THREE

CLUSTER-WIDE POWER-UP/POWER-DOWN RACE
AVOIDANCE ALGORITHM

This file documents the algorithm which is used to coordinate CPU and cluster
setup and teardown operations and tomanage hardware coherency controls safely.

The section “Rationale”explains what the algorithm is for and why it is needed.
“Basic model”explains general concepts using a simplified view of the system. The
other sections explain the actual details of the algorithm in use.

3.1 Rationale

In a system containing multiple CPUs, it is desirable to have the ability to turn off
individual CPUs when the system is idle, reducing power consumption and thermal
dissipation.

In a system containing multiple clusters of CPUs, it is also desirable to have the
ability to turn off entire clusters.

Turning entire clusters off and on is a risky business, because it involves perform-
ing potentially destructive operations affecting a group of independently running
CPUs, while the OS continues to run. This means that we need some coordination
in order to ensure that critical cluster-level operations are only performed when
it is truly safe to do so.

Simple locking may not be sufficient to solve this problem, because mechanisms
like Linux spinlocks may rely on coherency mechanisms which are not immediately
enabled when a cluster powers up. Since enabling or disabling those mechanisms
may itself be a non-atomic operation (such as writing some hardware registers and
invalidating large caches), other methods of coordination are required in order to
guarantee safe power-down and power-up at the cluster level.

The mechanism presented in this document describes a coherent memory based
protocol for performing the needed coordination. It aims to be as lightweight as
possible, while providing the required safety properties.

13

Linux Arm Documentation

3.2 Basic model

Each cluster and CPU is assigned a state, as follows:

• DOWN

• COMING_UP

• UP

• GOING_DOWN

+---------> UP ----------+
| v

COMING_UP GOING_DOWN

^ |
+--------- DOWN <--------+

DOWN: The CPU or cluster is not coherent, and is either powered off or sus-
pended, or is ready to be powered off or suspended.

COMING_UP: The CPU or cluster has committed to moving to the UP state. It
may be part way through the process of initialisation and enabling coherency.

UP: The CPU or cluster is active and coherent at the hardware level. A CPU in
this state is not necessarily being used actively by the kernel.

GOING_DOWN: The CPU or cluster has committed to moving to the DOWN state.
It may be part way through the process of teardown and coherency exit.

Each CPU has one of these states assigned to it at any point in time. The CPU
states are described in the “CPU state”section, below.
Each cluster is also assigned a state, but it is necessary to split the state value into
two parts (the “cluster”state and “inbound”state) and to introduce additional
states in order to avoid races between different CPUs in the cluster simultaneously
modifying the state. The cluster- level states are described in the“Cluster state”
section.

To help distinguish the CPU states from cluster states in this discussion, the state
names are given a CPU_ prefix for the CPU states, and a CLUSTER_ or INBOUND_
prefix for the cluster states.

3.3 CPU state

In this algorithm, each individual core in a multi-core processor is referred to as
a“CPU”. CPUs are assumed to be single-threaded: therefore, a CPU can only be
doing one thing at a single point in time.

This means that CPUs fit the basic model closely.

The algorithm defines the following states for each CPU in the system:

• CPU_DOWN

14Chapter 3. Cluster-wide Power-up/power-down race avoidance algorithm

Linux Arm Documentation

• CPU_COMING_UP

• CPU_UP

• CPU_GOING_DOWN

cluster setup and
CPU setup complete policy decision

+-----------> CPU_UP ------------+
| v

CPU_COMING_UP CPU_GOING_DOWN

^ |
+----------- CPU_DOWN <----------+

policy decision CPU teardown complete
or hardware event

The definitions of the four states correspond closely to the states of the basic
model.

Transitions between states occur as follows.

A trigger event (spontaneous) means that the CPU can transition to the next state
as a result of making local progress only, with no requirement for any external
event to happen.

CPU_DOWN: A CPU reaches the CPU_DOWN state when it is ready for power-
down. On reaching this state, the CPU will typically power itself down or
suspend itself, via a WFI instruction or a firmware call.

Next state: CPU_COMING_UP
Conditions: none
Trigger events:

a) an explicit hardware power-up operation, resulting from a policy de-
cision on another CPU;

b) a hardware event, such as an interrupt.

CPU_COMING_UP: A CPU cannot start participating in hardware coherency un-
til the cluster is set up and coherent. If the cluster is not ready, then the CPU
will wait in the CPU_COMING_UP state until the cluster has been set up.

Next state: CPU_UP
Conditions: The CPU’s parent cluster must be in CLUSTER_UP.
Trigger events: Transition of the parent cluster to CLUSTER_UP.
Refer to the “Cluster state”section for a description of the CLUSTER_UP
state.

CPU_UP: When a CPU reaches the CPU_UP state, it is safe for the CPU to start
participating in local coherency.

This is done by jumping to the kernel’s CPU resume code.
Note that the definition of this state is slightly different from the basic model
definition: CPU_UP does not mean that the CPU is coherent yet, but it does

3.3. CPU state 15

Linux Arm Documentation

mean that it is safe to resume the kernel. The kernel handles the rest of the
resume procedure, so the remaining steps are not visible as part of the race
avoidance algorithm.

The CPU remains in this state until an explicit policy decision is made to shut
down or suspend the CPU.

Next state: CPU_GOING_DOWN
Conditions: none
Trigger events: explicit policy decision

CPU_GOING_DOWN: While in this state, the CPU exits coherency, including any
operations required to achieve this (such as cleaning data caches).

Next state: CPU_DOWN
Conditions: local CPU teardown complete
Trigger events: (spontaneous)

3.4 Cluster state

A cluster is a group of connected CPUs with some common resources. Because a
cluster contains multiple CPUs, it can be doing multiple things at the same time.
This has some implications. In particular, a CPU can start up while another CPU
is tearing the cluster down.

In this discussion, the“outbound side”is the view of the cluster state as seen by a
CPU tearing the cluster down. The“inbound side”is the view of the cluster state
as seen by a CPU setting the CPU up.

In order to enable safe coordination in such situations, it is important that a CPU
which is setting up the cluster can advertise its state independently of the CPU
which is tearing down the cluster. For this reason, the cluster state is split into
two parts:

“cluster”state: The global state of the cluster; or the state on the out-
bound side:

• CLUSTER_DOWN

• CLUSTER_UP

• CLUSTER_GOING_DOWN

“inbound”state: The state of the cluster on the inbound side.
• INBOUND_NOT_COMING_UP

• INBOUND_COMING_UP

The different pairings of these states results in six possible states for the
cluster as a whole:

CLUSTER_UP
+==========> INBOUND_NOT_COMING_UP -------------+

(continues on next page)

16Chapter 3. Cluster-wide Power-up/power-down race avoidance algorithm

Linux Arm Documentation

(continued from previous page)
|

|
CLUSTER_UP <----+ |

INBOUND_COMING_UP | v

^ CLUSTER_GOING_DOWN CLUSTER_GOING_DOWN
INBOUND_COMING_UP <=== INBOUND_NOT_COMING_

↪→UP

CLUSTER_DOWN | |
INBOUND_COMING_UP <----+ |

|
^ |
+=========== CLUSTER_DOWN <------------+

INBOUND_NOT_COMING_UP

Transitions—–> can only bemade by the outbound CPU, and only involve
changes to the “cluster”state.
Transitions ===##> can only be made by the inbound CPU, and only
involve changes to the“inbound”state, except where there is no further
transition possible on the outbound side (i.e., the outbound CPU has put
the cluster into the CLUSTER_DOWN state).

The race avoidance algorithm does not provide a way to determine which
exact CPUs within the cluster play these roles. This must be decided in
advance by some other means. Refer to the section“Last man and first
man selection”for more explanation.
CLUSTER_DOWN/INBOUND_NOT_COMING_UP is the only state where
the cluster can actually be powered down.

The parallelism of the inbound and outbound CPUs is observed by the
existence of two different paths from CLUSTER_GOING_DOWN/ IN-
BOUND_NOT_COMING_UP (corresponding to GOING_DOWN in the ba-
sic model) to CLUSTER_DOWN/INBOUND_COMING_UP (correspond-
ing to COMING_UP in the basic model). The second path avoids cluster
teardown completely.

CLUSTER_UP/INBOUND_COMING_UP is equivalent to
UP in the basic model. The final transition to CLUS-
TER_UP/INBOUND_NOT_COMING_UP is trivial and merely resets
the state machine ready for the next cycle.

Details of the allowable transitions follow.

The next state in each case is notated

<cluster state>/<inbound state> (<transitioner>)

where the <transitioner> is the side on which the transition can occur;
either the inbound or the outbound side.

CLUSTER_DOWN/INBOUND_NOT_COMING_UP:
Next state: CLUSTER_DOWN/INBOUND_COMING_UP (inbound)
Conditions: none

3.4. Cluster state 17

Linux Arm Documentation

Trigger events:
a) an explicit hardware power-up operation, resulting from a policy de-
cision on another CPU;

b) a hardware event, such as an interrupt.

CLUSTER_DOWN/INBOUND_COMING_UP:

In this state, an inbound CPU sets up the cluster, including enabling of
hardware coherency at the cluster level and any other operations (such
as cache invalidation) which are required in order to achieve this.

The purpose of this state is to do sufficient cluster-level setup to enable
other CPUs in the cluster to enter coherency safely.

Next state: CLUSTER_UP/INBOUND_COMING_UP (inbound)
Conditions: cluster-level setup and hardware coherency complete
Trigger events: (spontaneous)

CLUSTER_UP/INBOUND_COMING_UP:

Cluster-level setup is complete and hardware coherency is enabled for
the cluster. Other CPUs in the cluster can safely enter coherency.

This is a transient state, leading immediately to CLUS-
TER_UP/INBOUND_NOT_COMING_UP. All other CPUs on the cluster
should consider treat these two states as equivalent.

Next state: CLUSTER_UP/INBOUND_NOT_COMING_UP (inbound)
Conditions: none
Trigger events: (spontaneous)

CLUSTER_UP/INBOUND_NOT_COMING_UP:

Cluster-level setup is complete and hardware coherency is enabled for
the cluster. Other CPUs in the cluster can safely enter coherency.

The cluster will remain in this state until a policy decision is made to
power the cluster down.

Next state: CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP
(outbound)

Conditions: none
Trigger events: policy decision to power down the cluster

CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP:

An outbound CPU is tearing the cluster down. The selected CPU must
wait in this state until all CPUs in the cluster are in the CPU_DOWN
state.

When all CPUs are in the CPU_DOWN state, the cluster can be torn
down, for example by cleaning data caches and exiting cluster-level co-
herency.

18Chapter 3. Cluster-wide Power-up/power-down race avoidance algorithm

Linux Arm Documentation

To avoid wasteful unnecessary teardown operations, the outbound
should check the inbound cluster state for asynchronous transitions to
INBOUND_COMING_UP. Alternatively, individual CPUs can be checked
for entry into CPU_COMING_UP or CPU_UP.

Next states:

CLUSTER_DOWN/INBOUND_NOT_COMING_UP (outbound)
Conditions: cluster torn down and ready to power off
Trigger events: (spontaneous)

CLUSTER_GOING_DOWN/INBOUND_COMING_UP (inbound)
Conditions: none
Trigger events:

a) an explicit hardware power-up operation, resulting from a
policy decision on another CPU;

b) a hardware event, such as an interrupt.

CLUSTER_GOING_DOWN/INBOUND_COMING_UP:

The cluster is (or was) being torn down, but another CPU has come online
in the meantime and is trying to set up the cluster again.

If the outbound CPU observes this state, it has two choices:

a) back out of teardown, restoring the cluster to the CLUSTER_UP
state;

b) finish tearing the cluster down and put the cluster in the CLUS-
TER_DOWN state; the inbound CPU will set up the cluster again
from there.

Choice (a) permits the removal of some latency by avoiding unnecessary
teardown and setup operations in situations where the cluster is not re-
ally going to be powered down.

Next states:

CLUSTER_UP/INBOUND_COMING_UP (outbound)
Conditions: cluster-level setup and hardware coherency complete
Trigger events: (spontaneous)

CLUSTER_DOWN/INBOUND_COMING_UP (outbound)
Conditions: cluster torn down and ready to power off
Trigger events: (spontaneous)

3.4. Cluster state 19

Linux Arm Documentation

3.5 Last man and First man selection

The CPU which performs cluster tear-down operations on the outbound side is
commonly referred to as the “last man”.
The CPU which performs cluster setup on the inbound side is commonly referred
to as the “first man”.
The race avoidance algorithm documented above does not provide a mechanism
to choose which CPUs should play these roles.

Last man:

When shutting down the cluster, all the CPUs involved are initially executing Linux
and hence coherent. Therefore, ordinary spinlocks can be used to select a last man
safely, before the CPUs become non-coherent.

First man:

Because CPUs may power up asynchronously in response to external wake-up
events, a dynamic mechanism is needed to make sure that only one CPU attempts
to play the first man role and do the cluster-level initialisation: any other CPUs
must wait for this to complete before proceeding.

Cluster-level initialisation may involve actions such as configuring coherency con-
trols in the bus fabric.

The current implementation in mcpm_head.S uses a separate mutual exclusion
mechanism to do this arbitration. This mechanism is documented in detail in
vlocks.txt.

3.6 Features and Limitations

Implementation:

The current ARM-based implementation is split between
arch/arm/common/mcpm_head.S (low-level inbound CPU operations)
and arch/arm/common/mcpm_entry.c (everything else):

__mcpm_cpu_going_down() signals the transition of a CPU to the
CPU_GOING_DOWN state.

__mcpm_cpu_down() signals the transition of a CPU to the CPU_DOWN
state.

A CPU transitions to CPU_COMING_UP and then to CPU_UP via the low-
level power-up code in mcpm_head.S. This could involve CPU-specific
setup code, but in the current implementation it does not.

__mcpm_outbound_enter_critical() and __mcpm_outbound_leave_critical()
handle transitions from CLUSTER_UP to CLUSTER_GOING_DOWN and
from there to CLUSTER_DOWN or back to CLUSTER_UP (in the case of
an aborted cluster power-down).

20Chapter 3. Cluster-wide Power-up/power-down race avoidance algorithm

Linux Arm Documentation

These functions are more complex than the __mcpm_cpu_*() functions
due to the extra inter-CPU coordination which is needed for safe transi-
tions at the cluster level.

A cluster transitions from CLUSTER_DOWN back to CLUSTER_UP
via the low-level power-up code in mcpm_head.S. This typically in-
volves platform-specific setup code, provided by the platform-specific
power_up_setup function registered via mcpm_sync_init.

Deep topologies:

As currently described and implemented, the algorithm does not support
CPU topologies involving more than two levels (i.e., clusters of clusters
are not supported). The algorithm could be extended by replicating the
cluster-level states for the additional topological levels, and modifying
the transition rules for the intermediate (non-outermost) cluster levels.

3.7 Colophon

Originally created and documented by Dave Martin for Linaro Limited, in collabo-
ration with Nicolas Pitre and Achin Gupta.

Copyright (C) 2012-2013 Linaro Limited Distributed under the terms of Version 2
of the GNU General Public License, as defined in linux/COPYING.

3.7. Colophon 21

Linux Arm Documentation

22Chapter 3. Cluster-wide Power-up/power-down race avoidance algorithm

CHAPTER

FOUR

INTERFACE FOR REGISTERING AND CALLING
FIRMWARE-SPECIFIC OPERATIONS FOR ARM

Written by Tomasz Figa <t.figa@samsung.com>

Some boards are runningwith secure firmware running in TrustZone secure world,
which changes the way some things have to be initialized. This makes a need to
provide an interface for such platforms to specify available firmware operations
and call them when needed.

Firmware operations can be specified by filling in a struct firmware_ops with ap-
propriate callbacks and then registering it with register_firmware_ops() function:

void register_firmware_ops(const struct firmware_ops *ops)

The ops pointer must be non-NULL. More information about struct firmware_ops
and its members can be found in arch/arm/include/asm/firmware.h header.

There is a default, empty set of operations provided, so there is no need to set
anything if platform does not require firmware operations.

To call a firmware operation, a helper macro is provided:

#define call_firmware_op(op, ...) \
((firmware_ops->op) ? firmware_ops->op(__VA_ARGS__) : (-ENOSYS))

the macro checks if the operation is provided and calls it or otherwise returns
-ENOSYS to signal that given operation is not available (for example, to allow
fallback to legacy operation).

Example of registering firmware operations:

/* board file */

static int platformX_do_idle(void)
{

/* tell platformX firmware to enter idle */
return 0;

}

static int platformX_cpu_boot(int i)
{

/* tell platformX firmware to boot CPU i */
return 0;

}
(continues on next page)

23

mailto:t.figa@samsung.com

Linux Arm Documentation

(continued from previous page)

static const struct firmware_ops platformX_firmware_ops = {
.do_idle = exynos_do_idle,
.cpu_boot = exynos_cpu_boot,
/* other operations not available on platformX */

};

/* init_early callback of machine descriptor */
static void __init board_init_early(void)
{

register_firmware_ops(&platformX_firmware_ops);
}

Example of using a firmware operation:

/* some platform code, e.g. SMP initialization */

__raw_writel(__pa_symbol(exynos4_secondary_startup),
CPU1_BOOT_REG);

/* Call Exynos specific smc call */
if (call_firmware_op(cpu_boot, cpu) == -ENOSYS)

cpu_boot_legacy(...); /* Try legacy way */

gic_raise_softirq(cpumask_of(cpu), 1);

24 Chapter 4. Interface for registering and calling firmware-specific
operations for ARM

CHAPTER

FIVE

INTERRUPTS

2.5.2-rmk5: This is the first kernel that contains a major shake up of some of the
major architecture-specific subsystems.

Firstly, it contains some pretty major changes to the way we handle the MMU TLB.
Each MMU TLB variant is now handled completely separately - we have TLB v3,
TLB v4 (without write buffer), TLB v4 (with write buffer), and finally TLB v4 (with
write buffer, with I TLB invalidate entry). There is more assembly code inside each
of these functions, mainly to allow more flexible TLB handling for the future.

Secondly, the IRQ subsystem.

The 2.5 kernels will be having major changes to the way IRQs are handled. Unfor-
tunately, this means that machine types that touch the irq_desc[] array (basically
all machine types) will break, and this means every machine type that we currently
have.

Lets take an example. On the Assabet with Neponset, we have:

GPIO25 IRR:2
SA1100 ------------> Neponset -----------> SA1111

IIR:1
-----------> USAR

IIR:0
-----------> SMC9196

Theway stuff currently works, all SA1111 interrupts aremutually exclusive of each
other - if you’re processing one interrupt from the SA1111 and another comes in,
you have to wait for that interrupt to finish processing before you can service the
new interrupt. Eg, an IDE PIO-based interrupt on the SA1111 excludes all other
SA1111 and SMC9196 interrupts until it has finished transferring its multi-sector
data, which can be a long time. Note also that since we loop in the SA1111 IRQ
handler, SA1111 IRQs can hold off SMC9196 IRQs indefinitely.

The new approach brings several new ideas⋯
We introduce the concept of a“parent”and a“child”. For example, to the Neponset
handler, the“parent”is GPIO25, and the“children”d are SA1111, SMC9196 and
USAR.

We also bring the idea of an IRQ “chip”(mainly to reduce the size of the irqdesc
array). This doesn’t have to be a real“IC”; indeed the SA11x0 IRQs are handled
by two separate“chip”structures, one for GPIO0-10, and another for all the rest.
It is just a container for the various operations (maybe this’ll change to a better
name). This structure has the following operations:

25

Linux Arm Documentation

struct irqchip {
/*
* Acknowledge the IRQ.
* If this is a level-based IRQ, then it is expected to mask the␣

↪→IRQ
* as well.
*/

void (*ack)(unsigned int irq);
/*
* Mask the IRQ in hardware.
*/

void (*mask)(unsigned int irq);
/*
* Unmask the IRQ in hardware.
*/

void (*unmask)(unsigned int irq);
/*
* Re-run the IRQ
*/

void (*rerun)(unsigned int irq);
/*
* Set the type of the IRQ.
*/

int (*type)(unsigned int irq, unsigned int, type);
};

ack
• required. May be the same function as mask for IRQs handled by
do_level_IRQ.

mask
• required.

unmask
• required.

rerun
• optional. Not required if you’re using do_level_IRQ for all IRQs that use
this ‘irqchip’. Generally expected to re-trigger the hardware IRQ if
possible. If not, may call the handler directly.

type
• optional. If you don’t support changing the type of an IRQ, it should be
null so people can detect if they are unable to set the IRQ type.

For each IRQ, we keep the following information:

•“disable”depth (number of disable_irq()s without enable_irq()s)
• flags indicating what we can do with this IRQ (valid, probe, noautounmask)
as before

• status of the IRQ (probing, enable, etc)

• chip

26 Chapter 5. Interrupts

Linux Arm Documentation

• per-IRQ handler

• irqaction structure list

The handler can be one of the 3 standard handlers -“level”,“edge”and“simple”
, or your own specific handler if you need to do something special.

The“level”handler is what we currently have - its pretty simple.“edge”knows about
the brokenness of such IRQ implementations - that you need to leave the hardware
IRQ enabled while processing it, and queueing further IRQ events should the IRQ
happen again while processing. The“simple”handler is very basic, and does not
perform any hardware manipulation, nor state tracking. This is useful for things
like the SMC9196 and USAR above.

5.1 So, what’s changed?

1. Machine implementations must not write to the irqdesc array.

2. New functions to manipulate the irqdesc array. The first 4 are expected to be
useful only to machine specific code. The last is recommended to only be used
by machine specific code, but may be used in drivers if absolutely necessary.

set_irq_chip(irq,chip) Set the mask/unmask methods for handling
this IRQ

set_irq_handler(irq,handler) Set the handler for this IRQ (level,
edge, simple)

set_irq_chained_handler(irq,handler) Set a “chained”handler
for this IRQ - automatically enables this IRQ (eg, Neponset and
SA1111 handlers).

set_irq_flags(irq,flags) Set the valid/probe/noautoenable flags.
set_irq_type(irq,type) Set active the IRQ edge(s)/level. This

replaces the SA1111 INTPOL manipulation, and the
set_GPIO_IRQ_edge() function. Type should be one of
IRQ_TYPE_xxx defined in <linux/irq.h>

3. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type.

4. Direct access to SA1111 INTPOL is deprecated. Use set_irq_type instead.

5. A handler is expected to perform any necessary acknowledgement of the par-
ent IRQ via the correct chip specific function. For instance, if the SA1111
is directly connected to a SA1110 GPIO, then you should acknowledge the
SA1110 IRQ each time you re-read the SA1111 IRQ status.

6. For any child which doesn’t have its own IRQ enable/disable controls (eg,
SMC9196), the handler must mask or acknowledge the parent IRQ while the
child handler is called, and the child handler should be the“simple”handler
(not“edge”nor“level”). After the handler completes, the parent IRQ should
be unmasked, and the status of all children must be re-checked for pending
events. (see the Neponset IRQ handler for details).

7. fixup_irq() is gone, as is arch/arm/mach-*/include/mach/irq.h

5.1. So, what’s changed? 27

Linux Arm Documentation

Please note that this will not solve all problems - some of them are hardware based.
Mixing level-based and edge-based IRQs on the same parent signal (eg neponset)
is one such area where a software based solution can’t provide the full answer to
low IRQ latency.

28 Chapter 5. Interrupts

CHAPTER

SIX

KERNEL MODE NEON

6.1 TL;DR summary

• Use only NEON instructions, or VFP instructions that don’t rely on support
code

• Isolate your NEON code in a separate compilation unit, and compile it with
‘-march=armv7-a -mfpu=neon -mfloat-abi=softfp’
• Put kernel_neon_begin() and kernel_neon_end() calls around the calls into
your NEON code

• Don’t sleep in your NEON code, and be aware that it will be executed with
preemption disabled

6.2 Introduction

It is possible to use NEON instructions (and in some cases, VFP instructions) in
code that runs in kernel mode. However, for performance reasons, the NEON/VFP
register file is not preserved and restored at every context switch or taken ex-
ception like the normal register file is, so some manual intervention is required.
Furthermore, special care is required for code that may sleep [i.e., may call sched-
ule()], as NEON or VFP instructions will be executed in a non-preemptible section
for reasons outlined below.

6.3 Lazy preserve and restore

The NEON/VFP register file is managed using lazy preserve (on UP systems) and
lazy restore (on both SMP and UP systems). This means that the register file is
kept‘live’, and is only preserved and restored when multiple tasks are contending
for the NEON/VFP unit (or, in the SMP case, when a task migrates to another core).
Lazy restore is implemented by disabling the NEON/VFP unit after every context
switch, resulting in a trap when subsequently a NEON/VFP instruction is issued,
allowing the kernel to step in and perform the restore if necessary.

Any use of the NEON/VFP unit in kernel mode should not interfere with this, so it
is required to do an‘eager’preserve of the NEON/VFP register file, and enable the
NEON/VFP unit explicitly so no exceptions are generated on first subsequent use.
This is handled by the function kernel_neon_begin(), which should be called before

29

Linux Arm Documentation

any kernel mode NEON or VFP instructions are issued. Likewise, the NEON/VFP
unit should be disabled again after use to make sure user mode will hit the lazy
restore trap upon next use. This is handled by the function kernel_neon_end().

6.4 Interruptions in kernel mode

For reasons of performance and simplicity, it was decided that there shall be no
preserve/restore mechanism for the kernel mode NEON/VFP register contents.
This implies that interruptions of a kernel mode NEON section can only be allowed
if they are guaranteed not to touch the NEON/VFP registers. For this reason, the
following rules and restrictions apply in the kernel: * NEON/VFP code is not al-
lowed in interrupt context; * NEON/VFP code is not allowed to sleep; * NEON/VFP
code is executed with preemption disabled.

If latency is a concern, it is possible to put back to back calls to kernel_neon_end()
and kernel_neon_begin() in places in your code where none of the NEON registers
are live. (Additional calls to kernel_neon_begin() should be reasonably cheap if no
context switch occurred in the meantime)

6.5 VFP and support code

Earlier versions of VFP (prior to version 3) rely on software support for things
like IEEE-754 compliant underflow handling etc. When the VFP unit needs such
software assistance, it signals the kernel by raising an undefined instruction excep-
tion. The kernel responds by inspecting the VFP control registers and the current
instruction and arguments, and emulates the instruction in software.

