
Linux Accounting
Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

CONTROL GROUPSTATS

Control Groupstats is inspired by the discussion at http://lkml.org/lkml/2007/4/11/
187 and implements per cgroup statistics as suggested by Andrew Morton in http:
//lkml.org/lkml/2007/4/11/263.

Per cgroup statistics infrastructure re-uses code from the taskstats interface. A
new set of cgroup operations are registered with commands and attributes spe-
cific to cgroups. It should be very easy to extend per cgroup statistics, by adding
members to the cgroupstats structure.

The current model for cgroupstats is a pull, a push model (to post statistics on
interesting events), should be very easy to add. Currently user space requests for
statistics by passing the cgroup path. Statistics about the state of all the tasks in
the cgroup is returned to user space.

NOTE: We currently rely on delay accounting for extracting information about
tasks blocked on I/O. If CONFIG_TASK_DELAY_ACCT is disabled, this information
will not be available.

To extract cgroup statistics a utility very similar to getdelays.c has been developed,
the sample output of the utility is shown below:

~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup/a"
sleeping 1, blocked 0, running 1, stopped 0, uninterruptible 0
~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup"
sleeping 155, blocked 0, running 1, stopped 0, uninterruptible 2

1

http://lkml.org/lkml/2007/4/11/187
http://lkml.org/lkml/2007/4/11/187
http://lkml.org/lkml/2007/4/11/263
http://lkml.org/lkml/2007/4/11/263

Linux Accounting Documentation

2 Chapter 1. Control Groupstats

CHAPTER

TWO

DELAY ACCOUNTING

Tasks encounter delays in execution when they wait for some kernel resource to
become available e.g. a runnable task may wait for a free CPU to run on.

The per-task delay accounting functionality measures the delays experienced by a
task while

a) waiting for a CPU (while being runnable)

b) completion of synchronous block I/O initiated by the task

c) swapping in pages

d) memory reclaim

and makes these statistics available to userspace through the taskstats interface.

Such delays provide feedback for setting a task’s cpu priority, io priority and rss
limit values appropriately. Long delays for important tasks could be a trigger for
raising its corresponding priority.

The functionality, through its use of the taskstats interface, also provides delay
statistics aggregated for all tasks (or threads) belonging to a thread group (corre-
sponding to a traditional Unix process). This is a commonly needed aggregation
that is more efficiently done by the kernel.

Userspace utilities, particularly resource management applications, can also ag-
gregate delay statistics into arbitrary groups. To enable this, delay statistics of a
task are available both during its lifetime as well as on its exit, ensuring continuous
and complete monitoring can be done.

2.1 Interface

Delay accounting uses the taskstats interface which is described in detail in a
separate document in this directory. Taskstats returns a generic data structure to
userspace corresponding to per-pid and per-tgid statistics. The delay accounting
functionality populates specific fields of this structure. See

include/linux/taskstats.h

for a description of the fields pertaining to delay accounting. It will generally be
in the form of counters returning the cumulative delay seen for cpu, sync block
I/O, swapin, memory reclaim etc.

3

Linux Accounting Documentation

Taking the difference of two successive readings of a given counter (say
cpu_delay_total) for a task will give the delay experienced by the task waiting for
the corresponding resource in that interval.

When a task exits, records containing the per-task statistics are sent to userspace
without requiring a command. If it is the last exiting task of a thread group, the
per-tgid statistics are also sent. More details are given in the taskstats interface
description.

The getdelays.c userspace utility in tools/accounting directory allows simple com-
mands to be run and the corresponding delay statistics to be displayed. It also
serves as an example of using the taskstats interface.

2.2 Usage

Compile the kernel with:

CONFIG_TASK_DELAY_ACCT=y
CONFIG_TASKSTATS=y

Delay accounting is enabled by default at boot up. To disable, add:

nodelayacct

to the kernel boot options. The rest of the instructions below assume this has not
been done.

After the system has booted up, use a utility similar to getdelays.c to access the
delays seen by a given task or a task group (tgid). The utility also allows a given
command to be executed and the corresponding delays to be seen.