Such software assistance is currently not implemented for VFP instructions exe-
cuted in kernel mode. If such a condition is encountered, the kernel will fail and
generate an OOPS.

6.6 Separating NEON code from ordinary code

The compiler is not aware of the special significance of kernel_neon_begin() and
kernel_neon_end(), i.e., that it is only allowed to issue NEON/VFP instructions be-
tween calls to these respective functions. Furthermore, GCC may generate NEON
instructions of its own at -O3 level if -mfpu=neon is selected, and even if the kernel
is currently compiled at -O2, future changes may result in NEON/VFP instructions
appearing in unexpected places if no special care is taken.

Therefore, the recommended and only supported way of using NEON/VFP in the
kernel is by adhering to the following rules:

• isolate the NEON code in a separate compilation unit and compile it with
‘-march=armv7-a -mfpu=neon -mfloat-abi=softfp’;
• issue the calls to kernel_neon_begin(), kernel_neon_end() as well as the calls
into the unit containing the NEON code from a compilation unit which is not
built with the GCC flag ‘-mfpu=neon’set.

30 Chapter 6. Kernel mode NEON

Linux Arm Documentation

As the kernel is compiled with‘-msoft-float’, the above will guarantee that both
NEON and VFP instructions will only ever appear in designated compilation units
at any optimization level.

6.7 NEON assembler

NEON assembler is supported with no additional caveats as long as the rules above
are followed.

6.8 NEON code generated by GCC

The GCC option -ftree-vectorize (implied by -O3) tries to exploit implicit paral-
lelism, and generates NEON code from ordinary C source code. This is fully sup-
ported as long as the rules above are followed.

6.9 NEON intrinsics

NEON intrinsics are also supported. However, as code using NEON intrinsics re-
lies on the GCC header <arm_neon.h>, (which #includes <stdint.h>), you should
observe the following in addition to the rules above:

• Compile the unit containing the NEON intrinsics with‘-ffreestanding’so GCC
uses its builtin version of <stdint.h> (this is a C99 header which the kernel
does not supply);

• Include <arm_neon.h> last, or at least after <linux/types.h>

6.7. NEON assembler 31

Linux Arm Documentation

32 Chapter 6. Kernel mode NEON

CHAPTER

SEVEN

KERNEL-PROVIDED USER HELPERS

These are segment of kernel provided user code reachable from user space at a
fixed address in kernel memory. This is used to provide user space with some
operations which require kernel help because of unimplemented native feature
and/or instructions in many ARM CPUs. The idea is for this code to be executed
directly in user mode for best efficiency but which is too intimate with the kernel
counter part to be left to user libraries. In fact this code might even differ from
one CPU to another depending on the available instruction set, or whether it is a
SMP systems. In other words, the kernel reserves the right to change this code as
needed without warning. Only the entry points and their results as documented
here are guaranteed to be stable.

This is different from (but doesn’t preclude) a full blown VDSO implementation,
however a VDSO would prevent some assembly tricks with constants that allows
for efficient branching to those code segments. And since those code segments
only use a few cycles before returning to user code, the overhead of a VDSO indi-
rect far call would add a measurable overhead to such minimalistic operations.

User space is expected to bypass those helpers and implement those things inline
(either in the code emitted directly by the compiler, or part of the implementation
of a library call) when optimizing for a recent enough processor that has the nec-
essary native support, but only if resulting binaries are already to be incompatible
with earlier ARM processors due to usage of similar native instructions for other
things. In other words don’t make binaries unable to run on earlier processors
just for the sake of not using these kernel helpers if your compiled code is not
going to use new instructions for other purpose.

New helpers may be added over time, so an older kernel may be missing some
helpers present in a newer kernel. For this reason, programs must check the
value of __kuser_helper_version (see below) before assuming that it is safe to call
any particular helper. This check should ideally be performed only once at process
startup time, and execution aborted early if the required helpers are not provided
by the kernel version that process is running on.

33

Linux Arm Documentation

7.1 kuser_helper_version

Location: 0xffff0ffc

Reference declaration:

extern int32_t __kuser_helper_version;

Definition:

This field contains the number of helpers being implemented by the run-
ning kernel. User space may read this to determine the availability of a
particular helper.

Usage example:

#define __kuser_helper_version (*(int32_t *)0xffff0ffc)

void check_kuser_version(void)
{

if (__kuser_helper_version < 2) {
fprintf(stderr, "can't do atomic operations, kernel too old\n

↪→");
abort();

}
}

Notes:

User space may assume that the value of this field never changes during
the lifetime of any single process. This means that this field can be read
once during the initialisation of a library or startup phase of a program.

7.2 kuser_get_tls

Location: 0xffff0fe0

Reference prototype:

void * __kuser_get_tls(void);

Input:

lr = return address

Output:

r0 = TLS value

Clobbered registers:

none

Definition:

Get the TLS value as previously set via the __ARM_NR_set_tls syscall.

Usage example:

34 Chapter 7. Kernel-provided User Helpers

Linux Arm Documentation

typedef void * (__kuser_get_tls_t)(void);
#define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0)

void foo()
{

void *tls = __kuser_get_tls();
printf("TLS = %p\n", tls);

}

Notes:

• Valid only if __kuser_helper_version >= 1 (from kernel version 2.6.12).

7.3 kuser_cmpxchg

Location: 0xffff0fc0

Reference prototype:

int __kuser_cmpxchg(int32_t oldval, int32_t newval, volatile int32_t *ptr);

Input:

r0 = oldval r1 = newval r2 = ptr lr = return address

Output:

r0 = success code (zero or non-zero) C flag = set if r0 == 0, clear if r0
!= 0

Clobbered registers:

r3, ip, flags

Definition:

Atomically store newval in *ptr only if *ptr is equal to oldval. Return
zero if *ptr was changed or non-zero if no exchange happened. The C
flag is also set if *ptr was changed to allow for assembly optimization in
the calling code.

Usage example:

typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr);
#define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0)

int atomic_add(volatile int *ptr, int val)
{

int old, new;

do {
old = *ptr;
new = old + val;

} while(__kuser_cmpxchg(old, new, ptr));

return new;
}

7.3. kuser_cmpxchg 35

Linux Arm Documentation

Notes:

• This routine already includes memory barriers as needed.

• Valid only if __kuser_helper_version >= 2 (from kernel version 2.6.12).

7.4 kuser_memory_barrier

Location: 0xffff0fa0

Reference prototype:

void __kuser_memory_barrier(void);

Input:

lr = return address

Output:

none

Clobbered registers:

none

Definition:

Apply any needed memory barrier to preserve consistency with data
modified manually and __kuser_cmpxchg usage.

Usage example:

typedef void (__kuser_dmb_t)(void);
#define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0)

Notes:

• Valid only if __kuser_helper_version >= 3 (from kernel version 2.6.15).

7.5 kuser_cmpxchg64

Location: 0xffff0f60

Reference prototype:

int __kuser_cmpxchg64(const int64_t *oldval,
const int64_t *newval,
volatile int64_t *ptr);

Input:

r0 = pointer to oldval r1 = pointer to newval r2 = pointer to target value
lr = return address

Output:

36 Chapter 7. Kernel-provided User Helpers

Linux Arm Documentation

r0 = success code (zero or non-zero) C flag = set if r0 == 0, clear if r0
!= 0

Clobbered registers:

r3, lr, flags

Definition:

Atomically store the 64-bit value pointed by *newval in *ptr only if *ptr
is equal to the 64-bit value pointed by *oldval. Return zero if *ptr was
changed or non-zero if no exchange happened.

The C flag is also set if *ptr was changed to allow for assembly optimiza-
tion in the calling code.

Usage example:

typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval,
const int64_t *newval,
volatile int64_t *ptr);

#define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60)

int64_t atomic_add64(volatile int64_t *ptr, int64_t val)
{

int64_t old, new;

do {
old = *ptr;
new = old + val;

} while(__kuser_cmpxchg64(&old, &new, ptr));

return new;
}

Notes:

• This routine already includes memory barriers as needed.

• Due to the length of this sequence, this spans 2 conventional kuser“slots”,
therefore 0xffff0f80 is not used as a valid entry point.

• Valid only if __kuser_helper_version >= 5 (from kernel version 3.1).

7.5. kuser_cmpxchg64 37

Linux Arm Documentation

38 Chapter 7. Kernel-provided User Helpers

CHAPTER

EIGHT

KERNEL MEMORY LAYOUT ON ARM LINUX

Russell King <rmk@arm.linux.org.uk>

November 17, 2005 (2.6.15)

This document describes the virtual memory layout which the Linux kernel uses
for ARM processors. It indicates which regions are free for platforms to use, and
which are used by generic code.

The ARM CPU is capable of addressing a maximum of 4GB virtual memory space,
and this must be shared between user space processes, the kernel, and hardware
devices.

As the ARM architecture matures, it becomes necessary to reserve certain regions
of VM space for use for new facilities; therefore this document may reserve more
VM space over time.

39

mailto:rmk@arm.linux.org.uk

Linux Arm Documentation

Start End Use
ffff8000ffffffff copy_user_page / clear_user_page use. For SA11xx and Xscale, this

is used to setup a minicache mapping.
ffff4000ffffffff cache aliasing on ARMv6 and later CPUs.
ffff1000ffff7fffReserved. Platforms must not use this address range.
ffff0000ffff0fffCPU vector page. The CPU vectors are mapped here if the CPU

supports vector relocation (control register V bit.)
fffe0000fff-

effff
XScale cache flush area. This is used in proc-xscale.S to flush the
whole data cache. (XScale does not have TCM.)

fffe8000fff-
effff

DTCM mapping area for platforms with DTCM mounted inside the
CPU.

fffe0000fffe7fffITCM mapping area for platforms with ITCM mounted inside the
CPU.

ffc00000ff-
efffff

Fixmap mapping region. Addresses provided by fix_to_virt() will be
located here.

fee00000feffffffMapping of PCI I/O space. This is a static mapping within the vmal-
loc space.

VMAL-
LOC_START

VMAL-
LOC_END-
1

vmalloc() / ioremap() space. Memory returned by vmalloc/ioremap
will be dynamically placed in this region. Machine specific static
mappings are also located here through iotable_init(). VMAL-
LOC_START is based upon the value of the high_memory variable,
and VMALLOC_END is equal to 0xff800000.

PAGE_OFFSEThigh_memory-
1

Kernel direct-mapped RAM region. This maps the platforms RAM,
and typically maps all platform RAM in a 1:1 relationship.

PKMAP_BASEPAGE_OFFSET-
1

Permanent kernel mappings One way of mapping HIGHMEMpages
into kernel space.

MOD-
ULES_VADDR

MOD-
ULES_END-
1

Kernel module space Kernel modules inserted via insmod are
placed here using dynamic mappings.

00001000TASK_SIZE-
1

User space mappings Per-thread mappings are placed here via the
mmap() system call.

0000000000000fffCPU vector page / null pointer trap CPUs which do not support vec-
tor remapping place their vector page here. NULL pointer deref-
erences by both the kernel and user space are also caught via this
mapping.

Please note that mappings which collide with the above areas may result in a non-
bootable kernel, or may cause the kernel to (eventually) panic at run time.

Since future CPUs may impact the kernel mapping layout, user programs must not
access any memory which is not mapped inside their 0x0001000 to TASK_SIZE
address range. If they wish to access these areas, they must set up their own
mappings using open() and mmap().

40 Chapter 8. Kernel Memory Layout on ARM Linux

CHAPTER

NINE

MEMORY ALIGNMENT

Too many problems popped up because of unnoticed misaligned memory access
in kernel code lately. Therefore the alignment fixup is now unconditionally con-
figured in for SA11x0 based targets. According to Alan Cox, this is a bad idea to
configure it out, but Russell King has some good reasons for doing so on some
f***ed up ARM architectures like the EBSA110. However this is not the case on
many design I’m aware of, like all SA11x0 based ones.

Of course this is a bad idea to rely on the alignment trap to perform unaligned
memory access in general. If those access are predictable, you are better to use
the macros provided by include/asm/unaligned.h. The alignment trap can fixup
misaligned access for the exception cases, but at a high performance cost. It
better be rare.

Now for user space applications, it is possible to configure the alignment trap to
SIGBUS any code performing unaligned access (good for debugging bad code), or
even fixup the access by software like for kernel code. The later mode isn’t rec-
ommended for performance reasons (just think about the floating point emulation
that works about the same way). Fix your code instead!

Please note that randomly changing the behaviour without good thought is real
bad - it changes the behaviour of all unaligned instructions in user space, and
might cause programs to fail unexpectedly.

To change the alignment trap behavior, simply echo a number into
/proc/cpu/alignment. The number is made up from various bits:

bit behavior when set
0 A user process performing an unaligned memory access will cause the ker-

nel to print a message indicating process name, pid, pc, instruction, ad-
dress, and the fault code.

1 The kernel will attempt to fix up the user process performing the unaligned
access. This is of course slow (think about the floating point emulator) and
not recommended for production use.

2 The kernel will send a SIGBUS signal to the user process performing the
unaligned access.

Note that not all combinations are supported - only values 0 through 5. (6 and 7
don’t make sense).
For example, the following will turn on the warnings, but without fixing up or
sending SIGBUS signals:

41

Linux Arm Documentation

echo 1 > /proc/cpu/alignment

You can also read the content of the same file to get statistical information on
unaligned access occurrences plus the current mode of operation for user space
code.

Nicolas Pitre, Mar 13, 2001. Modified Russell King, Nov 30, 2001.

42 Chapter 9. Memory alignment

CHAPTER

TEN

ARM TCM (TIGHTLY-COUPLED MEMORY) HANDLING IN
LINUX

Written by Linus Walleij <linus.walleij@stericsson.com>

Some ARM SoCs have a so-called TCM (Tightly-Coupled Memory). This is usually
just a few (4-64) KiB of RAM inside the ARM processor.

Due to being embedded inside the CPU, the TCM has a Harvard-architecture, so
there is an ITCM (instruction TCM) and a DTCM (data TCM). The DTCM can not
contain any instructions, but the ITCM can actually contain data. The size of DTCM
or ITCM is minimum 4KiB so the typical minimum configuration is 4KiB ITCM and
4KiB DTCM.

ARM CPUs have special registers to read out status, physical location and size of
TCM memories. arch/arm/include/asm/cputype.h defines a CPUID_TCM register
that you can read out from the system control coprocessor. Documentation from
ARM can be found at http://infocenter.arm.com, search for“TCM Status Register”
to see documents for all CPUs. Reading this register you can determine if ITCM
(bits 1-0) and/or DTCM (bit 17-16) is present in the machine.

There is further a TCM region register (search for“TCM Region Registers”at the
ARM site) that can report and modify the location size of TCM memories at run-
time. This is used to read out and modify TCM location and size. Notice that this is
not a MMU table: you actually move the physical location of the TCM around. At
the place you put it, it will mask any underlying RAM from the CPU so it is usually
wise not to overlap any physical RAM with the TCM.

The TCMmemory can then be remapped to another address again using the MMU,
but notice that the TCM if often used in situations where the MMU is turned off.
To avoid confusion the current Linux implementation will map the TCM 1 to 1 from
physical to virtual memory in the location specified by the kernel. Currently Linux
will map ITCM to 0xfffe0000 and on, and DTCM to 0xfffe8000 and on, supporting
a maximum of 32KiB of ITCM and 32KiB of DTCM.

Newer versions of the region registers also support dividing these TCMs in two
separate banks, so for example an 8KiB ITCM is divided into two 4KiB banks with
its own control registers. The idea is to be able to lock and hide one of the banks
for use by the secure world (TrustZone).

TCM is used for a few things:

• FIQ and other interrupt handlers that need deterministic timing and cannot
wait for cache misses.

43

mailto:linus.walleij@stericsson.com
http://infocenter.arm.com

Linux Arm Documentation

• Idle loops where all external RAM is set to self-refresh retention mode, so
only on-chip RAM is accessible by the CPU and then we hang inside ITCM
waiting for an interrupt.

• Other operations which implies shutting off or reconfiguring the external
RAM controller.

There is an interface for using TCM on the ARM architecture in <asm/tcm.h>.
Using this interface it is possible to:

• Define the physical address and size of ITCM and DTCM.

• Tag functions to be compiled into ITCM.

• Tag data and constants to be allocated to DTCM and ITCM.

• Have the remaining TCM RAM added to a special allocation pool with
gen_pool_create() and gen_pool_add() and provice tcm_alloc() and tcm_free()
for this memory. Such a heap is great for things like saving device state when
shutting off device power domains.

A machine that has TCM memory shall select HAVE_TCM from arch/arm/Kconfig
for itself. Code that needs to use TCM shall #include <asm/tcm.h>

Functions to go into itcm can be tagged like this: int __tcmfunc foo(int bar);

Since these are marked to become long_calls and you may want to have func-
tions called locally inside the TCM without wasting space, there is also the
__tcmlocalfunc prefix that will make the call relative.

Variables to go into dtcm can be tagged like this:

int __tcmdata foo;

Constants can be tagged like this:

int __tcmconst foo;

To put assembler into TCM just use:

.section ".tcm.text" or .section ".tcm.data"

respectively.

Example code:

#include <asm/tcm.h>

/* Uninitialized data */
static u32 __tcmdata tcmvar;
/* Initialized data */
static u32 __tcmdata tcmassigned = 0x2BADBABEU;
/* Constant */
static const u32 __tcmconst tcmconst = 0xCAFEBABEU;

static void __tcmlocalfunc tcm_to_tcm(void)
{

int i;
for (i = 0; i < 100; i++)

(continues on next page)

44 Chapter 10. ARM TCM (Tightly-Coupled Memory) handling in Linux

Linux Arm Documentation

(continued from previous page)
tcmvar ++;

}

static void __tcmfunc hello_tcm(void)
{

/* Some abstract code that runs in ITCM */
int i;
for (i = 0; i < 100; i++) {

tcmvar ++;
}
tcm_to_tcm();

}

static void __init test_tcm(void)
{

u32 *tcmem;
int i;

hello_tcm();
printk("Hello TCM executed from ITCM RAM\n");

printk("TCM variable from testrun: %u @ %p\n", tcmvar, &tcmvar);
tcmvar = 0xDEADBEEFU;
printk("TCM variable: 0x%x @ %p\n", tcmvar, &tcmvar);

printk("TCM assigned variable: 0x%x @ %p\n", tcmassigned, &
↪→tcmassigned);

printk("TCM constant: 0x%x @ %p\n", tcmconst, &tcmconst);

/* Allocate some TCM memory from the pool */
tcmem = tcm_alloc(20);
if (tcmem) {

printk("TCM Allocated 20 bytes of TCM @ %p\n", tcmem);
tcmem[0] = 0xDEADBEEFU;
tcmem[1] = 0x2BADBABEU;
tcmem[2] = 0xCAFEBABEU;
tcmem[3] = 0xDEADBEEFU;
tcmem[4] = 0x2BADBABEU;
for (i = 0; i < 5; i++)

printk("TCM tcmem[%d] = %08x\n", i, tcmem[i]);
tcm_free(tcmem, 20);

}
}

45

Linux Arm Documentation

46 Chapter 10. ARM TCM (Tightly-Coupled Memory) handling in Linux

CHAPTER

ELEVEN

KERNEL INITIALISATION PARAMETERS ON ARM LINUX

The following document describes the kernel initialisation parameter structure,
otherwise known as ‘struct param_struct’which is used for most ARM Linux
architectures.

This structure is used to pass initialisation parameters from the kernel loader
to the Linux kernel proper, and may be short lived through the kernel ini-
tialisation process. As a general rule, it should not be referenced outside of
arch/arm/kernel/setup.c:setup_arch().

There are a lot of parameters listed in there, and they are described below:

page_size This parameter must be set to the page size of the machine,
and will be checked by the kernel.

nr_pages This is the total number of pages of memory in the system. If
the memory is banked, then this should contain the total number of
pages in the system.

If the system contains separate VRAM, this value should not include
this information.

ramdisk_size This is now obsolete, and should not be used.
flags Various kernel flags, including:

bit 0 1 = mount root read only
bit 1 unused
bit 2 0 = load ramdisk
bit 3 0 = prompt for ramdisk

rootdev major/minor number pair of device to mount as the root filesys-
tem.

video_num_cols / video_num_rows These two together describe the
character size of the dummy console, or VGA console character size.
They should not be used for any other purpose.

It’s generally a good idea to set these to be either standard VGA, or
the equivalent character size of your fbcon display. This then allows
all the bootup messages to be displayed correctly.

video_x / video_y This describes the character position of cursor on
VGA console, and is otherwise unused. (should not be used for other
console types, and should not be used for other purposes).

47

Linux Arm Documentation

memc_control_reg MEMC chip control register for Acorn Archimedes
and Acorn A5000 based machines. May be used differently by dif-
ferent architectures.

sounddefault Default sound setting on Acorn machines. May be used
differently by different architectures.

adfsdrives Number of ADFS/MFM disks. May be used differently by
different architectures.

bytes_per_char_h / bytes_per_char_v These are now obsolete, and
should not be used.

pages_in_bank[4] Number of pages in each bank of the systems mem-
ory (used for RiscPC). This is intended to be used on systems where
the physical memory is non-contiguous from the processors point of
view.

pages_in_vram Number of pages in VRAM (used on Acorn RiscPC). This
value may also be used by loaders if the size of the video RAM can’
t be obtained from the hardware.

initrd_start / initrd_size This describes the kernel virtual start ad-
dress and size of the initial ramdisk.

rd_start Start address in sectors of the ramdisk image on a floppy disk.
system_rev system revision number.

system_serial_low / system_serial_high system 64-bit serial number

mem_fclk_21285 The speed of the external oscillator to the 21285
(footbridge), which control’s the speed of the memory bus, timer
& serial port. Depending upon the speed of the cpu its value can
be between 0-66 MHz. If no params are passed or a value of zero is
passed, then a value of 50Mhz is the default on 21285 architectures.

paths[8][128] These are now obsolete, and should not be used.
commandline Kernel command line parameters. Details can be found

elsewhere.

48 Chapter 11. Kernel initialisation parameters on ARM Linux

CHAPTER

TWELVE

SOFTWARE EMULATION OF DEPRECATED SWP
INSTRUCTION (CONFIG_SWP_EMULATE)

ARMv6 architecture deprecates use of the SWP/SWPB instructions, and
recommeds moving to the load-locked/store-conditional instructions LDREX and
STREX.

ARMv7 multiprocessing extensions introduce the ability to disable these instruc-
tions, triggering an undefined instruction exception when executed. Trapped in-
structions are emulated using an LDREX/STREX or LDREXB/STREXB sequence.
If a memory access fault (an abort) occurs, a segmentation fault is signalled to the
triggering process.

/proc/cpu/swp_emulation holds some statistics/information, including the PID of
the last process to trigger the emulation to be invocated. For example:

Emulated SWP: 12
Emulated SWPB: 0
Aborted SWP{B}: 1
Last process: 314

NOTE: when accessing uncached shared regions, LDREX/STREX rely on an exter-
nal transaction monitoring block called a global monitor to maintain update
atomicity. If your system does not implement a global monitor, this option
can cause programs that perform SWP operations to uncached memory to
deadlock, as the STREX operation will always fail.

49

Linux Arm Documentation

50 Chapter 12. Software emulation of deprecated SWP instruction
(CONFIG_SWP_EMULATE)

CHAPTER

THIRTEEN

THE UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI)

UEFI, the Unified Extensible Firmware Interface, is a specification governing the
behaviours of compatible firmware interfaces. It is maintained by the UEFI Forum
- http://www.uefi.org/.

UEFI is an evolution of its predecessor‘EFI’, so the terms EFI and UEFI are used
somewhat interchangeably in this document and associated source code. As a rule,
anything new uses‘UEFI’, whereas‘EFI’refers to legacy code or specifications.

13.1 UEFI support in Linux

Booting on a platform with firmware compliant with the UEFI specification makes
it possible for the kernel to support additional features:

• UEFI Runtime Services

• Retrieving various configuration information through the standardised inter-
face of UEFI configuration tables. (ACPI, SMBIOS, ⋯)

For actually enabling [U]EFI support, enable:

• CONFIG_EFI=y

• CONFIG_EFI_VARS=y or m

The implementation depends on receiving information about the UEFI environ-
ment in a Flattened Device Tree (FDT) - so is only available with CONFIG_OF.

13.2 UEFI stub

The“stub”is a feature that extends the Image/zImage into a valid UEFI PE/COFF
executable, including a loader application that makes it possible to load the kernel
directly from the UEFI shell, boot menu, or one of the lightweight bootloaders like
Gummiboot or rEFInd.

The kernel image built with stub support remains a valid kernel image for booting
in non-UEFI environments.

51

http://www.uefi.org/

Linux Arm Documentation

13.3 UEFI kernel support on ARM

UEFI kernel support on the ARM architectures (arm and arm64) is only available
when boot is performed through the stub.

When booting in UEFI mode, the stub deletes any memory nodes from a provided
DT. Instead, the kernel reads the UEFI memory map.

The stub populates the FDT /chosen node with (and the kernel scans for) the fol-
lowing parameters:

Name Size Description
linux,uefi-
system-table

64-
bit

Physical address of the UEFI System Table.

linux,uefi-
mmap-start

64-
bit

Physical address of the UEFI memory map, populated
by the UEFI GetMemoryMap() call.

linux,uefi-
mmap-size

32-
bit

Size in bytes of the UEFI memory map pointed to in pre-
vious entry.

linux,uefi-
mmap-desc-size

32-
bit

Size in bytes of each entry in the UEFI memory map.

linux,uefi-
mmap-desc-ver

32-
bit

Version of the mmap descriptor format.

52 Chapter 13. The Unified Extensible Firmware Interface (UEFI)

CHAPTER

FOURTEEN

VLOCKS FOR BARE-METAL MUTUAL EXCLUSION

Voting Locks, or“vlocks”provide a simple low-level mutual exclusion mechanism,
with reasonable but minimal requirements on the memory system.

These are intended to be used to coordinate critical activity among CPUs which
are otherwise non-coherent, in situations where the hardware provides no other
mechanism to support this and ordinary spinlocks cannot be used.

vlocks make use of the atomicity provided by the memory system for writes to a
single memory location. To arbitrate, every CPU “votes for itself”, by storing a
unique number to a commonmemory location. The final value seen in that memory
location when all the votes have been cast identifies the winner.

In order to make sure that the election produces an unambiguous result in finite
time, a CPU will only enter the election in the first place if no winner has been
chosen and the election does not appear to have started yet.

14.1 Algorithm

The easiest way to explain the vlocks algorithm is with some pseudo-code:

int currently_voting[NR_CPUS] = { 0, };
int last_vote = -1; /* no votes yet */

bool vlock_trylock(int this_cpu)
{

/* signal our desire to vote */
currently_voting[this_cpu] = 1;
if (last_vote != -1) {

/* someone already volunteered himself */
currently_voting[this_cpu] = 0;
return false; /* not ourself */

}

/* let's suggest ourself */
last_vote = this_cpu;
currently_voting[this_cpu] = 0;

/* then wait until everyone else is done voting */
for_each_cpu(i) {

while (currently_voting[i] != 0)
/* wait */;

(continues on next page)

53

Linux Arm Documentation

(continued from previous page)
}

/* result */
if (last_vote == this_cpu)

return true; /* we won */
return false;

}

bool vlock_unlock(void)
{

last_vote = -1;
}

The currently_voting[] array provides a way for the CPUs to determine whether
an election is in progress, and plays a role analogous to the “entering”array in
Lamport’s bakery algorithm [1].

However, once the election has started, the underlying memory system atomicity
is used to pick the winner. This avoids the need for a static priority rule to act as
a tie-breaker, or any counters which could overflow.

As long as the last_vote variable is globally visible to all CPUs, it will contain only
one value that won’t change once every CPU has cleared its currently_voting flag.

14.2 Features and limitations

• vlocks are not intended to be fair. In the contended case, it is the _last_ CPU
which attempts to get the lock which will be most likely to win.

vlocks are therefore best suited to situations where it is necessary to pick a
unique winner, but it does not matter which CPU actually wins.

• Like other similar mechanisms, vlocks will not scale well to a large number
of CPUs.

vlocks can be cascaded in a voting hierarchy to permit better scaling if nec-
essary, as in the following hypothetical example for 4096 CPUs:

/* first level: local election */
my_town = towns[(this_cpu >> 4) & 0xf];
I_won = vlock_trylock(my_town, this_cpu & 0xf);
if (I_won) {

/* we won the town election, let's go for the state */
my_state = states[(this_cpu >> 8) & 0xf];
I_won = vlock_lock(my_state, this_cpu & 0xf));
if (I_won) {

/* and so on */
I_won = vlock_lock(the_whole_country, this_cpu & 0xf];
if (I_won) {

/* ... */
}
vlock_unlock(the_whole_country);

}
vlock_unlock(my_state);

(continues on next page)

54 Chapter 14. vlocks for Bare-Metal Mutual Exclusion

Linux Arm Documentation

(continued from previous page)
}
vlock_unlock(my_town);

14.3 ARM implementation

The current ARM implementation [2] contains some optimisations beyond the ba-
sic algorithm:

• By packing the members of the currently_voting array close together, we can
read the whole array in one transaction (providing the number of CPUs po-
tentially contending the lock is small enough). This reduces the number of
round-trips required to external memory.

In the ARM implementation, this means that we can use a single load and
comparison:

LDR Rt, [Rn]
CMP Rt, #0

⋯in place of code equivalent to:
LDRB Rt, [Rn]
CMP Rt, #0
LDRBEQ Rt, [Rn, #1]
CMPEQ Rt, #0
LDRBEQ Rt, [Rn, #2]
CMPEQ Rt, #0
LDRBEQ Rt, [Rn, #3]
CMPEQ Rt, #0

This cuts down on the fast-path latency, as well as potentially reducing bus
contention in contended cases.

The optimisation relies on the fact that the ARM memory system guarantees
coherency between overlapping memory accesses of different sizes, similarly
to many other architectures. Note that we do not care which element of
currently_voting appears in which bits of Rt, so there is no need to worry
about endianness in this optimisation.

If there are too many CPUs to read the currently_voting array in one transac-
tion then multiple transations are still required. The implementation uses a
simple loop of word-sized loads for this case. The number of transactions is
still fewer than would be required if bytes were loaded individually.

In principle, we could aggregate further by using LDRD or LDM, but to keep
the code simple this was not attempted in the initial implementation.

• vlocks are currently only used to coordinate between CPUs which are unable
to enable their caches yet. This means that the implementation removesmany
of the barriers which would be required when executing the algorithm in
cached memory.

packing of the currently_voting array does not work with cached memory
unless all CPUs contending the lock are cache-coherent, due to cache write-

14.3. ARM implementation 55

Linux Arm Documentation

backs from one CPU clobbering values written by other CPUs. (Though if all
the CPUs are cache-coherent, you should be probably be using proper spin-
locks instead anyway).

• The“no votes yet”value used for the last_vote variable is 0 (not -1 as in the
pseudocode). This allows statically-allocated vlocks to be implicitly initialised
to an unlocked state simply by putting them in .bss.

An offset is added to each CPU’s ID for the purpose of setting this variable,
so that no CPU uses the value 0 for its ID.

14.4 Colophon

Originally created and documented by Dave Martin for Linaro Limited, for use in
ARM-based big.LITTLE platforms, with review and input gratefully received from
Nicolas Pitre and Achin Gupta. Thanks to Nicolas for grabbing most of this text
out of the relevant mail thread and writing up the pseudocode.

Copyright (C) 2012-2013 Linaro Limited Distributed under the terms of Version 2
of the GNU General Public License, as defined in linux/COPYING.

14.5 References

[1] Lamport, L. “A New Solution of Dijkstra’s Concurrent Programming
Problem”, Communications of the ACM 17, 8 (August 1974), 453-455.

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

[2] linux/arch/arm/common/vlock.S, www.kernel.org.

56 Chapter 14. vlocks for Bare-Metal Mutual Exclusion

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

CHAPTER

FIFTEEN

PORTING

Taken from list archive at http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/
2001-July/004064.html

15.1 Initial definitions

The following symbol definitions rely on you knowing the translation that
__virt_to_phys() does for your machine. This macro converts the passed virtual
address to a physical address. Normally, it is simply:

phys = virt - PAGE_OFFSET + PHYS_OFFSET

15.2 Decompressor Symbols

ZTEXTADDR Start address of decompressor. There’s no point in talking about
virtual or physical addresses here, since the MMUwill be off at the time when
you call the decompressor code. You normally call the kernel at this address
to start it booting. This doesn’t have to be located in RAM, it can be in flash
or other read-only or read-write addressable medium.

ZBSSADDR Start address of zero-initialisedwork area for the decompressor. This
must be pointing at RAM. The decompressor will zero initialise this for you.
Again, the MMU will be off.

ZRELADDR This is the address where the decompressed kernel will be written,
and eventually executed. The following constraint must be valid:

__virt_to_phys(TEXTADDR) == ZRELADDR

The initial part of the kernel is carefully coded to be position independent.

INITRD_PHYS Physical address to place the initial RAM disk. Only relevant
if you are using the bootpImage stuff (which only works on the old struct
param_struct).

INITRD_VIRT Virtual address of the initial RAM disk. The following constraint
must be valid:

__virt_to_phys(INITRD_VIRT) == INITRD_PHYS

PARAMS_PHYS Physical address of the struct param_struct or tag list, giving the
kernel various parameters about its execution environment.

57

http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/2001-July/004064.html
http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/2001-July/004064.html

Linux Arm Documentation

15.3 Kernel Symbols

PHYS_OFFSET Physical start address of the first bank of RAM.
PAGE_OFFSET Virtual start address of the first bank of RAM. During the kernel

boot phase, virtual address PAGE_OFFSETwill bemapped to physical address
PHYS_OFFSET, along with any other mappings you supply. This should be the
same value as TASK_SIZE.

TASK_SIZE Themaximum size of a user process in bytes. Since user space always
starts at zero, this is the maximum address that a user process can access+1.
The user space stack grows down from this address.

Any virtual address below TASK_SIZE is deemed to be user process area, and
therefore managed dynamically on a process by process basis by the kernel.
I’ll call this the user segment.
Anything above TASK_SIZE is common to all processes. I’ll call this the kernel
segment.

(In other words, you can’t put IO mappings below TASK_SIZE, and hence
PAGE_OFFSET).

TEXTADDR Virtual start address of kernel, normally PAGE_OFFSET + 0x8000.
This is where the kernel image ends up. With the latest kernels, it must
be located at 32768 bytes into a 128MB region. Previous kernels placed a
restriction of 256MB here.

DATAADDR Virtual address for the kernel data segment. Must not be defined
when using the decompressor.

VMALLOC_START / VMALLOC_END Virtual addresses bounding the vmalloc()
area. There must not be any static mappings in this area; vmalloc will over-
write them. The addresses must also be in the kernel segment (see above).
Normally, the vmalloc() area starts VMALLOC_OFFSET bytes above the last
virtual RAM address (found using variable high_memory).

VMALLOC_OFFSET Offset normally incorporated into VMALLOC_START to pro-
vide a hole between virtual RAM and the vmalloc area. We do this to allow out
of bounds memory accesses (eg, something writing off the end of the mapped
memory map) to be caught. Normally set to 8MB.

15.4 Architecture Specific Macros

BOOT_MEM(pram,pio,vio) pram specifies the physical start address of RAM.
Must always be present, and should be the same as PHYS_OFFSET.

pio is the physical address of an 8MB region containing IO for use with the
debugging macros in arch/arm/kernel/debug-armv.S.

vio is the virtual address of the 8MB debugging region.

It is expected that the debugging region will be re-initialised by the architec-
ture specific code later in the code (via the MAPIO function).

BOOT_PARAMS Same as, and see PARAMS_PHYS.

58 Chapter 15. Porting

Linux Arm Documentation

FIXUP(func) Machine specific fixups, run before memory subsystems have been
initialised.

MAPIO(func) Machine specific function to map IO areas (including the debug
region above).

INITIRQ(func) Machine specific function to initialise interrupts.

15.4. Architecture Specific Macros 59

Linux Arm Documentation

60 Chapter 15. Porting

CHAPTER

SIXTEEN

SOC-SPECIFIC DOCUMENTS

16.1 Release Notes for Linux on Intel’s IXP4xx Network
Processor

16.1.1 Maintained by Deepak Saxena <dsaxena@plexity.net>

1. Overview

Intel’s IXP4xx network processor is a highly integrated SOC that is targeted for
network applications, though it has become popular in industrial control and other
areas due to low cost and power consumption. The IXP4xx family currently con-
sists of several processors that support different network offload functions such
as encryption, routing, firewalling, etc. The IXP46x family is an updated version
which supports faster speeds, new memory and flash configurations, and more
integration such as an on-chip I2C controller.

For more information on the various versions of the CPU, see:

http://developer.intel.com/design/network/products/npfamily/ixp4xx.
htm

Intel also made the IXCP1100 CPU for sometime which is an IXP4xx stripped of
much of the network intelligence.

2. Linux Support

Linux currently supports the following features on the IXP4xx chips:

• Dual serial ports

• PCI interface

• Flash access (MTD/JFFS)

• I2C through GPIO on IXP42x

• GPIO for input/output/interrupts See arch/arm/mach-
ixp4xx/include/mach/platform.h for access functions.

• Timers (watchdog, OS)

The following components of the chips are not supported by Linux and require the
use of Intel’s proprietary CSR software:
• USB device interface

• Network interfaces (HSS, Utopia, NPEs, etc)

61

http://developer.intel.com/design/network/products/npfamily/ixp4xx.htm
http://developer.intel.com/design/network/products/npfamily/ixp4xx.htm

Linux Arm Documentation

• Network offload functionality

If you need to use any of the above, you need to download Intel’s software from:
http://developer.intel.com/design/network/products/npfamily/ixp425.
htm

DO NOT POST QUESTIONS TO THE LINUX MAILING LISTS REGARDING THE
PROPRIETARY SOFTWARE.

There are several websites that provide directions/pointers on using Intel’s soft-
ware:

• http://sourceforge.net/projects/ixp4xx-osdg/ Open Source Developer’s Guide
for using uClinux and the Intel libraries

• http://gatewaymaker.sourceforge.net/ Simple one page summary of building
a gateway using an IXP425 and Linux

• http://ixp425.sourceforge.net/ ATM device driver for IXP425 that relies on
Intel’s libraries

3. Known Issues/Limitations

3a. Limited inbound PCI window

The IXP4xx family allows for up to 256MB of memory but the PCI interface can only
expose 64MB of that memory to the PCI bus. This means that if you are running
with > 64MB, all PCI buffers outside of the accessible range will be bounced using
the routines in arch/arm/common/dmabounce.c.

3b. Limited outbound PCI window

IXP4xx provides two methods of accessing PCI memory space:

1) A direct mapped window from 0x48000000 to 0x4bffffff (64MB). To access
PCI via this space, we simply ioremap() the BAR into the kernel and we can
use the standard read[bwl]/write[bwl] macros. This is the preffered method
due to speed but it limits the system to just 64MB of PCI memory. This can
be problamatic if using video cards and other memory-heavy devices.

2) If > 64MB of memory space is required, the IXP4xx can be configured to use
indirect registers to access PCI This allows for up to 128MB (0x48000000
to 0x4fffffff) of memory on the bus. The disadvantage of this is that every
PCI access requires three local register accesses plus a spinlock, but in some
cases the performance hit is acceptable. In addition, you cannot mmap() PCI
devices in this case due to the indirect nature of the PCI window.

By default, the direct method is used for performance reasons. If you need more
PCI memory, enable the IXP4XX_INDIRECT_PCI config option.

3c. GPIO as Interrupts

Currently the code only handles level-sensitive GPIO interrupts

4. Supported platforms

ADI Engineering Coyote Gateway Reference Platform http://www.adiengineering.
com/productsCoyote.html

62 Chapter 16. SoC-specific documents

http://developer.intel.com/design/network/products/npfamily/ixp425.htm
http://developer.intel.com/design/network/products/npfamily/ixp425.htm
http://sourceforge.net/projects/ixp4xx-osdg/
http://gatewaymaker.sourceforge.net/
http://ixp425.sourceforge.net/
http://www.adiengineering.com/productsCoyote.html
http://www.adiengineering.com/productsCoyote.html

Linux Arm Documentation

The ADI Coyote platform is reference design for those building small
residential/office gateways. One NPE is connected to a 10/100 interface,
one to 4-port 10/100 switch, and the third to and ADSL interface. In
addition, it also supports to POTs interfaces connected via SLICs. Note
that those are not supported by Linux ATM. Finally, the platform has two
mini-PCI slots used for 802.11[bga] cards. Finally, there is an IDE port
hanging off the expansion bus.

Gateworks Avila Network Platform http://www.gateworks.com/support/overview.
php

The Avila platform is basically and IXDP425 with the 4 PCI slots replaced
withmini-PCI slots and a CF IDE interface hanging off the expansion bus.

Intel IXDP425 Development Platform http://www.intel.com/design/network/
products/npfamily/ixdpg425.htm

This is Intel’s standard reference platform for the IXDP425 and is also
known as the Richfield board. It contains 4 PCI slots, 16MB of flash, two
10/100 ports and one ADSL port.

Intel IXDP465 Development Platform http://www.intel.com/design/network/
products/npfamily/ixdp465.htm

This is basically an IXDP425 with an IXP465 and 32M of flash instead of
just 16.

Intel IXDPG425 Development Platform

This is basically and ADI Coyote board with a NEC EHCI controller
added. One issue with this board is that the mini-PCI slots only have
the 3.3v line connected, so you can’t use a PCI to mini-PCI adapter with
an E100 card. So to NFS root you need to use either the CSR or a WiFi
card and a ramdisk that BOOTPs and then does a pivot_root to NFS.

Motorola PrPMC1100 Processor Mezanine Card http://www.fountainsys.com

The PrPMC1100 is based on the IXCP1100 and is meant to plug into and
IXP2400/2800 system to act as the system controller. It simply contains
a CPU and 16MB of flash on the board and needs to be plugged into a
carrier board to function. Currently Linux only supports the Motorola
PrPMC carrier board for this platform.

5. TODO LIST

• Add support for Coyote IDE

• Add support for edge-based GPIO interrupts

• Add support for CF IDE on expansion bus

6. Thanks

The IXP4xx work has been funded by Intel Corp. and MontaVista Software, Inc.

The following people have contributed patches/comments/etc:

• Lennerty Buytenhek

• Lutz Jaenicke

16.1. Release Notes for Linux on Intel’s IXP4xx Network Processor 63

http://www.gateworks.com/support/overview.php
http://www.gateworks.com/support/overview.php
http://www.intel.com/design/network/products/npfamily/ixdpg425.htm
http://www.intel.com/design/network/products/npfamily/ixdpg425.htm
http://www.intel.com/design/network/products/npfamily/ixdp465.htm
http://www.intel.com/design/network/products/npfamily/ixdp465.htm
http://www.fountainsys.com

Linux Arm Documentation

• Justin Mayfield

• Robert E. Ranslam

[I know I’ve forgotten others, please email me to be added]

Last Update: 01/04/2005

16.2 ARM Marvell SoCs

This document lists all the ARMMarvell SoCs that are currently supported in main-
line by the Linux kernel. As the Marvell families of SoCs are large and complex,
it is hard to understand where the support for a particular SoC is available in the
Linux kernel. This document tries to help in understanding where those SoCs are
supported, and to match them with their corresponding public datasheet, when
available.

16.2.1 Orion family

Flavors:
• 88F5082

• 88F5181

• 88F5181L

• 88F5182

– Datasheet: http://www.embeddedarm.com/documentation/
third-party/MV88F5182-datasheet.pdf

– Programmer’s User Guide: http://www.
embeddedarm.com/documentation/third-party/
MV88F5182-opensource-manual.pdf

– User Manual: http://www.embeddedarm.com/
documentation/third-party/MV88F5182-usermanual.pdf

• 88F5281

– Datasheet: http://www.ocmodshop.com/images/reviews/
networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf

• 88F6183

Core: Feroceon 88fr331 (88f51xx) or 88fr531-vd (88f52xx) ARMv5 com-
patible

Linux kernel mach directory: arch/arm/mach-orion5x
Linux kernel plat directory: arch/arm/plat-orion

64 Chapter 16. SoC-specific documents

http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf
http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf
http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf
http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf
http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf
http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf
http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf
http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf
http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf

Linux Arm Documentation

16.2.2 Kirkwood family

Flavors:
• 88F6282 a.k.a Armada 300

– Product Brief : http://www.marvell.com/
embedded-processors/armada-300/assets/armada_310.pdf

• 88F6283 a.k.a Armada 310

– Product Brief : http://www.marvell.com/
embedded-processors/armada-300/assets/armada_310.pdf

• 88F6190

– Product Brief : http://www.marvell.com/
embedded-processors/kirkwood/assets/88F6190-003_WEB.
pdf

– Hardware Spec : http://www.marvell.com/
embedded-processors/kirkwood/assets/HW_88F619x_
OpenSource.pdf

– Functional Spec: http://www.marvell.com/
embedded-processors/kirkwood/assets/FS_88F6180_9x_
6281_OpenSource.pdf

• 88F6192

– Product Brief : http://www.marvell.com/
embedded-processors/kirkwood/assets/88F6192-003_ver1.
pdf

– Hardware Spec : http://www.marvell.com/
embedded-processors/kirkwood/assets/HW_88F619x_
OpenSource.pdf

– Functional Spec: http://www.marvell.com/
embedded-processors/kirkwood/assets/FS_88F6180_9x_
6281_OpenSource.pdf

• 88F6182

• 88F6180

– Product Brief : http://www.marvell.com/
embedded-processors/kirkwood/assets/88F6180-003_ver1.
pdf

– Hardware Spec : http://www.marvell.com/
embedded-processors/kirkwood/assets/HW_88F6180_
OpenSource.pdf

– Functional Spec: http://www.marvell.com/
embedded-processors/kirkwood/assets/FS_88F6180_9x_
6281_OpenSource.pdf

• 88F6281

16.2. ARM Marvell SoCs 65

http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf

Linux Arm Documentation

– Product Brief : http://www.marvell.com/
embedded-processors/kirkwood/assets/88F6281-004_ver1.
pdf

– Hardware Spec : http://www.marvell.com/
embedded-processors/kirkwood/assets/HW_88F6281_
OpenSource.pdf

– Functional Spec: http://www.marvell.com/
embedded-processors/kirkwood/assets/FS_88F6180_9x_
6281_OpenSource.pdf

Homepage: http://www.marvell.com/embedded-processors/kirkwood/
Core: Feroceon 88fr131 ARMv5 compatible
Linux kernel mach directory: arch/arm/mach-mvebu
Linux kernel plat directory: none

16.2.3 Discovery family

Flavors:
• MV78100

– Product Brief : http://www.marvell.com/
embedded-processors/discovery-innovation/assets/
MV78100-003_WEB.pdf

– Hardware Spec : http://www.marvell.com/
embedded-processors/discovery-innovation/assets/HW_
MV78100_OpenSource.pdf

– Functional Spec: http://www.marvell.com/
embedded-processors/discovery-innovation/assets/FS_
MV76100_78100_78200_OpenSource.pdf

• MV78200

– Product Brief : http://www.marvell.com/
embedded-processors/discovery-innovation/assets/
MV78200-002_WEB.pdf

– Hardware Spec : http://www.marvell.com/
embedded-processors/discovery-innovation/assets/HW_
MV78200_OpenSource.pdf

– Functional Spec: http://www.marvell.com/
embedded-processors/discovery-innovation/assets/FS_
MV76100_78100_78200_OpenSource.pdf

• MV76100

Not supported by the Linux kernel.

Core: Feroceon 88fr571-vd ARMv5 compatible
Linux kernel mach directory: arch/arm/mach-mv78xx0

66 Chapter 16. SoC-specific documents

http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
http://www.marvell.com/embedded-processors/kirkwood/
http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf

Linux Arm Documentation

Linux kernel plat directory: arch/arm/plat-orion

16.2.4 EBU Armada family

Armada 370 Flavors:
• 88F6710

• 88F6707

• 88F6W11

• Product Brief: http://www.marvell.com/embedded-processors/
armada-300/assets/Marvell_ARMADA_370_SoC.pdf

• Hardware Spec: http://www.marvell.com/
embedded-processors/armada-300/assets/
ARMADA370-datasheet.pdf

• Functional Spec: http://www.marvell.com/
embedded-processors/armada-300/assets/
ARMADA370-FunctionalSpec-datasheet.pdf

Core: Sheeva ARMv7 compatible PJ4B
Armada 375 Flavors:

• 88F6720

• Product Brief: http://www.marvell.com/embedded-processors/
armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf

Core: ARM Cortex-A9

Armada 38x Flavors:
• 88F6810 Armada 380

• 88F6820 Armada 385

• 88F6828 Armada 388

• Product infos: http://www.marvell.com/embedded-processors/
armada-38x/

• Functional Spec: https://marvellcorp.wufoo.com/forms/
marvell-armada-38x-functional-specifications/

Core: ARM Cortex-A9

Armada 39x Flavors:
• 88F6920 Armada 390

• 88F6928 Armada 398

• Product infos: http://www.marvell.com/embedded-processors/
armada-39x/

Core: ARM Cortex-A9

Armada XP Flavors:

16.2. ARM Marvell SoCs 67

http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
http://www.marvell.com/embedded-processors/armada-38x/
http://www.marvell.com/embedded-processors/armada-38x/
https://marvellcorp.wufoo.com/forms/marvell-armada-38x-functional-specifications/
https://marvellcorp.wufoo.com/forms/marvell-armada-38x-functional-specifications/
http://www.marvell.com/embedded-processors/armada-39x/
http://www.marvell.com/embedded-processors/armada-39x/

Linux Arm Documentation

• MV78230

• MV78260

• MV78460

NOTE: not to be confused with the non-SMP 78xx0 SoCs
Product Brief: http://www.marvell.com/embedded-processors/

armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf

Functional Spec: http://www.marvell.com/embedded-processors/
armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf

• Hardware Specs:

– http://www.marvell.com/embedded-processors/armada-xp/
assets/HW_MV78230_OS.PDF

– http://www.marvell.com/embedded-processors/armada-xp/
assets/HW_MV78260_OS.PDF

– http://www.marvell.com/embedded-processors/armada-xp/
assets/HW_MV78460_OS.PDF

Core: Sheeva ARMv7 compatible Dual-core or Quad-core PJ4B-MP
Linux kernel mach directory: arch/arm/mach-mvebu
Linux kernel plat directory: none

16.2.5 EBU Armada family ARMv8

Armada 3710/3720 Flavors:
• 88F3710

• 88F3720

Core: ARM Cortex A53 (ARMv8)

Homepage: http://www.marvell.com/embedded-processors/
armada-3700/

Product Brief: http://www.marvell.com/embedded-processors/assets/
PB-88F3700-FNL.pdf

Device tree files: arch/arm64/boot/dts/marvell/armada-37*
Armada 7K Flavors:

• 88F7020 (AP806 Dual + one CP110)

• 88F7040 (AP806 Quad + one CP110)

Core: ARM Cortex A72

Homepage: http://www.marvell.com/embedded-processors/
armada-70xx/

Product Brief:

68 Chapter 16. SoC-specific documents

http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF
http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF
http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF
http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF
http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF
http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF
http://www.marvell.com/embedded-processors/armada-3700/
http://www.marvell.com/embedded-processors/armada-3700/
http://www.marvell.com/embedded-processors/assets/PB-88F3700-FNL.pdf
http://www.marvell.com/embedded-processors/assets/PB-88F3700-FNL.pdf
http://www.marvell.com/embedded-processors/armada-70xx/
http://www.marvell.com/embedded-processors/armada-70xx/

Linux Arm Documentation

• http://www.marvell.com/embedded-processors/assets/
Armada7020PB-Jan2016.pdf

• http://www.marvell.com/embedded-processors/assets/
Armada7040PB-Jan2016.pdf

Device tree files: arch/arm64/boot/dts/marvell/armada-70*
Armada 8K Flavors:

• 88F8020 (AP806 Dual + two CP110)

• 88F8040 (AP806 Quad + two CP110)

Core: ARM Cortex A72

Homepage: http://www.marvell.com/embedded-processors/
armada-80xx/

Product Brief:
• http://www.marvell.com/embedded-processors/assets/
Armada8020PB-Jan2016.pdf

• http://www.marvell.com/embedded-processors/assets/
Armada8040PB-Jan2016.pdf

Device tree files: arch/arm64/boot/dts/marvell/armada-80*

16.2.6 Avanta family

Flavors:
• 88F6510

• 88F6530P

• 88F6550

• 88F6560

Homepage: http://www.marvell.com/broadband/
Product Brief: http://www.marvell.com/broadband/assets/Marvell_

Avanta_88F6510_305_060-001_product_brief.pdf

No public datasheet available.