General format of the getdelays command:

getdelays [-t tgid] [-p pid] [-c cmd...]

Get delays, since system boot, for pid 10:

./getdelays -p 10
(output similar to next case)

Get sum of delays, since system boot, for all pids with tgid 5:

./getdelays -t 5

CPU count real total virtual total delay total
7876 92005750 100000000 24001500

IO count delay total
0 0

SWAP count delay total
0 0

RECLAIM count delay total
0 0

Get delays seen in executing a given simple command:

4 Chapter 2. Delay accounting

Linux Accounting Documentation

./getdelays -c ls /

bin data1 data3 data5 dev home media opt root srv sys ␣
↪→usr
boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp ␣
↪→var

CPU count real total virtual total delay total
6 4000250 4000000 0

IO count delay total
0 0

SWAP count delay total
0 0

RECLAIM count delay total
0 0

2.2. Usage 5

Linux Accounting Documentation

6 Chapter 2. Delay accounting

CHAPTER

THREE

PSI - PRESSURE STALL INFORMATION

Date April, 2018
Author Johannes Weiner <hannes@cmpxchg.org>

When CPU, memory or IO devices are contended, workloads experience latency
spikes, throughput losses, and run the risk of OOM kills.

Without an accurate measure of such contention, users are forced to either play
it safe and under-utilize their hardware resources, or roll the dice and frequently
suffer the disruptions resulting from excessive overcommit.

The psi feature identifies and quantifies the disruptions caused by such resource
crunches and the time impact it has on complex workloads or even entire systems.

Having an accurate measure of productivity losses caused by resource scarcity
aids users in sizing workloads to hardware–or provisioning hardware according to
workload demand.

As psi aggregates this information in realtime, systems can be managed dynami-
cally using techniques such as load shedding, migrating jobs to other systems or
data centers, or strategically pausing or killing low priority or restartable batch
jobs.

This allows maximizing hardware utilization without sacrificing workload health
or risking major disruptions such as OOM kills.

3.1 Pressure interface

Pressure information for each resource is exported through the respective file in
/proc/pressure/ – cpu, memory, and io.

The format for CPU is as such:

some avg10=0.00 avg60=0.00 avg300=0.00 total=0

and for memory and IO:

some avg10=0.00 avg60=0.00 avg300=0.00 total=0
full avg10=0.00 avg60=0.00 avg300=0.00 total=0

The“some”line indicates the share of time in which at least some tasks are stalled
on a given resource.

7

mailto:hannes@cmpxchg.org

Linux Accounting Documentation

The “full”line indicates the share of time in which all non-idle tasks are stalled
on a given resource simultaneously. In this state actual CPU cycles are going to
waste, and a workload that spends extended time in this state is considered to be
thrashing. This has severe impact on performance, and it’s useful to distinguish
this situation from a state where some tasks are stalled but the CPU is still doing
productive work. As such, time spent in this subset of the stall state is tracked
separately and exported in the “full”averages.
The ratios (in %) are tracked as recent trends over ten, sixty, and three hundred
second windows, which gives insight into short term events as well as medium and
long term trends. The total absolute stall time (in us) is tracked and exported as
well, to allow detection of latency spikes which wouldn’t necessarily make a dent
in the time averages, or to average trends over custom time frames.

3.2 Monitoring for pressure thresholds

Users can register triggers and use poll() to be woken up when resource pressure
exceeds certain thresholds.

A trigger describes themaximum cumulative stall time over a specific timewindow,
e.g. 100ms of total stall time within any 500ms window to generate a wakeup
event.

To register a trigger user has to open psi interface file under /proc/pressure/ rep-
resenting the resource to be monitored and write the desired threshold and time
window. The open file descriptor should be used to wait for trigger events using
select(), poll() or epoll(). The following format is used:

<some|full> <stall amount in us> <time window in us>

For example writing“some 150000 1000000”into /proc/pressure/memory would
add 150ms threshold for partial memory stall measured within 1sec time window.
Writing “full 50000 1000000”into /proc/pressure/io would add 50ms threshold
for full io stall measured within 1sec time window.