Core: ARMv5 compatible
Linux kernel mach directory: no code inmainline yet, planned for the

future

Linux kernel plat directory: no code in mainline yet, planned for the
future

16.2. ARM Marvell SoCs 69

http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/armada-80xx/
http://www.marvell.com/embedded-processors/armada-80xx/
http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf
http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf
http://www.marvell.com/broadband/
http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf
http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf

Linux Arm Documentation

16.2.7 Storage family

Armada SP:
• 88RC1580

Product infos: http://www.marvell.com/storage/armada-sp/
Core: Sheeva ARMv7 comatible Quad-core PJ4C
(not supported in upstream Linux kernel)

16.2.8 Dove family (application processor)

Flavors:
• 88AP510 a.k.a Armada 510

Product Brief: http://www.marvell.com/application-processors/
armada-500/assets/Marvell_Armada510_SoC.pdf

Hardware Spec: http://www.marvell.com/application-processors/
armada-500/assets/Armada-510-Hardware-Spec.pdf

Functional Spec: http://www.marvell.com/application-processors/
armada-500/assets/Armada-510-Functional-Spec.pdf

Homepage: http://www.marvell.com/application-processors/
armada-500/

Core: ARMv7 compatible
Directory:

• arch/arm/mach-mvebu (DT enabled platforms)

• arch/arm/mach-dove (non-DT enabled platforms)

16.2.9 PXA 2xx/3xx/93x/95x family

Flavors:
• PXA21x, PXA25x, PXA26x

– Application processor only
– Core: ARMv5 XScale1 core

• PXA270, PXA271, PXA272
– Product Brief : http://www.marvell.com/
application-processors/pxa-family/assets/pxa_27x_pb.pdf

– Design guide : http://www.marvell.com/
application-processors/pxa-family/assets/pxa_27x_design_
guide.pdf

– Developers manual : http://www.marvell.com/
application-processors/pxa-family/assets/pxa_27x_dev_
man.pdf

70 Chapter 16. SoC-specific documents

http://www.marvell.com/storage/armada-sp/
http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf
http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf
http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf
http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf
http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
http://www.marvell.com/application-processors/armada-500/
http://www.marvell.com/application-processors/armada-500/
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf

Linux Arm Documentation

– Specification : http://www.marvell.com/
application-processors/pxa-family/assets/pxa_27x_emts.
pdf

– Specification update : http://www.marvell.com/
application-processors/pxa-family/assets/pxa_27x_spec_
update.pdf

– Application processor only
– Core: ARMv5 XScale2 core

• PXA300, PXA310, PXA320
– PXA 300 Product Brief : http://www.marvell.com/
application-processors/pxa-family/assets/PXA300_PB_
R4.pdf

– PXA 310 Product Brief : http://www.marvell.com/
application-processors/pxa-family/assets/PXA310_PB_
R4.pdf

– PXA 320 Product Brief : http://www.marvell.com/
application-processors/pxa-family/assets/PXA320_PB_
R4.pdf

– Design guide : http://www.marvell.com/
application-processors/pxa-family/assets/PXA3xx_Design_
Guide.pdf

– Developers manual : http://www.marvell.com/
application-processors/pxa-family/assets/PXA3xx_
Developers_Manual.zip

– Specifications : http://www.marvell.com/
application-processors/pxa-family/assets/PXA3xx_EMTS.
pdf

– Specification Update : http://www.marvell.com/
application-processors/pxa-family/assets/PXA3xx_Spec_
Update.zip

– Reference Manual : http://www.marvell.com/
application-processors/pxa-family/assets/PXA3xx_TavorP_
BootROM_Ref_Manual.pdf

– Application processor only
– Core: ARMv5 XScale3 core

• PXA930, PXA935
– Application processor with Communication processor
– Core: ARMv5 XScale3 core

• PXA955
– Application processor with Communication processor
– Core: ARMv7 compatible Sheeva PJ4 core

16.2. ARM Marvell SoCs 71

http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf
http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf

Linux Arm Documentation

Comments:

• This line of SoCs originates from the XScale family developed by
Intel and acquired by Marvell in ~2006. The PXA21x, PXA25x,
PXA26x, PXA27x, PXA3xx and PXA93x were developed by Intel,
while the later PXA95x were developed by Marvell.

• Due to their XScale origin, these SoCs have virtually nothing in
common with the other (Kirkwood, Dove, etc.) families of Mar-
vell SoCs, except with the MMP/MMP2 family of SoCs.

Linux kernel mach directory: arch/arm/mach-pxa
Linux kernel plat directory: arch/arm/plat-pxa

16.2.10 MMP/MMP2/MMP3 family (communication processor)

Flavors:
• PXA168, a.k.a Armada 168

– Homepage : http://www.marvell.com/
application-processors/armada-100/armada-168.jsp

– Product brief : http://www.marvell.com/
application-processors/armada-100/assets/pxa_168_pb.
pdf

– Hardware manual : http://www.marvell.com/
application-processors/armada-100/assets/armada_16x_
datasheet.pdf

– Software manual : http://www.marvell.com/
application-processors/armada-100/assets/armada_16x_
software_manual.pdf

– Specification update : http://www.marvell.com/
application-processors/armada-100/assets/ARMADA16x_
Spec_update.pdf

– Boot ROM manual : http://www.marvell.com/
application-processors/armada-100/assets/armada_16x_
ref_manual.pdf

– App node package : http://www.marvell.com/
application-processors/armada-100/assets/armada_16x_
app_note_package.pdf

– Application processor only
– Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)

• PXA910/PXA920
– Homepage : http://www.marvell.com/
communication-processors/pxa910/

72 Chapter 16. SoC-specific documents

http://www.marvell.com/application-processors/armada-100/armada-168.jsp
http://www.marvell.com/application-processors/armada-100/armada-168.jsp
http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
http://www.marvell.com/communication-processors/pxa910/
http://www.marvell.com/communication-processors/pxa910/

Linux Arm Documentation

– Product Brief : http://www.marvell.com/
communication-processors/pxa910/assets/Marvell_
PXA910_Platform-001_PB_final.pdf

– Application processor with Communication processor
– Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)

• PXA688, a.k.a. MMP2, a.k.a Armada 610
– Product Brief : http://www.marvell.com/
application-processors/armada-600/assets/armada610_
pb.pdf

– Application processor only
– Core: ARMv7 compatible Sheeva PJ4 88sv581x core

• PXA2128, a.k.a. MMP3 (OLPC XO4, Linux support not upstream)

– Product Brief : http://www.marvell.com/
application-processors/armada/pxa2128/assets/
Marvell-ARMADA-PXA2128-SoC-PB.pdf

– Application processor only
– Core: Dual-core ARMv7 compatible Sheeva PJ4C core

• PXA960/PXA968/PXA978 (Linux support not upstream)
– Application processor with Communication Processor
– Core: ARMv7 compatible Sheeva PJ4 core

• PXA986/PXA988 (Linux support not upstream)
– Application processor with Communication Processor
– Core: Dual-core ARMv7 compatible Sheeva PJ4B-MP core

• PXA1088/PXA1920 (Linux support not upstream)
– Application processor with Communication Processor
– Core: quad-core ARMv7 Cortex-A7

• PXA1908/PXA1928/PXA1936
– Application processor with Communication Processor
– Core: multi-core ARMv8 Cortex-A53

Comments:

• This line of SoCs originates from the XScale family developed by
Intel and acquired by Marvell in ~2006. All the processors of this
MMP/MMP2 family were developed by Marvell.

• Due to their XScale origin, these SoCs have virtually nothing in com-
mon with the other (Kirkwood, Dove, etc.) families of Marvell SoCs,
except with the PXA family of SoCs listed above.

Linux kernel mach directory: arch/arm/mach-mmp

16.2. ARM Marvell SoCs 73

http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf
http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf
http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf
http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf
http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf
http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf

Linux Arm Documentation

Linux kernel plat directory: arch/arm/plat-pxa

16.2.11 Berlin family (Multimedia Solutions)

• Flavors:
– 88DE3010, Armada 1000 (no Linux support)

∗ Core: Marvell PJ1 (ARMv5TE), Dual-core

∗ Product Brief: http://www.marvell.com.cn/
digital-entertainment/assets/armada_1000_pb.pdf

– 88DE3005, Armada 1500 Mini
∗ Design name: BG2CD

∗ Core: ARM Cortex-A9, PL310 L2CC

– 88DE3006, Armada 1500 Mini Plus
∗ Design name: BG2CDP

∗ Core: Dual Core ARM Cortex-A7

– 88DE3100, Armada 1500
∗ Design name: BG2

∗ Core: Marvell PJ4B-MP (ARMv7), Tauros3 L2CC

– 88DE3114, Armada 1500 Pro
∗ Design name: BG2Q

∗ Core: Quad Core ARM Cortex-A9, PL310 L2CC

– 88DE3214, Armada 1500 Pro 4K
∗ Design name: BG3

∗ Core: ARM Cortex-A15, CA15 integrated L2CC

– 88DE3218, ARMADA 1500 Ultra
∗ Core: ARM Cortex-A53

Homepage: https://www.synaptics.com/products/multimedia-solutions
Directory: arch/arm/mach-berlin

Comments:

• This line of SoCs is based on Marvell Sheeva or ARM Cortex CPUs
with Synopsys DesignWare (IRQ, GPIO, Timers, ⋯) and PXA IP (SD-
HCI, USB, ETH, ⋯).

• The Berlin family was acquired by Synaptics from Marvell in 2017.

74 Chapter 16. SoC-specific documents

http://www.marvell.com.cn/digital-entertainment/assets/armada_1000_pb.pdf
http://www.marvell.com.cn/digital-entertainment/assets/armada_1000_pb.pdf
https://www.synaptics.com/products/multimedia-solutions

Linux Arm Documentation

16.2.12 CPU Cores

The XScale cores were designed by Intel, and shipped by Marvell in the older PXA
processors. Feroceon is a Marvell designed core that developed in-house, and
that evolved into Sheeva. The XScale and Feroceon cores were phased out over
time and replaced with Sheeva cores in later products, which subsequently got
replaced with licensed ARM Cortex-A cores.

XScale 1 CPUID 0x69052xxx ARMv5, iWMMXt
XScale 2 CPUID 0x69054xxx ARMv5, iWMMXt
XScale 3 CPUID 0x69056xxx or 0x69056xxx ARMv5, iWMMXt
Feroceon-1850 88fr331 “Mohawk” CPUID 0x5615331x or

0x41xx926x ARMv5TE, single issue

Feroceon-2850 88fr531-vd “Jolteon” CPUID 0x5605531x or
0x41xx926x ARMv5TE, VFP, dual-issue

Feroceon 88fr571-vd “Jolteon” CPUID 0x5615571x ARMv5TE,
VFP, dual-issue

Feroceon 88fr131 “Mohawk-D” CPUID 0x5625131x ARMv5TE,
single-issue in-order

Sheeva PJ1 88sv331 “Mohawk” CPUID 0x561584xx ARMv5,
single-issue iWMMXt v2

Sheeva PJ4 88sv581x “Flareon” CPUID 0x560f581x ARMv7, idivt,
optional iWMMXt v2

Sheeva PJ4B 88sv581x CPUID 0x561f581x ARMv7, idivt, optional
iWMMXt v2

Sheeva PJ4B-MP / PJ4C CPUID 0x562f584x ARMv7, idivt/idiva, LPAE,
optional iWMMXt v2 and/or NEON

16.2.13 Long-term plans

• Unify the mach-dove/, mach-mv78xx0/, mach-orion5x/ into the mach-mvebu/
to support all SoCs from the Marvell EBU (Engineering Business Unit) in a
single mach-<foo> directory. The plat-orion/ would therefore disappear.

• Unify the mach-mmp/ and mach-pxa/ into the same mach-pxa directory. The
plat-pxa/ would therefore disappear.

16.2. ARM Marvell SoCs 75

Linux Arm Documentation

16.2.14 Credits

• Maen Suleiman <maen@marvell.com>

• Lior Amsalem <alior@marvell.com>

• Thomas Petazzoni <thomas.petazzoni@free-electrons.com>

• Andrew Lunn <andrew@lunn.ch>

• Nicolas Pitre <nico@fluxnic.net>

• Eric Miao <eric.y.miao@gmail.com>

16.3 ARM Microchip SoCs (aka AT91)

16.3.1 Introduction

This document gives useful information about the ARM Microchip SoCs that are
currently supported in Linux Mainline (you know, the one on kernel.org).

It is important to note that the Microchip (previously Atmel) ARM-based MPU
product line is historically named “AT91”or “at91”throughout the Linux ker-
nel development process even if this product prefix has completely disappeared
from the official Microchip product name. Anyway, files, directories, git trees, git
branches/tags and email subject always contain this “at91”sub-string.

16.3.2 AT91 SoCs

Documentation and detailed datasheet for each product are available on the Mi-
crochip website: http://www.microchip.com.

Flavors:
• ARM 920 based SoC - at91rm9200

– Datasheet
http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_
Datasheet.pdf

• ARM 926 based SoCs - at91sam9260

– Datasheet
http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_
Datasheet.pdf

– at91sam9xe
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_
Datasheet.pdf

76 Chapter 16. SoC-specific documents

mailto:maen@marvell.com
mailto:alior@marvell.com
mailto:thomas.petazzoni@free-electrons.com
mailto:andrew@lunn.ch
mailto:nico@fluxnic.net
mailto:eric.y.miao@gmail.com
http://www.microchip.com
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf

Linux Arm Documentation

– at91sam9261
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_
Datasheet.pdf

– at91sam9263
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_
Datasheet.pdf

– at91sam9rl
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
doc6289.pdf

– at91sam9g20
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
DS60001516A.pdf

– at91sam9g45 family - at91sam9g45 - at91sam9g46 -
at91sam9m10 - at91sam9m11 (device superset)

∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_
Datasheet.pdf

– at91sam9x5 family (aka “The 5 series”) - at91sam9g15 -
at91sam9g25 - at91sam9g35 - at91sam9x25 - at91sam9x35

∗ Datasheet (can be considered as covering the whole
family)

http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_
Datasheet.pdf

– at91sam9n12
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
DS60001517A.pdf

– sam9x60
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
SAM9X60-Data-Sheet-DS60001579A.pdf

16.3. ARM Microchip SoCs (aka AT91) 77

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc6289.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc6289.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001516A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001516A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001517A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001517A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM9X60-Data-Sheet-DS60001579A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM9X60-Data-Sheet-DS60001579A.pdf

Linux Arm Documentation

• ARM Cortex-A5 based SoCs - sama5d3 family

– sama5d31
– sama5d33
– sama5d34
– sama5d35
– sama5d36 (device superset)
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_
Datasheet_B.pdf

• ARM Cortex-A5 + NEON based SoCs - sama5d4 family

– sama5d41
– sama5d42
– sama5d43
– sama5d44 (device superset)
∗ Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
60001525A.pdf

– sama5d2 family
∗ sama5d21

∗ sama5d22

∗ sama5d23

∗ sama5d24

∗ sama5d26

∗ sama5d27 (device superset)

∗ sama5d28 (device superset + environmental monitors)

· Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
DS60001476B.pdf

• ARM Cortex-M7 MCUs - sams70 family

– sams70j19
– sams70j20
– sams70j21
– sams70n19
– sams70n20
– sams70n21

78 Chapter 16. SoC-specific documents

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001525A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001525A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001476B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001476B.pdf

Linux Arm Documentation

– sams70q19
– sams70q20
– sams70q21
– samv70 family
∗ samv70j19

∗ samv70j20

∗ samv70n19

∗ samv70n20

∗ samv70q19

∗ samv70q20

– samv71 family
∗ samv71j19

∗ samv71j20

∗ samv71j21

∗ samv71n19

∗ samv71n20

∗ samv71n21

∗ samv71q19

∗ samv71q20

∗ samv71q21

· Datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/
SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.
pdf

16.3.3 Linux kernel information

Linux kernel mach directory: arch/arm/mach-at91 MAINTAINERS entry is:
“ARM/Microchip (AT91) SoC support”

16.3.4 Device Tree for AT91 SoCs and boards

All AT91 SoCs are converted to Device Tree. Since Linux 3.19, these products
must use this method to boot the Linux kernel.

Work In Progress statement: Device Tree files and Device Tree bindings that ap-
ply to AT91 SoCs and boards are considered as “Unstable”. To be completely
clear, any at91 binding can change at any time. So, be sure to use a Device Tree
Binary and a Kernel Image generated from the same source tree. Please refer

16.3. ARM Microchip SoCs (aka AT91) 79

http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf

Linux Arm Documentation

to the Documentation/devicetree/bindings/ABI.rst file for a definition of a “Sta-
ble”binding/ABI. This statement will be removed by AT91 MAINTAINERS when
appropriate.

Naming conventions and best practice:

• SoCs Device Tree Source Include files are named after the official name of
the product (at91sam9g20.dtsi or sama5d33.dtsi for instance).

• Device Tree Source Include files (.dtsi) are used to collect common nodes that
can be shared across SoCs or boards (sama5d3.dtsi or at91sam9x5cm.dtsi
for instance). When collecting nodes for a particular peripheral or topic, the
identifier have to be placed at the end of the file name, separated with a“_”
(at91sam9x5_can.dtsi or sama5d3_gmac.dtsi for example).

• board Device Tree Source files (.dts) are prefixed by the string “at91-”so
that they can be identified easily. Note that some files are historical excep-
tions to this rule (sama5d3[13456]ek.dts, usb_a9g20.dts or animeo_ip.dts for
example).

16.4 NetWinder specific documentation

The NetWinder is a small low-power computer, primarily designed to run Linux.
It is based around the StrongARM RISC processor, DC21285 PCI bridge, with PC-
type hardware glued around it.

80 Chapter 16. SoC-specific documents

Linux Arm Documentation

16.4.1 Port usage

Min Max Description
0x0000 0x000f DMA1
0x0020 0x0021 PIC1
0x0060 0x006f Keyboard
0x0070 0x007f RTC
0x0080 0x0087 DMA1
0x0088 0x008f DMA2
0x00a0 0x00a3 PIC2
0x00c0 0x00df DMA2
0x0180 0x0187 IRDA
0x01f0 0x01f6 ide0
0x0201 Game port
0x0203 RWA010 configuration read
0x0220 ? SoundBlaster
0x0250 ? WaveArtist
0x0279 RWA010 configuration index
0x02f8 0x02ff Serial ttyS1
0x0300 0x031f Ether10
0x0338 GPIO1
0x033a GPIO2
0x0370 0x0371 W83977F configuration registers
0x0388 ? AdLib
0x03c0 0x03df VGA
0x03f6 ide0
0x03f8 0x03ff Serial ttyS0
0x0400 0x0408 DC21143
0x0480 0x0487 DMA1
0x0488 0x048f DMA2
0x0a79 RWA010 configuration write
0xe800 0xe80f ide0/ide1 BM DMA

16.4. NetWinder specific documentation 81

Linux Arm Documentation

16.4.2 Interrupt usage

IRQ type Description
0 ISA 100Hz timer
1 ISA Keyboard
2 ISA cascade
3 ISA Serial ttyS1
4 ISA Serial ttyS0
5 ISA PS/2 mouse
6 ISA IRDA
7 ISA Printer
8 ISA RTC alarm
9 ISA
10 ISA GP10 (Orange reset button)
11 ISA
12 ISA WaveArtist
13 ISA
14 ISA hda1
15 ISA

16.4.3 DMA usage

DMA type Description
0 ISA IRDA
1 ISA
2 ISA cascade
3 ISA WaveArtist
4 ISA
5 ISA
6 ISA
7 ISA WaveArtist

16.5 NetWinder’s floating point emulator

16.5.1 Introduction

This directory contains the version 0.92 test release of the NetWinder Floating
Point Emulator.

The majority of the code was written by me, Scott Bambrough It is written in
C, with a small number of routines in inline assembler where required. It was
written quickly, with a goal of implementing a working version of all the floating
point instructions the compiler emits as the first target. I have attempted to be as
optimal as possible, but there remains much room for improvement.

I have attempted to make the emulator as portable as possible. One of the
problems is with leading underscores on kernel symbols. Elf kernels have no

82 Chapter 16. SoC-specific documents

Linux Arm Documentation

leading underscores, a.out compiled kernels do. I have attempted to use the
C_SYMBOL_NAME macro wherever this may be important.

Another choice I made was in the file structure. I have attempted to contain all
operating system specific code in one module (fpmodule.*). All the other files
contain emulator specific code. This should allow others to port the emulator to
NetBSD for instance relatively easily.

The floating point operations are based on SoftFloat Release 2, by John Hauser.
SoftFloat is a software implementation of floating-point that conforms to the
IEC/IEEE Standard for Binary Floating-point Arithmetic. As many as four formats
are supported: single precision, double precision, extended double precision, and
quadruple precision. All operations required by the standard are implemented,
except for conversions to and from decimal. We use only the single precision, dou-
ble precision and extended double precision formats. The port of SoftFloat to the
ARM was done by Phil Blundell, based on an earlier port of SoftFloat version 1 by
Neil Carson for NetBSD/arm32.

The file README.FPE contains a description of what has been implemented so far
in the emulator. The file TODO contains a information on what remains to be done,
and other ideas for the emulator.

Bug reports, comments, suggestions should be directed to me at
<scottb@netwinder.org>. General reports of “this program doesn’t work
correctly when your emulator is installed”are useful for determining that bugs
still exist; but are virtually useless when attempting to isolate the problem. Please
report them, but don’t expect quick action. Bugs still exist. The problem remains
in isolating which instruction contains the bug. Small programs illustrating a
specific problem are a godsend.

Legal Notices

The NetWinder Floating Point Emulator is free software. Everything Rebel.com
has written is provided under the GNU GPL. See the file COPYING for copying
conditions. Excluded from the above is the SoftFloat code. John Hauser’s legal
notice for SoftFloat is included below.

SoftFloat Legal Notice

SoftFloat was written by John R. Hauser. This work was made possible in part by
the International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the National
Science Foundation under grant MIP-9311980. The original version of this code
was written as part of a project to build a fixed-point vector processor in collab-
oration with the University of California at Berkeley, overseen by Profs. Nelson
Morgan and John Wawrzynek.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL
AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS
RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE
FULL RESPONSIBILITY FOR ANY AND ALL LOSSES, COSTS, OR OTHER PROB-
LEMS ARISING FROM ITS USE. ——————————————————————————-

16.5. NetWinder’s floating point emulator 83

mailto:scottb@netwinder.org

Linux Arm Documentation

16.5.2 Current State

The following describes the current state of the NetWinder’s floating point emu-
lator.

In the following nomenclature is used to describe the floating point instructions.
It follows the conventions in the ARM manual.

<S|D|E> = <single|double|extended>, no default
{P|M|Z} = {round to +infinity,round to -infinity,round to zero},

default = round to nearest

Note: items enclosed in {} are optional.

Floating Point Coprocessor Data Transfer Instructions (CPDT)

LDF/STF - load and store floating

<LDF|STF>{cond}<S|D|E> Fd, Rn <LDF|STF>{cond}<S|D|E> Fd, [Rn,
#<expression>]{!} <LDF|STF>{cond}<S|D|E> Fd, [Rn], #<expression>

These instructions are fully implemented.

LFM/SFM - load and store multiple floating

Form 1 syntax: <LFM|SFM>{cond}<S|D|E> Fd, <count>, [Rn]
<LFM|SFM>{cond}<S|D|E> Fd, <count>, [Rn, #<expression>]{!}
<LFM|SFM>{cond}<S|D|E> Fd, <count>, [Rn], #<expression>

Form 2 syntax: <LFM|SFM>{cond}<FD,EA> Fd, <count>, [Rn]{!}

These instructions are fully implemented. They store/load three words for each
floating point register into the memory location given in the instruction. The for-
mat in memory is unlikely to be compatible with other implementations, in partic-
ular the actual hardware. Specific mention of this is made in the ARM manuals.

Floating Point Coprocessor Register Transfer Instructions (CPRT)

Conversions, read/write status/control register instructions

FLT{cond}<S,D,E>{P,M,Z} Fn, Rd Convert integer to floating point
FIX{cond}{P,M,Z} Rd, Fn Convert floating point to integer WFS{cond} Rd
Write floating point status register RFS{cond} Rd Read floating point status
register WFC{cond} Rd Write floating point control register RFC{cond} Rd Read
floating point control register

FLT/FIX are fully implemented.

RFS/WFS are fully implemented.

RFC/WFC are fully implemented. RFC/WFC are supervisor only instructions, and
presently check the CPUmode, and do an invalid instruction trap if not called from
supervisor mode.

Compare instructions

84 Chapter 16. SoC-specific documents

Linux Arm Documentation

CMF{cond} Fn, Fm Compare floating CMFE{cond} Fn, Fm Compare floating with
exception CNF{cond} Fn, Fm Compare negated floating CNFE{cond} Fn, Fm
Compare negated floating with exception

These are fully implemented.

Floating Point Coprocessor Data Instructions (CPDT)

Dyadic operations:

ADF{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - add
SUF{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - subtract
RSF{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse sub-
tract MUF{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - mul-
tiply DVF{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - divide
RDV{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse divide

These are fully implemented.

FML{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - fast multi-
ply FDV{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - fast divide
FRD{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - fast reverse divide

These are fully implemented as well. They use the same algorithm as the non-
fast versions. Hence, in this implementation their performance is equivalent to
the MUF/DVF/RDV instructions. This is acceptable according to the ARM manual.
The manual notes these are defined only for single operands, on the actual FPA11
hardware they do not work for double or extended precision operands. The emula-
tor currently does not check the requested permissions conditions, and performs
the requested operation.

RMF{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - IEEE remainder

This is fully implemented.

Monadic operations:

MVF{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - move
MNF{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - move negated

These are fully implemented.

ABS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - absolute value
SQT{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - square root
RND{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - round

These are fully implemented.

URD{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - unnormalized round
NRM{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - normalize

These are implemented. URD is implemented using the same code as the RND
instruction. Since URD cannot return a unnormalized number, NRM becomes a
NOP.

Library calls:

16.5. NetWinder’s floating point emulator 85

Linux Arm Documentation

POW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - power
RPW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse power
POL{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - polar angle (arctan2)

LOG{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base
10 LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to
base e EXP{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - exponent
SIN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - sine COS{cond}<S|D|E>{P,M,Z}
Fd, <Fm,#value> - cosine TAN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value>
- tangent ASN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arc-
sine ACS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arccosine
ATN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arctangent

These are not implemented. They are not currently issued by the compiler, and are
handled by routines in libc. These are not implemented by the FPA11 hardware,
but are handled by the floating point support code. They should be implemented
in future versions.

Signalling:

Signals are implemented. However current ELF kernels produced by Rebel.com
have a bug in them that prevents the module from generating a SIGFPE. This is
caused by a failure to alias fp_current to the kernel variable current_set[0] cor-
rectly.

The kernel provided with this distribution (vmlinux-nwfpe-0.93) contains a fix for
this problem and also incorporates the current version of the emulator directly. It
is possible to run with no floating point module loaded with this kernel. It is pro-
vided as a demonstration of the technology and for those who want to do floating
point work that depends on signals. It is not strictly necessary to use the module.

A module (either the one provided by Russell King, or the one in this distribution)
can be loaded to replace the functionality of the emulator built into the kernel.

16.5.3 Notes

There seems to be a problem with exp(double) and our emulator. I haven’t been
able to track it down yet. This does not occur with the emulator supplied by Russell
King.

I also found one oddity in the emulator. I don’t think it is serious but will point
it out. The ARM calling conventions require floating point registers f4-f7 to be
preserved over a function call. The compiler quite often uses an stfe instruction
to save f4 on the stack upon entry to a function, and an ldfe instruction to restore
it before returning.

I was looking at some code, that calculated a double result, stored it in f4 then
made a function call. Upon return from the function call the number in f4 had
been converted to an extended value in the emulator.

This is a side effect of the stfe instruction. The double in f4 had to be converted
to extended, then stored. If an lfm/sfm combination had been used, then no con-
version would occur. This has performance considerations. The result from the
function call and f4 were used in a multiplication. If the emulator sees a multiply of

86 Chapter 16. SoC-specific documents

Linux Arm Documentation

a double and extended, it promotes the double to extended, then does the multiply
in extended precision.

This code will cause this problem:

double x, y, z; z = log(x)/log(y);

The result of log(x) (a double) will be calculated, returned in f0, then moved to f4
to preserve it over the log(y) call. The division will be done in extended precision,
due to the stfe instruction used to save f4 in log(y).

16.5.4 TODO LIST

POW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - power
RPW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse power
POL{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - polar angle (arctan2)

LOG{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base 10
LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base e
EXP{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - exponent
SIN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - sine
COS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - cosine
TAN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - tangent
ASN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arcsine
ACS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arccosine
ATN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arctangent

These are not implemented. They are not currently issued by the compiler, and are
handled by routines in libc. These are not implemented by the FPA11 hardware,
but are handled by the floating point support code. They should be implemented
in future versions.

There are a couple of ways to approach the implementation of these. One method
would be to use accurate table methods for these routines. I have a couple of
papers by S. Gal from IBM’s research labs in Haifa, Israel that seem to promise
extreme accuracy (in the order of 99.8%) and reasonable speed. These methods
are used in GLIBC for some of the transcendental functions.

Another approach, which I know little about is CORDIC. This stands for Coordinate
Rotation Digital Computer, and is a method of computing transcendental functions
using mostly shifts and adds and a few multiplications and divisions. The ARM
excels at shifts and adds, so such a method could be promising, but requires more
research to determine if it is feasible.

Rounding Methods

The IEEE standard defines 4 rounding modes. Round to nearest is the default, but
rounding to + or - infinity or round to zero are also allowed. Many architectures
allow the rounding mode to be specified by modifying bits in a control register.
Not so with the ARM FPA11 architecture. To change the rounding mode one must
specify it with each instruction.

This has made porting some benchmarks difficult. It is possible to introduce such
a capability into the emulator. The FPCR contains bits describing the rounding

16.5. NetWinder’s floating point emulator 87

Linux Arm Documentation

mode. The emulator could be altered to examine a flag, which if set forced it to
ignore the rounding mode in the instruction, and use the mode specified in the bits
in the FPCR.

This would require a method of getting/setting the flag, and the bits in the FPCR.
This requires a kernel call in ArmLinux, as WFC/RFC are supervisor only instruc-
tions. If anyone has any ideas or comments I would like to hear them.

NOTE: pulled out from some docs on ARMfloating point, specifically for the Acorn
FPE, but not limited to it:

The floating point control register (FPCR) may only be present in some imple-
mentations: it is there to control the hardware in an implementation- specific
manner, for example to disable the floating point system. The user mode of
the ARM is not permitted to use this register (since the right is reserved to al-
ter it between implementations) and the WFC and RFC instructions will trap
if tried in user mode.

Hence, the answer is yes, you could do this, but then you will run a high risk
of becoming isolated if and when hardware FP emulation comes out

– Russell.

16.6 TI Keystone Linux Overview

16.6.1 Introduction

Keystone range of SoCs are based on ARM Cortex-A15 MPCore Processors and
c66x DSP cores. This document describes essential information required for users
to run Linux on Keystone based EVMs from Texas Instruments.

Following SoCs & EVMs are currently supported:-

K2HK SoC and EVM

a.k.a Keystone 2 Hawking/Kepler SoC TCI6636K2H& TCI6636K2K: See documen-
tation at

http://www.ti.com/product/tci6638k2k http://www.ti.com/product/
tci6638k2h

EVM: http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx

K2E SoC and EVM

a.k.a Keystone 2 Edison SoC

K2E - 66AK2E05:

See documentation at

http://www.ti.com/product/66AK2E05/technicaldocuments

88 Chapter 16. SoC-specific documents

http://www.ti.com/product/tci6638k2k
http://www.ti.com/product/tci6638k2h
http://www.ti.com/product/tci6638k2h
http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx
http://www.ti.com/product/66AK2E05/technicaldocuments

Linux Arm Documentation

EVM: https://www.einfochips.com/index.php/partnerships/texas-instruments/
k2e-evm.html

K2L SoC and EVM

a.k.a Keystone 2 Lamarr SoC

K2L - TCI6630K2L:

See documentation at http://www.ti.com/product/TCI6630K2L/
technicaldocuments

EVM: https://www.einfochips.com/index.php/partnerships/texas-instruments/
k2l-evm.html

16.6.2 Configuration

All of the K2 SoCs/EVMs share a common defconfig, keystone_defconfig and same
image is used to boot on individual EVMs. The platform configuration is specified
through DTS. Following are the DTS used:

K2HK EVM: k2hk-evm.dts
K2E EVM: k2e-evm.dts
K2L EVM: k2l-evm.dts

The device tree documentation for the keystone machines are located at

Documentation/devicetree/bindings/arm/keystone/keystone.txt

16.6.3 Document Author

Murali Karicheri <m-karicheri2@ti.com>

Copyright 2015 Texas Instruments

16.7 Texas Instruments Keystone Navigator QueueMan-
agement SubSystem driver

Driver source code path drivers/soc/ti/knav_qmss.c drivers/soc/ti/knav_qmss_acc.c
The QMSS (Queue Manager Sub System) found on Keystone SOCs is one of the
main hardware sub system which forms the backbone of the Keystone multi-
core Navigator. QMSS consist of queue managers, packed-data structure pro-
cessors(PDSP), linking RAM, descriptor pools and infrastructure Packet DMA. The
QueueManager is a hardware module that is responsible for accelerating manage-
ment of the packet queues. Packets are queued/de-queued by writing or reading
descriptor address to a particular memory mapped location. The PDSPs perform
QMSS related functions like accumulation, QoS, or event management. Linking
RAM registers are used to link the descriptors which are stored in descriptor RAM.
Descriptor RAM is configurable as internal or external memory. The QMSS driver

16.7. Texas Instruments Keystone Navigator Queue Management
SubSystem driver

89

https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html
https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html
http://www.ti.com/product/TCI6630K2L/technicaldocuments
http://www.ti.com/product/TCI6630K2L/technicaldocuments
https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html
https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html
mailto:m-karicheri2@ti.com

Linux Arm Documentation

manages the PDSP setups, linking RAM regions, queue pool management (alloca-
tion, push, pop and notify) and descriptor pool management.

knav qmss driver provides a set of APIs to drivers to open/close qmss queues,
allocate descriptor pools, map the descriptors, push/pop to queues etc. For details
of the available APIs, please refers to include/linux/soc/ti/knav_qmss.h

DT documentation is available at Documentation/devicetree/bindings/soc/ti/keystone-
navigator-qmss.txt

16.7.1 Accumulator QMSS queues using PDSP firmware

The QMSS PDSP firmware support accumulator channel that can monitor a single
queue or multiple contiguous queues. drivers/soc/ti/knav_qmss_acc.c is the driver
that interface with the accumulator PDSP. This configures accumulator channels
defined in DTS (example in DT documentation) to monitor 1 or 32 queues per
channel. More description on the firmware is available in CPPI/QMSS Low Level
Driver document (docs/CPPI_QMSS_LLD_SDS.pdf) at

git://git.ti.com/keystone-rtos/qmss-lld.git

k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin firmware supports upto 48 accumulator
channels. This firmware is available under ti-keystone folder of firmware.git at

git://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-
firmware.git

To use copy the firmware image to lib/firmware folder of the initramfs or ubifs file
system and provide a sym link to k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin in the
file system and boot up the kernel. User would see

“firmware file ks2_qmss_pdsp_acc48.bin downloaded for PDSP”
in the boot up log if loading of firmware to PDSP is successful.

Use of accumulated queues requires the firmware image to be present in the file
system. The driver doesn’t acc queues to the supported queue range if PDSP is
not running in the SoC. The API call fails if there is a queue open request to an
acc queue and PDSP is not running. So make sure to copy firmware to file system
before using these queue types.

16.8 TI OMAP

16.8.1 OMAP history

This file contains documentation for running mainline kernel on omaps.

90 Chapter 16. SoC-specific documents

Linux Arm Documentation

KER-
NEL

NEW DEPENDENCIES

v4.3+Update is needed for custom .config files to make sure CON-
FIG_REGULATOR_PBIAS is enabled for MMC1 to work properly.

v4.18+Update is needed for custom .config files to make sure CON-
FIG_MMC_SDHCI_OMAP is enabled for all MMC instances to work in
DRA7 and K2G based boards.

16.8.2 The OMAP PM interface

This document describes the temporary OMAP PM interface. Driver authors use
these functions to communicate minimum latency or throughput constraints to
the kernel power management code. Over time, the intention is to merge features
from the OMAP PM interface into the Linux PM QoS code.

Drivers need to express PM parameters which:

• support the range of power management parameters present in the TI SRF;

• separate the drivers from the underlying PM parameter implementation,
whether it is the TI SRF or Linux PM QoS or Linux latency framework or
something else;

• specify PM parameters in terms of fundamental units, such as latency and
throughput, rather than units which are specific to OMAP or to particular
OMAP variants;

• allow drivers which are shared with other architectures (e.g., DaVinci) to add
these constraints in a way which won’t affect non-OMAP systems,

• can be implemented immediately with minimal disruption of other architec-
tures.

This document proposes the OMAP PM interface, including the following five
power management functions for driver code:

1. Set the maximum MPU wakeup latency:

(*pdata->set_max_mpu_wakeup_lat)(struct device *dev, unsigned long t)

2. Set the maximum device wakeup latency:

(*pdata->set_max_dev_wakeup_lat)(struct device *dev, unsigned long t)

3. Set the maximum system DMA transfer start latency (CORE pwrdm):

(*pdata->set_max_sdma_lat)(struct device *dev, long t)

4. Set the minimum bus throughput needed by a device:

(*pdata->set_min_bus_tput)(struct device *dev, u8 agent_id, unsigned␣
↪→long r)

5. Return the number of times the device has lost context:

16.8. TI OMAP 91

Linux Arm Documentation

(*pdata->get_dev_context_loss_count)(struct device *dev)

Further documentation for all OMAP PM interface functions can be found in
arch/arm/plat-omap/include/mach/omap-pm.h.

The OMAP PM layer is intended to be temporary

The intention is that eventually the Linux PMQoS layer should support the range of
power management features present in OMAP3. As this happens, existing drivers
using the OMAP PM interface can be modified to use the Linux PM QoS code; and
the OMAP PM interface can disappear.

Driver usage of the OMAP PM functions

As the ‘pdata’in the above examples indicates, these functions are exposed to
drivers through function pointers in driver .platform_data structures. The function
pointers are initialized by the board-*.c files to point to the corresponding OMAP
PM functions:

• set_max_dev_wakeup_lat will point to omap_pm_set_max_dev_wakeup_lat(),
etc. Other architectures which do not support these functions should leave
these function pointers set to NULL. Drivers should use the following idiom:

if (pdata->set_max_dev_wakeup_lat)
(*pdata->set_max_dev_wakeup_lat)(dev, t);

The most common usage of these functions will probably be to specify the max-
imum time from when an interrupt occurs, to when the device becomes accessi-
ble. To accomplish this, driver writers should use the set_max_mpu_wakeup_lat()
function to constrain the MPU wakeup latency, and the set_max_dev_wakeup_lat()
function to constrain the device wakeup latency (from clk_enable() to accessibil-
ity). For example:

/* Limit MPU wakeup latency */
if (pdata->set_max_mpu_wakeup_lat)

(*pdata->set_max_mpu_wakeup_lat)(dev, tc);

/* Limit device powerdomain wakeup latency */
if (pdata->set_max_dev_wakeup_lat)

(*pdata->set_max_dev_wakeup_lat)(dev, td);

/* total wakeup latency in this example: (tc + td) */

The PM parameters can be overwritten by calling the function again with the new
value. The settings can be removed by calling the function with a t argument
of -1 (except in the case of set_max_bus_tput(), which should be called with an r
argument of 0).

The fifth function above, omap_pm_get_dev_context_loss_count(), is intended as an
optimization to allow drivers to determine whether the device has lost its internal
context. If context has been lost, the driver must restore its internal context before
proceeding.

92 Chapter 16. SoC-specific documents

Linux Arm Documentation

Other specialized interface functions

The five functions listed above are intended to be usable by any device driver.
DSPBridge and CPUFreq have a few special requirements. DSPBridge expresses
target DSP performance levels in terms of OPP IDs. CPUFreq expresses target
MPU performance levels in terms of MPU frequency. The OMAP PM interface
contains functions for these specialized cases to convert that input information
(OPPs/MPU frequency) into the form that the underlying power management im-
plementation needs:

6. (*pdata->dsp_get_opp_table)(void)

7. (*pdata->dsp_set_min_opp)(u8 opp_id)

8. (*pdata->dsp_get_opp)(void)

9. (*pdata->cpu_get_freq_table)(void)

10. (*pdata->cpu_set_freq)(unsigned long f)

11. (*pdata->cpu_get_freq)(void)

Customizing OPP for platform

Defining CONFIG_PM should enable OPP layer for the silicon and the registration
of OPP table should take place automatically. However, in special cases, the default
OPP table may need to be tweaked, for e.g.:

• enable default OPPs which are disabled by default, but which could be en-
abled on a platform

• Disable an unsupported OPP on the platform

• Define and add a custom opp table entry in these cases, the board file needs
to do additional steps as follows:

arch/arm/mach-omapx/board-xyz.c:

#include "pm.h"
....
static void __init omap_xyz_init_irq(void)
{

....
/* Initialize the default table */
omapx_opp_init();
/* Do customization to the defaults */
....

}

NOTE: omapx_opp_init will be omap3_opp_init or as required based on the omap
family.

16.8. TI OMAP 93

Linux Arm Documentation

16.8.3 OMAP2/3 Display Subsystem

This is an almost total rewrite of the OMAP FB driver in drivers/video/omap (let’s
call it DSS1). The main differences between DSS1 and DSS2 are DSI, TV-out and
multiple display support, but there are lots of small improvements also.

The DSS2 driver (omapdss module) is in arch/arm/plat-omap/dss/, and the FB,
panel and controller drivers are in drivers/video/omap2/. DSS1 and DSS2 live
currently side by side, you can choose which one to use.

Features

Working and tested features include:

• MIPI DPI (parallel) output

• MIPI DSI output in command mode

• MIPI DBI (RFBI) output

• SDI output

• TV output

• All pieces can be compiled as a module or inside kernel

• Use DISPC to update any of the outputs

• Use CPU to update RFBI or DSI output

• OMAP DISPC planes

• RGB16, RGB24 packed, RGB24 unpacked

• YUV2, UYVY

• Scaling

• Adjusting DSS FCK to find a good pixel clock

• Use DSI DPLL to create DSS FCK

Tested boards include: - OMAP3 SDP board - Beagle board - N810

omapdss driver

The DSS driver does not itself have any support for Linux framebuffer, V4L or such
like the current ones, but it has an internal kernel API that upper level drivers can
use.

The DSS driver models OMAP’s overlays, overlay managers and displays in a flex-
ible way to enable non-common multi-display configuration. In addition to mod-
elling the hardware overlays, omapdss supports virtual overlays and overlay man-
agers. These can be used when updating a display with CPU or system DMA.

94 Chapter 16. SoC-specific documents

Linux Arm Documentation

omapdss driver support for audio

There exist several display technologies and standards that support audio as well.
Hence, it is relevant to update the DSS device driver to provide an audio inter-
face that may be used by an audio driver or any other driver interested in the
functionality.

The audio_enable function is intended to prepare the relevant IP for playback (e.g.,
enabling an audio FIFO, taking in/out of reset some IP, enabling companion chips,
etc). It is intended to be called before audio_start. The audio_disable function
performs the reverse operation and is intended to be called after audio_stop.

While a given DSS device driver may support audio, it is possible that for certain
configurations audio is not supported (e.g., an HDMI display using a VESA video
timing). The audio_supported function is intended to query whether the current
configuration of the display supports audio.

The audio_config function is intended to configure all the relevant audio parame-
ters of the display. In order to make the function independent of any specific DSS
device driver, a struct omap_dss_audio is defined. Its purpose is to contain all
the required parameters for audio configuration. At the moment, such structure
contains pointers to IEC-60958 channel status word and CEA-861 audio infoframe
structures. This should be enough to support HDMI and DisplayPort, as both are
based on CEA-861 and IEC-60958.

The audio_enable/disable, audio_config and audio_supported functions could be
implemented as functions that may sleep. Hence, they should not be called while
holding a spinlock or a readlock.

The audio_start/audio_stop function is intended to effectively start/stop audio play-
back after the configuration has taken place. These functions are designed to be
used in an atomic context. Hence, audio_start should return quickly and be called
only after all the needed resources for audio playback (audio FIFOs, DMA chan-
nels, companion chips, etc) have been enabled to begin data transfers. audio_stop
is designed to only stop the audio transfers. The resources used for playback are
released using audio_disable.

The enum omap_dss_audio_state may be used to help the implementations of the
interface to keep track of the audio state. The initial state is _DISABLED; then,
the state transitions to _CONFIGURED, and then, when it is ready to play audio,
to _ENABLED. The state _PLAYING is used when the audio is being rendered.

Panel and controller drivers

The drivers implement panel or controller specific functionality and are not usually
visible to users except through omapfb driver. They register themselves to the DSS
driver.

16.8. TI OMAP 95

Linux Arm Documentation

omapfb driver

The omapfb driver implements arbitrary number of standard linux framebuffers.
These framebuffers can be routed flexibly to any overlays, thus allowing very dy-
namic display architecture.

The driver exports some omapfb specific ioctls, which are compatible with the
ioctls in the old driver.

The rest of the non standard features are exported via sysfs. Whether the final
implementation will use sysfs, or ioctls, is still open.

V4L2 drivers

V4L2 is being implemented in TI.

From omapdss point of view the V4L2 drivers should be similar to framebuffer
driver.

Architecture

Some clarification what the different components do:

• Framebuffer is a memory area inside OMAP’s SRAM/SDRAM that contains
the pixel data for the image. Framebuffer has width and height and color
depth.

• Overlay defines where the pixels are read from and where they go on the
screen. The overlay may be smaller than framebuffer, thus displaying only
part of the framebuffer. The position of the overlay may be changed if the
overlay is smaller than the display.

• Overlay manager combines the overlays in to one image and feeds them to
display.

• Display is the actual physical display device.

A framebuffer can be connected tomultiple overlays to show the same pixel data on
all of the overlays. Note that in this case the overlay input sizes must be the same,
but, in case of video overlays, the output size can be different. Any framebuffer
can be connected to any overlay.

An overlay can be connected to one overlay manager. Also DISPC overlays can
be connected only to DISPC overlay managers, and virtual overlays can be only
connected to virtual overlays.

An overlay manager can be connected to one display. There are certain restrictions
which kinds of displays an overlay manager can be connected:

• DISPC TV overlay manager can be only connected to TV display.

• Virtual overlay managers can only be connected to DBI or DSI displays.

• DISPC LCD overlay manager can be connected to all displays, except TV dis-
play.

96 Chapter 16. SoC-specific documents

Linux Arm Documentation

Sysfs

The sysfs interface is mainly used for testing. I don’t think sysfs interface is the
best for this in the final version, but I don’t quite know what would be the best
interfaces for these things.

The sysfs interface is divided to two parts: DSS and FB.

/sys/class/graphics/fb? directory: mirror 0=off, 1=on rotate Rotation 0-3 for 0, 90,
180, 270 degrees rotate_type 0 = DMA rotation, 1 = VRFB rotation overlays List
of overlay numbers to which framebuffer pixels go phys_addr Physical address
of the framebuffer virt_addr Virtual address of the framebuffer size Size of the
framebuffer

/sys/devices/platform/omapdss/overlay? directory: enabled 0=off, 1=on in-
put_size width,height (ie. the framebuffer size) manager Destination overlay
manager name name output_size width,height position x,y screen_width width
global_alpha global alpha 0-255 0=transparent 255=opaque

/sys/devices/platform/omapdss/manager? directory: display Destination dis-
play name alpha_blending_enabled 0=off, 1=on trans_key_enabled 0=off, 1=on
trans_key_type gfx-destination, video-source trans_key_value transparency color
key (RGB24) default_color default background color (RGB24)

/sys/devices/platform/omapdss/display? directory:

ctrl_nameController name
mirror 0=off, 1=on
up-
date_mode

0=off, 1=auto, 2=manual

en-
abled

0=off, 1=on

name
rotate Rotation 0-3 for 0, 90, 180, 270 degrees
tim-
ings

Display timings (pixclock,xres/hfp/hbp/hsw,yres/vfp/vbp/vsw) When
writing, two special timings are accepted for tv-out: “pal”and“ntsc”

panel_name
tear_elimTearing elimination 0=off, 1=on
out-
put_type

Output type (video encoder only): “composite”or “svideo”

There are also some debugfs files at <debugfs>/omapdss/ which show information
about clocks and registers.

16.8. TI OMAP 97

Linux Arm Documentation

Examples

The following definitions have been made for the examples below:

ovl0=/sys/devices/platform/omapdss/overlay0
ovl1=/sys/devices/platform/omapdss/overlay1
ovl2=/sys/devices/platform/omapdss/overlay2

mgr0=/sys/devices/platform/omapdss/manager0
mgr1=/sys/devices/platform/omapdss/manager1

lcd=/sys/devices/platform/omapdss/display0
dvi=/sys/devices/platform/omapdss/display1
tv=/sys/devices/platform/omapdss/display2

fb0=/sys/class/graphics/fb0
fb1=/sys/class/graphics/fb1
fb2=/sys/class/graphics/fb2

Default setup on OMAP3 SDP

Here’s the default setup on OMAP3 SDP board. All planes go to LCD. DVI and
TV-out are not in use. The columns from left to right are: framebuffers, overlays,
overlay managers, displays. Framebuffers are handled by omapfb, and the rest by
the DSS:

FB0 --- GFX -\ DVI
FB1 --- VID1 --+- LCD ---- LCD
FB2 --- VID2 -/ TV ----- TV

Example: Switch from LCD to DVI

w=`cat $dvi/timings | cut -d "," -f 2 | cut -d "/" -f 1`
h=`cat $dvi/timings | cut -d "," -f 3 | cut -d "/" -f 1`

echo "0" > $lcd/enabled
echo "" > $mgr0/display
fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h
at this point you have to switch the dvi/lcd dip-switch from the omap␣
↪→board
echo "dvi" > $mgr0/display
echo "1" > $dvi/enabled

After this the configuration looks like::

FB0 --- GFX -\ -- DVI
FB1 --- VID1 --+- LCD -/ LCD
FB2 --- VID2 -/ TV ----- TV

98 Chapter 16. SoC-specific documents

Linux Arm Documentation

Example: Clone GFX overlay to LCD and TV

w=`cat $tv/timings | cut -d "," -f 2 | cut -d "/" -f 1`
h=`cat $tv/timings | cut -d "," -f 3 | cut -d "/" -f 1`

echo "0" > $ovl0/enabled
echo "0" > $ovl1/enabled

echo "" > $fb1/overlays
echo "0,1" > $fb0/overlays

echo "$w,$h" > $ovl1/output_size
echo "tv" > $ovl1/manager

echo "1" > $ovl0/enabled
echo "1" > $ovl1/enabled

echo "1" > $tv/enabled

After this the configuration looks like (only relevant parts shown):

FB0 +-- GFX ---- LCD ---- LCD
\- VID1 ---- TV ---- TV

Misc notes

OMAP FB allocates the framebuffer memory using the standard dma allocator.
You can enable Contiguous Memory Allocator (CONFIG_CMA) to improve the dma
allocator, and if CMA is enabled, you use “cma=”kernel parameter to increase
the global memory area for CMA.

Using DSI DPLL to generate pixel clock it is possible produce the pixel clock of
86.5MHz (max possible), and with that you get 1280x1024@57 output from DVI.

Rotation and mirroring currently only supports RGB565 and RGB8888 modes.
VRFB does not support mirroring.

VRFB rotation requires much more memory than non-rotated framebuffer, so you
probably need to increase your vram setting before using VRFB rotation. Also,
many applications may not work with VRFB if they do not pay attention to all
framebuffer parameters.