Triggers can be set on more than one psi metric and more than one trigger for
the same psi metric can be specified. However for each trigger a separate file
descriptor is required to be able to poll it separately from others, therefore for
each trigger a separate open() syscall should be made even when opening the
same psi interface file.

Monitors activate only when system enters stall state for the monitored psi metric
and deactivates upon exit from the stall state. While system is in the stall state psi
signal growth is monitored at a rate of 10 times per tracking window.

The kernel accepts window sizes ranging from 500ms to 10s, therefore min mon-
itoring update interval is 50ms and max is 1s. Min limit is set to prevent overly
frequent polling. Max limit is chosen as a high enough number after which moni-
tors are most likely not needed and psi averages can be used instead.

When activated, psi monitor stays active for at least the duration of one tracking
window to avoid repeated activations/deactivations when system is bouncing in
and out of the stall state.

8 Chapter 3. PSI - Pressure Stall Information

Linux Accounting Documentation

Notifications to the userspace are rate-limited to one per tracking window.

The trigger will de-register when the file descriptor used to define the trigger is
closed.

3.3 Userspace monitor usage example

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <string.h>
#include <unistd.h>

/*
* Monitor memory partial stall with 1s tracking window size
* and 150ms threshold.
*/

int main() {
const char trig[] = "some 150000 1000000";
struct pollfd fds;
int n;

fds.fd = open("/proc/pressure/memory", O_RDWR | O_NONBLOCK);
if (fds.fd < 0) {

printf("/proc/pressure/memory open error: %s\n",
strerror(errno));

return 1;
}
fds.events = POLLPRI;

if (write(fds.fd, trig, strlen(trig) + 1) < 0) {
printf("/proc/pressure/memory write error: %s\n",

strerror(errno));
return 1;

}

printf("waiting for events...\n");
while (1) {

n = poll(&fds, 1, -1);
if (n < 0) {

printf("poll error: %s\n", strerror(errno));
return 1;

}
if (fds.revents & POLLERR) {

printf("got POLLERR, event source is gone\n");
return 0;

}
if (fds.revents & POLLPRI) {

printf("event triggered!\n");
} else {

printf("unknown event received: 0x%x\n", fds.
↪→revents);

return 1;
}

(continues on next page)

3.3. Userspace monitor usage example 9

Linux Accounting Documentation

(continued from previous page)
}

return 0;
}

3.4 Cgroup2 interface

In a system with a CONFIG_CGROUP=y kernel and the cgroup2 filesystem
mounted, pressure stall information is also tracked for tasks grouped into cgroups.
Each subdirectory in the cgroupfs mountpoint contains cpu.pressure, mem-
ory.pressure, and io.pressure files; the format is the same as the /proc/pressure/
files.

Per-cgroup psi monitors can be specified and used the same way as system-wide
ones.

10 Chapter 3. PSI - Pressure Stall Information

CHAPTER

FOUR

PER-TASK STATISTICS INTERFACE

Taskstats is a netlink-based interface for sending per-task and per-process statis-
tics from the kernel to userspace.

Taskstats was designed for the following benefits:

• efficiently provide statistics during lifetime of a task and on its exit

• unified interface for multiple accounting subsystems

• extensibility for use by future accounting patches

4.1 Terminology

“pid”,“tid”and“task”are used interchangeably and refer to the standard Linux
task defined by struct task_struct. per-pid stats are the same as per-task stats.

“tgid”,“process”and“thread group”are used interchangeably and refer to the
tasks that share an mm_struct i.e. the traditional Unix process. Despite the use
of tgid, there is no special treatment for the task that is thread group leader - a
process is deemed alive as long as it has any task belonging to it.

4.2 Usage

To get statistics during a task’s lifetime, userspace opens a unicast netlink socket
(NETLINK_GENERIC family) and sends commands specifying a pid or a tgid. The
response contains statistics for a task (if pid is specified) or the sum of statistics
for all tasks of the process (if tgid is specified).

To obtain statistics for tasks which are exiting, the userspace listener sends a
register command and specifies a cpumask. Whenever a task exits on one of the
cpus in the cpumask, its per-pid statistics are sent to the registered listener. Using
cpumasks allows the data received by one listener to be limited and assists in flow
control over the netlink interface and is explained in more detail below.