Kernel boot arguments

omapfb.mode=<display>:<mode>[,⋯]
• Default videomode for specified displays. For example,“dvi:800x400MR-
24@60”. See drivers/video/modedb.c. There are also two special modes:
“pal”and “ntsc”that can be used to tv out.

omapfb.vram=<fbnum>:<size>[@<physaddr>][,⋯]
• VRAM allocated for a framebuffer. Normally omapfb allocates vram de-
pending on the display size. With this you can manually allocate more or

16.8. TI OMAP 99

mailto:1280x1024@57

Linux Arm Documentation

define the physical address of each framebuffer. For example,“1:4M”to
allocate 4M for fb1.

omapfb.debug=<y|n>
• Enable debug printing. You have to have OMAPFB debug support en-
abled in kernel config.

omapfb.test=<y|n>
• Draw test pattern to framebuffer whenever framebuffer settings change.
You need to have OMAPFB debug support enabled in kernel config.

omapfb.vrfb=<y|n>
• Use VRFB rotation for all framebuffers.

omapfb.rotate=<angle>
• Default rotation applied to all framebuffers. 0 - 0 degree rotation 1 - 90
degree rotation 2 - 180 degree rotation 3 - 270 degree rotation

omapfb.mirror=<y|n>
• Default mirror for all framebuffers. Only works with DMA rotation.

omapdss.def_disp=<display>
• Name of default display, to which all overlays will be connected. Common
examples are “lcd”or “tv”.

omapdss.debug=<y|n>
• Enable debug printing. You have to have DSS debug support enabled in
kernel config.

TODO

DSS locking

Error checking

• Lots of checks are missing or implemented just as BUG()

System DMA update for DSI

• Can be used for RGB16 and RGB24P modes. Probably not for RGB24U (how
to skip the empty byte?)

OMAP1 support

• Not sure if needed

100 Chapter 16. SoC-specific documents

Linux Arm Documentation

16.9 MFP Configuration for PXA2xx/PXA3xx Processors

Eric Miao <eric.miao@marvell.com>

MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and later
PXA series processors. This document describes the existing MFP API, and how
board/platform driver authors could make use of it.

16.9.1 Basic Concept

Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP
mechanism is introduced from PXA3xx to completely move the pin-mux functions
out of the GPIO controller. In addition to pin-mux configurations, the MFP also
controls the low power state, driving strength, pull-up/down and event detection
of each pin. Below is a diagram of internal connections between the MFP logic
and the remaining SoC peripherals:

+--------+
| |--(GPIO19)--+
| GPIO | |
| |--(GPIO...) |
+--------+ |

| +---------+
+--------+ +------>| |
| PWM2 |--(PWM_OUT)-------->| MFP |
+--------+ +------>| |-------> to external PAD

| +---->| |
+--------+ | | +-->| |
| SSP2 |---(TXD)----+ | | +---------+
+--------+ | |

| |
+--------+ | |
| Keypad |--(MKOUT4)----+ |
+--------+ |

|
+--------+ |
| UART2 |---(TXD)--------+
+--------+

NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn’t necessarily
mean it’s dedicated for GPIO19, only as a hint that internally this pin can be
routed from GPIO19 of the GPIO controller.

To better understand the change from PXA25x/PXA27x GPIO alternate function to
this new MFP mechanism, here are several key points:

1. GPIO controller on PXA3xx is now a dedicated controller, same as other in-
ternal controllers like PWM, SSP and UART, with 128 internal signals which
can be routed to external through one or more MFPs (e.g. GPIO<0> can
be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2, see
arch/arm/mach-pxa/mfp-pxa300.h)

2. Alternate function configuration is removed from this GPIO controller, the
remaining functions are pure GPIO-specific, i.e.

16.9. MFP Configuration for PXA2xx/PXA3xx Processors 101

mailto:eric.miao@marvell.com

Linux Arm Documentation

• GPIO signal level control

• GPIO direction control

• GPIO level change detection

3. Low power state for each pin is now controlled by MFP, this means the PGSRx
registers on PXA2xx are now useless on PXA3xx

4. Wakeup detection is now controlled by MFP, PWER does not control the
wakeup from GPIO(s) any more, depending on the sleeping state, ADxER (as
defined in pxa3xx-regs.h) controls the wakeup from MFP

NOTE: with such a clear separation of MFP and GPIO, by GPIO<xx> we normally
mean it is a GPIO signal, and by MFP<xxx> or pin xxx, we mean a physical pad
(or ball).

16.9.2 MFP API Usage

For board code writers, here are some guidelines:

1. include ONE of the following header files in your <board>.c:

• #include “mfp-pxa25x.h”
• #include “mfp-pxa27x.h”
• #include “mfp-pxa300.h”
• #include “mfp-pxa320.h”
• #include “mfp-pxa930.h”

NOTE: only one file in your <board>.c, depending on the processors used, be-
cause pin configuration definitions may conflict in these file (i.e. same name,
different meaning and settings on different processors). E.g. for zylonite
platform, which support both PXA300/PXA310 and PXA320, two separate files
are introduced: zylonite_pxa300.c and zylonite_pxa320.c (in addition to han-
dle MFP configuration differences, they also handle the other differences be-
tween the two combinations).

NOTE: PXA300 and PXA310 are almost identical in pin configurations (with
PXA310 supporting some additional ones), thus the difference is actually cov-
ered in a single mfp-pxa300.h.

2. prepare an array for the initial pin configurations, e.g.:

static unsigned long mainstone_pin_config[] __initdata = {
/* Chip Select */
GPIO15_nCS_1,

/* LCD - 16bpp Active TFT */
GPIOxx_TFT_LCD_16BPP,
GPIO16_PWM0_OUT, /* Backlight */

/* MMC */
GPIO32_MMC_CLK,
GPIO112_MMC_CMD,

(continues on next page)

102 Chapter 16. SoC-specific documents

Linux Arm Documentation

(continued from previous page)
GPIO92_MMC_DAT_0,
GPIO109_MMC_DAT_1,
GPIO110_MMC_DAT_2,
GPIO111_MMC_DAT_3,

...

/* GPIO */
GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH,

};

a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(), and
written to the actual registers, they are useless and may discard, adding
‘__initdata’will help save some additional bytes here.
b) when there is only one possible pin configurations for a component, some
simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on PXA25x
and PXA27x processors

c) if by board design, a pin can be configured to wake up the system from low
power state, it can be ‘OR’ed with any of:

WAKEUP_ON_EDGE_BOTH WAKEUP_ON_EDGE_RISE
WAKEUP_ON_EDGE_FALL WAKEUP_ON_LEVEL_HIGH - specif-
ically for enabling of keypad GPIOs,

to indicate that this pin has the capability of wake-up the system, and on
which edge(s). This, however, doesn’t necessarily mean the pin _will_
wakeup the system, it will only when set_irq_wake() is invoked with the cor-
responding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq()) and eventually calls
gpio_set_wake() for the actual register setting.

d) although PXA3xx MFP supports edge detection on each pin, the internal
logic will only wakeup the system when those specific bits in ADxER regis-
ters are set, which can be well mapped to the corresponding peripheral, thus
set_irq_wake() can be called with the peripheral IRQ to enable the wakeup.

16.9.3 MFP on PXA3xx

Every external I/O pad on PXA3xx (excluding those for special purpose) has one
MFP logic associated, and is controlled by one MFP register (MFPR).

The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ␣
↪→0
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
↪→+
| RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL␣
↪→|
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
↪→+

Bit 3: RESERVED
(continues on next page)

16.9. MFP Configuration for PXA2xx/PXA3xx Processors 103

Linux Arm Documentation

(continued from previous page)
Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin
Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin
Bit 6: EDGE_CLEAR - disable edge detection on this pin
Bit 7: SLEEP_OE_N - enable outputs during low power modes
Bit 8: SLEEP_DATA - output data on the pin during low power modes
Bit 9: SLEEP_SEL - selection control for low power modes signals
Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin
Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin
Bit 15: PULL_SEL - pull state controlled by selected alternate␣
↪→function

(0) or by PULL{UP,DOWN}_EN bits (1)

Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-
↪→7
Bit 10-12: DRIVE - drive strength and slew rate

0b000 - fast 1mA
0b001 - fast 2mA
0b002 - fast 3mA
0b003 - fast 4mA
0b004 - slow 6mA
0b005 - fast 6mA
0b006 - slow 10mA
0b007 - fast 10mA

16.9.4 MFP Design for PXA2xx/PXA3xx

Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified
MFP API is introduced to cover both series of processors.

The basic idea of this design is to introduce definitions for all possible pin configu-
rations, these definitions are processor and platform independent, and the actual
API invoked to convert these definitions into register settings and make them ef-
fective there-after.

Files Involved

• arch/arm/mach-pxa/include/mach/mfp.h

for
1. Unified pin definitions - enum constants for all configurable pins

2. processor-neutral bit definitions for a possible MFP configura-
tion

• arch/arm/mach-pxa/mfp-pxa3xx.h

for PXA3xx specific MFPR register bit definitions and PXA3xx common
pin configurations

• arch/arm/mach-pxa/mfp-pxa2xx.h

for PXA2xx specific definitions and PXA25x/PXA27x common pin config-
urations

104 Chapter 16. SoC-specific documents

Linux Arm Documentation

• arch/arm/mach-pxa/mfp-pxa25x.h arch/arm/mach-pxa/mfp-
pxa27x.h arch/arm/mach-pxa/mfp-pxa300.h arch/arm/mach-
pxa/mfp-pxa320.h arch/arm/mach-pxa/mfp-pxa930.h

for processor specific definitions

• arch/arm/mach-pxa/mfp-pxa3xx.c

• arch/arm/mach-pxa/mfp-pxa2xx.c

for implementation of the pin configuration to take effect for the actual
processor.

Pin Configuration

The following comments are copied from mfp.h (see the actual source
code for most updated info):

/*
* a possible MFP configuration is represented by a 32-bit␣

↪→integer
*
* bit 0.. 9 - MFP Pin Number (1024 Pins Maximum)
* bit 10..12 - Alternate Function Selection
* bit 13..15 - Drive Strength
* bit 16..18 - Low Power Mode State
* bit 19..20 - Low Power Mode Edge Detection
* bit 21..22 - Run Mode Pull State
*
* to facilitate the definition, the following macros are␣

↪→provided
*
* MFP_CFG_DEFAULT - default MFP configuration value, with
* alternate function = 0,
* drive strength = fast 3mA (MFP_DS03X)
* low power mode = default
* edge detection = none
*
* MFP_CFG - default MFPR value with alternate function
* MFP_CFG_DRV - default MFPR value with alternate function␣

↪→and
* pin drive strength
* MFP_CFG_LPM - default MFPR value with alternate function␣

↪→and
* low power mode
* MFP_CFG_X - default MFPR value with alternate function,
* pin drive strength and low power mode
*/

Examples of pin configurations are::

#define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X,
↪→ FLOAT)

which reads GPIO94 can be configured as SSP3_RXD, with alternate␣
↪→function
selection of 1, driving strength of 0b101, and a float state in␣
↪→low power (continues on next page)

16.9. MFP Configuration for PXA2xx/PXA3xx Processors 105

Linux Arm Documentation

(continued from previous page)
modes.

NOTE: this is the default setting of this pin being configured as␣
↪→SSP3_RXD
which can be modified a bit in board code, though it is not␣
↪→recommended to
do so, simply because this default setting is usually carefully␣
↪→encoded,
and is supposed to work in most cases.

Register Settings

Register settings on PXA3xx for a pin configuration is actually very
straight-forward, most bits can be converted directly into MFPR value
in a easier way. Two sets of MFPR values are calculated: the run-time
ones and the low power mode ones, to allow different settings.

The conversion from a generic pin configuration to the actual register
settings on PXA2xx is a bit complicated: many registers are involved, in-
cluding GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please
see mfp-pxa2xx.c for how the conversion is made.

16.10 Intel StrongARM 1100

16.10.1 The Intel Assabet (SA-1110 evaluation) board

Please see: http://developer.intel.com

Also some notes from John G Dorsey <jd5q@andrew.cmu.edu>: http://www.cs.
cmu.edu/~wearable/software/assabet.html

Building the kernel

To build the kernel with current defaults:

make assabet_defconfig
make oldconfig
make zImage

The resulting kernel image should be available in linux/arch/arm/boot/zImage.

106 Chapter 16. SoC-specific documents

http://developer.intel.com
mailto:jd5q@andrew.cmu.edu
http://www.cs.cmu.edu/~wearable/software/assabet.html
http://www.cs.cmu.edu/~wearable/software/assabet.html

Linux Arm Documentation

Installing a bootloader

A couple of bootloaders able to boot Linux on Assabet are available:

BLOB (http://www.lartmaker.nl/lartware/blob/)

BLOB is a bootloader used within the LART project. Some contributed
patches were merged into BLOB to add support for Assabet.

Compaq’s Bootldr + John Dorsey’s patch for Assabet support (http:
//www.handhelds.org/Compaq/bootldr.html) (http://www.wearablegroup.org/
software/bootldr/)

Bootldr is the bootloader developed by Compaq for the iPAQ Pocket PC.
John Dorsey has produced add-on patches to add support for Assabet
and the JFFS filesystem.

RedBoot (http://sources.redhat.com/redboot/)

RedBoot is a bootloader developed by Red Hat based on the eCos RTOS
hardware abstraction layer. It supports Assabet amongst many other
hardware platforms.

RedBoot is currently the recommended choice since it’s the only one to have
networking support, and is the most actively maintained.

Brief examples on how to boot Linux with RedBoot are shown below. But first you
need to have RedBoot installed in your flash memory. A known to work precom-
piled RedBoot binary is available from the following location:

• ftp://ftp.netwinder.org/users/n/nico/

• ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/

• ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/

Look for redboot-assabet*.tgz. Some installation infos are provided in redboot-
assabet*.txt.

Initial RedBoot configuration

The commands used here are explained in The RedBoot User’s Guide available
on-line at http://sources.redhat.com/ecos/docs.html. Please refer to it for explana-
tions.

If you have a CF network card (my Assabet kit contained a CF+ LP-E from Socket
Communications Inc.), you should strongly consider using it for TFTP file transfers.
You must insert it before RedBoot runs since it can’t detect it dynamically.
To initialize the flash directory:

fis init -f

To initialize the non-volatile settings, like whether you want to use BOOTP or a
static IP address, etc, use this command:

fconfig -i

16.10. Intel StrongARM 1100 107

http://www.lartmaker.nl/lartware/blob/
http://www.handhelds.org/Compaq/bootldr.html
http://www.handhelds.org/Compaq/bootldr.html
http://www.wearablegroup.org/software/bootldr/
http://www.wearablegroup.org/software/bootldr/
http://sources.redhat.com/redboot/
ftp://ftp.netwinder.org/users/n/nico/
ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/
ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/
http://sources.redhat.com/ecos/docs.html

Linux Arm Documentation

Writing a kernel image into flash

First, the kernel image must be loaded into RAM. If you have the zImage file avail-
able on a TFTP server:

load zImage -r -b 0x100000

If you rather want to use Y-Modem upload over the serial port:

load -m ymodem -r -b 0x100000

To write it to flash:

fis create "Linux kernel" -b 0x100000 -l 0xc0000

Booting the kernel

The kernel still requires a filesystem to boot. A ramdisk image can be loaded as
follows:

load ramdisk_image.gz -r -b 0x800000

Again, Y-Modem upload can be used instead of TFTP by replacing the file name by
‘-y ymodem’.
Now the kernel can be retrieved from flash like this:

fis load "Linux kernel"

or loaded as described previously. To boot the kernel:

exec -b 0x100000 -l 0xc0000

The ramdisk image could be stored into flash as well, but there are better solutions
for on-flash filesystems as mentioned below.

Using JFFS2

Using JFFS2 (the Second Journalling Flash File System) is probably the most con-
venient way to store a writable filesystem into flash. JFFS2 is used in conjunction
with the MTD layer which is responsible for low-level flash management. More
information on the Linux MTD can be found on-line at: http://www.linux-mtd.
infradead.org/. A JFFS howto with some infos about creating JFFS/JFFS2 images
is available from the same site.

For instance, a sample JFFS2 image can be retrieved from the same FTP sites
mentioned below for the precompiled RedBoot image.

To load this file:

load sample_img.jffs2 -r -b 0x100000

The result should look like:

108 Chapter 16. SoC-specific documents

http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/

Linux Arm Documentation

RedBoot> load sample_img.jffs2 -r -b 0x100000
Raw file loaded 0x00100000-0x00377424

Now we must know the size of the unallocated flash:

fis free

Result:

RedBoot> fis free
0x500E0000 .. 0x503C0000

The values above may be different depending on the size of the filesystem and the
type of flash. See their usage below as an example and take care of substituting
yours appropriately.

We must determine some values:

size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000
size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424

We want to fit the filesystem image of course, but we also want to give it all the
remaining flash space as well. To write it:

fis unlock -f 0x500E0000 -l 0x2e0000
fis erase -f 0x500E0000 -l 0x2e0000
fis write -b 0x100000 -l 0x277424 -f 0x500E0000
fis create "JFFS2" -n -f 0x500E0000 -l 0x2e0000

Now the filesystem is associated to a MTD“partition”once Linux has discovered
what they are in the boot process. From Redboot, the‘fis list’command displays
them:

RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x50000000 0x50000000 0x00020000 0x00000000
RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000
FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000
Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000
JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000

However Linux should display something like:

SA1100 flash: probing 32-bit flash bus
SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode
Using RedBoot partition definition
Creating 5 MTD partitions on "SA1100 flash":
0x00000000-0x00020000 : "RedBoot"
0x00020000-0x000e0000 : "Linux kernel"
0x000e0000-0x003c0000 : "JFFS2"
0x003c0000-0x003e0000 : "RedBoot config"
0x003e0000-0x00400000 : "FIS directory"

What’s important here is the position of the partition we are interested in, which
is the third one. Within Linux, this correspond to /dev/mtdblock2. Therefore to

16.10. Intel StrongARM 1100 109

Linux Arm Documentation

boot Linux with the kernel and its root filesystem in flash, we need this RedBoot
command:

fis load "Linux kernel"
exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2"

Of course other filesystems than JFFS might be used, like cramfs for example. You
might want to boot with a root filesystem over NFS, etc. It is also possible, and
sometimes more convenient, to flash a filesystem directly from within Linux while
booted from a ramdisk or NFS. The Linux MTD repository has many tools to deal
with flash memory as well, to erase it for example. JFFS2 can then be mounted
directly on a freshly erased partition and files can be copied over directly. Etc⋯

RedBoot scripting

All the commands above aren’t so useful if they have to be typed in every time the
Assabet is rebooted. Therefore it’s possible to automate the boot process using
RedBoot’s scripting capability.
For example, I use this to boot Linux with both the kernel and the ramdisk images
retrieved from a TFTP server on the network:

RedBoot> fconfig
Run script at boot: false true
Boot script:
Enter script, terminate with empty line
>> load zImage -r -b 0x100000
>> load ramdisk_ks.gz -r -b 0x800000
>> exec -b 0x100000 -l 0xc0000
>>
Boot script timeout (1000ms resolution): 3
Use BOOTP for network configuration: true
GDB connection port: 9000
Network debug at boot time: false
Update RedBoot non-volatile configuration - are you sure (y/n)? y

Then, rebooting the Assabet is just a matter of waiting for the login prompt.

Nicolas Pitre nico@fluxnic.net

June 12, 2001

Status of peripherals in -rmk tree (updated 14/10/2001)

Assabet:
Serial ports:

Radio: TX, RX, CTS, DSR, DCD, RI
• PM: Not tested.

• COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM

• PM: Not tested.

• I2C: Implemented, not fully tested.

110 Chapter 16. SoC-specific documents

mailto:nico@fluxnic.net

Linux Arm Documentation

• L3: Fully tested, pass.

• PM: Not tested.

Video:
• LCD: Fully tested. PM

(LCD doesn’t like being blanked with neponset connected)
• Video out: Not fully

Audio: UDA1341: - Playback: Fully tested, pass. - Record: Implemented,
not tested. - PM: Not tested.

UCB1200: - Audio play: Implemented, not heavily tested. - Audio rec:
Implemented, not heavily tested. - Telco audio play: Implemented, not
heavily tested. - Telco audio rec: Implemented, not heavily tested. -
POTS control: No - Touchscreen: Yes - PM: Not tested.

Other:
• PCMCIA:

• LPE: Fully tested, pass.

• USB: No

• IRDA:

• SIR: Fully tested, pass.

• FIR: Fully tested, pass.

• PM: Not tested.

Neponset:
Serial ports:

• COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR

• PM: Not tested.

• USB: Implemented, not heavily tested.

• PCMCIA: Implemented, not heavily tested.

• CF: Implemented, not heavily tested.

• PM: Not tested.

More stuff can be found in the -np (Nicolas Pitre’s) tree.

16.10. Intel StrongARM 1100 111

Linux Arm Documentation

16.10.2 CerfBoard/Cube

* The StrongARM version of the CerfBoard/Cube has been discontinued *
The Intrinsyc CerfBoard is a StrongARM 1110-based computer on a board that
measures approximately 2”square. It includes an Ethernet controller, an RS232-
compatible serial port, a USB function port, and one CompactFlash+ slot on the
back. Pictures can be found at the Intrinsyc website, http://www.intrinsyc.com.

This document describes the support in the Linux kernel for the Intrinsyc Cerf-
Board.

Supported in this version

• CompactFlash+ slot (select PCMCIA in General Setup and any options that
may be required)

• Onboard Crystal CS8900 Ethernet controller (Cerf CS8900A support in Net-
work Devices)

• Serial ports with a serial console (hardcoded to 38400 8N1)

In order to get this kernel onto your Cerf, you need a server that runs both BOOTP
and TFTP. Detailed instructions should have come with your evaluation kit on how
to use the bootloader. This series of commands will suffice:

make ARCH=arm CROSS_COMPILE=arm-linux- cerfcube_defconfig
make ARCH=arm CROSS_COMPILE=arm-linux- zImage
make ARCH=arm CROSS_COMPILE=arm-linux- modules
cp arch/arm/boot/zImage <TFTP directory>

support@intrinsyc.com

16.10.3 Linux Advanced Radio Terminal (LART)

The LART is a small (7.5 x 10cm) SA-1100 board, designed for embedded ap-
plications. It has 32 MB DRAM, 4MB Flash ROM, double RS232 and all other
StrongARM-gadgets. Almost all SA signals are directly accessible through a num-
ber of connectors. The powersupply accepts voltages between 3.5V and 16V and
is overdimensioned to support a range of daughterboards. A quad Ethernet / IDE /
PS2 / sound daughterboard is under development, with plenty of others in different
stages of planning.

The hardware designs for this board have been released under an open license;
see the LART page at http://www.lartmaker.nl/ for more information.

112 Chapter 16. SoC-specific documents

http://www.intrinsyc.com
mailto:support@intrinsyc.com
http://www.lartmaker.nl/

Linux Arm Documentation

16.10.4 SA1100 serial port

The SA1100 serial port had its major/minor numbers officially assigned:

> Date: Sun, 24 Sep 2000 21:40:27 -0700
> From: H. Peter Anvin <hpa@transmeta.com>
> To: Nicolas Pitre <nico@CAM.ORG>
> Cc: Device List Maintainer <device@lanana.org>
> Subject: Re: device
>
> Okay. Note that device numbers 204 and 205 are used for "low density
> serial devices", so you will have a range of minors on those majors (the
> tty device layer handles this just fine, so you don't have to worry about
> doing anything special.)
>
> So your assignments are:
>
> 204 char Low-density serial ports
> 5 = /dev/ttySA0 SA1100 builtin serial␣
↪→port 0
> 6 = /dev/ttySA1 SA1100 builtin serial␣
↪→port 1
> 7 = /dev/ttySA2 SA1100 builtin serial␣
↪→port 2
>
> 205 char Low-density serial ports (alternate device)
> 5 = /dev/cusa0 Callout device for ttySA0
> 6 = /dev/cusa1 Callout device for ttySA1
> 7 = /dev/cusa2 Callout device for ttySA2
>

You must create those inodes in /dev on the root filesystem used by your SA1100-
based device:

mknod ttySA0 c 204 5
mknod ttySA1 c 204 6
mknod ttySA2 c 204 7
mknod cusa0 c 205 5
mknod cusa1 c 205 6
mknod cusa2 c 205 7

In addition to the creation of the appropriate device nodes above, you must ensure
your user space applications make use of the correct device name. The classic
example is the content of the /etc/inittab file where you might have a getty process
started on ttyS0.

In this case:

• replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc.

• don’t forget to add ‘ttySA0’, ‘console’, or the appropriate tty name in
/etc/securetty for root to be allowed to login as well.

16.10. Intel StrongARM 1100 113

Linux Arm Documentation

16.11 STM32F746 Overview

16.11.1 Introduction

The STM32F746 is a Cortex-M7 MCU aimed at various applications. It features:

• Cortex-M7 core running up to @216MHz

• 1MB internal flash, 320KBytes internal RAM (+4KB of backup SRAM)

• FMC controller to connect SDRAM, NOR and NAND memories

• Dual mode QSPI

• SD/MMC/SDIO support

• Ethernet controller

• USB OTFG FS & HS controllers

• I2C, SPI, CAN busses support

• Several 16 & 32 bits general purpose timers

• Serial Audio interface

• LCD controller

• HDMI-CEC

• SPDIFRX

16.11.2 Resources

Datasheet and reference manual are publicly available on ST website
(STM32F746).

Authors Alexandre Torgue <alexandre.torgue@st.com>

16.12 STM32 ARM Linux Overview

16.12.1 Introduction

The STMicroelectronics STM32 family of Cortex-A microprocessors (MPUs) and
Cortex-M microcontrollers (MCUs) are supported by the ‘STM32’platform of
ARM Linux.

114 Chapter 16. SoC-specific documents

http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f7-series/stm32f7x6/stm32f746ng.html
mailto:alexandre.torgue@st.com

Linux Arm Documentation

16.12.2 Configuration

For MCUs, use the provided default configuration: make stm32_defconfig
For MPUs, use multi_v7 configuration: make multi_v7_defconfig

16.12.3 Layout

All the files for multiple machine families are located in the platform code con-
tained in arch/arm/mach-stm32

There is a generic board board-dt.c in the mach folder which support Flattened
Device Tree, which means, it works with any compatible board with Device Trees.