If the exiting task is the last thread exiting its thread group, an additional record
containing the per-tgid stats is also sent to userspace. The latter contains the sum
of per-pid stats for all threads in the thread group, both past and present.

getdelays.c is a simple utility demonstrating usage of the taskstats interface for re-
porting delay accounting statistics. Users can register cpumasks, send commands

11

Linux Accounting Documentation

and process responses, listen for per-tid/tgid exit data, write the data received to
a file and do basic flow control by increasing receive buffer sizes.

4.3 Interface

The user-kernel interface is encapsulated in include/linux/taskstats.h

To avoid this documentation becoming obsolete as the interface evolves, only an
outline of the current version is given. taskstats.h always overrides the description
here.

struct taskstats is the common accounting structure for both per-pid and per-tgid
data. It is versioned and can be extended by each accounting subsystem that is
added to the kernel. The fields and their semantics are defined in the taskstats.h
file.

The data exchanged between user and kernel space is a netlink message belonging
to the NETLINK_GENERIC family and using the netlink attributes interface. The
messages are in the format:

+----------+- - -+-------------+-------------------+
| nlmsghdr | Pad | genlmsghdr | taskstats payload |
+----------+- - -+-------------+-------------------+

The taskstats payload is one of the following three kinds:

1. Commands: Sent from user to kernel. Commands to get data on a pid/tgid
consist of one attribute, of type TASKSTATS_CMD_ATTR_PID/TGID, containing a
u32 pid or tgid in the attribute payload. The pid/tgid denotes the task/process for
which userspace wants statistics.

Commands to register/deregister interest in exit data
from a set of cpus consist of one attribute, of type
TASKSTATS_CMD_ATTR_REGISTER/DEREGISTER_CPUMASK and contain a
cpumask in the attribute payload. The cpumask is specified as an ascii string of
comma-separated cpu ranges e.g. to listen to exit data from cpus 1,2,3,5,7,8 the
cpumask would be“1-3,5,7-8”. If userspace forgets to deregister interest in cpus
before closing the listening socket, the kernel cleans up its interest set over time.
However, for the sake of efficiency, an explicit deregistration is advisable.

2. Response for a command: sent from the kernel in response to a userspace
command. The payload is a series of three attributes of type:

a) TASKSTATS_TYPE_AGGR_PID/TGID : attribute containing no payload but indi-
cates a pid/tgid will be followed by some stats.

b) TASKSTATS_TYPE_PID/TGID: attribute whose payload is the pid/tgid whose
stats are being returned.

c) TASKSTATS_TYPE_STATS: attribute with a struct taskstats as payload. The
same structure is used for both per-pid and per-tgid stats.

3. New message sent by kernel whenever a task exits. The payload consists of
a series of attributes of the following type:

a) TASKSTATS_TYPE_AGGR_PID: indicates next two attributes will be pid+stats

12 Chapter 4. Per-task statistics interface

Linux Accounting Documentation

b) TASKSTATS_TYPE_PID: contains exiting task’s pid
c) TASKSTATS_TYPE_STATS: contains the exiting task’s per-pid stats
d) TASKSTATS_TYPE_AGGR_TGID: indicates next two attributes will be
tgid+stats

e) TASKSTATS_TYPE_TGID: contains tgid of process to which task belongs

f) TASKSTATS_TYPE_STATS: contains the per-tgid stats for exiting task’s pro-
cess

4.4 per-tgid stats

Taskstats provides per-process stats, in addition to per-task stats, since resource
management is often done at a process granularity and aggregating task stats in
userspace alone is inefficient and potentially inaccurate (due to lack of atomicity).

However, maintaining per-process, in addition to per-task stats, within the kernel
has space and time overheads. To address this, the taskstats code accumulates
each exiting task’s statistics into a process-wide data structure. When the last task
of a process exits, the process level data accumulated also gets sent to userspace
(along with the per-task data).