Authors
• Maxime Coquelin <mcoquelin.stm32@gmail.com>

• Ludovic Barre <ludovic.barre@st.com>

• Gerald Baeza <gerald.baeza@st.com>

16.13 STM32H743 Overview

16.13.1 Introduction

The STM32H743 is a Cortex-M7 MCU aimed at various applications. It features:

• Cortex-M7 core running up to @400MHz

• 2MB internal flash, 1MBytes internal RAM

• FMC controller to connect SDRAM, NOR and NAND memories

• Dual mode QSPI

• SD/MMC/SDIO support

• Ethernet controller

• USB OTFG FS & HS controllers

• I2C, SPI, CAN busses support

• Several 16 & 32 bits general purpose timers

• Serial Audio interface

• LCD controller

• HDMI-CEC

• SPDIFRX

• DFSDM

16.13. STM32H743 Overview 115

mailto:mcoquelin.stm32@gmail.com
mailto:ludovic.barre@st.com
mailto:gerald.baeza@st.com

Linux Arm Documentation

16.13.2 Resources

Datasheet and reference manual are publicly available on ST website
(STM32H743).

Authors Alexandre Torgue <alexandre.torgue@st.com>

16.14 STM32F769 Overview

16.14.1 Introduction

The STM32F769 is a Cortex-M7 MCU aimed at various applications. It features:

• Cortex-M7 core running up to @216MHz

• 2MB internal flash, 512KBytes internal RAM (+4KB of backup SRAM)

• FMC controller to connect SDRAM, NOR and NAND memories

• Dual mode QSPI

• SD/MMC/SDIO support*2

• Ethernet controller

• USB OTFG FS & HS controllers

• I2C*4, SPI*6, CAN*3 busses support

• Several 16 & 32 bits general purpose timers

• Serial Audio interface*2

• LCD controller

• HDMI-CEC

• DSI

• SPDIFRX

• MDIO salave interface

16.14.2 Resources

Datasheet and reference manual are publicly available on ST website
(STM32F769).

Authors Alexandre Torgue <alexandre.torgue@st.com>

116 Chapter 16. SoC-specific documents

http://www.st.com/en/microcontrollers/stm32h7x3.html?querycriteria=productId=LN2033
mailto:alexandre.torgue@st.com
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f7-series/stm32f7x9/stm32f769ni.html
mailto:alexandre.torgue@st.com

Linux Arm Documentation

16.15 STM32F429 Overview

16.15.1 Introduction

The STM32F429 is a Cortex-M4 MCU aimed at various applications. It features:

• ARM Cortex-M4 up to 180MHz with FPU

• 2MB internal Flash Memory

• External memory support through FMC controller (PSRAM, SDRAM, NOR,
NAND)

• I2C, SPI, SAI, CAN, USB OTG, Ethernet controllers

• LCD controller & Camera interface

• Cryptographic processor

16.15.2 Resources

Datasheet and reference manual are publicly available on ST website
(STM32F429).

Authors Maxime Coquelin <mcoquelin.stm32@gmail.com>

16.16 STM32MP157 Overview

16.16.1 Introduction

The STM32MP157 is a Cortex-A MPU aimed at various applications. It features:

• Dual core Cortex-A7 application core

• 2D/3D image composition with GPU

• Standard memories interface support

• Standard connectivity, widely inherited from the STM32 MCU family

• Comprehensive security support

Authors
• Ludovic Barre <ludovic.barre@st.com>

• Gerald Baeza <gerald.baeza@st.com>

16.15. STM32F429 Overview 117

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN1806?ecmp=stm32f429-439_pron_pr-ces2014_nov2013
mailto:mcoquelin.stm32@gmail.com
mailto:ludovic.barre@st.com
mailto:gerald.baeza@st.com

Linux Arm Documentation

16.17 ARM Allwinner SoCs

This document lists all the ARM Allwinner SoCs that are currently supported in
mainline by the Linux kernel. This document will also provide links to documen-
tation and/or datasheet for these SoCs.

16.17.1 SunXi family

Linux kernel mach directory: arch/arm/mach-sunxi

Flavors:

• ARM926 based SoCs - Allwinner F20 (sun3i)

– Not Supported
• ARM Cortex-A8 based SoCs - Allwinner A10 (sun4i)

– Datasheet
http://dl.linux-sunxi.org/A10/A10%20Datasheet%20-%20v1.
21%20%282012-04-06%29.pdf

– User Manual
http://dl.linux-sunxi.org/A10/A10%20User%20Manual%20-%
20v1.20%20%282012-04-09%2c%20DECRYPTED%29.pdf

– Allwinner A10s (sun5i)
∗ Datasheet

http://dl.linux-sunxi.org/A10s/A10s%20Datasheet%20-%
20v1.20%20%282012-03-27%29.pdf

– Allwinner A13 / R8 (sun5i)
∗ Datasheet

http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.
12%20%282012-03-29%29.pdf

∗ User Manual

http://dl.linux-sunxi.org/A13/A13%20User%20Manual%
20-%20v1.2%20%282013-01-08%29.pdf

– Next Thing Co GR8 (sun5i)
• Single ARM Cortex-A7 based SoCs - Allwinner V3s (sun8i)

– Datasheet
http://linux-sunxi.org/File:Allwinner_V3s_Datasheet_V1.0.pdf

• Dual ARM Cortex-A7 based SoCs - Allwinner A20 (sun7i)

– User Manual
http://dl.linux-sunxi.org/A20/A20%20User%20Manual%
202013-03-22.pdf

118 Chapter 16. SoC-specific documents

http://dl.linux-sunxi.org/A10/A10%20Datasheet%20-%20v1.21%20%282012-04-06%29.pdf
http://dl.linux-sunxi.org/A10/A10%20Datasheet%20-%20v1.21%20%282012-04-06%29.pdf
http://dl.linux-sunxi.org/A10/A10%20User%20Manual%20-%20v1.20%20%282012-04-09%2c%20DECRYPTED%29.pdf
http://dl.linux-sunxi.org/A10/A10%20User%20Manual%20-%20v1.20%20%282012-04-09%2c%20DECRYPTED%29.pdf
http://dl.linux-sunxi.org/A10s/A10s%20Datasheet%20-%20v1.20%20%282012-03-27%29.pdf
http://dl.linux-sunxi.org/A10s/A10s%20Datasheet%20-%20v1.20%20%282012-03-27%29.pdf
http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.12%20%282012-03-29%29.pdf
http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.12%20%282012-03-29%29.pdf
http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf
http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf
http://linux-sunxi.org/File:Allwinner_V3s_Datasheet_V1.0.pdf
http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf
http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf

Linux Arm Documentation

– Allwinner A23 (sun8i)
∗ Datasheet

http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%
2020130830.pdf

∗ User Manual

http://dl.linux-sunxi.org/A23/A23%20User%20Manual%
20V1.0%2020130830.pdf

• Quad ARM Cortex-A7 based SoCs - Allwinner A31 (sun6i)

– Datasheet
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/
A31%20datasheet%20V1.3%2020131106.pdf

– User Manual
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/
A31%20user%20manual%20V1.1%2020130630.pdf

– Allwinner A31s (sun6i)
∗ Datasheet

http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/
IC/A31s%20datasheet%20V1.3%2020131106.pdf

∗ User Manual

http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/
IC/A31s%20User%20Manual%20%20V1.0%2020130322.
pdf

– Allwinner A33 (sun8i)
∗ Datasheet

http://dl.linux-sunxi.org/A33/A33%20Datasheet%
20release%201.1.pdf

∗ User Manual

http://dl.linux-sunxi.org/A33/A33%20user%20manual%
20release%201.1.pdf

– Allwinner H2+ (sun8i)
∗ No document available now, but is known to be working prop-
erly with H3 drivers and memory map.

– Allwinner H3 (sun8i)
∗ Datasheet

http://dl.linux-sunxi.org/H3/Allwinner_H3_Datasheet_V1.0.
pdf

– Allwinner R40 (sun8i)

16.17. ARM Allwinner SoCs 119

http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf
http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf
http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf
http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf
http://dl.linux-sunxi.org/A33/A33%20Datasheet%20release%201.1.pdf
http://dl.linux-sunxi.org/A33/A33%20Datasheet%20release%201.1.pdf
http://dl.linux-sunxi.org/A33/A33%20user%20manual%20release%201.1.pdf
http://dl.linux-sunxi.org/A33/A33%20user%20manual%20release%201.1.pdf
http://dl.linux-sunxi.org/H3/Allwinner_H3_Datasheet_V1.0.pdf
http://dl.linux-sunxi.org/H3/Allwinner_H3_Datasheet_V1.0.pdf

Linux Arm Documentation

∗ Datasheet

https://github.com/tinalinux/docs/raw/r40-v1.y/R40_
Datasheet_V1.0.pdf

∗ User Manual

https://github.com/tinalinux/docs/raw/r40-v1.y/Allwinner_
R40_User_Manual_V1.0.pdf

• Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs - Allwin-
ner A80

– Datasheet
http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_
0404.pdf

• Octa ARM Cortex-A7 based SoCs - Allwinner A83T

– Datasheet
https://github.com/allwinner-zh/documents/raw/master/A83T/
A83T_Datasheet_v1.3_20150510.pdf

– User Manual
https://github.com/allwinner-zh/documents/raw/master/A83T/
A83T_User_Manual_v1.5.1_20150513.pdf

• Quad ARM Cortex-A53 based SoCs - Allwinner A64

– Datasheet
http://dl.linux-sunxi.org/A64/A64_Datasheet_V1.1.pdf

– User Manual
http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%
20Manual%20v1.0.pdf

16.18 Samsung SoC

16.18.1 Samsung GPIO implementation

Introduction

This outlines the Samsung GPIO implementation and the architecture specific calls
provided alongside the drivers/gpio core.

120 Chapter 16. SoC-specific documents

https://github.com/tinalinux/docs/raw/r40-v1.y/R40_Datasheet_V1.0.pdf
https://github.com/tinalinux/docs/raw/r40-v1.y/R40_Datasheet_V1.0.pdf
https://github.com/tinalinux/docs/raw/r40-v1.y/Allwinner_R40_User_Manual_V1.0.pdf
https://github.com/tinalinux/docs/raw/r40-v1.y/Allwinner_R40_User_Manual_V1.0.pdf
http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf
http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_Datasheet_v1.3_20150510.pdf
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_Datasheet_v1.3_20150510.pdf
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_User_Manual_v1.5.1_20150513.pdf
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_User_Manual_v1.5.1_20150513.pdf
http://dl.linux-sunxi.org/A64/A64_Datasheet_V1.1.pdf
http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%20Manual%20v1.0.pdf
http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%20Manual%20v1.0.pdf

Linux Arm Documentation

S3C24XX (Legacy)

See Documentation/arm/samsung-s3c24xx/gpio.rst for more information about
these devices. Their implementation has been brought into line with the core
samsung implementation described in this document.

GPIOLIB integration

The gpio implementation uses gpiolib as much as possible, only providing specific
calls for the items that require Samsung specific handling, such as pin special-
function or pull resistor control.

GPIO numbering is synchronised between the Samsung and gpiolib system.

PIN configuration

Pin configuration is specific to the Samsung architecture, with each SoC register-
ing the necessary information for the core gpio configuration implementation to
configure pins as necessary.

The s3c_gpio_cfgpin() and s3c_gpio_setpull() provide the means for a driver or
machine to change gpio configuration.

See arch/arm/plat-samsung/include/plat/gpio-cfg.h for more information on these
functions.

16.18.2 Interface between kernel and boot loaders on Exynos
boards

Author: Krzysztof Kozlowski

Date : 6 June 2015

The document tries to describe currently used interface between Linux kernel and
boot loaders on Samsung Exynos based boards. This is not a definition of interface
but rather a description of existing state, a reference for information purpose only.

In the document“boot loader”means any of following: U-boot, proprietary SBOOT
or any other firmware for ARMv7 and ARMv8 initializing the board before execut-
ing kernel.

1. Non-Secure mode

Address: sysram_ns_base_addr

16.18. Samsung SoC 121

Linux Arm Documentation

Offset Value Purpose
0x08 exynos_cpu_resume_ns, mcpm_entry_point System suspend
0x0c 0x00000bad (Magic cookie) System suspend
0x1c exynos4_secondary_startup Secondary CPU

boot
0x1c +
4*cpu

exynos4_secondary_startup (Exynos4412) Secondary CPU
boot

0x20 0xfcba0d10 (Magic cookie) AFTR
0x24 exynos_cpu_resume_ns AFTR
0x28 +
4*cpu

0x8 (Magic cookie, Exynos3250) AFTR

0x28 0x0 or last value during resume
(Exynos542x)

System suspend

2. Secure mode

Address: sysram_base_addr

Offset Value Purpose
0x00 exynos4_secondary_startup Secondary CPU boot
0x04 exynos4_secondary_startup (Exynos542x) Secondary CPU boot
4*cpu exynos4_secondary_startup (Exynos4412) Secondary CPU boot
0x20 exynos_cpu_resume (Exynos4210 r1.0) AFTR
0x24 0xfcba0d10 (Magic cookie, Exynos4210 r1.0) AFTR

Address: pmu_base_addr

Offset Value Purpose
0x0800 exynos_cpu_resume AFTR, suspend
0x0800 mcpm_entry_point (Exynos542x with MCPM) AFTR, suspend
0x0804 0xfcba0d10 (Magic cookie) AFTR
0x0804 0x00000bad (Magic cookie) System suspend
0x0814 exynos4_secondary_startup (Exynos4210 r1.1) Secondary CPU boot
0x0818 0xfcba0d10 (Magic cookie, Exynos4210 r1.1) AFTR
0x081C exynos_cpu_resume (Exynos4210 r1.1) AFTR

3. Other (regardless of secure/non-secure mode)

Address: pmu_base_addr

Offset Value Purpose
0x0908 Non-

zero
Secondary CPU boot up indicator on Exynos3250 and
Exynos542x

4. Glossary

AFTR - ARM Off Top Running, a low power mode, Cortex cores and many other
modules are power gated, except the TOP modules MCPM - Multi-Cluster Power
Management

122 Chapter 16. SoC-specific documents

Linux Arm Documentation

16.18.3 Samsung ARM Linux Overview

Introduction

The Samsung range of ARM SoCs spans many similar devices, from the
initial ARM9 through to the newest ARM cores. This document shows
an overview of the current kernel support, how to use it and where to
find the code that supports this.

The currently supported SoCs are:

• S3C24XX: See Documentation/arm/samsung-s3c24xx/overview.rst
for full list

• S3C64XX: S3C6400 and S3C6410

• S5PC110 / S5PV210

S3C24XX Systems

There is still documentation in Documnetation/arm/Samsung-S3C24XX/
which deals with the architecture and drivers specific to these devices.

See Documentation/arm/samsung-s3c24xx/overview.rst for more infor-
mation on the implementation details and specific support.

Configuration

A number of configurations are supplied, as there is no current way of
unifying all the SoCs into one kernel.

s5pc110_defconfig
• S5PC110 specific default configuration

s5pv210_defconfig
• S5PV210 specific default configuration

Layout

The directory layout is currently being restructured, and consists of sev-
eral platform directories and then the machine specific directories of the
CPUs being built for.

plat-samsung provides the base for all the implementations, and is the
last in the line of include directories that are processed for the build spe-
cific information. It contains the base clock, GPIO and device definitions
to get the system running.

plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs.

plat-s5p is for s5p specific builds, and contains common support for the
S5P specific systems. Not all S5Ps use all the features in this directory
due to differences in the hardware.

16.18. Samsung SoC 123

Linux Arm Documentation

Layout changes

The old plat-s3c and plat-s5pc1xx directories have been removed, with
support moved to either plat-samsung or plat-s5p as necessary. These
moves where to simplify the include and dependency issues involved
with having so many different platform directories.

Port Contributors

BenDooks (BJD) Vincent Sanders Herbert Potzl Arnaud Patard (RTP) Roc
Wu Klaus Fetscher Dimitry Andric Shannon Holland Guillaume Gourat
(NexVision) Christer Weinigel (wingel) (Acer N30) Lucas Correia Villa
Real (S3C2400 port)

Document Author

Copyright 2009-2010 Ben Dooks <ben-linux@fluff.org>

16.19 Samsung S3C24XX SoC Family

16.19.1 HP IPAQ H1940

http://www.handhelds.org/projects/h1940.html

Introduction

The HP H1940 is a S3C2410 based handheld device, with bluetooth con-
nectivity.

Support

A variety of information is available

handhelds.org project page:

http://www.handhelds.org/projects/h1940.html

handhelds.org wiki page:

http://handhelds.org/moin/moin.cgi/HpIpaqH1940

Herbert Pötzl pages:

http://vserver.13thfloor.at/H1940/

124 Chapter 16. SoC-specific documents

mailto:ben-linux@fluff.org
http://www.handhelds.org/projects/h1940.html
http://www.handhelds.org/projects/h1940.html
http://handhelds.org/moin/moin.cgi/HpIpaqH1940
http://vserver.13thfloor.at/H1940/

Linux Arm Documentation

Maintainers

This project is being maintained and developed by a variety of people,
including Ben Dooks, Arnaud Patard, and Herbert Pötzl.

Thanks to the many others who have also provided support.

(c) 2005 Ben Dooks

16.19.2 S3C24XX GPIO Control

Introduction

The s3c2410 kernel provides an interface to configure and manipulate
the state of the GPIO pins, and find out other information about them.

There are a number of conditions attached to the configuration of
the s3c2410 GPIO system, please read the Samsung provided data-
sheet/users manual to find out the complete list.

See Documentation/arm/samsung/gpio.rst for the core implementation.

GPIOLIB

With the event of the GPIOLIB in drivers/gpio, support for some of the
GPIO functions such as reading and writing a pin will be removed in
favour of this common access method.

Once all the extant drivers have been converted, the functions listed
below will be removed (they may be marked as __deprecated in the near
future).

The following functions now either have a s3c_ specific variant
or are merged into gpiolib. See the definitions in arch/arm/plat-
samsung/include/plat/gpio-cfg.h:

• s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output()

• s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input()

• s3c2410_gpio_getirq() gpio_to_irq()

• s3c2410_gpio_cfgpin() s3c_gpio_cfgpin()

• s3c2410_gpio_getcfg() s3c_gpio_getcfg()

• s3c2410_gpio_pullup() s3c_gpio_setpull()

16.19. Samsung S3C24XX SoC Family 125

Linux Arm Documentation

GPIOLIB conversion

If you need to convert your board or driver to use gpiolib from the phased out
s3c2410 API, then here are some notes on the process.

1) If your board is exclusively using an GPIO, say to control peripheral power,
then it will require to claim the gpio with gpio_request() before it can use it.

It is recommended to check the return value, with at least WARN_ON() during
initialisation.

2) The s3c2410_gpio_cfgpin() can be directly replaced with s3c_gpio_cfgpin() as
they have the same arguments, and can either take the pin specific values, or
the more generic special-function-number arguments.

3) s3c2410_gpio_pullup() changes have the problem that while the
s3c2410_gpio_pullup(x, 1) can be easily translated to the s3c_gpio_setpull(x,
S3C_GPIO_PULL_NONE), the s3c2410_gpio_pullup(x, 0) are not so easy.

The s3c2410_gpio_pullup(x, 0) case enables the pull-up (or in the case of some
of the devices, a pull-down) and as such the new API distinguishes between
the UP and DOWN case. There is currently no ‘just turn on’setting which
may be required if this becomes a problem.

4) s3c2410_gpio_setpin() can be replaced by gpio_set_value(), the old call does
not implicitly configure the relevant gpio to output. The gpio direction should
be changed before using gpio_set_value().

5) s3c2410_gpio_getpin() is replaceable by gpio_get_value() if the pin has been
set to input. It is currently unknown what the behaviour is when using
gpio_get_value() on an output pin (s3c2410_gpio_getpin would return the
value the pin is supposed to be outputting).

6) s3c2410_gpio_getirq() should be directly replaceable with the gpio_to_irq()
call.

The s3c2410_gpio and gpio_ calls have always operated on the same gpio num-
berspace, so there is no problem with converting the gpio numbering between the
calls.

126 Chapter 16. SoC-specific documents

Linux Arm Documentation

Headers

See arch/arm/mach-s3c24xx/include/mach/regs-gpio.h for the list of
GPIO pins, and the configuration values for them. This is included by
using #include <mach/regs-gpio.h>

PIN Numbers

Each pin has an unique number associated with it in regs-gpio.h, e.g.
S3C2410_GPA(0) or S3C2410_GPF(1). These defines are used to tell the
GPIO functions which pin is to be used.

With the conversion to gpiolib, there is no longer a direct conversion
from gpio pin number to register base address as in earlier kernels. This
is due to the number space required for newer SoCs where the later
GPIOs are not contiguous.

Configuring a pin

The following function allows the configuration of a given pin to be
changed.

void s3c_gpio_cfgpin(unsigned int pin, unsigned int function);

e.g.:

s3c_gpio_cfgpin(S3C2410_GPA(0), S3C_GPIO_SFN(1));
s3c_gpio_cfgpin(S3C2410_GPE(8), S3C_GPIO_SFN(2));

which would turn GPA(0) into the lowest Address line A0, and
set GPE(8) to be connected to the SDIO/MMC controller’s SD-
DAT1 line.

Reading the current configuration

The current configuration of a pin can be read by using standard gpiolib
function:

s3c_gpio_getcfg(unsigned int pin);

The return value will be from the same set of values which can be passed
to s3c_gpio_cfgpin().

16.19. Samsung S3C24XX SoC Family 127

Linux Arm Documentation

Configuring a pull-up resistor

A large proportion of the GPIO pins on the S3C2410 can have weak pull-
up resistors enabled. This can be configured by the following function:

void s3c_gpio_setpull(unsigned int pin, unsigned int to);

Where the to value is S3C_GPIO_PULL_NONE to set the pull-up off, and
S3C_GPIO_PULL_UP to enable the specified pull-up. Any other values
are currently undefined.

Getting and setting the state of a PIN

These calls are now implemented by the relevant gpiolib calls, convert
your board or driver to use gpiolib.

Getting the IRQ number associated with a PIN

A standard gpiolib function can map the given pin number to an IRQ
number to pass to the IRQ system.

int gpio_to_irq(unsigned int pin);

Note, not all pins have an IRQ.

Author

Ben Dooks, 03 October 2004 Copyright 2004 Ben Dooks, Simtec Electronics

16.19.3 S3C24XX CPUfreq support

Introduction

The S3C24XX series support a number of power saving systems, such
as the ability to change the core, memory and peripheral operating fre-
quencies. The core control is exported via the CPUFreq driver which
has a number of different manual or automatic controls over the rate
the core is running at.

There are two forms of the driver depending on the specific CPU and
how the clocks are arranged. The first implementation used as single
PLL to feed the ARM, memory and peripherals via a series of dividers
and muxes and this is the implementation that is documented here. A
newer version where there is a separate PLL and clock divider for the
ARM core is available as a separate driver.

128 Chapter 16. SoC-specific documents

Linux Arm Documentation

Layout

The code core manages the CPU specific drivers, any data that they need
to register and the interface to the generic drivers/cpufreq system. Each
CPU registers a driver to control the PLL, clock dividers and anything
else associated with it. Any board that wants to use this framework
needs to supply at least basic details of what is required.

The core registers with drivers/cpufreq at init time if all the data neces-
sary has been supplied.

CPU support

The support for each CPU depends on the facilities provided by the SoC
and the driver as each device has different PLL and clock chains associ-
ated with it.

Slow Mode

The SLOW mode where the PLL is turned off altogether and the system
is fed by the external crystal input is currently not supported.

sysfs

The core code exports extra information via sysfs in the directory
devices/system/cpu/cpu0/arch-freq.

Board Support

Each board that wants to use the cpufreq code must register some basic
information with the core driver to provide information about what the
board requires and any restrictions being placed on it.

The board needs to supply information about whether it needs the IO
bank timings changing, any maximum frequency limits and information
about the SDRAM refresh rate.

Document Author

Ben Dooks, Copyright 2009 Simtec Electronics Licensed under GPLv2

16.19. Samsung S3C24XX SoC Family 129

Linux Arm Documentation

16.19.4 S3C24XX Suspend Support

Introduction

The S3C24XX supports a low-power suspend mode, where the SDRAM
is kept in Self-Refresh mode, and all but the essential peripheral blocks
are powered down. For more information on how this works, please look
at the relevant CPU datasheet from Samsung.

Requirements

1) A bootloader that can support the necessary resume operation

2) Support for at least 1 source for resume

3) CONFIG_PM enabled in the kernel

4) Any peripherals that are going to be powered down at the same time require
suspend/resume support.

Resuming

The S3C2410 user manual defines the process of sending the CPU to
sleep and how it resumes. The default behaviour of the Linux code is to
set the GSTATUS3 register to the physical address of the code to resume
Linux operation.

GSTATUS4 is currently left alone by the sleep code, and is free to use
for any other purposes (for example, the EB2410ITX uses this to save
memory configuration in).

Machine Support

The machine specific functions must call the s3c_pm_init() function to
say that its bootloader is capable of resuming. This can be as simple as
adding the following to the machine’s definition:
INITMACHINE(s3c_pm_init)

A board can do its own setup before calling s3c_pm_init, if it needs to
setup anything else for power management support.

There is currently no support for over-riding the default method of sav-
ing the resume address, if your board requires it, then contact the main-
tainer and discuss what is required.

Note, the original method of adding an late_initcall() is wrong, and will
end up initialising all compiled machines’pm init!

The following is an example of code used for testing wakeup from an
falling edge on IRQ_EINT0:

130 Chapter 16. SoC-specific documents

Linux Arm Documentation

static irqreturn_t button_irq(int irq, void *pw)
{

return IRQ_HANDLED;
}

statuc void __init machine_init(void)
{

...

request_irq(IRQ_EINT0, button_irq, IRQF_TRIGGER_FALLING,
"button-irq-eint0", NULL);

enable_irq_wake(IRQ_EINT0);

s3c_pm_init();
}

Debugging

There are several important things to remember when using PM sus-
pend:

1) The uart drivers will disable the clocks to the UART blocks when
suspending, which means that use of printascii() or similar direct
access to the UARTs will cause the debug to stop.

2) While the pm code itself will attempt to re-enable the UART clocks,
care should be taken that any external clock sources that the UARTs
rely on are still enabled at that point.