When a user queries to get per-tgid data, the sum of all other live threads in the
group is added up and added to the accumulated total for previously exited threads
of the same thread group.

4.5 Extending taskstats

There are two ways to extend the taskstats interface to export more per-
task/process stats as patches to collect them get added to the kernel in future:

1. Adding more fields to the end of the existing struct taskstats. Backward com-
patibility is ensured by the version number within the structure. Userspace
will use only the fields of the struct that correspond to the version its using.

2. Defining separate statistic structs and using the netlink attributes interface to
return them. Since userspace processes each netlink attribute independently,
it can always ignore attributes whose type it does not understand (because it
is using an older version of the interface).

Choosing between 1. and 2. is a matter of trading off flexibility and overhead.
If only a few fields need to be added, then 1. is the preferable path since the
kernel and userspace don’t need to incur the overhead of processing new netlink
attributes. But if the new fields expand the existing struct too much, requiring
disparate userspace accounting utilities to unnecessarily receive large structures
whose fields are of no interest, then extending the attributes structure would be
worthwhile.

4.4. per-tgid stats 13

Linux Accounting Documentation

4.6 Flow control for taskstats

When the rate of task exits becomes large, a listener may not be able to keep up
with the kernel’s rate of sending per-tid/tgid exit data leading to data loss. This
possibility gets compounded when the taskstats structure gets extended and the
number of cpus grows large.

To avoid losing statistics, userspace should do one or more of the following:

• increase the receive buffer sizes for the netlink sockets opened by listeners
to receive exit data.

• create more listeners and reduce the number of cpus being listened to by
each listener. In the extreme case, there could be one listener for each cpu.
Users may also consider setting the cpu affinity of the listener to the subset
of cpus to which it listens, especially if they are listening to just one cpu.

Despite these measures, if the userspace receives ENOBUFS error messages in-
dicated overflow of receive buffers, it should take measures to handle the loss of
data.

14 Chapter 4. Per-task statistics interface

CHAPTER

FIVE

THE STRUCT TASKSTATS

This document contains an explanation of the struct taskstats fields.

There are three different groups of fields in the struct taskstats:

1) Common and basic accounting fields If CONFIG_TASKSTATS is set, the
taskstats interface is enabled and the common fields and basic account-
ing fields are collected for delivery at do_exit() of a task.

2) Delay accounting fields These fields are placed between:

/* Delay accounting fields start */

and:

/* Delay accounting fields end */

Their values are collected if CONFIG_TASK_DELAY_ACCT is set.

3) Extended accounting fields These fields are placed between:

/* Extended accounting fields start */

and:

/* Extended accounting fields end */

Their values are collected if CONFIG_TASK_XACCT is set.

4) Per-task and per-thread context switch count statistics

5) Time accounting for SMT machines

6) Extended delay accounting fields for memory reclaim

Future extension should add fields to the end of the taskstats struct, and should
not change the relative position of each field within the struct.

struct taskstats {

1) Common and basic accounting fields:

/* The version number of this struct. This field is always set to
* TAKSTATS_VERSION, which is defined in <linux/taskstats.h>.
* Each time the struct is changed, the value should be incremented.
*/

(continues on next page)

15

Linux Accounting Documentation

(continued from previous page)
__u16 version;

/* The exit code of a task. */
__u32 ac_exitcode; /* Exit status */

/* The accounting flags of a task as defined in <linux/acct.h>
* Defined values are AFORK, ASU, ACOMPAT, ACORE, and AXSIG.
*/

__u8 ac_flag; /* Record flags */

/* The value of task_nice() of a task. */
__u8 ac_nice; /* task_nice */

/* The name of the command that started this task. */
char ac_comm[TS_COMM_LEN]; /* Command name */

/* The scheduling discipline as set in task->policy field. */
__u8 ac_sched; /* Scheduling discipline */

__u8 ac_pad[3];
__u32 ac_uid; /* User ID */
__u32 ac_gid; /* Group ID */
__u32 ac_pid; /* Process ID */
__u32 ac_ppid; /* Parent process ID */

/* The time when a task begins, in [secs] since 1970. */
__u32 ac_btime; /* Begin time [sec since 1970] */

/* The elapsed time of a task, in [usec]. */
__u64 ac_etime; /* Elapsed time [usec] */

/* The user CPU time of a task, in [usec]. */
__u64 ac_utime; /* User CPU time [usec] */

/* The system CPU time of a task, in [usec]. */
__u64 ac_stime; /* System CPU time [usec] */

/* The minor page fault count of a task, as set in task->min_flt. */
__u64 ac_minflt; /* Minor Page Fault Count */

/* The major page fault count of a task, as set in task->maj_flt. */
__u64 ac_majflt; /* Major Page Fault Count */

2) Delay accounting fields:

/* Delay accounting fields start
*
* All values, until the comment "Delay accounting fields end" are
* available only if delay accounting is enabled, even though the last
* few fields are not delays
*
* xxx_count is the number of delay values recorded
* xxx_delay_total is the corresponding cumulative delay in␣
↪→nanoseconds
*
* xxx_delay_total wraps around to zero on overflow

(continues on next page)

16 Chapter 5. The struct taskstats

Linux Accounting Documentation

(continued from previous page)
* xxx_count incremented regardless of overflow
*/

/* Delay waiting for cpu, while runnable
* count, delay_total NOT updated atomically
*/

__u64 cpu_count;
__u64 cpu_delay_total;

/* Following four fields atomically updated using task->delays->lock␣
↪→*/

/* Delay waiting for synchronous block I/O to complete
* does not account for delays in I/O submission
*/

__u64 blkio_count;
__u64 blkio_delay_total;

/* Delay waiting for page fault I/O (swap in only) */
__u64 swapin_count;
__u64 swapin_delay_total;

/* cpu "wall-clock" running time
* On some architectures, value will adjust for cpu time stolen
* from the kernel in involuntary waits due to virtualization.
* Value is cumulative, in nanoseconds, without a corresponding count
* and wraps around to zero silently on overflow
*/

__u64 cpu_run_real_total;

/* cpu "virtual" running time
* Uses time intervals seen by the kernel i.e. no adjustment
* for kernel's involuntary waits due to virtualization.
* Value is cumulative, in nanoseconds, without a corresponding count
* and wraps around to zero silently on overflow
*/

__u64 cpu_run_virtual_total;
/* Delay accounting fields end */
/* version 1 ends here */

3) Extended accounting fields:

/* Extended accounting fields start */

/* Accumulated RSS usage in duration of a task, in MBytes-usecs.
* The current rss usage is added to this counter every time
* a tick is charged to a task's system time. So, at the end we
* will have memory usage multiplied by system time. Thus an
* average usage per system time unit can be calculated.
*/

__u64 coremem; /* accumulated RSS usage in MB-usec */

/* Accumulated virtual memory usage in duration of a task.
* Same as acct_rss_mem1 above except that we keep track of VM usage.
*/

__u64 virtmem; /* accumulated VM usage in MB-usec */
(continues on next page)

17

Linux Accounting Documentation

(continued from previous page)

/* High watermark of RSS usage in duration of a task, in KBytes. */
__u64 hiwater_rss; /* High-watermark of RSS usage */

/* High watermark of VM usage in duration of a task, in KBytes. */
__u64 hiwater_vm; /* High-water virtual memory usage */

/* The following four fields are I/O statistics of a task. */
__u64 read_char; /* bytes read */
__u64 write_char; /* bytes written */
__u64 read_syscalls; /* read syscalls */
__u64 write_syscalls; /* write syscalls */

/* Extended accounting fields end */

4) Per-task and per-thread statistics:

__u64 nvcsw; /* Context voluntary switch counter */
__u64 nivcsw; /* Context involuntary switch counter␣
↪→*/

5) Time accounting for SMT machines:

__u64 ac_utimescaled; /* utime scaled on frequency etc */
__u64 ac_stimescaled; /* stime scaled on frequency etc */
__u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */

6) Extended delay accounting fields for memory reclaim:

/* Delay waiting for memory reclaim */
__u64 freepages_count;
__u64 freepages_delay_total;

}

18 Chapter 5. The struct taskstats