3) If any debugging is placed in the resume path, then it must have the
relevant clocks and peripherals setup before use (ie, bootloader).

For example, if you transmit a character from the UART, the baud
rate and uart controls must be setup beforehand.

Configuration

The S3C2410 specific configuration in System Type defines various as-
pects of how the S3C2410 suspend and resume support is configured

S3C2410 PM Suspend debug

This option prints messages to the serial console before and
after the actual suspend, giving detailed information on what is
happening

S3C2410 PM Suspend Memory CRC

Allows the entire memory to be checksummed before and af-
ter the suspend to see if there has been any corruption of the
contents.

Note, the time to calculate the CRC is dependent on the CPU
speed and the size of memory. For an 64Mbyte RAM area on

16.19. Samsung S3C24XX SoC Family 131

Linux Arm Documentation

an 200MHz S3C2410, this can take approximately 4 seconds to
complete.

This support requires the CRC32 function to be enabled.

S3C2410 PM Suspend CRC Chunksize (KiB)

Defines the size of memory each CRC chunk covers. A smaller
value will mean that the CRC data block will take more memory,
but will identify any faults with better precision

Document Author

Ben Dooks, Copyright 2004 Simtec Electronics

16.19.5 S3C24XX USB Host support

Introduction

This document details the S3C2410/S3C2440 in-built OHCI USB host
support.

Configuration

Enable at least the following kernel options:

menuconfig:

Device Drivers --->
USB support --->

<*> Support for Host-side USB
<*> OHCI HCD support

.config:

• CONFIG_USB

• CONFIG_USB_OHCI_HCD

Once these options are configured, the standard set of USB device
drivers can be configured and used.

Board Support

The driver attaches to a platform device, which will need to be added by
the board specific support file in linux/arch/arm/mach-s3c2410, such as
mach-bast.c or mach-smdk2410.c

The platform device’s platform_data field is only needed if the board
implements extra power control or over-current monitoring.

The OHCI driver does not ensure the state of the S3C2410’s MISCCTRL
register, so if both ports are to be used for the host, then it is the board

132 Chapter 16. SoC-specific documents

Linux Arm Documentation

support file’s responsibility to ensure that the second port is configured
to be connected to the OHCI core.

Platform Data

See arch/arm/mach-s3c2410/include/mach/usb-control.h for the de-
scriptions of the platform device data. An implementation can be found
in linux/arch/arm/mach-s3c2410/usb-simtec.c .

The struct s3c2410_hcd_info contains a pair of functions that get called
to enable over-current detection, and to control the port power status.

The ports are numbered 0 and 1.

power_control: Called to enable or disable the power on the port.
enable_oc: Called to enable or disable the over-current monitoring.

This should claim or release the resources being used to check the
power condition on the port, such as an IRQ.

report_oc: The OHCI driver fills this field in for the over-current code
to call when there is a change to the over-current state on an port.
The ports argument is a bitmask of 1 bit per port, with bit X being
1 for an over-current on port X.

The function s3c2410_usb_report_oc() has been provided to ensure
this is called correctly.

port[x]: This is struct describes each port, 0 or 1. The platform driver
should set the flags field of each port to S3C_HCDFLG_USED if the
port is enabled.

Document Author

Ben Dooks, Copyright 2005 Simtec Electronics

16.19.6 S3C2412 ARM Linux Overview

Introduction

The S3C2412 is part of the S3C24XX range of ARM9 System-on-Chip
CPUs from Samsung. This part has an ARM926-EJS core, capable of
running up to 266MHz (see data-sheet for more information)

16.19. Samsung S3C24XX SoC Family 133

Linux Arm Documentation

Clock

The core clock code provides a set of clocks to the drivers, and allows
for source selection and a number of other features.

Power

No support for suspend/resume to RAM in the current system.

DMA

No current support for DMA.

GPIO

There is support for setting the GPIO to input/output/special function
and reading or writing to them.

UART

The UART hardware is similar to the S3C2440, and is supported by the
s3c2410 driver in the drivers/serial directory.

NAND

The NAND hardware is similar to the S3C2440, and is supported by the
s3c2410 driver in the drivers/mtd/nand/raw directory.

USB Host

The USB hardware is similar to the S3C2410, with extended clock source
control. The OHCI portion is supported by the ohci-s3c2410 driver, and
the clock control selection is supported by the core clock code.

USB Device

No current support in the kernel

134 Chapter 16. SoC-specific documents

Linux Arm Documentation

IRQs

All the standard, and external interrupt sources are supported. The ex-
tra sub-sources are not yet supported.

RTC

The RTC hardware is similar to the S3C2410, and is supported by the
s3c2410-rtc driver.

Watchdog

The watchdog hardware is the same as the S3C2410, and is supported
by the s3c2410_wdt driver.

MMC/SD/SDIO

No current support for the MMC/SD/SDIO block.

IIC

The IIC hardware is the same as the S3C2410, and is supported by the
i2c-s3c24xx driver.

IIS

No current support for the IIS interface.

SPI

No current support for the SPI interfaces.

ATA

No current support for the on-board ATA block.

Document Author

Ben Dooks, Copyright 2006 Simtec Electronics

16.19. Samsung S3C24XX SoC Family 135

Linux Arm Documentation

16.19.7 Simtec Electronics EB2410ITX (BAST)

http://www.simtec.co.uk/products/EB2410ITX/

Introduction

The EB2410ITX is a S3C2410 based development board with a variety
of peripherals and expansion connectors. This board is also known by
the shortened name of Bast.

Configuration

To set the default configuration, usemake bast_defconfig which supports
the commonly used features of this board.

Support

Official support information can be found on the Simtec Electronics web-
site, at the product page http://www.simtec.co.uk/products/EB2410ITX/

Useful links:

• Resources Page http://www.simtec.co.uk/products/EB2410ITX/
resources.html

• Board FAQ at http://www.simtec.co.uk/products/EB2410ITX/faq.
html

• Bootloader info http://www.simtec.co.uk/products/SWABLE/
resources.html and FAQ http://www.simtec.co.uk/products/
SWABLE/faq.html

MTD

The NAND and NOR support has been merged from the linux-mtd
project. Any problems, see http://www.linux-mtd.infradead.org/ for
more information or up-to-date versions of linux-mtd.

IDE

Both onboard IDE ports are supported, however there is no support for
changing speed of devices, PIO Mode 4 capable drives should be used.

136 Chapter 16. SoC-specific documents

http://www.simtec.co.uk/products/EB2410ITX/
http://www.simtec.co.uk/products/EB2410ITX/
http://www.simtec.co.uk/products/EB2410ITX/resources.html
http://www.simtec.co.uk/products/EB2410ITX/resources.html
http://www.simtec.co.uk/products/EB2410ITX/faq.html
http://www.simtec.co.uk/products/EB2410ITX/faq.html
http://www.simtec.co.uk/products/SWABLE/resources.html
http://www.simtec.co.uk/products/SWABLE/resources.html
http://www.simtec.co.uk/products/SWABLE/faq.html
http://www.simtec.co.uk/products/SWABLE/faq.html
http://www.linux-mtd.infradead.org/

Linux Arm Documentation

Maintainers

This board is maintained by Simtec Electronics.

Copyright 2004 Ben Dooks, Simtec Electronics

16.19.8 S3C24XX NAND Support

Introduction

Small Page NAND

The driver uses a 512 byte (1 page) ECC code for this setup. The ECC code is not
directly compatible with the default kernel ECC code, so the driver enforces its
own OOB layout and ECC parameters

Large Page NAND

The driver is capable of handling NAND flash with a 2KiB page size, with support
for hardware ECC generation and correction.

Unlike the 512byte page mode, the driver generates ECC data for each 256 byte
block in an 2KiB page. This means that more than one error in a page can be
rectified. It also means that the OOB layout remains the default kernel layout for
these flashes.

Document Author

Ben Dooks, Copyright 2007 Simtec Electronics

16.19.9 Samsung/Meritech SMDK2440

Introduction

The SMDK2440 is a two part evaluation board for the Samsung S3C2440
processor. It includes support for LCD, SmartMedia, Audio, SD and
10MBit Ethernet, and expansion headers for various signals, including
the camera and unused GPIO.

Configuration

To set the default configuration, use make smdk2440_defconfig which
will configure the common features of this board, or use make
s3c2410_config to include support for all s3c2410/s3c2440 machines

16.19. Samsung S3C24XX SoC Family 137

Linux Arm Documentation

Support

BenDooks’SMDK2440 site at http://www.fluff.org/ben/smdk2440/ which
includes linux based USB download tools.

Some of the h1940 patches that can be found from the H1940 project site
at http://www.handhelds.org/projects/h1940.html can also be applied to
this board.

Peripherals

There is no current support for any of the extra peripherals on the base-
board itself.

MTD

The NAND flash should be supported by the in kernel MTD NAND sup-
port, NOR flash will be added later.

Maintainers

This board is being maintained by Ben Dooks, for more info, see http:
//www.fluff.org/ben/smdk2440/

Many thanks to Dimitry Andric of TomTom for the loan of the SMDK2440,
and to Simtec Electronics for allowing me time to work on this.

(c) 2004 Ben Dooks

16.19.10 S3C2413 ARM Linux Overview

Introduction

The S3C2413 is an extended version of the S3C2412, with an camera
interface and mobile DDR memory support. See the S3C2412 support
documentation for more information.

Camera Interface

This block is currently not supported.

138 Chapter 16. SoC-specific documents

http://www.fluff.org/ben/smdk2440/
http://www.handhelds.org/projects/h1940.html
http://www.fluff.org/ben/smdk2440/
http://www.fluff.org/ben/smdk2440/

Linux Arm Documentation

Document Author

Ben Dooks, Copyright 2006 Simtec Electronics

16.19.11 S3C24XX ARM Linux Overview

Introduction

The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are sup-
ported by the ‘s3c2410’architecture of ARM Linux. Currently the
S3C2410, S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443
and S3C2450 devices are supported.

Support for the S3C2400 and S3C24A0 series was never completed and
the corresponding code has been removed after a while. If someone
wishes to revive this effort, partial support can be retrieved from earlier
Linux versions.

The S3C2416 and S3C2450 devices are very similar and S3C2450 sup-
port is included under the arch/arm/mach-s3c2416 directory. Note,
while core support for these SoCs is in, work on some of the extra pe-
ripherals and extra interrupts is still ongoing.

Configuration

A generic S3C2410 configuration is provided, and can be used as the
default by make s3c2410_defconfig. This configuration has support for
all the machines, and the commonly used features on them.

Certain machines may have their own default configurations as well,
please check the machine specific documentation.

Layout

The core support files are located in the platform code contained in
arch/arm/plat-s3c24xx with headers in include/asm-arm/plat-s3c24xx.
This directory should be kept to items shared between the platform code
(arch/arm/plat-s3c24xx) and the arch/arm/mach-s3c24* code.

Each cpu has a directory with the support files for it, and the ma-
chines that carry the device. For example S3C2410 is contained in
arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440

Register, kernel and platform data definitions are held in the
arch/arm/mach-s3c2410 directory./include/mach

arch/arm/plat-s3c24xx:

Files in here are either common to all the s3c24xx family, or are common
to only some of themwith names to indicate this status. The files that are
not common to all are generally named with the initial cpu they support
in the series to ensure a short name without any possibility of confusion
with newer devices.

16.19. Samsung S3C24XX SoC Family 139

Linux Arm Documentation

As an example, initially s3c244x would cover s3c2440 and s3c2442, but
with the s3c2443 which does not share many of the same drivers in this
directory, the name becomes invalid. We stick to s3c2440-<x> to indi-
cate a driver that is s3c2440 and s3c2442 compatible.

This does mean that to find the status of any given SoC, a number of
directories may need to be searched.

Machines

The currently supported machines are as follows:

Simtec Electronics EB2410ITX (BAST)

A general purpose development board, see EB2410ITX.txt for
further details

Simtec Electronics IM2440D20 (Osiris)

CPU Module from Simtec Electronics, with a S3C2440A CPU,
nand flash and a PCMCIA controller.

Samsung SMDK2410

Samsung’s own development board, geared for PDA work.
Samsung/Aiji SMDK2412

The S3C2412 version of the SMDK2440.

Samsung/Aiji SMDK2413

The S3C2412 version of the SMDK2440.

Samsung/Meritech SMDK2440

The S3C2440 compatible version of the SMDK2440, which has
the option of an S3C2440 or S3C2442 CPU module.

Thorcom VR1000

Custom embedded board

HP IPAQ 1940

Handheld (IPAQ), available in several varieties

HP iPAQ rx3715

S3C2440 based IPAQ, with a number of variations depending on
features shipped.

Acer N30

A S3C2410 based PDA from Acer. There is a Wiki page at http:
//handhelds.org/moin/moin.cgi/AcerN30Documentation .

AML M5900

American Microsystems’M5900
Nex Vision Nexcoder Nex Vision Otom

140 Chapter 16. SoC-specific documents

http://handhelds.org/moin/moin.cgi/AcerN30Documentation
http://handhelds.org/moin/moin.cgi/AcerN30Documentation

Linux Arm Documentation

Two machines by Nex Vision

Adding New Machines

The architecture has been designed to support as many machines as can
be configured for it in one kernel build, and any future additions should
keep this in mind before altering items outside of their own machine
files.

Machine definitions should be kept in linux/arch/arm/mach-s3c2410,
and there are a number of examples that can be looked at.

Read the kernel patch submission policies as well as the Documen-
tation/arm directory before submitting patches. The ARM kernel se-
ries is managed by Russell King, and has a patch system located at
http://www.arm.linux.org.uk/developer/patches/ as well as mailing lists
that can be found from the same site.

As a courtesy, please notify <ben-linux@fluff.org> of any new machines
or other modifications.

Any large scale modifications, or new drivers should be discussed on
the ARM kernel mailing list (linux-arm-kernel) before being attempted.
See http://www.arm.linux.org.uk/mailinglists/ for the mailing list infor-
mation.

I2C

The hardware I2C core in the CPU is supported in single master mode,
and can be configured via platform data.

RTC

Support for the onboard RTC unit, including alarm function.

This has recently been upgraded to use the new RTC core, and the mod-
ule has been renamed to rtc-s3c to fit in with the new rtc naming scheme.

Watchdog

The onchip watchdog is available via the standard watchdog interface.

16.19. Samsung S3C24XX SoC Family 141

http://www.arm.linux.org.uk/developer/patches/
mailto:ben-linux@fluff.org
http://www.arm.linux.org.uk/mailinglists/

Linux Arm Documentation

NAND

The current kernels now have support for the s3c2410 NAND controller.
If there are any problems the latest linux-mtd code can be found from
http://www.linux-mtd.infradead.org/

For more information see Documentation/arm/samsung-
s3c24xx/nand.rst

SD/MMC

The SD/MMC hardware pre S3C2443 is supported in the current kernel,
the driver is drivers/mmc/host/s3cmci.c and supports 1 and 4 bit SD or
MMC cards.

The SDIO behaviour of this driver has not been fully tested. There is no
current support for hardware SDIO interrupts.

Serial

The s3c2410 serial driver provides support for the internal serial ports.
These devices appear as /dev/ttySAC0 through 3.

To create device nodes for these, use the following commands

mknod ttySAC0 c 204 64 mknod ttySAC1 c 204 65 mknod
ttySAC2 c 204 66

GPIO

The core contains support for manipulating the GPIO, see the documen-
tation in GPIO.txt in the same directory as this file.

Newer kernels carry GPIOLIB, and support is being moved towards this
with some of the older support in line to be removed.

As of v2.6.34, the move towards using gpiolib support is almost com-
plete, and very little of the old calls are left.

See Documentation/arm/samsung-s3c24xx/gpio.rst for the S3C24XX
specific support and Documentation/arm/samsung/gpio.rst for the core
Samsung implementation.

142 Chapter 16. SoC-specific documents

http://www.linux-mtd.infradead.org/

Linux Arm Documentation

Clock Management

The core provides the interface defined in the header file include/asm-
arm/hardware/clock.h, to allow control over the various clock units

Suspend to RAM

For boards that provide support for suspend to RAM, the system can be
placed into low power suspend.

See Suspend.txt for more information.

SPI

SPI drivers are available for both the in-built hardware (although there
is no DMA support yet) and a generic GPIO based solution.

LEDs

There is support for GPIO based LEDs via a platform driver in the LED
subsystem.

Platform Data

Whenever a device has platform specific data that is specified on a per-
machine basis, care should be taken to ensure the following:

1) that default data is not left in the device to confuse the driver if a
machine does not set it at startup

2) the data should (if possible) be marked as __initdata, to ensure that
the data is thrown away if the machine is not the one currently in
use.

The best way of doing this is to make a function that kmalloc()s an
area of memory, and copies the __initdata and then sets the relevant
device’s platform data. Making the function __init takes care of
ensuring it is discarded with the rest of the initialisation code:

static __init void s3c24xx_xxx_set_platdata(struct xxx_data␣
↪→*pd)
{

struct s3c2410_xxx_mach_info *npd;

npd = kmalloc(sizeof(struct s3c2410_xxx_mach_info), GFP_
↪→KERNEL);

if (npd) {
memcpy(npd, pd, sizeof(struct s3c2410_xxx_mach_info));
s3c_device_xxx.dev.platform_data = npd;

} else {
printk(KERN_ERR "no memory for xxx platform data\n");

}
(continues on next page)

16.19. Samsung S3C24XX SoC Family 143

Linux Arm Documentation

(continued from previous page)
}

Note, since the code is marked as __init, it should not be
exported outside arch/arm/mach-s3c2410/, or exported to
modules via EXPORT_SYMBOL() and related functions.

Port Contributors

BenDooks (BJD) Vincent Sanders Herbert Potzl Arnaud Patard (RTP) Roc
Wu Klaus Fetscher Dimitry Andric Shannon Holland Guillaume Gourat
(NexVision) Christer Weinigel (wingel) (Acer N30) Lucas Correia Villa
Real (S3C2400 port)

Document Author

Ben Dooks, Copyright 2004-2006 Simtec Electronics

16.20 Frequently asked questions about the sunxi clock
system

This document contains useful bits of information that people tend to ask about
the sunxi clock system, as well as accompanying ASCII art when adequate.

Q: Why is the main 24MHz oscillator gatable? Wouldn’t that break the
system?

A: The 24MHz oscillator allows gating to save power. Indeed, if gated
carelessly the system would stop functioning, but with the right steps, one
can gate it and keep the system running. Consider this simplified suspend
example:

While the system is operational, you would see something like:

24MHz 32kHz
|

PLL1
\
_ CPU Mux

|
[CPU]

When you are about to suspend, you switch the CPU Mux to the 32kHz oscil-
lator:

24Mhz 32kHz
| |

PLL1 |
/

CPU Mux _/
|

(continues on next page)

144 Chapter 16. SoC-specific documents

Linux Arm Documentation

(continued from previous page)
[CPU]

Finally you can gate the main oscillator::

32kHz
|
|

/
CPU Mux _/

|
[CPU]

Q: Were can I learn more about the sunxi clocks?

A: The linux-sunxi wiki contains a page documenting the clock registers,
you can find it at

http://linux-sunxi.org/A10/CCM

The authoritative source for information at this time is the ccmu driver re-
leased by Allwinner, you can find it at

https://github.com/linux-sunxi/linux-sunxi/tree/sunxi-3.0/arch/arm/
mach-sun4i/clock/ccmu

16.21 SPEAr ARM Linux Overview

16.21.1 Introduction

SPEAr (Structured Processor Enhanced Architecture). weblink : http:
//www.st.com/spear

The ST Microelectronics SPEAr range of ARM9/CortexA9 System-on-
Chip CPUs are supported by the ‘spear’platform of ARM Linux. Cur-
rently SPEAr1310, SPEAr1340, SPEAr300, SPEAr310, SPEAr320 and
SPEAr600 SOCs are supported.

Hierarchy in SPEAr is as follows:

SPEAr (Platform)

• SPEAr3XX (3XX SOC series, based on ARM9)
– SPEAr300 (SOC)

∗ SPEAr300 Evaluation Board

– SPEAr310 (SOC)
∗ SPEAr310 Evaluation Board

– SPEAr320 (SOC)
∗ SPEAr320 Evaluation Board

• SPEAr6XX (6XX SOC series, based on ARM9)
– SPEAr600 (SOC)

16.21. SPEAr ARM Linux Overview 145

http://linux-sunxi.org/A10/CCM
https://github.com/linux-sunxi/linux-sunxi/tree/sunxi-3.0/arch/arm/mach-sun4i/clock/ccmu
https://github.com/linux-sunxi/linux-sunxi/tree/sunxi-3.0/arch/arm/mach-sun4i/clock/ccmu
http://www.st.com/spear
http://www.st.com/spear

Linux Arm Documentation

∗ SPEAr600 Evaluation Board

• SPEAr13XX (13XX SOC series, based on ARM CORTEXA9)
– SPEAr1310 (SOC)

∗ SPEAr1310 Evaluation Board

– SPEAr1340 (SOC)
∗ SPEAr1340 Evaluation Board

16.21.2 Configuration

A generic configuration is provided for each machine, and can be used
as the default by:

make spear13xx_defconfig
make spear3xx_defconfig
make spear6xx_defconfig

16.21.3 Layout

The common files for multiple machine families (SPEAr3xx, SPEAr6xx
and SPEAr13xx) are located in the platform code contained in
arch/arm/plat-spear with headers in plat/.

Each machine series have a directory with name arch/arm/mach-spear
followed by series name. Likemach-spear3xx, mach-spear6xx andmach-
spear13xx.

Common file for machines of spear3xx family is mach-
spear3xx/spear3xx.c, for spear6xx is mach-spear6xx/spear6xx.c and
for spear13xx family is mach-spear13xx/spear13xx.c. mach-spear*
also contain soc/machine specific files, like spear1310.c, spear1340.c
spear300.c, spear310.c, spear320.c and spear600.c. mach-spear*
doesn’t contains board specific files as they fully support Flattened
Device Tree.

16.21.4 Document Author

Viresh Kumar <vireshk@kernel.org>, (c) 2010-2012 ST Microelectron-
ics

146 Chapter 16. SoC-specific documents

mailto:vireshk@kernel.org

Linux Arm Documentation

16.22 STiH416 Overview

16.22.1 Introduction

The STiH416 is the next generation of HD, AVC set-top box processors
for satellite, cable, terrestrial and IP-STB markets.

Features - ARM Cortex-A9 1.2 GHz dual core CPU - SATA2x2,USB 2.0x3,
PCIe, Gbit Ethernet MACx2

16.23 STiH407 Overview

16.23.1 Introduction

The STiH407 is the new generation of SoC for Multi-HD, AVC set-top
boxes and server/connected client application for satellite, cable, ter-
restrial and IP-STB markets.

Features - ARM Cortex-A9 1.5 GHz dual core CPU (28nm) - SATA2, USB
3.0, PCIe, Gbit Ethernet

16.23.2 Document Author

Maxime Coquelin <maxime.coquelin@st.com>, (c) 2014 ST Microelec-
tronics

16.24 STiH418 Overview

16.24.1 Introduction

The STiH418 is the new generation of SoC for UHDp60 set-top boxes
and server/connected client application for satellite, cable, terrestrial
and IP-STB markets.

Features - ARM Cortex-A9 1.5 GHz quad core CPU (28nm) - SATA2, USB
3.0, PCIe, Gbit Ethernet - HEVC L5.1 Main 10 - VP9

16.24.2 Document Author

Maxime Coquelin <maxime.coquelin@st.com>, (c) 2015 ST Microelec-
tronics

16.22. STiH416 Overview 147

mailto:maxime.coquelin@st.com
mailto:maxime.coquelin@st.com

Linux Arm Documentation

16.25 STi ARM Linux Overview

16.25.1 Introduction

The ST Microelectronics Multimedia and Application Processors range
of CortexA9 System-on-Chip are supported by the ‘STi’platform of
ARM Linux. Currently STiH415, STiH416 SOCs are supported with both
B2000 and B2020 Reference boards.

16.25.2 configuration

A generic configuration is provided for both STiH415/416, and can be
used as the default by:

make stih41x_defconfig

16.25.3 Layout

All the files for multiple machine families (STiH415, STiH416, and
STiG125) are located in the platform code contained in arch/arm/mach-
sti

There is a generic board board-dt.c in the mach folder which support
Flattened Device Tree, whichmeans, It works with any compatible board
with Device Trees.

16.25.4 Document Author

Srinivas Kandagatla <srinivas.kandagatla@st.com>, (c) 2013 ST Micro-
electronics

16.26 STiH415 Overview

16.26.1 Introduction

The STiH415 is the next generation of HD, AVC set-top box processors
for satellite, cable, terrestrial and IP-STB markets.

Features:

• ARM Cortex-A9 1.0 GHz, dual-core CPU

• SATA2x2,USB 2.0x3, PCIe, Gbit Ethernet MACx2

148 Chapter 16. SoC-specific documents

mailto:srinivas.kandagatla@st.com

Linux Arm Documentation

16.27 Release notes for Linux Kernel VFP support code

Date: 20 May 2004

Author: Russell King

This is the first release of the Linux Kernel VFP support code. It provides support
for the exceptions bounced from VFP hardware found on ARM926EJ-S.

This release has been validated against the SoftFloat-2b library by John R. Hauser
using the TestFloat-2a test suite. Details of this library and test suite can be found
at:

http://www.jhauser.us/arithmetic/SoftFloat.html

The operations which have been tested with this package are:

• fdiv

• fsub

• fadd

• fmul

• fcmp

• fcmpe

• fcvtd

• fcvts

• fsito

• ftosi

• fsqrt

All the above pass softfloat tests with the following exceptions:

• fadd/fsub shows some differences in the handling of +0 / -0 results when input
operands differ in signs.

• the handling of underflow exceptions is slightly different. If a result under-
flows before rounding, but becomes a normalised number after rounding, we
do not signal an underflow exception.

Other operations which have been tested by basic assembly-only tests are:

• fcpy

• fabs

• fneg

• ftoui

• ftosiz

• ftouiz

The combination operations have not been tested:

• fmac

16.27. Release notes for Linux Kernel VFP support code 149

http://www.jhauser.us/arithmetic/SoftFloat.html

Linux Arm Documentation

• fnmac

• fmsc

• fnmsc

• fnmul

150 Chapter 16. SoC-specific documents

